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Abstract

We show that the family of all holomorphic functions f in a domain D satisfying

| f (k)|

1 + | f |
(z) ≤ C for all z ∈ D

(where k is a natural number and C > 0) is quasi-normal. Furthermore, we give a general counterexample
to show that for α > 1 and k ≥ 2 the condition

| f (k)|

1 + | f |α
(z) ≤ C for all z ∈ D

does not imply quasi-normality.
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1. Introduction and statement of results

One of the key results in the theory of normal families of meromorphic functions
is Marty’s theorem [11], which says that a family F of meromorphic functions in a
domain D in the complex plane C is normal (in the sense of Montel) if and only if the
family { f # : f ∈ F } of the corresponding spherical derivatives f # := | f ′|/(1 + | f |2) is
locally uniformly bounded in D.

A substantial (and best possible) improvement of the direction ‘⇐=’ in Marty’s
theorem is due to Hinkkanen [7]: a family of meromorphic (respectively holomorphic)
functions is already normal if the corresponding spherical derivatives are bounded on
the preimages of a set consisting of five (respectively three) elements. (An analogous
result for normal functions was earlier proved by Lappan [8].)
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In several previous papers [1–6, 10], we studied the question of how normality (or
quasi-normality) can be characterized in terms of the more general quantity

| f (k)|

1 + | f |α
, where k ∈ IN, α > 0

rather than the spherical derivative f #.
Before summarizing the main results from these studies we would like to recall the

definition of quasi-normality and also to introduce some notations.
A family F of meromorphic functions in a domain D ⊆ C is said to be quasi-normal

if from each sequence { fn}n in F one can extract a subsequence which converges
locally uniformly (with respect to the spherical metric) on D \ E, where the set E
(which may depend on { fn}n) has no accumulation point in D. If the exceptional set E
can always be chosen to have at most q points, yet for some sequence there actually
occur q such points, then we say that F is quasi-normal of order q.

We set ∆(z0, r) := {z ∈ C : |z − z0| < r} for the open disk with center z0 ∈ C and radius
r > 0. By H(D) we denote the space of all holomorphic functions and byM(D) the
space of all meromorphic functions in a domain D. We write P f and Z f for the set
of poles, respectively for the set of zeros, of a meromorphic function f , and we use
the notation ‘ fn

χ
=⇒ f (in D)’ to indicate that the sequence { fn}n converges to f locally

uniformly in D (with respect to the spherical metric).
The Marty-type results known so far can be summarized as follows.

Theorem A. Let k be a natural number, α > 0 be a real number and F be a family of
functions meromorphic in a domain D. Consider the family

F ∗k,α :=
{
| f (k)|

1 + | f |α
: f ∈ F

}
.

Then the following holds.

(a) [6, 10] If each f ∈ F has zeros only of multiplicity ≥ k and if F ∗k,α is locally
uniformly bounded in D, then F is normal.

(b) (Xu [16]) Assume that there are a value w∗ ∈ C and a constant M <∞ such that
for each f ∈ F we have | f ′(z)| + · · · + | f (k−1)(z)| ≤ M whenever f (z) = w∗ and
that there exists a set E ⊂ C consisting of k + 4 elements such that for all f ∈ F
and all z ∈ D,

f (z) ∈ E =⇒
| f (k)|

1 + | f |k+1 (z) ≤ M.

Then F is normal.
If all functions in F are holomorphic, then this also holds if one merely assumes
that E has at least three elements.

(c) [4] If α > 1 and if each f ∈ F has poles only of multiplicity ≥ k/(α − 1), then the
normality of F implies that F ∗k,α is locally uniformly bounded.
This does not hold in general for 0 < α ≤ 1.
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Remarks.

(1) In (a) and (b) the assumption on the multiplicities of the zeros, respectively the
(slightly weaker) condition on the existence of the value w∗, is essential. The
condition | f (k)(z)|/1 + | f (z)|α ≤ C itself does not imply normality. Indeed, each
polynomial of degree at most k − 1 satisfies this condition, but those polynomials
only form a quasi-normal, but not a normal family.

(2) It is worthwhile to mention two special cases of Theorem A(c).

• If α ≥ k + 1 and if F is normal, then the conclusion that F ∗k,α is
locally uniformly bounded holds without any further assumptions on the
multiplicities of the poles. This had been proved already by Li and Xie [9].

