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Abstract

An asymptotic estimate is obtained for the number of partitions of the positive integer n into distinct
parts, each of which is at least m. The estimate holds uniformly with respect to positive m such that
m = o(n{\ogn)~9), as n —> oo.

1991 Mathematics subject classification (Amer. Math. Soc): 11P68, 11P72.

1. Introduction

We define qm (n) as the number of partitions of the positive integer n into distinct parts,
each of which is at least m, that is, the number of partitions of the type

n = /] + i2 + • • • + ir,

m < it < i2 < • • • < ir < n.

Our aim here is to obtain an asymptotic estimate of qm{n) as n —> oo, valid for as
much as possible of the range 1 < m < n/2. The estimate obtained will in fact be
valid uniformly with respect to positive m such that

(1.1) m = o(n(logn)-9).

The asymptotic behaviour of q(n) = q\(n), the number of partitions of n into
distinct parts, was sketched by Hardy and Ramanujan at the end of their study [8] of
the classical partition function p{n), wdq(n) was further investigated by Hua [9]. In
particular, the estimate
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follows from the more precise expansion in [8] and [9]. (See also Freiman [6]).
The work of Hardy and Ramanujan [8] led to extensive investigation by many

authors of the asymptotic behaviour of a variety of functions arising in the theory of
partitions. (See, for example, Roth and Szekeres [11]).

Over the past few years Erdbs, Nicolas and Szalay have investigated the asymptotic
behaviour of qm(n) (see [4] and [3]) and Dixmier and Nicolas have considered the
related function pm(n), the number of partitions of n into parts each of which is at
least m (see, for example, [2]). These studies have concentrated on the case when m
is relatively small (less than «1/2). For small m, qm{n) is reasonably comparable with
q{n) and pm(n) with p(n).

The method used here is different from the methods in the papers cited above and
relies on a probabilistic approach. We represent qm{n) via an integral and interpret
this integral in terms of a sum of independent random variables. If an appropriate
local limit theorem were available, it would yield an asymptotic estimate for qm(n).
By exploiting the special features of this particular problem we obtain, in effect,
the equivalent of a local limit theorem in this situation, and this yields the required
estimate.

Applications of local limit theorems to number theory were used, for example, by
Khinchin and Postnikov (see Postnikov [10]). The idea of deriving the equivalent of
a local limit theorem for the purposes of a particular number theoretic problem has
been used previously by Freiman [5, 6, 7].

In Section 2 we present the probabilistic considerations relevant to our problem
and these lead to the formulation of our main result, Theorem 1, giving an estimate
for qm («) which yields an asymptotic estimate which is valid for m subject to (1.1). In
Sections 3, 4 and 5 we derive the various estimates and bounds needed for the proof
of the theorem, and in Section 6 we complete the proof.

The main term of the estimate for qm (n) in Theorem 1 involves a parameter a which
is not given explicitly in terms of m and n. In order to give the main term explicitly
in terms of m and n we obtain some further more precise estimates in Section 7. Then
(Theorem 2) in Section 8 we derive an explicit asymptotic estimate for qm (n) which is
valid for large m and involves the inverse of the strictly decreasing function F denned
by

As a corollary, we obtain a family of asymptotic estimates for qm(n) in terms of
elementary functions, each estimate being valid for large m in a specified interval of
length at least o(n1/3).

Finally (Theorem 3), in Section 9, we derive an explicit asymptotic estimate for
qm(n) for small m which is valid for m — o(nl/3) and involves only elementary
functions. The case m = 1 yields (1.2), and the relationship to the results of [3] is

https://doi.org/10.1017/S1446788700037770 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037770


388 Gregory A. Freiman and Jane Pitman [3]

discussed further at the end of Section 9.
We are grateful for helpful comments from participants in the Journ6ees Additives

held at Marseille in September 1991. In particular, we thank Professor Nicolas for
sending the information about the expansion of F~x (Y) which is discussed at the end
of Section 8.

2. Probabilistic motivation

Our starting point is the following lemma.

LEMMA 1. For any real a,

/

I n

]"[ (1 + e-jae2wiai) e-2nianda.
j=m

PROOF. The integral on the right-hand side is

where x runs over all (n — m + 1)-tuples {xm,... ,xn) such that x, 6 {0, 1} for all /.
The contribution to this sum from x is e~an if

(2.1) mxm -\ \-nxn —n

and zero otherwise. Since there is an obvious one-to-one correspondence between
partitions of the required type and vectors x such that (2.1) holds and JC, € {0, 1} for
all /, the above sum must be e~anqm{n), giving the result.

We rewrite our expression for qm (n) as

(2.2) qm(ri) = e°" J l (l + e~aJ) I <p(a)e-2*ia"da,

where

(2.3) (p(a) --

/O A \ { \ i "2,7zictj

1 e~aJ 1
(2.5) pij = r, Pij = : = : (m < j < «).
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Consider independent variables Xm, Xm+i,..., Xn such that

0 with probability p\j,
X =1 I j with probability p2j,

so that Xj has characteristic function <pj given by (2.4) above. Then <p in (2.3) is the
characteristic function of

V Y J_ Y _|_ -4- Y

We define

(2.6) M = > — ^ — , B2 =J — .

Then Y has mean £ \ y ) and variance V(Y) given by

E(Y) = M, V{Y) = B2.

If a local limit theorem applied in this situation we would have

P{Y = n)~ (2nB2r1/2e-(M-")2/aB2) as n -»• oo.

