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Abstract

The neurobiological understanding of mood, and by extension mood disorders, remains elu-
sive despite decades of research implicating several neuromodulator systems. This review con-
siders a new approach based on existing theories of functional brain organisation. The free
energy principle (a.k.a. active inference), and its instantiation in the Bayesian brain, offers a
complete and simple formulation of mood. It has been proposed that emotions reflect the pre-
cision of – or certainty about – the predicted sensorimotor/interoceptive consequences of
action. By extending this reasoning, in a hierarchical setting, we suggest mood states act as
(hyper) priors over uncertainty (i.e. emotions). Here, we consider the same computational
pathology in the proprioceptive and interoceptive (behavioural and autonomic) domain in
order to furnish an explanation for mood disorders. This formulation reconciles several
strands of research at multiple levels of enquiry.

The current predicament

Mood disorders are heterogeneous and complex and depend upon the interplay of several neu-
romodulator systems and genetic and epigenetic factors (Hirschfeld, 2000; Holsboer, 2000;
Nestler & Carlezon, 2006; Nutt et al. 2007; Dowlati et al. 2010; Möhler, 2012). As a result, cur-
rent approaches to diagnosis and classification of mood disorders suffer several shortcomings
(Nesse & Stein, 2012), and advances in understanding the underlying neurobiology have been
slow. We argue that progress may be facilitated by an appreciation of the dynamic and self-
organising nature of neurobiological systems (Seth, 2013; Fotopoulou, 2015; Clark et al. 2016).

The brain is a generative organ

Traditional hypotheses propose that the neurobiological underpinnings of a variety of disor-
ders arise from structural or functional abnormalities in the brain consequent on a combin-
ation of environmental stress and genetic vulnerabilities (Videbech & Ravnkilde, 2004;
Ota & Duman, 2013; Duman, 2014). Similarly, it has been argued that pharmacotherapy
may work via its effects on neurogenesis and synaptic plasticity (Santarelli et al. 2003;
Anacker et al. 2011; Castrén & Hen, 2013) and that stressors may leave an indelible scar on
key neurobiological systems that disrupts their structure and/or function. In this sense, the
traditional hypothesis is that brain abnormalities develop throughout the lifespan and result
in the onset and maintenance of psychopathology.

However, modern accounts of brain function reject the classical notion of the brain as a
passive organ in favour of theories of embodiment and self-organisation (Friston, 2010;
Seth, 2013; Corlett & Fletcher, 2014). Specifically, recent theoretical accounts propose that
the brain works towards an equilibrium in which its environment is rendered predictable;
i.e. surprise is minimised and uncertainty resolved (Friston, 2009). Essentially, the brain
embodies a generative model that encodes prior beliefs about sensory input and their causes.
This model generates predictions which are tested against actual input to produce prediction
errors (surprise). These prediction errors are then used by the brain to revise its model of the
world. In so doing, it updates its predictions and minimises prediction error (Friston, 2010).

On this view, prior beliefs about the world, as discussed above, are represented in terms of
probability distributions. The sufficient statistics for these distributions may be labelled as
‘expectation’ and ‘precision’ and, if the brain embodies such priors, it follows that they
must be represented in its physical activity and anatomy. It is thought that expectations
(and subsequent predictions) are encoded by synaptic activity, while precision, or uncertainty,
is encoded by the extent to which this activity is attenuated or amplified (Friston & Kiebel,
2009), e.g. through careful synaptic efficacy or gain control. In current predictive coding for-
mulations of the Bayesian brain, expectation and prediction error units are thought to occupy
deep and superficial pyramidal layers of cortex, respectively (Friston & Kiebel, 2009; Bastos
et al. 2012; Shipp et al. 2013); such that predictions generated, from expectations, at one
level of the cortical hierarchy descend to form prediction errors in superficial layers of the
level below. These prediction error units then send ascending signals to update expectations.
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Crucially, the precision or confidence placed in prediction errors
is then associated with the synaptic gain or efficacy of superficial
pyramidal cells – that itself depends upon interactions with
inhibitory interneurons and modulatory neurotransmission.
This is a brief description of hierarchical predictive coding. In
what follows, we look more closely at the back story to predictive
coding; namely, free energy minimisation and allostasis.

The free energy principle

The brain, like other biological systems, seeks to maintain its
physiological (and psychological) state in the face of a constantly
changing internal and external environment and must therefore
minimise entropy over external states (where entropy is a math-
ematical measure of uncertainty or expected surprise). Directly
computing surprise is intractable, but by appealing to variational
principles, we can calculate an upper boundary on surprise,
namely free energy, which systems will (or will appear to) minim-
ise (Friston et al. 2006). Given that surprise is the inverse of model
evidence, if the brain is minimising a free energy bound on sur-
prise, it is necessarily trying to maximise the sensory evidence
for its model of the world and is inherently self-evidencing
(Hohwy, 2016). Under some simplifying assumptions, one can
equate surprise with (precision weighted) prediction error. In
brief, the brain can minimise (precision weighted) prediction
error in three ways. First, expectations can be updated (by chan-
ging neuronal activity) so that predictions provide a better explan-
ation for sensory inputs (Friston et al. 2006). Alternatively, the
brain can change the world or the way it is sampled (by engaging
motor and autonomic reflexes) so that sensations fall into line
with predictions. This provides a simple explanation for behav-
iour, which becomes the fulfilment of predicted (proprioceptive
and somatosensory) motor sensations. Finally, both of these pro-
cesses (perception and action) can be nuanced by optimising the
precision of prediction errors. In cognitive neuroscience, this opti-
misation has been framed in terms of attention and attenuation.
In other words, attending to a sensory stream corresponds to
increasing its sensory precision through appropriate synaptic
gain control. Conversely, sensory attenuation corresponds to the
reduction of precision by attending away from or ignoring the
consequences of one’s own action.

