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Abstract. In the framework of the ERTBP, we study an example of the influence of secondary
resonances over the long term stability of Trojan motions. By the integration of ensembles of
orbits, we find various types of chaotic diffusion, slow and fast. We show that the distribution
of escape times is bi-modular, corresponding to two populations of short and long escape times.
The objects with long escape times produce a power-law tail in the distribution.
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1. Resonances
We study an example of mass parameter μ = 0.0041 and eccentricity e′ = 0.02 of

the primary in the framework of the ERTBP. Following Páez & Efthymiopoulos 2014
(hereafter, P&E14), we describe Trojan orbits in terms of modified Delaunay variables
given by

x =
√

a − 1, y =
√

a
(√

1 − e2 − 1
)

, Δu = λ − π

3
− u0 , ω,

where a, e, λ and ω are the major semi-axis, eccentricity, mean longitude, and argument
of the perihelion of the Trojan body, and u0 is such that Δu = 0 for the 1:1 short period
orbit at L4 .

In this problem, the secondary resonances (see P&E14) are of the form mf ωf +msωs +
mgωg = 0, involving the fast frequency ωf , the synodic frequency ωs and the secular
frequency ωg of the Trojan body. Resonances are denoted below as [mf :ms :mg ]. The
most important resonances, called the ’main’ secondary resonances, correspond to the
condition ωf − nωs = 0 ([1:−n:0]). For μ = 0.0041, this corresponds to [1:−6:0].

2. Diffusion and stability
Numerical experiments show that, for e′ > 0, at least two different mechanisms of

diffusion are present. Along non-overlapping resonances, a slow (and practically unde-
tectable) Arnold-like diffusion (Arnold, 1964) takes place. On the other hand, for initial
conditions along partly overlapping resonances, due to the phenomenon of pulsating sep-
aratrices (P&E14), we observe a faster ’modulational’ diffusion (Chirikov et al., 1985)
leading to relatively fast escapes.

In order to distinguish which parts of the resonant web provide each behavior, we
integrate 3600 initial conditions with 0.33 � Δu � 0.93 and 0 � ep � 0.06, where Δu
(libration angle) and ep (proper eccentricity) are proper elements (see Efthymiopoulos
and Páez, this volume). We visualize the resonance web by color maps of the Fast Lya-
punov Indicator FLI (Froeschlé et al., 2000) of the orbits. The resonances are identified
by Frequency Analysis (Laskar, 1990). We integrate all orbits up to 5 different integration
times along 107 periods of the primaries. After each integration, the initial conditions
are categorized as Regular (if Ψ(t) < log10(

N
10 ), where Ψ denotes the FLI value and N
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Figure 1. Left: FLI map for initial conditions described in the text where various secondary
resonances are distinguished in the space of proper elements (Δu,ep ). Middle: Color distribution
of escaping times for the same initial conditions (color scale indicated). Right: distribution of
the escaping times of the orbits.

is the total number of integration periods), Escaping (if the orbit undergoes a sudden
jump in the numerical energy error greater than 10−3) or Transition (non Regular nor
Escaping).

N. of periods Regular Orb Transition Orb Escaping Orb

103 1220 (33.8%) 2027 (56.3%) 353 (09.9%)
104 1263 (35.0%) 1388 (38.5%) 946 (26.5%)
105 1296 (36.0%) 966 (26.8%) 1338 (37.2%)
106 1299 (36.1%) 699 (19.4%) 1602 (44.5%)
107 1309 (36.3%) 603 (16.8%) 1688 (46.9%)

After 107 periods, 46.9% of the orbits have escaped. However, a significant portion
(16.8%) still remain trapped, despite having a high FLI value. Figure 1 resumes the
results. The histogram in the right panel shows two distinct timescales. The first peak
(103 periods), corresponds to fast escapes, and the second (105 periods), to slow escapes.
When we compare the FLI map (left) with the color distribution of the escaping times
(middle), we find that the majority of fast escaping orbits lay within the chaotic sea
surrounding the secondary resonances. The thin chaotic layers delimiting the resonances
provide both slowly escaping orbits and transition orbits (sticky set of initial conditions
that do not escape after 107 periods). For escaping orbits, beyond t ∼ 105 periods, the
distribution of the escape times is given by P (tesc) ∝ t−α

esc , α ≈ 0.8, while the sticky orbits
exhibit features of ’stable chaos’ (Milani & Nobili, 1992), since their Lyapunov times are
much shorter than 107 periods.
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