We define the parameter CT = a(m, n) as the unique real number such that

(2>7) n = S TT^7'

so that £ ( y ) = M = n. Now

/.I

/>(F = « ) = / <p(a)e-2*ianda,
Jo

and hence with the above choice of a our limit theorem would yield

/ <p{a)e-2nianda ~ (27rB2)"1/2.
Jo

Combination of this with (2.2) leads to the conjecture that, as n —> oo,

n

qm(n) ~ (27rB2)"1/2e'J" j | (l + ^" ; < T) ,
j=m

under suitable conditions on m. We can now formulate our main result, which is the
following more precise version of this conjecture.
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THEOREM 1. As n —»• oo we have

qm(n) = anB2)-1^"" ][(1 + e-
Ja)(l + E),

j=m

where B and a are given by (2.6) and (2.7) and

(2.8) E = E{m,ri) = O f(log«)9/2max J - L , (™

uniformly with respect to m such that

(2.9) 1 < m < KonQogn)'9.

Here Ko and the implied constants in the estimate of E are effective positive constants
independent ofm andn.

By taking m such that 1 < m < K0n(logn)~96n, where (#„) is a non-negative
decreasing sequence such that 8n —> 0 as n —> oo, we see that, as n -*• oo, E(m, n)
tends to zero uniformly with respect to m in the given range. Thus we obtain

COROLLARY. As n —^ oo we have

n

qm(n) ~ (2nB2ri/2e'"' f [ ( l + e-
Ja),

j=m

uniformly with respect to positive m such that m — o(n(\ogn) 9).

In order to prove Theorem 1 we need to prove that for m and n as in (2.9)

I <p(a)e-27rianda = (2nB2yl/2(l + E)
Jo

with E as in the theorem. Let

ri
(2.10) / = / <p(a)e-2nianda,

J-\

so that, by periodicity, / coincides with the given integral. To prove the theorem it
will be sufficient to show that / = (27rB2)~1/2(l + E) with a suitable upper bound
on | E |. The aim of our preliminary work will be to provide a basis for proving that as
n -> oo we have
(2.11) / ~ (2nB2yl/2.
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3. Estimation of the integrand and the main term

We shall need the fact that a > 0 and we therefore start with preliminary estimates
of a.

LEMMA 2. For a as in (2.7) and 1 < m < n/2 we have the following estim-
ates.

(i) Ifn > 6 then 0 < a < 2/Jn.
(ii) Let r be an integer such that

(3.1) max{m, 2Jn) < r < n/2.

Then

PROOF, (i) Suppose n > 6 and 1 < m < n/2. If a < 0 then eaJ < 1 for each ;' and
so by (2.7) we have

j=m

> ( « 2 - m 2 ) / 4 > 3 « 2 / 1 6 ,

which implies n < 6, a contradiction. Thus a > 0.
Write <? = e~", where 0 < q < 1 since a > 0. By (2.7) we now have

It follows that

Since a < e" — 1, the given upper bound for a now follows.
(ii) Suppose (3.1) holds. Then by (2.7) and the positiveness of a we have

2r J > V — > -̂

Hence

which gives the required lower bound for a.
Now we give estimates of <Pj(a).
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LEMMA 3. For <Pj(a) as in (2.4) we have the following estimates.

(i) For all real a,

\<Pj{a)\ < exp {-2pXjp2j sin2 naj) .

(ii) / /
(3.2) p2,-|sin7ra/| < 1/3

then
<Pj(a) = exp(2niajp2j - 2n2a2j2pljp2j + O(a3j3p2j)),

with the implied constant effective and independent ofa,m,n and j .

PROOF, (i) We have by (2.4) and (2.5) and the fact that pXj + p2j = 1,

\(Pj(a)\2 = p2j + p2j + 2pljp2j cos 2naj

= 1 — 2pXjp2j{\ — cos2naj)

= 1 — 4pijp2j sin2 naj

< exp {—^P\jP2j sin2 naj),

since 1 - d < e~e if 9 > 0.
(ii) We can rewrite (2.4) as

<pj(a) = 1 + p 2 j ( e 2 * i a j - l ) = l + 0 ,

say, where

9 = p2j {e2niai - 1) = p2J(cos2naj + / sin2^ay - 1),

\9\ =2p2J\sinnaj\.

Since \9\ < 2/3 by (3.2), it follows from the series expansion for log(l + 9) that

(3.3) 1+6* = exp(6>-6>2/2+0(6>3)),

with implied constant effective and independent of all our parameters. By express-
ing 9, 92, 93 in terms of cosines and sines of multiples of 2naj and then applying
Taylor's theorem to cos 2n aj, sin2naj, cos An aj, etcetera, (cf. Breiman [1, Proof of
Prop. 8.44]) we obtain

9 = p2J (2niaj - (2naj)2/2 + O(aj)3),

92 = p2
2j (-(2naj)2 + O(aj)3),

93 = p3
2j0{aj)3.

The required estimate follows from these results and (3.3), since

0 < p2j• < 1, p2J - plj = pijp2j.
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The above lemma enables us to estimate <p(a).

COROLLARY. We have the following estimates for <p(a) as in (2.3).

(i) For all real a, \<p(a)\ < exp ( - £"=m 2plJp2j sin2 naj).
(ii) Suppose that either ma > 1 or \a\ < a/(3n). Then

<p(a) = e2nina exp (-2n2a2B2 + O(a3p3)),

where n, a and B satisfy (2.7) and (2.6),

(3-4) p3 = V — ' — - ,

and the implied constant is effective and independent ofm,n and a.