The active minimisation of free energy is known as active infer-
ence, which means the brain can selectively sample from data that
concur with its current expectations (Friston et al. 2011; Pezzulo,
2012). In the interoceptive domain, the resolution of prediction
errors through autonomic reflexes provides a simple account of
homoeostasis. This formulation can be extended by appealing
to hierarchical generative models such that predictions at higher
levels pre-empt the need for homoeostasis [e.g. in a hypogly-
caemic state, by attenuating the precision of prediction errors
reporting hypoglycaemia, we can suspend the reflex mobilisation
of glucose and act on the world (by eating) to fulfil and maintain
higher level predictions] (Pezzulo et al. 2015). This hierarchical
minimisation of prediction errors allows allostatic control over
homoeostatic reflexes (Sterling & Eyer, 1988; McEwen, 1998;
Ramsay & Woods, 2014). Note that the balance between allostasis
and homoeostasis depends on attenuating interoceptive prediction
errors, which will be an important theme in what follows. In this
way, a self-regulating embodied loop of circular causality is con-
structed in which the brain constructs the external environment
(and internal milieu) it expects to encounter, which in turn rein-
forces its predictions (Seth, 2014; Barrett & Simmons, 2015).

Free energy and emotion

Recent theoretical arguments have converged on the idea that
emotional states reflect changes in the uncertainty about the som-
atic consequences of action (Joffily & Coricelli, 2013; Wager et al.
2015; Seth & Friston, 2016). This uncertainty refers to the preci-
sion with which motor and physiological states can be predicted.
In this setting, negative emotions contextualise events that induce
expectations of unpredictability, while positive emotions refer to
events that resolve uncertainty and confer a feeling of control
(Barrett & Satpute, 2013; Gu et al. 2013). This ties emotional
states to the resolution of uncertainty and, through the biophys-
ical encoding of precision, to neuromodulation and cortical gain
control (Brown & Friston, 2012).

In summary, one can associate the valence of emotional stim-
uli with the precision of prior beliefs about the consequences of
action. In this view, positively valenced brain states are necessarily
associated with increases in the precision of predictions about the
(controllable) future – or, more simply, predictable consequences
of motor or autonomic behaviour. Conversely, negative emotions
correspond to a loss of prior precision and a sense of helplessness
and uncertainty about the consequences of action.

What about mood?

Any hierarchical inference relies on hyperpriors. These furnish
higher level predictions of the likely value of lower level para-
meters. From the above, one can see that important parameters
are the precisions of prediction errors at high and low levels of
the hierarchy (i.e. prior and sensory precision). These precisions
reflect the confidence we place in our prior beliefs relative to sen-
sory evidence. If emotional states in the brain reflect the precision
of prior beliefs about the consequences of action, then distinct
neuronal populations must also encode hyperpriors. In other
words, short-term fluctuations in precision (i.e. emotional fluc-
tuations) will themselves be constrained by hyperpriors encoding
their long-term average (i.e. mood).

Here, we propose that mood corresponds to hyperpriors about
emotional states, or confidence about the consequences of action.
In other words, mood states reflect the prior expectation about
precision that nuances (emotional) fluctuations in confidence or
uncertainty. If emotion reflects interoceptive precision, and is bio-
physically encoded by neuromodulatory gain control, then this
suggests that mood is neurobiologically encoded as the set-point
of neuromodulator systems that determine synaptic gain control
over principal cells reporting prediction errors at different levels
of the interoceptive hierarchy. This set-point is the sensitivity of
responses to prediction errors and has a profound and enduring
effect on subsequent inference.

When mood goes wrong

An interesting corollary of the above account is that mood
becomes a two-dimensional construct – according to the suffi-
cient statistics (i.e. mean or expectation and precision) of hyper-
priors over interoceptive precision (Fig. 1). In this sense, we
might conjecture that major depression occurs when the brain
is certain that it will encounter an uncertain environment, i.e.
the world is inherently volatile, capricious, unpredictable and
uncontrollable. There are several concomitants of this state of
affairs: if, a priori, prior beliefs are deemed imprecise, then the
attenuation of interoceptive prediction errors will be
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compromised. This means that allostatic control is precluded –
and is replaced by low-level homoeostatic responses (Barrett
et al. 2016; Stephan et al. 2016; Peters et al. 2017). A corollary
of this is that patients with low mood (low prior precision)
should show a hypersensitivity to interoceptive cues (high sensory
precision) and a failure of sensory attenuation (Badcock et al.
2017) – of the sort associated with stress responses (please see
below).

Clearly, hyperpriors may be genetically encoded, although they
may also change following chronic periods of intense stress (see
below). This means the set-point of neuromodulator systems
becomes configured to an aberrant tonic drive that is resistant
to negative feedback loops that relay error messages (i.e. a loss
of high-level precision that is reflected in persistently abnormal
neuromodulation at the synaptic level). This may relate particu-
larly to anhedonia (Chekroud, 2015). In this formalism, pleasure
signals (bottom-up signals which increase interoceptive precision
and confer a sense of control) – such as those generated by
hedonic hotspots in hierarchically deep limbic circuitry
(Berridge & Kringelbach) are attenuated – so feelings of pleasure
are never initiated (Fig. 2). Such exquisite gain control – that nor-
mally allows for a precise repertoire of (stress reducing) behaviour
– is denied to the depressed individual, who will fail to engage in
(allostatic) actions that are likely to mitigate negative emotions. As
precision enforces prediction-fulfilling action, maladaptive

behaviours may therefore be conceptualised as an aberrant action-
perception cycle that is self-reinforcing – or self-evidencing
(Hohwy, 2016).

Mania may be associated with a comparable level of precision
over expected emotional states but here, expectations are shifted
towards positive emotions (of a secure, predictable, controllable
and epistemically rich world). This means that the set-point of
neuromodulator systems will be quantitatively distinct from
depression; although they may become equally resistant to feed-
back. Accordingly, manic individuals lose the capacity to appreci-
ate the unpredictable consequences of their actions and will
engage in overconfident, high-risk behaviours (Mason et al.
2017). This has interesting parallels with theories of optimal con-
trol and reinforcement learning in which a link between action
(e.g. pushing a button) and outcome (e.g. losing money) reinforce
avoidance behaviour – a phenomenon which is absent or
impaired in mania (see below) (Bach & Dolan, 2012).

The existence of mixed states can also be accounted for under
this model. Note that mania and depression share an inappropri-
ately precise prior over emotional states. As such, predictions
encoded by such a precise prior – which do not lie at the extrema
of mean values – could potentially manifest as mixed states, show-
ing some manic and some depressive features. In Fig. 1 such states
would lie in the intermediary region between the top and bottom
right-hand corner.