• If all functions in F are holomorphic, then for any α > 1 the normality of
F implies that F ∗k,α is locally uniformly bounded [6, Theorem 1(c)].

In this paper, we further study the differential inequality | f (k)(z)|/(1 + | f (z)|α) ≤ C,
but this time without any additional assumptions on the multiplicities of the zeros of
the functions under consideration. It turns out that for α = 1 (and hence trivially for
α < 1), this differential inequality implies quasi-normality, but that this does not hold
for α > 1.

Theorem 1.1. Let k ≥ 2 be a natural number, C > 0 and D ⊆ C a domain. Then the
family

Fk :=
{

f ∈ H(D) :
| f (k)(z)|

1 + | f (z)|
≤ C

}
is quasi-normal.

Remarks.

(1) In Theorem 1.1, we restrict to holomorphic rather than meromorphic functions,
since if a meromorphic function f has a pole at z0, then | f (k)(z)|/(1 + | f (z)|) ≤ C
is clearly violated in a certain neighborhood of z0.

(2) The result also holds for k = 1, and in this case we can even conclude that F is
normal. However, this is just a trivial consequence of Hinkkanen’s extension of
Marty’s theorem since the condition | f ′(z)|/(1 + | f (z)|) ≤ C clearly implies that
the derivatives f ′ (and hence the spherical derivatives f #) are uniformly bounded
on the preimages of five finite values.

(3) In Theorem 1.1, for k ≥ 2, the order of quasi-normality can be arbitrarily large.
This is demonstrated by the sequence of the functions

fn(z) := n(ez − eζz)

(where ζ := e2πi/k) on the strip D := {z ∈ C : −1 < Re((1 − ζ)z) < 1}. Indeed,
f (k)
n = fn, so the differential inequality from Theorem 1.1 trivially holds, but every

subsequence of { fn}n is not normal exactly at the infinitely many common zeros
z j = (2πi j)/(1 − ζ) ∈ D ( j ∈ Z) of the fn, so { fn}n is quasi-normal of infinite order.
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(4) In the spirit of Bloch’s heuristic principle, one might ask for a corresponding
result for entire functions. However, since the exponential function (and, more
generally, entire solutions of the linear differential equation f (k) = C · f ) satisfy
the condition | f (k)(z)|/(1 + | f (z)|) ≤ C, there does not seem to be a natural
analogue for entire functions.

(5) For α > 1 and k ≥ 2, the condition | f (k)(z)|/(1 + | f (z)|α) ≤ C does not imply
quasi-normality. In Section 3 we will construct a general counterexample for
arbitrary k ≥ 2, α > 1 and C > 0. (For k = 2 and α = 3, we had given such a
counterexample already in [6].)
In fact, it turns out that this condition does not even imply Qβ-normality for any
ordinal number β. (For the exact definition of Qβ-normality, we refer to [12].) So,
there is no chance to extend Theorem 1.1 to the case α > 1 even if one replaces
the concept of quasi-normality by a weaker concept.
The same counterexample also shows that Theorem 1.1 cannot be extended in
the spirit of the afore-mentioned results of Hinkkanen and Xu (Theorem A(b)).
More precisely, a condition like

f (z) ∈ E =⇒
| f (k)|

1 + | f |
(z) ≤ C,

where E is any finite subset of C, does not imply quasi-normality (and not even
Qβ-normality). This is due to the fact that this condition is even weaker than
| f (k)(z)|/(1 + | f (z)|α) ≤ C′ for suitable C′ > 0.

One crucial step in our proof of Theorem 1.1 consists in using the fact that also the
reverse inequality | f (k)(z)|/(1 + | f (z)|) ≥ C implies quasi-normality [5]. This is one of
the main results from our studies [1, 2, 5, 10] on meromorphic functions satisfying
differential inequalities of the form | f (k)(z)|/(1 + | f (z)|α) ≥ C. These investigations
were inspired by the observation that there is a counterpart to Marty’s theorem in the
following sense: a family of meromorphic functions whose spherical derivatives are
bounded away from zero has to be normal [3, 14]. For the sake of completeness, we
summarize the main results from those studies.

Theorem B. Let k ≥ 1 and j ≥ 0 be integers and C > 0 and α > 1 be real numbers. Let
F be a family of meromorphic functions in some domain D.