PROOF. The inequality of (i) follows by multiplying the estimates for |<p;(a:)] for
j = m, m + I, ...,n given by part (i) of the Lemma. For (ii), we note that if
aj > 1 then by (2.5) p2j < (1 + e)~l < 1/3, while if aj < 1 then j < a'1 and
so | sinnaj| < \naj\ < \na\/a. Thus our hypotheses on m and a ensure that (3.2)
holds and the estimate given by part (ii) of the lemma applies for j = m, m +1,..., n.
Combining these estimates and using (2.7), we obtain the required result.

Let a0 be a positive parameter such that 0 < a0 < 1/2 (to be specified more
precisely later on). The above corollary now enables us to estimate the contribution
to J as in (2.10) from the subset [—a0, a0] and suggests that, for suitable positive a0,
this may dominate the contribution from the remainder of [—1/2, 1/2], which will be
called the supplementary subset.

LEMMA 4. Let

J0 = J0(n,a0) =f
J -a0

where
(2nByl <ao< ( )

with B, a and p3 defined by (2.6), (2.7) and (3.4).
Then

Jo = (2TT£2)-1 / 2 ( l + 0{e~2^Bl) + O(a3
0p3)) ,

where p3 is given by (3.4) and the implied constants are effective and independent of
m, n anda0.

PROOF. It follows from (ii) of the above corollary and the boundedness of a^pj, that

Jo= f exp (-2n2a2B2) da (l + O(a>3)) •
J—Uo
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Now (putting 2naB = y)

/ exp (-2n2a2B2) da = - i - ( / e^^dy + O[ e'^dy) ) .
J-ao 2XB \y_oo \J2naoB / /

The first integral is s/2n and since 27ta0B > 1 we have

Thus we obtain

ra°ra° /
/ exp (-2na2B2) da = (2nB2y1/2 (l +

J —Cto

which gives the required result. (We shall see in Section 6 that the conditions on a0

are consistent for large enough n.)
If a0 = «o(«) satisfies

a\B2 -* oo, a3p3 - • 0

as n —> oo, then Lemma 4 shows that

Jo ~ (2nB2rx'2.

If, further, the contribution to / from the supplementary subset is o(B~l) then we shall
obtain (2.11). In order to estimate the contribution from the supplementary subset
and then to choose a0 appropriately, we shall clearly need careful estimates of the
parameters a, B, p3.

4. Estimation of key parameters

In this section we give preliminary estimates of the key parameters a, B and pi
which are sufficient for proving Theorem 1. We start by estimating sums of the type

(4.1)

since such sums are involved in the estimation of o, B and p3.

LEMMA 5. For n > 6, positive integral k and a as in (2.7), we have the following
estimates for sums of the type (4.1).
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(i) We have

n
ie~aj < C0<y~k~1 provided n > n0,

where Co and n0 are effective constants, independent ofm and n (but dependent onk).
(ii) Let r be a positive integer such that

(4.2) ko~x < r < n/2.

Then

J^jke-°j = (a-xrke-°r) (l + 0((ary1)),
j=r

with the implied constant effective and independent of m, n and r (but dependent
onk).

PROOF, (i) We consider the function / defined by

f(x) = (ax)ke-°\

and recall that a > 0. We note that / is strictly increasing on [0, ko~x\ strictly
decreasing on [ko~x, oo), and hence has a unique maximum on [0, oo), namely

(4.3) f{ko-x)=kke-k.

We also note that by induction on k and integration by parts, we have

/»OO

/ yke~ydy = e~b (bk + kbk'x + k(k - \)bk~2 + ... + k\) .
Jb

It follows by using the change of variable y = ox that

/•OO

(4.4) / f(x)dx = k\o~x

Jo
and also that

(4.5) / f(x)dx = a-xf(a)(l + O((aa)-x)) if aoI
Ja

By applying Euler's summation formula to f(x) on [0, ka '] and on [for ',«]and
using the monotonicity of / on these intervals we see that

ki2fU
y=l a j=\ a

O(f(ka-1)))) .
/
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Since 0 < a < 1 by Lemma 2, the result (i) now follows from (4.3) and (4.4).
(ii) Suppose now that (4.2) holds and hence ra > 1. By applying the integral test

to f(x) on [r,«] and using (4.5), we obtain

(4.6) j-r

= —k (
or"1(/(r) - /(»)) (1 + O((ar)-')) + O(f(r))).

Since n > 2r, we have

f(n) < f(2r) = f{r)O (<rCTr) = f{r)0{(or)-1),

and hence the right-hand side of (4.6) is

1
(jK-t-1

which gives the required estimate for the above sum since a = O((ar)~x) by
Lemma 2(i).

We can now give our basic estimates ofa,B and p$.

LEMMA 6. For n > 6, we have the following estimates involving a, B and p3 as
defined in (2.7), (2.6) and (3.4).

(i) For 1 < m < n/2, we have

n < 4a~2,
B2 < C]CT~3 provided n > n0,
Pi < C2a~4 provided n > n0,

where C\, Cj. and no are effective positive constants, independent ofm and n.
(ii) / /

3o-~' < m < n/2,

then

n = m<j-le-"m (l +

B2 = m2a-le-am (l + O((amy1)),

p3 = mia-le-am (l + 0{{am)-x)),

with the implied constants effective and independent ofm and n.
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PROOF. Suppose/? > 6andl <m< n/2. The upper bound for n in (i) is immediate
from Lemma 2. We indicate the method for the other estimates by considering B2 in
detail. Since a > 0 it follows from (2.6) that B2 < £"= m j2e~aJ, so that Lemma 5(i)
with k = 2 gives B2 < Coa"3 provided n > n0.