Similarly, anxious depression can be described by a highly
uncertain belief (hyperprior) about negative emotions (a loss of
prior precision). This means the tonic drives of neuromodulator
systems should be comparable to that in depression, but remain
more responsive to peripheral feedback. One interesting conse-
quence of this state, however, is a lack of action, given action is
only possible when prior expectations are precise. In short, by
framing mood as the hyperprior over emotional states, we can
describe a wide range of abnormal mood states according to
their different co-ordinates along a two-dimensional continuum.

The existing evidence

Neuromodulatory systems

If the account on offer is correct, we would expect an aberrant set-
point for various neuromodulator systems that are specifically
associated with abnormal mood states. More formally, these sys-
tems will be configured to a set-point whereby levels of stress
modulators are elevated and anti-stress modulators are lowered,
and receptor sensitivity is altered to ensure these levels are resist-
ant to negative feedback from bottom-up (interoceptive) feedback
from the body.

In healthy systems, mood should be affected by the valence of
tightly controlled prediction errors. Recent animal work has
shown that positive prediction errors (receiving more food than
expected), show a strong positive correlation with dopaminergic
change in the nucleus accumbens (Hart et al. 2014) with corre-
sponding changes in functional brain activity in humans during
a financial reward task (Rutledge et al. 2010). Similarly, it has
been shown that signal change in the anterior insula is signifi-
cantly related to the magnitude of prediction error (Bossaerts,
2010). The pharmacological manipulation of these networks
was recently demonstrated where participants were given electric
shocks (harms) in exchange for financial reward (gains), and
offered the option of increasing the number of shocks in exchange
for greater reward. It was shown that citalopram increased

Fig. 1. The figure shows how mood can be conceptualised according to the expected
precision (μ) and precision of precision (τ) in a two-dimensional space. Here, preci-
sion per se corresponds to the predictability of the (prosocial, affiliative and intero-
ceptive) world – and the two dimensions correspond to hyperpriors over precision. It
is proposed that pathological changes in mood occur in the extrema of this space, as
highlighted. Depression occurs when an uncertain, unpredictable outcome is pre-
dicted with high precision (red lines) resulting in a chronic, self-maintaining negative
emotional state that is resistant to revision. Mania (blue lines) is characterised by an
equally high precision, but with the expectation of a predictable and controllable
outcome – correspondingly the environment is chronically and inappropriately
labelled as such. Anxiety (green lines) is an expected unpredictability but with low
precision. As such, the individual engages in behaviour designed to resolve this
uncertainty but which never does. D, depression; M, Mania; Ax, anxious depression.
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harm-aversion, while levodopa made individuals more likely to
harm themselves than others (Crockett et al. 2015). This fits
nicely with our notion that serotonin levels (and other neuromo-
dulators) encode expectations about likely negative outcomes and
encourage the fulfilment of these predictions through action (i.e.
low levels promote behaviour with negative outcomes).

A much richer literature of neuropharmacology in mood dis-
orders exists, and fits nicely with our theories. What is crucial is
that the same systems are implicated across depression, mania and
anxiety though the basal levels (expectations) and feedback sensi-
tivity (precision) of these systems differs accordingly. Take, e.g.
the hypothalamic pituitary adrenal (HPA) axis. In depression
there is increased paraventricular nucleus (PVN) drive and
CRH production (Raadsheer et al. 1994; Gao et al. 2013) and
resistance to glucocorticoid receptor (GR) mediated negative feed-
back (Holsboer et al. 1982; Sher et al. 2013). We would expect that
anxiety states are associated with similar basal drive but increased
resistance to feedback. Indeed it has been shown that patients
with post-traumatic stress disorder (PTSD) have heightened
HPA axis drive originating at the amygdala (Shin et al. 2006)
and PVN (Kasckow et al. 2001) and decreased inhibitory input
from the hippocampus (Smith, 2005), although they show
increased sensitivity to dexamethasone suppression test (Yehuda
et al. 1993). This explains the finding of lower cortisol levels in
certain testing conditions only (Meewisse et al. 2007). Mania is
less well studied but there are reports of underactive HPA axis
drive being particularly related to euphoria (Valiengo et al. 2012).

The effects of environmental trauma

If the brain is an organ of inference, that attempts to reduce the
surprise associated with environmental outcomes, then its synap-
tic activity and tonic drives should be in line with its (prior and
hyperprior) expectations. Active inference attempts to construct
an environment (and physiology) consistent with these expecta-
tions. However, chronic unpredictability warrants a change in
reliability or precision afforded to social and physiological cues.
In this regard, active inference may explain the established finding
that childhood trauma poses a risk for various psychopathologies
(Bernet & Stein, 1999; Heim & Nemeroff, 2001; Heim et al. 2008).
In this context, it is important to acknowledge how different types
of traumatic experiences may impact differentially on predictions
in the brain. Stress of any kind induces uncertainty, though the
nature of this stress may determine whether the mood state will
be a depressed one or an anxious one. More chronic and less well-
defined adversity – which is experienced during emotional or
physical neglect – is pervasive and enduring and should result
in great certainty over uncertain (interoceptive) outcomes of
(affiliative or prosocial) action. As such, depression would be
associated with this type of trauma. In line with this, a recent
study in bipolar depression demonstrated that, despite all
domains of the childhood trauma being significantly more
prevalent in patients than controls, only emotional neglect
predicted psychopathology (Watson et al. 2014). Conversely,
more acute and explicit traumatic experiences would change

Fig. 2. The figure shows a schematic of the neuromodulatory systems with the probability distributions the embody also displayed. Ascending projections (pre-
diction errors) are shown in red and cortical projections (predictions of precision) are in blue. The expected precision (at different levels of the cortical hierarchy) is
encoded by a tonic drive – that exerts a gain control over the red (ascending) projections. Each ascending projection conveys some newsworthy (unpredicted)
information. The cortical hierarchy assembles this information (i.e. prediction errors) into an updated representation of the body and world – including its pre-
dictability. Our focus in this paper is predictions of predictability (i.e. precision) that are informed by the amplitude of prediction errors from different parts of
the cortical hierarchy. (a) Shows the balance in a healthy system. Mood is liable to change with environmental fluctuations due to a precision that mediates fluc-
tuations in synaptic gain. (b) Shows how this fails in depression. A chronically stressful environment has mandated a tonically depleted serotonin drive and the
estimated precision is chronically low. This precludes precise prior beliefs (and adaptive stress reducing influences from, e.g prefrontal cortex), thereby exposing
cortical updating to ascending (unattenuated) autonomic drives. It is important to note this schematic is highly simplified and that similar changes may play out in
other neuromodulatory systems across other mood disorders.
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expectations but render them highly uncertain (i.e. induce an
anxiety state). This is perhaps best exemplified by the risk
posed for PTSD by acute and extreme episodes of trauma
(Sullivan et al. 2006).