(a) [2] If
| f (k)|

1 + | f |α
(z) ≥ C for all z ∈ D and all f ∈ F ,

then F is normal.
(b) [5, 10] If

| f (k)|

1 + | f |
(z) ≥ C for all z ∈ D and all f ∈ F ,

then F is quasi-normal, but in general not normal.
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(c) [1] If k > j and

| f (k)|

1 + | f ( j)|α
(z) ≥ C for all z ∈ D and all f ∈ F ,

then F is quasi-normal in D. If all functions in F are holomorphic, F is quasi-
normal of order at most j − 1. (For j = 0 and j = 1, this means that it is normal.)
This does not hold for α = 1 if j ≥ 1.

2. Proof of Theorem 1.1

We apply induction. As mentioned above, the quasi-normality (in fact, even
normality) of F1 follows from Hinkkanen’s generalization of Marty’s theorem.

Let some k ≥ 2 be given and assume that it is already known that (on arbitrary
domains) each of the conditions

| f ( j)(z)|
1 + | f (z)|

≤ C, where j ∈ {1, . . . , k − 1}

implies quasi-normality.
Let { fn}n be a sequence in Fk and z∗ an arbitrary point in D. Suppose to the contrary

that { fn}n is not quasi-normal at z∗.

Case 1: There are an m ∈ {1, . . . , k − 1} and a subsequence { fn` }` such that both { f (m)
n` }`

and {( f (m)
n` )/( fn` )}` are normal at z∗.

Then (after turning to an appropriate subsequence, which we again denote by
{ fn}n rather than { fn` }`), without loss of generality we may assume that in a certain
disk ∆(z∗, r) =: U both sequences { f (m)

n }n and {( f (m)
n )/( fn)}n converge uniformly (with

respect to the spherical metric) to limit functions H ∈ H(U) ∪ {∞} and L ∈ M(U) ∪
{∞}, respectively.

Case 1.1: H is holomorphic.
For each n we choose pn to be the (m − 1)th Taylor polynomial of fn at z∗, that is,

pn has degree at most m − 1 and satisfies p( j)
n (z∗) = f ( j)

n (z∗) for j = 0, . . . ,m − 1. Then
fn has the representation

fn(z) = pn(z) +

∫ z

z∗

∫ ζ1

z∗
· · ·

∫ ζm−1

z∗
f (m)
n (ζm) dζm · · · dζ1.

Here for n→∞ ∫ z

z∗

∫ ζ1

z∗
· · ·

∫ ζm−1

z∗
f (m)
n (ζm) dζm · · · dζ1

χ
=⇒

∫ z

z∗

∫ ζ1

z∗
· · ·

∫ ζm−1

z∗
H(ζm) dζm · · · dζ1 =: F(z),

where F is holomorphic in U. Since the family of polynomials of degree at most m − 1
is quasi-normal (cf. [13, Theorem A.5]), we obtain the quasi-normality of { fn}n at z∗.
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Case 1.2: L(z∗) ,∞.
We choose r0 ∈ (0; r) such that |L(z)| ≤ |L(z∗)| + 1 for all z ∈ ∆(z∗, r0) =: U0.
Then for all z ∈ U0 and all n large enough,

| f (m)
n |

1 + | fn|
(z) ≤

| f (m)
n |

| fn|
(z) ≤ |L(z)| + 1 ≤ |L(z∗)| + 2,

so by the induction hypothesis we obtain the quasi-normality of { fn}n at z∗.

Case 1.3: H ≡ ∞ and L(z∗) =∞. (This comprises the cases that L ≡ ∞ and that L is
meromorphic with a pole at z∗.)

We choose r0 ∈ (0; r) such that |L(z)| ≥ 3 for all z ∈ ∆(z∗, r0) =: U0. Then for
sufficiently large n, say for n ≥ n0, and all z ∈ U0,∣∣∣∣∣ f (m)

n

fn
(z)

∣∣∣∣∣ ≥ |L(z)| − 1 ≥ 2 and | f (m)
n (z)| ≥ 2.

Now fix an n ≥ n0 and a z ∈ U0. If | fn(z)| ≤ 1,

| f (m)
n |

1 + | fn|
(z) ≥

| f (m)
n |

2
(z) ≥ 1.

