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Abstract

In this note, the sequence of the interarrivals of a stationary Markovian arrival process is
shown to be p-mixing with a geometric rate of convergence when the driving process is
p-mixing. This provides an answer to an issue raised in the recent work of Ramirez-Cobo
and Carrizosa (2012) on the geometric convergence of the autocorrelation function of the
stationary Markovian arrival process.
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1. Introduction

We provide a positive answer to a question raised in [4] on the geometric convergence of the
autocorrelation function associated with the interarrival times of a stationary m-state Markovian
arrival process (MAP). Indeed, it is shown in [3, Proposition 3.1] that the increment sequence
{T,, := Sp — Su—1}u>1 associated with a discrete-time stationary Markov additive process
{(Xn, Sp)lneny € X % RY is p-mixing with a geometric rate provided that the driving stationary
Markov chain {X,},cN is p-mixing. There, X may be any measurable set. In the case where
the increments {7}, },>1 are nonnegative random variables, {(X,, S;)}seN is a Markov renewal
process (MRP). Therefore, we obtain the expected answer to the question in [4] since such an
MRP with {7, },>1 being the interarrival times can be associated with an m-state MAP and the
p-mixing property of {7,},>1 with geometric rate ensures the geometric convergence of the
autocorrelation function of {7, },>1. We refer the reader to [1, Chapter XI] for basic properties
of MAPs and Markov additive processes.

2. Geometric p-mixing of the sequence of interarrivals of a MAP

Let us recall the definition of the p-mixing property of a (strictly) stationary sequence of
random variables {7}, },>1 (see, e.g. [2]). The p-mixing coefficient with time lag k > 0, usually
denoted by p (k), is defined by

p(k) := sup sup sup{|Corr(f(T1, ..., Tp); h(Tntks - - - s Tngktm))s

n>1meN
f, g R-valued functions such that E[| f(T1, ..., Tn)|2]
and E[|h(Tpix, - - - » Tpgk4m)|*] are finite}, (1)
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where Corr(f(T1, ..., Ty); h(Tytks - - - s Tuti+m)) is the correlation coefficient of the two
square-integrable random variables. Note that {p(k)},>1 is a nonincreasing sequence. Then
{T,}n>1 is said to be p-mixing if
lim p(k) =0.
k—+00

When, for any n € N, the random variable 7,, has a moment of order 2, the autocorrelation
function of {7,},>1 as studied in [4], that is, Corr(77; Tx+1) as a function of the time lag k,
clearly satisfies

|Corr(T1; Ti+1)| < p(k)  forall k > 1. 2

Therefore, any rate of convergence of the p-mixing coefficients {p(k)};>1 is a rate of
convergence for the autocorrelation function.

We only outline the main steps to obtain from [3, Proposition 3.1] a geometric convergence
rate of {p(k)},>1 for the m-state MRP {(X,,, S»)}nen associated with an m-state MAP. In [4,
Section 2], the analysis of the autocorrelation function in the two-state case is based on such an
MRP (notation and background in [4] are that of [5]). Recall that an m-state MAP is a bivariate
continuous-time Markov process {(J;, N;)};>0 on {1,..., m} x N, where N; represents the
number of arrivals up to time ¢, while the states of the driving Markov process {J;};>0 are
called phases. Let S, be the time at the nth arrival (So = 0 almost surely), and let X,, be the
state of the driving process just after the nth arrival. Then {(X,,, S,)},en is known to be an
MRP with the following semi-Markov kernel Q on {1, ..., m} x [0, 00):

O(x1; {x2} x dy) = (eDoyDl)(xl,xg) dy forall (x1,x2) €{l,..., m}2 3)

parameterized by a pair of (m x m)-matrices usually denoted by Do and Dj. The matrix
Do + D; is the infinitesimal generator of the background Markov process {J;};>0 which is
always assumed to be irreducible, and Dy is stable. The process { X, },en is a Markov chain
with state space X := {1, ..., m} and transition probability matrix P:

P(x1,x2) = Q(x1; {x2)} x [0, 00)) = ((—Do) ' D1)(x1,x2) forall (x1,x2) € X2 (4)

{X,}nen has an invariant probability measure ¢ (i.e. P = ¢). It is well known that, for
n > 1, the interarrival time T, := S,, — S,,— has a moment of order 2 (whatever the probability
distribution of Xg). We refer the reader to [1] for details about the above basic facts of a MAP
and its associated MRP.