One important corollary of the theory presented above is that
risk of mood disorders is intimately tied to emotional trauma
only. This accords with the findings from recent studies
(Watson et al. 2014) though not others. Instead, it is proposed
that (barring brain damage) physically traumatic events facilitate
the onset of mood disorders through the subjective feelings that
contextualise them. One other interesting consequence of the
active inference formulation is that, as mood refers to hyperpriors
over interoceptive states, it is non-specific to different types of
environmental fluctuations; i.e. their particular content. This
means predictable environmental outcomes elsewhere can act as
a buffer against the detrimental effects of trauma (Southwick &
Charney, 2012). This has clear and important ramifications for
preventive strategies – and may also explain why traumatic experi-
ences are not invariably associated with the onset of psychopath-
ology despite biologic effects (Carpenter et al. 2007).

The emergence of epigenetics

If environmental factors can induce conformational changes in
the set-point of neurobiological systems to precipitate onset of
mood disorders, then some explanatory mechanism is required.
Epigenetics has emerged as a major field of enquiry in recent
years, specifically in relation to methylation of the NR3C1 gene,
which encodes GR (Nantharat et al. 2015; Smart et al. 2015;
Palma-Gudiel et al. 2016). Crucially, GRs are found in the hippo-
campus and amygdala (Morimoto et al. 1996); regions that send
descending predictions to the paraventricular nucleus (Herman
et al. 2002). A loss of sensitivity to circulating cortisol levels in
the amygdala and hippocampus may be the neurophysiological
correlates of aberrant hyperpriors that set the neuromodulatory
tone for amplification and attenuation of the PVN. Although
speculative, this provides a potential framework that can be mod-
elled in terms of active inference and is entirely consistent with
theories based upon allostasis (McEwen, 2000; Radley et al.
2011; Braithwaite et al. 2015).

Our ideas also explain why epigenetic variability tends to occur
at critical periods of development (Heim & Binder, 2012). In this
regard it is important to remember that error signals can only be
attenuated in states of high prior precision (confidence in the con-
sequences of behaviour). Crucially, this certainty can only be
inherited from a stable environment experienced over time, and
so epigenetic alteration in neuromodulatory systems is more likely
to occur when systems experience new or unpredictable environ-
ments and thus expect a higher degree of uncertainty. The most
obvious time when this would occur is the immediate neonatal
and infancy period when biological systems have almost no
prior experience. The set-point of these systems, at this time,
encodes an imprecise (i.e. flat or uninformative) prior that is wait-
ing to be informed through experience. This conforms to an ele-
gant study by Weaver et al. (2004) who showed a rapid increase in
DNA methylation in rodents the day after birth. However, they
also showed that methylation rates rapidly declined in rodents
who were maternally groomed and nurtured while rates remained
elevated in neglected pups (Weaver et al. 2004). This implicates a
role of maternal care in establishing an appropriate physiological
set-point and ensuring it is precise enough to resist some form of
future stress challenge. It also shows that adversity experienced in

early life is critically important in establishing vulnerability
towards onset of mood disorders.

Psychological theories

Psychological theories of mood are important and remain a chal-
lenge for most biological accounts. Perhaps the best model to date
is learned helplessness (Seligman, 1975). We have characterised
depression by inappropriately high precision in the negative con-
sequences of action for the individual’s internal states.
Accordingly this results in failure by the individual to engage
with potentially positive outcomes of action. However, as dis-
cussed above, high precision also facilitates allostasis in order to
preserve current states and so not only would depression result
in failure to attend to positive stimuli but it would result in active
inference to preserve the depressed state resulting in the behav-
iour that we associate with learned helplessness.

A more recent and promising psychological model of depres-
sion stems from the demonstration of attentional bias in patients
towards negative facial expressions (Duque & Vázquez, 2015).
Harmer et al. have thus proposed that a negative emotional bias
is a core feature of depression and is the psychological target of
antidepressant medication (Harmer et al. 2009; Harmer &
Cowen, 2013) and correspondingly that modulating attentional
bias can provide therapeutic benefit (Browning et al. 2012).
Active inference requires precise coding so interoceptive informa-
tion that is inconsistent with the current state can be attenuated,
as such, in depression, we would expect sensory attenuation away
from positive stimuli and greater attention towards negative stim-
uli – in line with psychological expectations that are biologically
encoded.

Much experimental work has also shown an increased
response to rewarding stimuli in bipolar disorder, which can be
accounted for by our theory in which manic patients expect a
pleasurable outcome (i.e. a reward) from their actions – even if
this is highly unlikely. This has been demonstrated using self-
report measures of behavioural drive (Van der Gucht et al.
2009) and response time analyses to financial reward cues
(Singh et al. 2013). Accordingly patients also show a failure to
learn from punishing cues (Mueller et al. 2010). Conversely,
depressed patients show a reward hyposensitivity in line with
overly precise prior prediction of a negative outcome and subse-
quent aversion to positive bottom-up (interoceptive) signals
(Eshel & Roiser, 2010).

Future work

If the functional anatomy of mood involves alterations in tonic
neuromodulatory drives, then it will affect communication
between higher and lower levels of the extended interoceptive sys-
tem. As such, any functional brain investigations in mood disor-
ders must be capable of quantifying effective connectivity between
relevant networks and evaluating how this connectivity is modu-
lated by external factors. Dynamic causal modelling is well placed
in this regard (Friston et al. 2003) and could prove a fruitful tool
for further investigation – specifically in examining the task-
dependent coupling between hierarchical levels of neuromodula-
tor control (Schlosser et al. 2008; Lu et al. 2012; Radaelli et al.
2015; Vai et al. 2015; Vai et al. 2016).