For any integer r such that (4.2) holds with k = 2, we have by Lemma 5(ii)

(4.7) £(!+«")' \fcJe

If m > 3a"1, we apply this result with r = m and obtain the estimate for B2 in (ii).
The remaining estimates for /o3 and n are obtained similarly by using Lemma 5

with k = 3 and it = 1, respectively.

We now use Lemmas 5 and 6 to obtain estimates which together cover the whole
range 1 < m < n/2.

LEMMA 7. For n>6,we have the following estimates involving a, B and p3 as
defined in (2.7), (2.6) and (3.4).

(i) There exists an effective constant K > 3, independent ofm and n, such that
ifKa~x < m < n/2 then

n/2 < ma-xe~am < In,

B2/2 < m2a-xe-am < 2B2,

p3/2 < m3a-1e-am < 2p3,

ma < log n.

(ii) For K as in (i) there exist constants C = C(/sT)>l and nt = nx(K) such
that ifl<m< Ko~x then

n > Ca~2 providedn > nx,
B2 > Ca~3 providedn > nt,
p3 > Ca~A providedn > ni.

PROOF, (i) We choose K > 3 such that if am > K then the three error terms
occurring in Lemma 6(ii) all have absolute value at most 1/2. This yields the first
three inequalities. If Ka~l < m < n/2, we have, in particular n/2 < mo~xe~am, and
hence naeam < 2m < n; since no > ma > 1, it then follows that eam < n and hence
am < logn.
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(ii) We now assume that 1 < m < Ka~l, for K as in (i). We note that by
Lemma 5(ii) and (4.7) there is a constant Ki such that if r is an integer such that (4.2)
holds with k = 2 and if ro > K\ then

^ I2 1 , _„

^ (1 + e°>)2 " 2a
J—r

We take
A =max.(K,Kl),

and note that by Lemma 2(ii) (with r = [n/2], for example), there exists «i =
such that

an > 4A if « > «,.

We take

and note that if n > n{ then (since o~l > 1 by Lemma 2(i) and A > 2)

(4.8) m < ACT"1 < r < 2ACT"1 < n/2,

so that r satisfies (4.2) with k = 2, and ra > ^[ and r > m. Hence if n > n\ we
obtain B2 > r2e-"r/{2a) and hence, by (4.8),

B2

a3

say, where C = C(A) is independent of m and n.
The argument is easily expanded to cover the other two inequalities at the same

time, by using Lemma 5 with k = 1 and k = 3.

COROLLARY. There exist effective positive constants C, D, n0, independent of m
and n, such that ifl<m< n/2 then CB4 < p^n < DB4 provided n > «o-

PROOF. Let K be the constant in Lemma 7. The result for Ka~l < m < n/2
follows from Lemma 7(i) and the result for 1 < m < Ka~l follows from Lemma 6(i)
and Lemma 7(ii). Combining these results gives the required conclusion.

5. Contribution from the supplementary set

The main term of our estimate of / as in (2.10) will come from Jo, the contribution
to / from the subset [—a0, a0], as estimated by Lemma 4, for suitable positive a0 to
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[14] Partitions into distinct large parts 399

be determined later (in Section 6). We shall call [—ao» «o] the main subset. We now
consider the contribution to / as in (2.10) from the supplementary subset

(5.1) 5 = { a : a o < | a | < l / 2 } .

We need to show that, for suitably chosen a0, this contribution is o{B~x) as « —»• oo.
In order to estimate the contribution from S we need the following lemma.

LEMMA 8. For \a\ < 1/2 and any positive integers m and k such that k > 2 we
have

m+k-l u

^2 2sin27ra/ > - min{l, (ak)2).
j=m

PROOF. Clearly we can assume without loss of generality that

0 < a < 1/2.

We have

m+k—l m+k-l

(5.2) ^ 2 s i n 2 7 r o / = ^ (l-cos27ra/) > k-
j=m j=m

If I /* <a < 1/2, then

m+k-l

2_J cos 2naj
j=m

> k-
| sinnak\

2 ^ 2
sm7ra > —na. = 2a > - ,

n k
and so the right-hand side of (5.2) is

IfO < a < l/£, thenO < a < ak/2 < 1/2 and since sinnx/nx is strictly decreasing
on(0, 1/2) we have

0 < sin(7raA/2) < (k/2) suum, sin(7raA:/4) > ak/2;

thus in this case the right-hand side of (5.2) is

2 sin(7ro;A:/2) cos(nak/2)

> A ( I -

Sin7TQ!
k\ , . , k

cos na - = 2k sin TIGC -

{akf

Thus in both cases the stated inequality holds.
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We can now estimate the contribution from S.

LEMMA 9. Suppose n > e8, 1 < m < n/2 and aQ < a; then for S as in (5.1) we
have

* < exp(—(32e)~1e~ama2,a~3).

PROOF. Consider a in S. We note that by Lemma 2(i) and Lemma 2(ii) (with
r — [n/2]) and our choice of n we have a~l > 2 and an > 2. We consider the
integer k given by k = [a'1], noting that k < n/2 and hence m + k < n. By (i) of the
corollary to Lemma 3 we have

( m+k-l \

- 2 ^ PijP2j sin2 naj I ,
j=m )

and since a > 0 it follows from (2.5) that

( j m+t-l \

_ g-̂ c^+t) ^ sin2 naj I .
;=« /

Now by Lemma 8, since a is in 5 and i > 2 w e have
m+k~1 k k 1
V" sin2^ay > -min{l , (ak)2) > - min{l, (a0k)2} > - a2k3,
j=m

since aok < aoa~{ < 1. Also by our choice of k, we have e~ak > e~x and k > a~l /2.
Thus we obtain

l«e(a)l <

Since \e~27"na\ = 1 and 5 has total length less than 1, integration over S now gives
the result stated.