If | fn(z)| ≥ 1,
| f (m)

n |

1 + | fn|
(z) ≥

| f (m)
n |

2| fn|
(z) ≥ 1.

Combining both cases, we conclude that

| f (m)
n |

1 + | fn|
(z) ≥ 1 for all z ∈ U0 and all n ≥ n0,

so by Theorem B(b) we obtain the quasi-normality of { fn}n at z∗.

Case 2: For each j = 1, . . . , k − 1 and each subsequence { fn` }`, at least one of the
sequences { f ( j)

n` }` and {( f ( j)
n` )/( fn` )}` is not normal at z∗.

Then, after turning to an appropriate subsequence, which we again denote by
{ fn}n, by Montel’s theorem for all j = 1, . . . , k − 1 we find sequences {w j,n}n such that
limn→∞ w j,n = z∗ and such that for each n we have | f ( j)

n (w j,n)| ≤ 1 or |( f ( j)
n )/( fn)(w j,n)| ≤

1. Both cases can be unified by writing

| f ( j)
n (w j,n)| ≤ 1 + | fn(w j,n)| for all j = 1, . . . , k − 1 and all n. (2.1)

Furthermore, since { fn}n is not quasi-normal and hence not normal at z∗, we may also
assume that there is a sequence {w0,n}n such that limn→∞ w0,n = z∗ and | fn(w0,n)| ≤ 1 for
all n.

We choose r > 0 sufficiently small such that ∆(z∗, r) ⊆ D, 2r < 1 and
(4r(1 + C))/(1 − 2r) ≤ 1. Then there exists an n0 ∈ N such that for all n ≥ n0 and all
j = 0, . . . , k − 1 we have w j,n ∈ ∆(z∗, r).
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We use the notation

M(r, f ) := max
|z−z∗ |≤r

| f (z)| for f ∈ H(∆(z∗, r))

and obtain for all n ≥ n0, all j = 1, . . . , k − 1 and all z ∈ ∆(z∗, r),

| f ( j)
n (z)|=

∣∣∣∣∣ f ( j)
n (w j,n) +

∫
[w j,n;z]

f ( j+1)
n (ζ) dζ

∣∣∣∣∣
≤ | f ( j)

n (w j,n)| + |z − w j,n| · max
ζ∈[w j,n;z]

| f ( j+1)
n (ζ)|

≤ 1 + | fn(w j,n)| + 2r · M(r, f ( j+1)
n ),

where for the last estimate we have applied (2.1).
Since this holds for any z ∈ ∆(z∗, r), we conclude that for all n ≥ n0 and all

j = 1, . . . , k − 1,
M(r, f ( j)

n ) ≤ 1 + M(r, fn) + 2r · M(r, f ( j+1)
n ).

Similarly, in view of | fn(w0,n)| ≤ 1, we also have

M(r, fn) ≤ 1 + 2r · M(r, f ′n).

Induction yields

M(r, fn)≤ 1 +

k−1∑
j=1

(2r) j · (1 + M(r, fn)) + (2r)k · M(r, f (k)
n )

≤

k−1∑
j=0

(2r) j +

k−1∑
j=1

(2r) j · M(r, fn) + (2r)k ·C · (1 + M(r, fn))

≤C +
1

1 − 2r
+

2r · (1 + C)
1 − 2r

· M(r, fn)

≤C +
1

1 − 2r
+

1
2
· M(r, fn).

Hence,

M(r, fn) ≤ 2C +
2

1 − 2r
for all n ≥ n0. Thus, { fn}n≥n0 is uniformly bounded in ∆(z∗, r) and hence normal at z∗

by Montel’s theorem.
This completes the proof of Theorem 1.1. �

3. A general counterexample

In this section, we will show that for α > 1 and k ≥ 2 the differential inequality
| f (k)(z)|/(1 + | f (z)|α) ≤ C does not imply quasi-normality. In [6], we had already given
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a counterexample for the case k = 2 and α = 3. We generalize this example to arbitrary
k ≥ 2, α > 1 and C > 0.

For given k0 ≥ 2, C > 0 and α > 1, we construct a sequence { fn}n of holomorphic
functions in D := ∆(0; 2) such that | f (k0)

n (z)|/(1 + | fn(z)|α) ≤ C for all z ∈ D and all n,
but { fn}n is not quasi-normal in D.