Given the discussions above, we would expect not only differ-
ences in effective connectivity along neuromodulatory axes, but
also differences in the way this connectivity is modulated
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according to external stimuli. Very few studies have been con-
ducted along these lines but it is interesting to note a handful
that have. Sladky et al. showed that patients with social anxiety
disorder demonstrated increased activation in orbitofrontal cortex
and amygdala when viewing emotional faces (Sladky et al. 2012),
but furthermore, in controls this network shows top-down modu-
lation – which is reversed in patients – orbitofrontal cortex drives
greater activation in amygdala (Sladky et al. 2015). This fits nicely
with our theories; where pathological anxiety is associated with an
expectation of emotional negative environment (increased tonic
activity in the limbic–prefrontal network) but also with a com-
plete loss of precision and failure to dampen ascending informa-
tion (loss of top-down inhibitory control). Prefrontal–amygdala
connectivity in depressed patients has also been investigated in
two studies, showing reduced top-down dorsolateral prefrontal
modulation of amygdala response to negative images in bipolar
depression (Radaelli et al. 2015) with a converse pattern of
increased orbitomedial–amygdala connectivity when viewing
positive faces (de Almeida et al. 2009). This is very much in
line with our arguments presented above, but the imperative
remains for further studies that can fully quantify neurobiologi-
cally coded expectations and precisions across different axes.

The perspective afforded by mood as a hyperprior suggests a
separation of timescales in terms of responding to prediction
errors. An adaptive response to a volatile environment in which
the amplitude of prediction errors is, itself, on average high
would suggest a mood-lowering reduction in the estimated preci-
sion of prediction errors. This is something that could, in prin-
ciple, be tested experimentally using a mood induction
paradigm predicated on experimentally induced prediction errors.
One interesting way of achieving this may be measuring gaze dur-
ation in mood congruent and incongruent ambiguity resolving
contexts, during word reading tasks.

Our theoretical account of mood may also be useful in inform-
ing molecular studies by hypothesising how alterations in intero-
ceptive computation might play out biologically, and how this can
be manipulated therapeutically. Take the example of depression.
As discussed this state corresponds to the very precise expectation
of a negatively valenced environment, which allows resistance to
contradictory (positive) information and ensures behaviour in
line with the depressed state. We are therefore presented with
two possible avenues for treatment:

(1) Alter the expectation of an uncertain and uncontrollable body
(or world)

(2) Alter the body (or world) to enable a revision of expected
uncertainty.

These broadly concord with current treatment approaches of
which the first the most widely used via pharmacological manip-
ulations of neuromodulation. If depression – and other mood dis-
orders – are the result of a computational pathology then no
single neuromodulator system will be implicated in every patient;
possibly reflecting the vast number of treatment-resistant patients
and the failure to find a consistent biomarker. Higher level pro-
cessing, as considered here, is the result of an array of ascending
inputs and so the same computational pathology may be manifest
by any pathophysiology that involves neuromodulatory systems.
This speaks to figuring out ways to tailor pharmacological inter-
ventions to better match the needs of individual patients. One
recent and novel study has employed machine-learning techni-
ques to predict treatment outcome in clinical trials (Chekroud,

2015) and represents a potentially important approach; however,
it may be possible to go one step further and replace the search for
a biomarker with a computational signature (Nitsche et al. 2010;
Huys et al. 2011; Barch et al. 2012; Montague et al. 2012; Wang &
Krystal, 2014).

Conclusions

Much evidence over recent decades has converged on the idea
that the brain is in the game of predicting its sensorium and
working to minimise the difference between these predictions
and actual sensory input. Further evidence suggests emotional
states reflect the precision associated with neurobiological predic-
tions over interoceptive states. In this paper, we have extended
this formalism to a further level of the hierarchy and suggested
mood acts as a hyperprior over emotional states. This notion
has gained traction as an explanation for autism and schizophre-
nia in the exteroceptive (perceptual) domain (Lawson et al. 2014;
Corlett, 2017; Krystal et al. 2017). We have explored the evidence
for this theory and suggested how it might inform further research.

Acknowledgements. JEC is funded by a NIHR-RCF grant (Ref: RCF1415042).
SW is an Academic Clinical Senior Lecturer with Newcastle University and an
Honorary Consultant Psychiatrist with NTW Foundation Trust. KJF is funded
by a Wellcome Trust Principal Research Fellowship (Ref: 088130/Z/09/Z).

Declaration of Interest. None.

References

Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S
et al. (2011) Antidepressants increase human hippocampal neurogenesis
by activating the glucocorticoid receptor. Molecular Psychiatry 16, 738–750.

Bach DR and Dolan RJ (2012) Knowing how much you don’t know: a neural
organization of uncertainty estimates. Nature Reviews Neuroscience 13,
572–586.

Badcock PB, Davey CG, Whittle S, Allen NB and Friston KJ (2017) The
depressed brain: an evolutionary systems theory. Trends in Cognitive
Sciences 21, 182–194.

Barch DM, Carter CS, Dakin SC, Gold J, Luck SJ, Macdonald 3rd A et al.
(2012) The clinical translation of a measure of gain control: the
contrast-contrast effect task. Schizophrenia Bulletin 38, 135–143.

Barrett LF, Quigley KS and Hamilton P (2016) An active inference theory of
allostasis and interoception in depression. Philosophical Transactions of the
Royal Society B: Biological Sciences 371, 20160011.

Barrett LF and Satpute AB (2013) Large-scale brain networks in affective and
social neuroscience: towards an integrative functional architecture of the
brain. Current Opinion in Neurobiology 23, 361–372.

Barrett LF and Simmons WK (2015) Interoceptive predictions in the brain.
Nature Reviews Neuroscience 16, 419–429.

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P and Friston KJ
(2012) Canonical microcircuits for predictive coding. Neuron 76, 695–711.

Bernet CZ and Stein MB (1999) Relationship of childhood maltreatment to
the onset and course of major depression in adulthood. Depression and
Anxiety 9, 169–174.