6. Completion of the proof of Theorem 1

For positive X and Y we shall write X <g Y to mean that X < CY if n > n0,
where C and n0 are effective positive constants, independent ofm, n and a0, and all
constants mentioned will satisfy this requirement.

Suppose now that n>es,l<m<n/2 and

(6.1) (2nBrl < a0 < min (
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and hence that the condition ce0 < a in Lemma 9 is also satisfied. Then Lemmas 4
and 9 show that for J as in (2.10) we have

(6.2) J =

where E = E(m,n) satisfies

E « e-7*1** + a3p3 + B exp {-(32e)-le-"mal<r-3}.

First we need a lower bound for e~ama\a~i. Let K be the constant in Lemma 7(i).
If Ka~l < m <n/2, then by Lemma 7(i)

am 2 3 m2e-am 1 2 B2 • al

a -{am)2 ° (log*)2'

On the other hand, if \ < m < Ko~x, then by Lemma 6(i)

Since B > 1 by (6.1), the error E in (6.2) satisfies

(6.3) E

where C is an effective positive constant.
We seek to choose a0 so as to equalise the two expressions on the right-hand side

of (6.3), so that

where
fi4

y ~ (Clog«)3p3'

By the Corollary to Lemma 7

n(log«)~3 «; y «: n(logn)"3,

and hence y > e provided n > «i, for suitable constant /ii. From now on we assume
that n>it\ and we take

(6.4) ao = ^
D
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where x = x0 satisfies e~xl = x3/y, that is x3e*2 = y. It is easily seen that x0 is
unique and

(logK)1 / 2/3<x0<(logK)1 / 2

and hence
(6.5) (log«)1/2 « x0

 1/2

We must check (6.1). Clearly (6.4) and (6.5) imply that a0 > (2jtB)~l provided
n > «2> for suitable n2- We now look at upper bounds for a0.

If 1 < m < Ko~x then by Lemmas 6.4 and 6.5, and Lemmas 7(ii) and 6(i) we have

«o (log*)372 (\ognf2 (log«)3/2

a oB o-V2

and

alto « dog«)9/2p3fi"3 <<

On the other hand, if Ka~l < in < n/2 then it follows from Lemma 7(i) that

B2 3> mn, pj, <3C mB2 <S m2n,

and in this case we obtain

ao/a « (logn)3/2m/B «
« (log n)9/2p3B~3 « (logn)9/2(/n/n)1/2.

It follows from the above estimates that there is a positive constant Ko such that (6.1)
holds for n sufficiently great provided that 1 < m < K0n(logn)~9. By (6.3) and our
choice of x0, the error E in (6.2) then satisfies E <5C a^p^ and combining our upper
bounds for a3, pi we obtain

that is, E satisfies (2.8). By the remarks at the end of Section 2 this completes the
proof of Theorem 1.

7. Further detailed estimates

In order to obtain explicit asymptotic estimates in terms of m and n for qm(n), we
must look in more detail at the main term of the estimate of qm (n) in Theorem 1. For
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this purpose we clearly need to estimate the numerator

403

(7.1) ;=m

= exp

= exp

an + J^ log (1 +
j=m

We also need an asymptotic estimate for B2 when m is relatively small (significantly
less than y/n), and we need more precise information about a, which we obtain by
more careful study of the sum (2.7) which determines a. In this section we shall
obtain the necessary estimates, which will be based on the following lemma.

LEMMA 10. Suppose 1 < r < s. Then we have the following estimates, with all
implied constants effective and independent ofr,s,m and n.

Let
(7.2)

Then

/(*) = ox
l+e"

+ log (1 +<?"").

(i)

(ii)

(iii)

- fir -

j - ! 1 + e°J Jr_i \+ea* 1 + eax

J—' _

O(a) + O(o2s);

eax)x)2

r-\

\o2x2eax

dx+ 2

eax)x)2 O(a2s).
Jr-1

PROOF, (i) For x > 0, we have

f'(x) = -o2xeax(l+etJX 0,

so that / is strictly decreasing on (0, oo). Since a > 0, we have eox > ax > 0 for
x > 0. Thus it is clear that

(7.3) f'(x) = O(a) for x > 0,

and it is also easily checked that

(7.4) /"(*) = O(a2) for x > 0.
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We use the Euler-Maclaurin summation formula in the form

B2{x-[x])f'\x)dx,£/0) = f f(x)dx+\f(x)] + ^/'«l ~\ f
~7 Jr-l £ Jr_l l \r-\

 l Jr-

where B2(t) = t2 - t + | and B2 = B2(0), so that B2(x - [x]) = 0(1). The required
estimate (i) then follows by integrating log(l +e~ax) by parts and using (7.3) and (7.4).
Estimates corresponding to (7.3) and (7.4) hold for the functions involved in the two
sums in (ii) and (iii) and the required conclusions follow in a similar way (except that
no integration by parts is required).

First we use Lemma 10 to give the estimates which are needed when m is relatively
large.

LEMMA 11. As n —> oo, the following estimates hold uniformly with respect to m
such that
(7.5) 6n1/2 < m < K0n(logny9,

with Ko as in Theorem 1 and all implied constants effective and independent of m
andn.

