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Abstract

In this note, the sequence of the interarrivals of a stationary Markovian arrival process is
shown to be ρ-mixing with a geometric rate of convergence when the driving process is
ρ-mixing. This provides an answer to an issue raised in the recent work of Ramirez-Cobo
and Carrizosa (2012) on the geometric convergence of the autocorrelation function of the
stationary Markovian arrival process.
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1. Introduction

We provide a positive answer to a question raised in [4] on the geometric convergence of the
autocorrelation function associated with the interarrival times of a stationary m-state Markovian
arrival process (MAP). Indeed, it is shown in [3, Proposition 3.1] that the increment sequence
{Tn := Sn − Sn−1}n≥1 associated with a discrete-time stationary Markov additive process
{(Xn, Sn)}n∈N ∈ X×R

d is ρ-mixing with a geometric rate provided that the driving stationary
Markov chain {Xn}n∈N is ρ-mixing. There, X may be any measurable set. In the case where
the increments {Tn}n≥1 are nonnegative random variables, {(Xn, Sn)}n∈N is a Markov renewal
process (MRP). Therefore, we obtain the expected answer to the question in [4] since such an
MRP with {Tn}n≥1 being the interarrival times can be associated with an m-state MAP and the
ρ-mixing property of {Tn}n≥1 with geometric rate ensures the geometric convergence of the
autocorrelation function of {Tn}n≥1. We refer the reader to [1, Chapter XI] for basic properties
of MAPs and Markov additive processes.

2. Geometric ρ-mixing of the sequence of interarrivals of a MAP

Let us recall the definition of the ρ-mixing property of a (strictly) stationary sequence of
random variables {Tn}n≥1 (see, e.g. [2]). The ρ-mixing coefficient with time lag k > 0, usually
denoted by ρ(k), is defined by

ρ(k) := sup
n≥1

sup
m∈N

sup{|Corr(f (T1, . . . , Tn); h(Tn+k, . . . , Tn+k+m))|,

f, g R-valued functions such that E[|f (T1, . . . , Tn)|2]
and E[|h(Tn+k, . . . , Tn+k+m)|2] are finite}, (1)
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where Corr(f (T1, . . . , Tn); h(Tn+k, . . . , Tn+k+m)) is the correlation coefficient of the two
square-integrable random variables. Note that {ρ(k)}n≥1 is a nonincreasing sequence. Then
{Tn}n≥1 is said to be ρ-mixing if

lim
k→+∞ ρ(k) = 0.

When, for any n ∈ N, the random variable Tn has a moment of order 2, the autocorrelation
function of {Tn}n≥1 as studied in [4], that is, Corr(T1; Tk+1) as a function of the time lag k,
clearly satisfies

|Corr(T1; Tk+1)| ≤ ρ(k) for all k ≥ 1. (2)

Therefore, any rate of convergence of the ρ-mixing coefficients {ρ(k)}k≥1 is a rate of
convergence for the autocorrelation function.

We only outline the main steps to obtain from [3, Proposition 3.1] a geometric convergence
rate of {ρ(k)}n≥1 for the m-state MRP {(Xn, Sn)}n∈N associated with an m-state MAP. In [4,
Section 2], the analysis of the autocorrelation function in the two-state case is based on such an
MRP (notation and background in [4] are that of [5]). Recall that an m-state MAP is a bivariate
continuous-time Markov process {(Jt , Nt )}t≥0 on {1, . . . , m} × N, where Nt represents the
number of arrivals up to time t , while the states of the driving Markov process {Jt }t≥0 are
called phases. Let Sn be the time at the nth arrival (S0 = 0 almost surely), and let Xn be the
state of the driving process just after the nth arrival. Then {(Xn, Sn)}n∈N is known to be an
MRP with the following semi-Markov kernel Q on {1, . . . , m} × [0, ∞):

Q(x1; {x2} × dy) := (eD0yD1)(x1, x2) dy for all (x1, x2) ∈ {1, . . . , m}2 (3)

parameterized by a pair of (m × m)-matrices usually denoted by D0 and D1. The matrix
D0 + D1 is the infinitesimal generator of the background Markov process {Jt }t≥0 which is
always assumed to be irreducible, and D0 is stable. The process {Xn}n∈N is a Markov chain
with state space X := {1, . . . , m} and transition probability matrix P :

P(x1, x2) = Q(x1; {x2} × [0, ∞)) = ((−D0)
−1D1)(x1, x2) for all (x1, x2) ∈ X

2. (4)

{Xn}n∈N has an invariant probability measure φ (i.e. φP = φ). It is well known that, for
n ≥ 1, the interarrival time Tn := Sn −Sn−1 has a moment of order 2 (whatever the probability
distribution of X0). We refer the reader to [1] for details about the above basic facts of a MAP
and its associated MRP.

Let us introduce the (m × m)-matrix

� := e�φ (5)

when e is the m-dimensional row vector with all components equal to 1. Any R-valued function
v on X may be identified to an R

m-dimensional vector. We use the subordinate matrix norm

induced by the �2(φ)-norm ‖v‖2 :=
√∑

x∈X
|v(x)|2φ(x) on R

m:

‖M‖2 := sup
{v : ‖v‖2=1}

‖Mv‖2.

Let Eφ be the expectation with respect to the initial conditions (X0, S0) ∼ (φ, δ0). Recall that

Tn := Sn − Sn−1 for n ≥ 1.
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When X0 ∼ φ, the following statements hold (see [3, Section 3]).