Berridge KC and Kringelbach ML. (2015) Pleasure systems in the brain.
Neuron 86, 646–664.

Bossaerts P (2010) Risk and risk prediction error signals in anterior insula.
Brain Structure and Function 214, 645–653.

Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE and
Champagne FA (2015) Maternal prenatal depressive symptoms predict
infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 10, 408–417.

Brown H and Friston K (2012) Dynamic causal modelling of precision and
synaptic gain in visual perception – an EEG study. NeuroImage 63, 223–231.

Browning M, Holmes EA, Charles M, Cowen PJ and Harmer CJ (2012)
Using attentional bias modification as a cognitive vaccine against depres-
sion. Biological Psychiatry 72, 572–579.

2282 James E Clark et al.

https://doi.org/10.1017/S0033291718000430 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291718000430


Carpenter LL, Carvalho JP, Tyrka AR, Wier LM, Mello AF, Mello MF et al.
(2007) Decreased adrenocorticotropic hormone and cortisol responses to
stress in healthy adults reporting significant childhood maltreatment.
Biological Psychiatry 62, 1080–1087.

Castrén E and Hen R (2013) Neuronal plasticity and antidepressant actions.
Trends in Neurosciences 36, 259–267.

Chekroud AM (2015) Unifying treatments for depression: an application of
the free energy principle. Frontiers in Psychology 6, 153–161.

Clark JE, Ng WF, Watson S and Newton JL (2016) The aetiopathogenesis of
fatigue: unpredictable, complex and persistent. British Medical Bulletin 117,
139–148.

Corlett PR (2017) I predict, therefore I am: perturbed predictive coding under
ketamine and in schizophrenia. Biological Psychiatry 81, 465–466.

Corlett PR and Fletcher PC (2014) Computational psychiatry: a Rosetta Stone
linking the brain to mental illness. The Lancet Psychiatry 1, 399–402.

Crockett MJ, Siegel JZ, Kurth-Nelson Z, Ousdal OT, Story G, Frieband C
et al. (2015) Dissociable effects of serotonin and dopamine on the valuation
of harm in moral decision making. Current Biology 25, 1852–1859.

de Almeida JRC, Versace A, Mechelli A, Hassel S, Quevedo K, Kupfer DJ
et al. (2009) Abnormal amygdala-prefrontal effective connectivity to
happy faces differentiates bipolar from major depression. Biological
Psychiatry 66, 451–459.

Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK et al.
(2010) A meta-analysis of cytokines in major depression. Biological
Psychiatry 67, 446–457.

Duman RS (2014) Neurobiology of stress, depression, and rapid acting anti-
depressants: remodeling synaptic connections. Depression and Anxiety 31,
291–296.

Duque A and Vázquez C (2015) Double attention bias for positive and negative
emotional faces in clinical depression: evidence from an eye-tracking study.
Journal of Behavior Therapy and Experimental Psychiatry 46, 107–114.

Eshel N and Roiser JP (2010) Reward and punishment processing in depres-
sion. Biological Psychiatry 68, 118–124.

Fotopoulou A (2015) The virtual bodily self: mentalisation of the body as
revealed in anosognosia for hemiplegia. Consciousness and Cognition 33,
500–510.

Friston K (2009) The free-energy principle: a rough guide to the brain? Trends
in Cognitive Sciences 13, 293–301.

Friston K (2010) The free-energy principle: a unified brain theory? Nature
Reviews Neuroscience 11, 127–138.

Friston K and Kiebel S (2009) Predictive coding under the free-energy prin-
ciple. Philosophical Transactions of the Royal Society of London B: Biological
Sciences 364, 1211–1221.

Friston K, Kilner J and Harrison L (2006) A free energy principle for the
brain. Journal of Physiology – Paris 100, 70–87.

Friston K, Mattout J and Kilner J (2011) Action understanding and active
inference. Biological Cybernetics 104, 137–160.

Friston KJ, Harrison L and Penny W (2003) Dynamic causal modelling.
NeuroImage 19, 1273–1302.

Gao S-F, Klomp A, Wu J-L, Swaab DF and Bao A-M (2013) Reduced GAD 65/
67 immunoreactivity in the hypothalamic paraventricular nucleus in depres-
sion: a postmortem study. Journal of Affective Disorders 149, 422–425.

Gu X, Hof PR, Friston KJ and Fan J (2013) Anterior insular cortex and emo-
tional awareness. Journal of Comparative Neurology 521, 3371–3388.

Harmer CJ and Cowen PJ (2013) ‘It’s the way that you look at it’ – a cognitive
neuropsychological account of SSRI action in depression. Philosophical
Transactions of the Royal Society of London B: Biological Sciences 368,
20120407.

Harmer CJ, Goodwin GM and Cowen PJ (2009) Why do antidepressants take
so long to work? A cognitive neuropsychological model of antidepressant
drug action. The British Journal of Psychiatry 195, 102–108.

Hart AS, Rutledge RB, Glimcher PW and Phillips PEM (2014) Phasic dopa-
mine release in the rat nucleus accumbens symmetrically encodes a reward
prediction error term. Journal of Neuroscience 34, 698–704.

Heim C and Binder EB (2012) Current research trends in early life stress and
depression: review of human studies on sensitive periods,
gene-environment interactions, and epigenetics. Experimental Neurology
233, 102–111.

Heim C and Nemeroff CB (2001) The role of childhood trauma in the neuro-
biology of mood and anxiety disorders: preclinical and clinical studies.
Biological Psychiatry 49, 1023–1039.

Heim C, Newport DJ, Mletzko T, Miller AH and Nemeroff CB (2008) The
link between childhood trauma and depression: insights from HPA axis
studies in humans. Psychoneuroendocrinology 33, 693–710.

Herman JP, Tasker JG, Ziegler DR and Cullinan WE (2002) Local circuit
regulation of paraventricular nucleus stress integration: glutamate–GABA
connections. Pharmacology Biochemistry and Behavior 71, 457–468.

Hirschfeld RMA (2000) History and evolution of the monoamine hypothesis
of depression. The Journal of Clinical Psychiatry 61, 4–6.

Hohwy J (2016) The self-evidencing brain. Noûs 50, 259–285.
Holsboer F (2000) The corticosteroid receptor hypothesis of depression.