(i) We have

" f 2 f°° v
e"" ]~[ (1 + e'"j) = exp - / -j-dy - m log (l + «—)

j=m I ° Jam x "•" c

+ O (

(ii) We have

an = - [ —?— dy + O (a(logn)3 + O(ome-°m)) ,
(T I l —i— py
^ Jam l ~ c

PROOF. We assume that (7.5) holds and note that, by Lemma 2(ii),

(7.6) am > log ( —— j > 1.
\ 2 V « /

Also for / (x) as in (7.2) and x > m we have

(7.7) f(x) = O(oxe-ax) = O(ame~am).

By (7.1) and (7.2),

ean f l (1 + e~aj) = exp I ̂  f(j) \ = exp S,
j=m I j=m f
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say. We split S into two sums,

j=s+i

say, where s = [2/n (log n)2], which is less than n for large n by (7.5). For sufficiently
large n we have as > CTAn(logn)2 > (log«)2, and hence

S2 = 0 ( n (log rt)V(l0g

We now apply Lemma 10(i) to Si, with r — 1 = m, and use the change of variable
ax = y on the relevant integral, obtaining

= - /" —?— dy-m log (l + «-"") + O (s<T<" + f(m) + a + o2s) .
® Jam A ~T ^

s,

Also we note that

- r -^—y dy = O (se-°s) = O (/i(logn)V(logn)2) .

Using (7.5), (7.6) and (7.7) and the estimate am < logn from Lemma 7(i), we see
that as n —> oo

S Sl+S2 f
<y Jam 1 +

where
E = O(a(log«)3) + 0{ame-°m).

This completes the proof of (i).
The proof of (ii) is similar, starting from

it

= £na
j=m

splitting the sum into two in exactly the same way as before, and using Lemma 7(ii)
on the first sum.

COROLLARY. Under the conditions of Lemma 11, we have

aj) = exp han - m log(l + e~am) + O(o-(log«)3) + O(ame~am)
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PROOF. Use (ii) to replace the integral in (i).

Now we give the corresponding estimates needed when m is relatively small.

LEMMA 12. Let f(x) be as in (7.2). As n -*• oo, the following estimates hold
uniformly with respect to m such that

(7.8) 1 < m < n1/2,

with all implied constants effective and independent ofm and n. We have

(i) £ / 0 " ) = T- ~ \ log2 + O (a(logn)3);

PROOF. We assume now that (7.8) holds, and note that, by Lemma 2(i), ma < 2,
so that for K as in Lemma 7 we have

m < Ka~\

By Lemma 7(ii) it follows that for n sufficiently great and C as in Lemma 7

a > C1/2«"1/2 = Dn-1/2,

say, where D = C1/2 > 0.
Again we split our sum into two parts,

say, where s = [2«1/2(log«)2], so that as > D(logn)2, and hence

S2 = O (nD{\ogn)2e-D^n)2) = O{a{\ognf),

using a > Dn~1/2. We note that now

- [ —?— dy = O{se-"s) = o(ni/2(\ogn)2e~mi°sn)2) = O(a(logn)3).
& Jas 1 + ey V /
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This time we apply Lemma 10(i) to 5] with r — 1 = 0. Arguing as in the proof of
Lemma 1 l(i) and noting that / (0) = log 2 we obtain

rs n OO 1

5, = - / -1—dy-- Iog2+O(*r<" + f(s)+a+a2s),
a Jo 1 + e? 2 V /

where by using the above estimates and the fact a < 2n~l/2 by Lemma 2(i), we see
that the error term is 0(cr (log n)3). Combining the above results, we obtain

5 = r ^ / j ~ ^ dy - Uog2 +O(cr(logn)3).

By writing the integrand in the form ye~y J™Lo(~ \)'e~iy it is easily shown that

(7.9)

and this completes the proof of (i).
The proofs of (ii) and (iii) are similar, using the same splitting of the sums with

respect to the same s together with parts (ii) and (iii) of Lemma 10. To evaluate the
main term in (iii), we also need to use integration by parts and (7.9) to show that

r

8. Explicit estimate of qm{n) for large m

We now use the corollary to Theorem 1 and the relevant estimates from Section 7 to
obtain an explicit asymptotic estimate for qm(n) which is valid for m relatively large
compared with nl/2. We therefore assume throughout this section that

n1/2i/r(«) < m < Ar

where #o is as in Theorem 1 and {\jf{n)) is a strictly increasing sequence such that as
n -»• oo

ir{n) -+ oo, yfr(n) = o(n1/2(logn)-yo) .

We note that then, by Lemma 2,

— log(^(n)/2) < a < 2«"1/2.
m
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It follows that under the above conditions as n —> oo we have

(8.1) a( logn)3 —*• 0, am —> oo.

Hence, as n -*• oo,
(8.2) ame~am -> 0, e'om -*• 0,

and, by Lemma 6(ii) B2 ~ mn.
By the corollary to Theorem 1, we see that under the above conditions as n -> oo

j=m

and it then follows from Lemma 1 l(i) that

1 \2 f°° y 1
exp - / -j— dy - m\og{\ + e'am) .

For X > 0, we define

(8.4) G(X) = 2XF(X) - log(l + e-x).

Then as « -*• oo we have

() jn-nmn) { ~ w l0g(1 + e~<"

that is,

(8.5) qm{n)~— -exp{mG(cxw)}.
y/(27tmn)

In order to estimate the right-hand side, we use Lemma 11 to obtain an estimate of
am as follows. By Lemma 1 l(ii) under the above conditions we have

an = - f -^—dy + ofa(log«)3) + o(ame-°m)
<y Jam i+ey \ / v /

and hence, dividing by am2 and using (8.3),

(8.6) n/m2 = F(am) + O ((logn)3/m2) + O (e-°m/m) .