First, take p, q ∈ N such that 1 < (p/q) < min{α; 2}. The real function h(x) :=
(1 + xp/q)/(1 + xα) is continuous in [0,∞) with limx→∞ h(x) = 0 and hence there exists
an M > 0 such that

1 + xp/q

1 + xα
≤ M for all x ≥ 0. (3.1)

Let gn(z) := zn − 1 for n ≥ 1. The zeros of gn are the nth roots of unity z(n)
`

= e2πi`/n

(` = 0, 1, . . . , n − 1), and they are all simple, g′n(z(n)
`

) , 0. We consider the functions

hn := gn · epn ,

where the pn are polynomials yet to be determined. Then

h′n = epn (g′n + gn p′n)

and
h′′n = epn (2g′n p′n + gn p′2n + g′′n + gn p′′n ). (3.2)

Our aim is to choose the pn in such a way that for ` = 0, . . . , n − 1,

h′′n (z(n)
`

) = h(3)
n (z(n)

`
) = · · · = h(k0+1)

n (z(n)
`

) = 0. (3.3)

We first deduce several constraints on the pn that are sufficient for (3.3), and then—by
an elementary result on Hermite interpolation—we will see that it is possible to satisfy
these constraints with polynomials pn of sufficiently large degree.

First, in order to get h′′n (z(n)
`

) = 0, in view of (3.2), we will require that

p′n(z(n)
`

) = −
g′′n (z(n)

`
)

2g′n(z(n)
`

)
(` = 0, 1, . . . , n − 1). (3.4)

In order to proceed we need the following lemma.

Lemma 3.1. For every k ≥ 2,

h(k)
n = epn [kg′n p(k−1)

n + gnϕk(p′n, . . . , p(k−1)
n ) + ψk(g′n, . . . , g

(k)
n , p′n, . . . , p(k−2)

n ) + gn p(k)
n ],

where ϕk ∈ C[x1, . . . , xk−1] and ψk ∈ C[y1, . . . , yk, x1, . . . , xk−2] are polynomials.

Proof. We prove the lemma by induction on k. The base case k = 2 follows from (3.2)
with ϕ2(x1) = x2

1 and ψ2(y1, y2) = y2. Assume that the lemma holds for some k ≥ 2.
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Then differentiating gives

h(k+1)
n = epn

[
kg′′n p(k−1)

n︸    ︷︷    ︸ +kg′n p(k)
nkg′n p(k)
nkg′n p(k)
n + g′nϕk(p′n, . . . , p(k−1)

n )︸                   ︷︷                   ︸
+ gn

k−1∑
m=1

∂ϕk

∂xm
(p′n, . . . , p(k−1)

n ) · p(m+1)
n

+

k∑
m=1

∂ψk

∂ym
(g′n, . . . , g

(k)
n , p′n, . . . , p(k−2)

n ) · g(m+1)
n︸                                                  ︷︷                                                  ︸

+

k−2∑
m=1

∂ψk

∂xm
(g′n, . . . , g

(k)
n , p′n, . . . , p(k−2)

n ) · p(m+1)
n︸                                                   ︷︷                                                   ︸ +g′n p(k)

ng′n p(k)
ng′n p(k)
n

+ gn p(k+1)
n + kg′n p′n p(k−1)

n︸       ︷︷       ︸ + gn p′nϕk(p′n, . . . , p(k−1)
n )

+ p′nψk(g′n, . . . , g
(k)
n , p′n, . . . , p(k−2)

n )︸                                   ︷︷                                   ︸ + gn p′n p(k)
n

]
.

= epn ·
[
(k + 1)g′n p(k)

n(k + 1)g′n p(k)
n(k + 1)g′n p(k)
n + gnϕk+1(p′n, . . . , p(k)

n )

+ ψk+1(g′n, . . . , g
(k+1)
n , p′n, . . . , p(k−1)

n︸                                    ︷︷                                    ︸) + gn p(k+1)
n

]
,

where

ϕk+1(x1, . . . , xk) :=
k−1∑
m=1

∂ϕk

∂xm
(x1, . . . , xk−1) · xm+1 + x1ϕk(x1, . . . , xk−1) + x1xk

and

ψk+1(y1, . . . , yk+1, x1, . . . , xk−1) := ky2xk−1 + y1ϕk(x1, . . . , xk−1)