Neuropsychopharmacology 23, 477–501.
Holsboer F, Liebl R and Hofschuster E (1982) Repeated dexamethasone sup-

pression test during depressive illness: normalisation of test result compared
with clinical improvement. Journal of Affective Disorders 4, 93–101.

Huys QJ, Moutoussis M and Williams J (2011) Are computational models of
any use to psychiatry? Neural Networks 24, 544–551.

Joffily M and Coricelli G (2013) Emotional valence and the free-energy prin-
ciple. PLoS Computational Biology 9, e1003094.

Kasckow JW, Baker D and Geracioti TD (2001) Corticotropin-releasing hor-
mone in depression and post-traumatic stress disorder. Peptides 22, 845–851.

Krystal JH, Murray JD, Chekroud AM, Corlett PR, Yang G, Wang X-J et al.
(2017) Computational Psychiatry and the Challenge of Schizophrenia.
Schizophrenia Bulletin 43, 473–475.

Lawson RP, Rees G and Friston KJ (2014) An aberrant precision account of
autism. Frontiers in Human Neuroscience 8, 302.

Lu Q, Li H, Luo G, Wang Y, Tang H, Han L et al. (2012) Impaired
prefrontal-amygdala effective connectivity is responsible for the dysfunction
of emotion process in major depressive disorder: a dynamic causal model-
ing study on MEG. Neuroscience Letters 523, 125–130.

Mason L, Eldar E and Rutledge RB (2017) Mood instability and reward dys-
regulation – a neurocomputational model of bipolar disorder. JAMA
Psychiatry 74, 1275–1276.

McEwen BS (1998) Stress, adaptation, and disease: allostasis and allostatic
load. Annals of the New York Academy of Sciences 840, 33–44.

McEwen BS (2000) Allostasis and allostatic load: implications for neuropsy-
chopharmacology. Neuropsychopharmacology 22, 108–124.

Meewisse M-L, Reitsma JB, De Vries G-J, Gersons BPR and Olff M (2007)
Cortisol and post-traumatic stress disorder in adults. The British Journal of
Psychiatry 191, 387–392.

Möhler H (2012) The GABA system in anxiety and depression and its thera-
peutic potential. Neuropharmacology 62, 42–53.

Montague PR, Dolan RJ, Friston KJ and Dayan P (2012) Computational
psychiatry. Trends in Cognitive Sciences 16, 72–80.

Morimoto M, Morita N, Ozawa H, Yokoyama K and Kawata M (1996)
Distribution of glucocorticoid receptor immunoreactivity and mRNA in
the rat brain: an immunohistochemical and in situ hybridization study.
Neuroscience Research 26, 235–269.

Mueller SC, Ng P, Temple V, Hardin MG, Pine DS, Leibenluft E et al.
(2010) Perturbed reward processing in pediatric bipolar disorder: an anti-
saccade study. Journal of Psychopharmacology 24, 1779–1784.

Nantharat M, Wanitchanon T, Amesbutr M, Tammachote R and
Praphanphoj V (2015) Glucocorticoid receptor gene (NR3C1) promoter
is hypermethylated in Thai females with major depressive disorder.
Genetics and Molecular Research 14, 19071–19079.

Nesse RM and Stein DJ (2012) Towards a genuinely medical model for psy-
chiatric nosology. BMC Medicine 10, 1.

Nestler EJ and Carlezon WA (2006) The mesolimbic dopamine reward circuit
in depression. Biological Psychiatry 59, 1151–1159.

Nitsche MA, Monte-Silva K, Kuo MF and Paulus W (2010) Dopaminergic
impact on cortical excitability in humans. Reviews in the Neurosciences
21, 289–298.

Nutt D, Demyttenaere K, Janka Z, Aarre T, Bourin M, Canonico PL et al.
(2007) The other face of depression, reduced positive affect: the role of
catecholamines in causation and cure. Journal of Psychopharmacology 21,
461–471.

Psychological Medicine 2283

https://doi.org/10.1017/S0033291718000430 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291718000430


Ota KT and Duman RS (2013) Environmental and pharmacological modula-
tions of cellular plasticity: role in the pathophysiology and treatment of
depression. Neurobiology of Disease 57, 28–37.

Palma-Gudiel H, Cordova-Palomera A, Feixa LM, Miquel FC and
Fañanás L (2016) Epigenetic signature of glucocorticoid receptor is asso-
ciated with the familial component of depression: a twin-based study.
European Psychiatry 33, S79.

Peters A, McEwen BS and Friston K (2017) Uncertainty and stress: why it
causes diseases and how it is mastered by the brain. Progress in
Neurobiology 156, 164–188.

Pezzulo G (2012) An active inference view of cognitive control. Frontiers in
Psychology 3, 478.

Pezzulo G, Rigoli F and Friston K (2015) Active inference, homeostatic
regulation and adaptive behavioural control. Progress in Neurobiology
134, 17–35.

Raadsheer FC, Hoogendijk WJG, Stam FC, Tilders FJH and Swaab DF
(1994) Increased numbers of corticotropin-releasing hormone expressing
neurons in the hypothalamic paraventricular nucleus of depressed patients.
Neuroendocrinology 60, 436–444.

Radaelli D, Sferrazza Papa G, Vai B, Poletti S, Smeraldi E, Colombo C et al.
(2015) Fronto-limbic disconnection in bipolar disorder. European
Psychiatry 30, 82–88.

Radley JJ, Kabbaj M, Jacobson L, Heydendael W, Yehuda R and Herman JP
(2011) Stress risk factors and stress-related pathology: neuroplasticity, epi-
genetics and endophenotypes. Stress 14, 481–497.

Ramsay DS and Woods SC (2014) Clarifying the roles of homeostasis and
allostasis in physiological regulation. Psychological Review 121, 225–247.

Rutledge RB, Dean M, Caplin A and Glimcher PW (2010) Testing the
reward prediction error hypothesis with an axiomatic model. Journal of
Neuroscience 30, 13525–13536.

Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. (2003)
Requirement of hippocampal neurogenesis for the behavioral effects of anti-
depressants. Science 301, 805–809.