It is easily checked that F'(X) < 0 for X > 0, so that F is strictly decreasing and
hence invertible. Equation (8.6) shows that F~l(n/m2) approximates am, and we
shall show that this approximation is good enough to be used in (8.5). We can now
formulate our result as follows.
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THEOREM 2. Let F be as in (8.3), and let (Vf(«)) be an increasing sequence such
that \}r(n) —> oo as n -> oo and i]/(n) = o(«1/2(log«)"10). Then as n -^ oo we have

«•(«) ~ J exp I ̂  F"' (-1) - m log (l + e^^A j ,
y/{2nmn) [m \ml' V /J

uniformly with respect to m such that

(8.7) f(n)Vn <m< K0n(logn)-W,

where K$ is the constant in Theorem 1, while all other implied constants are effective
and independent ofm and n (but depend on\j/).

Before proving the theorem it is convenient to gather together some properties of
the functions F and G in the following lemma.

LEMMA 13. For F and G as in (8.3) and (8.4) we have the following results, in
which the implied constants are independent of the parameters involved (a,b,X).

(i) Let a and b be positive real numbers such that

\b-a\<a/2, F~l(a)>l, F~l(b) > 1.

Then
\F-l(b)-F-\a)\<£\b-a\/a.

(ii) Let a and b be positive real numbers such that \b — a\ < a/2. Then

\G(b)-G(a)\^a\F{b)-F(a)\.

(iii) For X > 1

• ( • • I )
G(X) = ( 1 + - I e~x + O(e~2X) = XF(X) ^ ^ + <9(Xe~2X).

(iv) AsY->0,F-1(Y)~log(l/Y).

PROOF, (i) By the mean value theorem

F~\b) - F~\a) = (b- a

for some c between a and b. It is easily checked that F"(X) > 0 for X > 0 (so that
F' is strictly monotonic) and that for X > 1 F(X) «; \F'(X)\ «; F(X). Therefore
\F'(F~l(c))\ >̂ F(F~l(c)) = c » a, and the required inequality follows,

(ii) By Cauchy's mean value theorem

G(b) - G(a) = (F(b) - F(a))G'(c)/F'{c)
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for some c between a and b. It is easily checked that for X > 0 we have G'(X) =
XF'(X). Hence G'(c)/F'(c) = c «; a.

(iii) The first result follows from (8.3) by using the estimate

~yrx = e~y= e~y + O(e-2y)
1 ~r £

and integrating. The second then follows from (8.4) by using the estimate

log(l + e~x) = e~x + 0{e~2x).

(iv) It is easily seen that F~l(Y) —> oo as Y —> 0. From (iii) we have

where X = F 1(Y), and we obtain (iv) by considering logarithms.
We can now prove Theorem 2. By Lemma 13(i) with a = n/m2 and b = F{am),

we obtain from (8.6) the estimate

am = F~l (n/m2) + O ((log«)3/«) + O (me-"m/n),

in which the error terms tend to zero as n —> oo. By (ii) with a — am and
b = F~l(n/m2), we then obtain from (8.6) the estimate

m\G{om) - G(F-\n/m2))\ = <9(<r(logn)3)

which tends to zero as n -> oo under our assumptions, by (8.1) and (8.2). Hence as
n —>• o o

exp(/wG(crm)) ~ exp(mG(F~l(n/m2)\,

and the theorem now follows from (8.4) and (8.5).
If Y — n/m2 and X = F~l(Y) then it follows from our assumptions and

Lemma 13(iii), (iv) that as n —»• oo, e~x ~ XY, and

me~2x ~ m(XY)2 « (logn)V//n3.

If m > (log«)«2/3 it follows that me~2X = o(l) and so we obtain the following
corollary from Lemma 13(iii).

COROLLARY 1. As n -> oo we tove

() ^ exp/n { ( l + 2
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uniformly with respect to m such that

n2/3logn < m < K0n(logn)-10,

where KQ is the constant in Theorem 1, while all other implied constants are effective
and independent ofm andn.

For fixed a > 1/3, we can obtain a precise estimate for G(F~l(n/m2)) by restrict-
ing m to a range in which a logn is a reasonable approximation to F~l(n/m2). We
note that by Lemma 13(iii)

where

(8.8) F F ( ) \ +
a logn (a logn)2

If m = (n/Fi)l/2 + E, with suitable E, then Lemma 13(ii) will yield
n

— Fl + Oin'2")
m2m(G(F '(n/m2)) — G(a logn J <& ma logn

FxE(2m + E) -\-man~201 logn
m

"2"«: En~a + ma logn n

If E — o{na) then En~" —> 0 as n -> oo, and for m as above we have

The condition a > 1/3 then ensures that as n -*• oo, ma logn n"2" -^ 0. These
considerations lead to the following further corollary.

COROLLARY 2. Suppose 1/3 < a < 1. Tnen as n ->• oo

(8.9) qm{n)~^ exp ( ^ (1 + —^— ) }
Jilnmn) [na\ a logn/ J

uniformly with respect to m such that

(8.10) m = g l ° g " , 1 / 2n( 1 +^2 + o(n«).
(1 +21ogn)'/2

(More precisely, let (6n) be a decreasing sequence of positive numbers such that
0n —>• 0 as n —> oo and let Fx be as in (8.8). Then (8.9) holds uniformly with respect
to m such that

m - < 0nn
a,

with all implied constants independent of m, n and a {but dependent on the se-
quence (0J).)
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PROOF. It is easily checked that the conditions on a and m ensure that Theorem 2
applies and that the above argument is valid. Thus

m(G{F-l(n/m2)) - G(alogn)) -+ 0 as n -+ oo.