(i) If g is an R-valued function such that E[|g(X1, T1, . . . , Xn, Tn)|] < ∞ then, for all
k ≥ 0 and all n ≥ 1,

E[g(Xk+1, Tk+1, . . . , Xk+n, Tk+n) | σ(Xl, Tl : l ≤ k)]

=
∫

(X×[0,∞))n
Q(Xs; dx1 × dz1)

n∏
i=2

Q(xi−1; dxi × dzi)g(x1, z1, . . . , xn, zn)

= (Q⊗n)(g)(Xk), (6)

where Q⊗n denotes the n-fold kernel product
⊗n

i=1 Q of Q defined in (3).

(ii) Let f and h be two R-valued functions such that

Eφ[|f (T1, . . . , Tn)|2] < ∞ and Eφ[|h(Tn+k, . . . , Tn+k+m)|2] < ∞
for (k, n) ∈ (N∗)2, m ∈ N. From (6), with

g(x1, z1, . . . , xn+k+m, zn+k+m) ≡ f (z1, . . . , zn)h(zn+k, . . . , zn+k+m),

the process {Tn}n≥1 is stationary and the following covariance formula holds (see [3,
Lemma 3.3] for details):

cov(f (T1, . . . , Tn); h(Tn+k, . . . , Tn+k+m))

= Eφ[f (T1, . . . , Tn)(P
k−1 − �)(Q⊗m+1(h))(Xn)]. (7)

The matrices P and � are defined in (4) and (5).

First, note that the random variables f (·) and h(·) in (1) may be assumed to be of L
2-norm 1.

Thus we just have to deal with covariances. Second, the Cauchy–Schwarz inequality and (7)
allow us to write

cov(f (T1, . . . , Tn); h(Tn+k, . . . , Tn+k+m))2

≤ Eφ[|f (T1, . . . , Tn)|2]Eφ[|(P k−1 − �)(Q⊗m+1(h))(Xn)|2]
= Eφ[|(P k−1 − �)(Q⊗m+1(h))(X0)|2] (φ is P -invariant)

= ‖(P k−1 − �)(Q⊗m+1(h))‖2
2

≤ ‖P k−1 − �‖2
2‖Q⊗m+1(h)‖2

2

≤ ‖P k−1 − �‖2
2 (since ‖Q⊗m+1(h)‖2 ≤ 1).

Therefore, it follows from (1) and (2) that the autocorrelation coefficient Corr(T1; Tk+1) as
studied in [4] satisfies

|Corr(T1; Tk+1)| ≤ ρ(k) ≤ ‖P k−1 − �‖2
2 for all k ≥ 1. (8)

The convergence rate to 0 of the sequence {Corr(T1; Tk+1)}n≥1 is bounded from above by that
of {‖P k−1 − �‖2}k≥1. Under usual assumptions on the MAP, {Xn}n∈N is irreducible and
aperiodic, so there exists r ∈ (0, 1) such that

‖P k − �‖2 = O(rk) (9)

with r = max(|λ|, λ is an eigenvalue of P such that |λ| < 1). For a stationary Markov chain
{Xn}n∈N with general state space, we know from [6, pp. 200, 207] that property (9) is equivalent
to the ρ-mixing property of {Xn}n∈N.
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3. Comments on [4]

In [4], the analysis is based on a known explicit formula of the correlation function in terms
of the parameters of the m-state MRP (see [4, Formula (2.6)]). Note that this formula can be
obtained using n = 1, m = 0 and f (T1) = T1, h(T1+k) = T1+k in (7). When m := 2 and under
standard assumptions on MAPs, matrix P is diagonalizable with two distinct real eigenvalues,
1 and 0 < λ < 1, which has an explicit form in terms of the entries of P . Consequently,
the authors have analyzed the correlation function with respect to the entries of matrix P [4,
Equations (3.4)–(3.7)]. However, as the authors pointed out, such an analysis would be tedious
and difficult with m > 2 due to the increasing number of parameters defining an m-state MAP.
Note that inequality (8) and estimate (9) when m := 2 provide the same convergence rate as in
[4], that is, λ the second eigenvalue of matrix P .

References

[1] Asmussen, S. (2003). Applied Probability and Queues, 2nd edn. Springer, New York.
[2] Bradley, R. C. (2005). Introduction to strong mixing conditions (volume I). Tech. Rep., Indiana University.
[3] Ferré, D., Hervé, L. and Ledoux, J. (2012). Limit theorems for stationary Markov processes with L2-spectral

gap. Ann. Inst. H. Poincaré Prob. Statist. 48, 396–423.
[4] Ramirez-Cobo, P. and Carrizosa, E. (2012). A note on the dependence structure of the two-state Markovian

arrival process. J. Appl. Prob. 49, 295–302.
[5] Ramirez-Cobo, P., Lillo, R. E. and Wiper. M. (2010). Nonidentiability of the two-state Markovian arrival

process. J. Appl. Prob. 47, 630–649.
[6] Rosenblatt, M. (1971). Markov Processes. Structure and Asymptotic Behavior. Springer, New York.

https://doi.org/10.1239/jap/1371648964 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648964

	1 Introduction
	2 Geometric -mixing of the sequence of interarrivals of a MAP
	3 Comments on RamCar12
	References