Schlosser RG, Wagner G, Koch K, Dahnke R, Reichenbach JR and Sauer H
(2008) Fronto-cingulate effective connectivity in major depression: a study
with fMRI and dynamic causal modeling. NeuroImage 43, 645–655.

Seligman MEP (1975) Helplessness: On Depression, Development, and Death.
New York: WH Freeman/Times Books/Henry Holt & Co.

Seth AK (2013) Interoceptive inference, emotion, and the embodied self.
Trends in Cognitive Sciences 17, 565–573.

Seth AK (2014) The cybernetic Bayesian brain. In Open Mind. Open MIND.
Frankfurt am Main: MIND Group.

Seth AK and Friston KJ (2016) Active interoceptive inference and the emo-
tional brain. Philosophical Transactions of the Royal Society B: Biological
Sciences 371, 20160007.

Sher L, Oquendo MA, Burke AK, Cooper TB and Mann JJ (2013) Combined
dexamethasone suppression – corticotrophin-releasing hormone stimula-
tion test in medication-free major depression and healthy volunteers.
Journal of Affective Disorders 151, 1108–1112.

Shin LM, Rauch SL and Pitman RK (2006) Amygdala, medial prefrontal cor-
tex, and hippocampal function in PTSD. Annals of the New York Academy
of Sciences 1071, 67–79.

Shipp S, Adams RA and Friston KJ (2013) Reflections on agranular architec-
ture: predictive coding in the motor cortex. Trends in Neurosciences 36,
706–716.

Singh MK, Chang KD, Kelley RG, Cui X, Sherdell L, Howe ME et al. (2013)
Reward processing in adolescents with bipolar I disorder. Journal of the
American Academy of Child & Adolescent Psychiatry 52, 68–83.

Sladky R, Höflich A, Atanelov J, Kraus C, Baldinger P, Moser E et al. (2012)
Increased neural habituation in the amygdala and orbitofrontal cortex in
social anxiety disorder revealed by fMRI. PLoS ONE 7, e50050.

Sladky R, Höflich A, Küblböck M, Kraus C, Baldinger P, Moser E et al.
(2015) Disrupted effective connectivity between the amygdala and orbito-
frontal cortex in social anxiety disorder during emotion discrimination
revealed by dynamic causal modeling for fMRI. Cerebral Cortex 25, 895–903.

Smart C, Strathdee G, Watson S, Murgatroyd C and
McAllister-Williams RH (2015) Early life trauma, depression and the
glucocorticoid receptor gene – an epigenetic perspective. Psychological
Medicine 45, 3393–3410.

Smith ME (2005) Bilateral hippocampal volume reduction in adults with post‐
traumatic stress disorder: a meta‐analysis of structural MRI studies.
Hippocampus 15, 798–807.

Southwick SM and Charney DS (2012) The science of resilience: implications
for the prevention and treatment of depression. Science 338, 79–82.

Stephan KE, Manjaly ZM, Mathys CD, Weber LAE, Paliwal S, Gard T et al.
(2016) Allostatic self-efficacy: a metacognitive theory of dyshomeostasis-
induced fatigue and depression. Frontiers in Human Neuroscience 10,
550–577.

Sterling P and Eyer J (1988) Allostasis: a new paradigm to explain arousal
pathology. In Handbook of Life Stress, Cognition and Health. (Eds
K. Fisher and J. Reason.) New York: John Wiley & Sons, pp. 629–649.

Sullivan TP, Fehon DC, Andres‐Hyman RC, Lipschitz DS and Grilo CM
(2006) Differential relationships of childhood abuse and neglect subtypes
to PTSD symptom clusters among adolescent inpatients. Journal of
Traumatic Stress 19, 229–239.

Vai B, Bulgarelli C, Godlewska BR, Cowen PJ, Benedetti F and Harmer CJ
(2016) Fronto-limbic effective connectivity as possible predictor of
antidepressant response to SSRI administration. European
Neuropsychopharmacology 26, 2000–2010.

Vai B, Poletti S, Radaelli D, Dallaspezia S, Bulgarelli C, Locatelli C et al.
(2015) Successful antidepressant chronotherapeutics enhance fronto-limbic
neural responses and connectivity in bipolar depression. Psychiatry
Research: Neuroimaging 233, 243–253.

Valiengo LL, Soeiro-de-Souza MG, Marques AH, Moreno DH, Juruena MF,
Andreazza AC et al. (2012) Plasma cortisol in first episode drug-naïve
mania: differential levels in euphoric versus irritable mood. Journal of
Affective Disorders 138, 149–152.

Van der Gucht E, Morriss R, Lancaster G, Kinderman P and Bentall RP
(2009) Psychological processes in bipolar affective disorder: negative cognitive
style and reward processing. The British Journal of Psychiatry 194, 146–151.

Videbech P and Ravnkilde B (2004) Hippocampal volume and depression: a
meta-analysis of MRI studies. American Journal of Psychiatry 161, 1957–1966.

Wager TD, Kang J, Johnson TD, Nichols TE, Satpute AB and Barrett LF
(2015) A Bayesian model of category-specific emotional brain responses.
PLoS Computational Biology 11, e1004066.

Wang XJ and Krystal JH (2014) Computational psychiatry.Neuron 84, 638–654.
Watson S, Gallagher P, Dougall D, Porter R, Moncrieff J, Ferrier IN et al.

(2014) Childhood trauma in bipolar disorder. Australian and New Zealand
Journal of Psychiatry 48, 564–570.

Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR
et al. (2004) Epigenetic programming by maternal behavior. Nature
Neuroscience 7, 847–854.

Yehuda R, Southwick SM, Krystal JH, Bremner D, Charney DS and
Mason JW (1993) Enhanced suppression of cortisol following dexametha-
sone administration in posttraumatic stress disorder. American Journal of
Psychiatry 150, 83–83.

2284 James E Clark et al.

https://doi.org/10.1017/S0033291718000430 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291718000430

	What is mood? A computational perspective
	The current predicament
	The brain is a generative organ
	The free energy principle
	Free energy and emotion
	What about mood?
	When mood goes wrong
	The existing evidence
	Neuromodulatory systems
	The effects of environmental trauma
	The emergence of epigenetics
	Psychological theories

	Future work
	Conclusions
	Acknowledgements
	References