Also by Lemma 13(iii)

mG(alogn) = m (l + 2(alog«)"1)«-a + Oimn'2"),

and our conditions ensure that as n -> oo, mn"2" -> 0. Thus as n -*• oo

exp{m(l+2(alog«)-1) / i - a} ,

and the corollary follows from Theorem 2.

We note that under the conditions of the corollary, (8.9) implies that as n -> oo

(1-a)/2 2 + alogn

mstead of restricting the range of m and using the rough estimate of Lemma 13(ii)
with b = F~l(n/m2) we might estimate F~l{n/m2) by more precise methods, giving,
say
(8.11) F-1(n/m2) = <P(n/m2) + E.

We can see how small E needs to be as follows. If, further, m > (log«)2«2/3, then,
by using the second expression in Lemma 13(iii) and Corollary 1 we see that

exp | —
7rw«) [m

X(X

where X = F l(n/m2). In order to use (8.10) to obtain an asymptotic estimate by
replacing X by 4>(«/w2) we will clearly need E = o{m/n) as n -*• oo.

By classical methods similar to those used by Dixmier and Nicolas [2] for H(x), it
is possible to obtain an expansion of X in the form

1 !^X
X = F~1(Y) = - + L+y Pj(L)vj + O(vk\L\k),

v j^i

where

Y = n/m2, v = (Iog(m2/n))-1 > (log/i)"1, L = logu.
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Professor Nicolas has kindly sent this information together with his calculations of
P\{L), P2(L),..., Pg(L). For example, for k = 3 the expansion is

X = - + L + (1 - L)v + \\L2 - - )v2 + 0{v3\L\3).
v \2 2)

In order to ensure that under our conditions u*|L|* = o(m/n) we would need
something like m » vk~ln, that is, roughly m » n(logn)~(k~l). Thus taking k = 11
would yield a suitable estimate X when m is at the extreme right-hand end of the
range in Corollary 1. We omit the details since the required value of k can be reduced
by extending the range for m further to the right. Separate detailed consideration of
the right-hand end of the range will be pursued further elsewhere.

9. Explicit estimate of qm(n) for small m

We now consider the case when m is relatively small compared with nl/2. By
Theorem 1 and (7.1), we have, as n —> oo in this situation,

qm(n)-

where

it\ = exp

By (2.6) and (2.7), we also have

(9.D B
2
 = r 0 -

m - l

(9.2) " = 5o-I]

where

x + er r ( 1 + ^ )
We note that er 50 and a2T0 were the sums considered in parts (ii) and (iii) of Lemma 12.
For m small compared with n1/2 it follows from the above and Lemma 12 that

( j i(9.3) 7r 1 =exp( j - - i log2+0(a( logn) 3 )
16cr 216cr J 6<73

(9.4) So = —T + O((logn)3)
n2

12a2 ' -""""' ' 12a2'
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If m = o(n1/3), then m3 = o(n), and m2 = o(n) and since To > So > n it then follows
from (9.2) and (9.1) that

(9.5) So ~ /i,
jr

and so in order to estimate qm(n) in this case we only need to deal with n\ and n2-
The result obtained will be as follows.

THEOREM 3. As n —»• oo, we

m " 2

uniformly with respect to m such that m > I, m = o(nl/3). (More precisely, let (0n)
be a decreasing sequence of positive numbers such that lim,,..^ 9n = 0. Then (9.6)
holds uniformly with respect to m such that

(9.7) 1 < m < nl/36n,

with all implied constants effective and independent ofm and n (but dependent on the
sequence (#„)).)

PROOF. We assume that (9.7) holds and that n > nu for suitable «i. In order to
estimate a~x more carefully and use (9.3) we consider the sum of the first m — 1 terms
of So- Since a < 2n~l/2 and m = o(nl/3), for j < m — 1 we have

and hence

From (9.4) we have

a

= 2 + °(aJ2)'

+ O(am3).

1/2

1/2

(log«)3 1/2

2.3"2«1/2 f 1_ (m - Dm
TZ

(m4 m3 (log«)3\l
\n2 n3'2 n )]

https://doi.org/10.1017/S1446788700037770 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037770


[30] Partitions into distinct large parts 415

that is,
2.31/2n1/2 3 ^ (W - \)m /m3 (logn)3

a n
Since the error term tends to zero as n —>• oo it follows from (9.3) that as n —> oo

( 9.8 ) 3ri

Finally, we need to estimate n2. We have

where for y < m — 1

= l-aj + O(a2j2) - X-aj + O(a2/)

= O(cr2j2).

Thus
m-l

and

so that, by (9.7), as n —*• oo,n2 ~ 2m~l. Combining this with our asymptotic estimates
of 7Tj and B2 as in (9.8) and (9.5) gives the required result.

COROLLARY. AS n ->• oo, we have

1 f /"V/ 2

uniformly with respect to m such that m > 1, m = o(nl/4). In particular, taking
m = \,

1 f /n\xl2

( ( )

and for m as above we have

(9-9)
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The result (9.9) was proved by Erdos and Szalay [4] for m = o(nl/5). Erdds,
Nicolos and Szalay [3] obtained asymptotic relationships of this type connecting
qm{n) and values of q(n) for a wider range of values of m. Their results showed, in
particular, that (9.9) holds for m - o(n1/4).
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