Let us introduce the (m x m)-matrix

D:=e' ¢ (5)

when e is the m-dimensional row vector with all components equal to 1. Any R-valued function
v on X may be identified to an R™-dimensional vector. We use the subordinate matrix norm

induced by the £2(¢p)-norm |jv||» := \/erx [v(x)]2¢(x) on R™:

IMllz:=  sup [[Mv]>.
(s oll=1)

Let [Eg be the expectation with respect to the initial conditions (X, So) ~ (¢, o). Recall that

T, =S8, —S,_1 forn>1.
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When X ~ ¢, the following statements hold (see [3, Section 3]).

(1) If g is an R-valued function such that E[|g(X, T}, ..., X,, T;)|]] < oo then, for all
k>0andalln > 1,

Elg(Xixa1, Tew1s -+ o s Xigns Tkan) | 0(Xy, Tp: 1 < k)]

n
=/ O(Xy: dxy x dzp) [ [ Qxic1s dxi x dzi)g(xr. 210 -+, Xns 2n)
(Xx[0,00))" i=2

= (Q9")(8)(Xx). (©)
where Q®" denotes the n-fold kernel product ®?’_, O of O defined in (3).
(i1) Let f and & be two R-valued functions such that
Egllf(T1..... TPl < oo and  Eglh(Tuti. ... Toskem)|’] < 00
for (k, n) € (N*)2, m € N. From (6), with
(X1, 21, v Xnpkegm s Zntkam) = [(21, oy 20 @nps - -3 Znkm) s

the process {7, },>1 is stationary and the following covariance formula holds (see [3,
Lemma 3.3] for details):

cov(f(T1, ..., T); h(Tugk, - - - Tupktm))
=Eglf(T1..... TP — @)(Q®"F () (X)) (D
The matrices P and & are defined in (4) and (5).

First, note that the random variables f(-) and A(-) in (1) may be assumed to be of L2-norm 1.
Thus we just have to deal with covariances. Second, the Cauchy—Schwarz inequality and (7)
allow us to write

cov(f(T1, ... T)s h(Tusks - - s Tnkrm))?
<Egllf(Th,.... THPIE[I(PF! — @)(Q®" T () (X)) ]
= Ey[|(P*! — ®)(Q®" T (1)) (X0)[*] (¢ is P-invariant)
= [(P*1 = &)(0®" ()13
<P — @31 0%" (i3
<P — |3 (since [Q®" T ()] < 1).

Therefore, it follows from (1) and (2) that the autocorrelation coefficient Corr(77; Tx41) as
studied in [4] satisfies

|Corr(Ty; Tks1)| < p(k) < [P*"" = @3 forallk > 1. ®)

The convergence rate to O of the sequence {Corr(71; Ti+1)}s>1 is bounded from above by that
of {||P"‘_1 — ®Jj2}k>1. Under usual assumptions on the MAP, {X,},¢N is irreducible and
aperiodic, so there exists r € (0, 1) such that

IPF — @], = 0(%) 9)

with » = max(|)A|, A is an eigenvalue of P such that |A| < 1). For a stationary Markov chain
{Xn}nen with general state space, we know from [6, pp. 200, 207] that property (9) is equivalent
to the p-mixing property of {X,},eN.
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3. Comments on [4]

In [4], the analysis is based on a known explicit formula of the correlation function in terms
of the parameters of the m-state MRP (see [4, Formula (2.6)]). Note that this formula can be
obtained usingn = 1,m = 0and f(T1) = T1, h(T1+x) = T14¢ in (7). When m := 2 and under
standard assumptions on MAPs, matrix P is diagonalizable with two distinct real eigenvalues,
I and 0 < A < 1, which has an explicit form in terms of the entries of P. Consequently,
the authors have analyzed the correlation function with respect to the entries of matrix P [4,
Equations (3.4)—(3.7)]. However, as the authors pointed out, such an analysis would be tedious
and difficult with m > 2 due to the increasing number of parameters defining an m-state MAP.
Note that inequality (8) and estimate (9) when m := 2 provide the same convergence rate as in
[4], that is, A the second eigenvalue of matrix P.
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