+

k∑
m=1

∂ψk

∂ym
(y1, . . . , yk, x1, . . . , xk−2) · ym+1

+

k−2∑
m=1

∂ψk

∂xm
(y1, . . . , yk, x1, . . . , xk−2) · xm+1

+ ky1x1xk−1 + x1ψk(y1, . . . , yk, x1, . . . , xk−2)

are indeed polynomials of the requested form.
Hence, the lemma holds for k + 1 as well. �
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Now we inductively determine the required values of p(k)
n (z(n)

`
) for k = 2, . . . , k0 and

` = 0, . . . , n − 1. For given k ∈ {2, . . . , k0}, let us assume that we already know the
values of p′n(z(n)

`
), . . . , p(k−1)

n (z(n)
`

) that ensure that h′′n (z(n)
`

) = · · · = h(k)
n (z(n)

`
) = 0 for all

admissible `. (Note that the required values of p′n(z(n)
`

) have been found in (3.4).)
In order to find the values of p(k)

n (z(n)
`

) (which ensure that h(k+1)
n (z(n)

`
) = 0), we apply

Lemma 3.1 with k + 1 in place of k and obtain the condition

p(k)
n (z(n)

`
) = −

ψk+1(g′n, . . . , g
(k+1)
n , p′n, . . . , p(k−1)

n )
(k + 1)g′n

(z(n)
`

). (3.5)

(Observe that evaluating the right-hand side requires only the knowledge of values of
p′n, . . . , p(k−1)

n that have been previously determined.)
It is well known (see, for example, [15, page 52]) that for every n ≥ 1 the conditions

(3.4) and (3.5) (for k = 2, . . . , k0) can be achieved with a polynomial pn of degree at
most nk0.

In this way,
h′′n (z(n)

`
) = · · · = h(k0+1)

n (z(n)
`

) = 0.

In particular, each z(n)
`

is a zero of h(k0)
n of multiplicity ≥ 2.

Now the functions (h(k0)
n

q
)/hp

n are entire: hp
n is entire and its zeros z(n)

`
(` =

0, 1, . . . , n − 1) have multiplicity p, while h(k0)
n

q
has zeros at z(n)

`
of multiplicity at least

2q > p. Thus, cn := maxz∈D

∣∣∣((h(k0)
n )q)/(hp

n )(z)
∣∣∣ <∞. Define now for every n ≥ 1,

fn := an · hn,

where an > 0 is a large enough constant such that both

an ≥

(cn · Mq

Cq

)1/(p−q)
that is,

cn

ap−q
n
≤

( C
M

)q
(3.6)

and fn
χ

=⇒∞ on C\∂∆(0; 1); the latter can be achieved by choosing

an ≥
n

min
{
|hn(z)| : |z| ≤ 1 − 1

n or 1 + 1
n ≤ |z| ≤ n

} .
Then { fn}n is not quasi-normal in D (as it is not normal at any point of ∂∆(0; 1)), yet

satisfies
| f (k0)

n (z)|
1 + | fn(z)|α

≤ C for all z ∈ D.

Indeed, for all z ∈ D,(
| f (k0)

n |

1 + | fn|p/q

)q
(z) ≤

| f (k0)
n |q

1 + | fn|p
(z) ≤

| f (k0)
n |q

| fn|p
(z) =

aq
n · |h

(k0)
n |

q

ap
n · |hn|

p
(z)

≤
cn

ap−q
n
≤

( C
M

)q
,
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where the last inequality is just (3.6). Therefore,

| f (k0)
n |

1 + | fn|p/q
(z) ≤

C
M

for all z ∈ D,

and together with (3.1) we conclude that

| f (k0)
n |

1 + | fn|α
(z) =

| f (k0)
n |

1 + | fn|p/q
(z) ·

1 + | fn|p/q

1 + | fn|α
(z) ≤

C
M
· M = C for all z ∈ D,

as desired.

Remark. Actually, we have shown something stronger: the condition (| f (k)(z)|)/
(1 + | f (z)|α) ≤ C does not even imply Qβ-normality for any ordinal number β since
the constructed sequence { fn}n and all of its subsequences are not normal at any point
of the continuum ∂∆(0; 1).
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