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A Factorization Theorem for Multiplier
Algebras of Reproducing Kernel Hilbert
Spaces
Bebe Prunaru

Abstract. Let (X,B, µ) be a σ-finite measure space and let H ⊂ L2(X, µ) be a separable reproducing
kernel Hilbert space on X. We show that the multiplier algebra of H has property (A1(1)).

Introduction

In this paper we show that the multiplier algebra of any separable reproducing kernel
Hilbert space of square integrable functions has property (A1(1)). The idea of the
proof is to embed this algebra, via the Berezin transform, into a dual operator space
that is completely isometric to an abelian von Neumann algebra. We then employ
dual algebra techniques to get the A1-factorization property.

1 Reproducing Kernel Hilbert Spaces and the Berezin Transform

In this paper we shall use some very elementary properties of the reproducing kernel
Hilbert spaces. The classical reference on this topic is [3]. Its vast connections with
interpolation theory are treated in [1].

Let H be a reproducing kernel Hilbert space of complex valued functions on some
nonempty set X and let B(H) be the algebra of all bounded operators on H. For each
λ ∈ X let eλ ∈ H be the unique function in H for which

(x, eλ) = x(λ), ∀x ∈ H.

This function is called the reproducing kernel for the point λ. For each λ ∈ X with
eλ 6= 0 let kλ = eλ/‖eλ‖. This function is called the normalized reproducing kernel
for λ. A scalar valued function f on X is called a multiplier if f x ∈ H for every x ∈ H.
The set of all multipliers of H will be denoted by M(H) and is called the multiplier
algebra of H. Every f ∈ M(H) induces a bounded operator T f on H defined by
T f (x) = f x, x ∈ H. The set of all operators T f with f ∈ M(H) is a weakly closed
commutative subalgebra of B(H) that is also called the multiplier algebra of H. It will
be clear from the context whether we refer to functions or operators. An operator
T ∈ B(H) is a multiplier if and only if each eλ is an eigenvector for T∗.
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Suppose now that there exist a σ-algebra B of subsets of X and a σ-finite measure
µ on B such that every function x ∈ H is measurable, square integrable, and

‖x‖H = ‖x‖L2(X,µ).

If H is a reproducing kernel Hilbert space with these properties, we shall write H ⊂
L2(X, µ). For the remainder of this section we shall assume that H is a separable
reproducing kernel Hilbert space satisfying these assumptions relative to a σ-finite
measure space (X,B, µ).

The function λ→ ‖eλ‖ is measurable on X, therefore the set {λ ∈ X : eλ = 0} is
measurable. From now on we shall discard this set by considering H as a reproducing
kernel Hilbert space on the complement of this set and also by restricting the measure
to the measurable subsets of the complement. The set of multiplication operators T f

remains untouched by this change. Under this condition, it is easy to see that every
multiplier f ∈ M(H) is measurable and essentially bounded.

If A ∈ B(H), then its Berezin transform is a scalar valued function on X defined by
Â(λ) = (Akλ, kλ), λ ∈ X. This concept was introduced in [9] and plays an important
role in the operator theory on function spaces; see [18, Chapter 6]. The function
Â is measurable and essentially bounded and ‖Â‖∞ ≤ ‖A‖ for every A ∈ B(H),
where ‖ · ‖∞ holds for the norm in L∞(X, µ), the Banach algebra of all measurable
and essentially bounded functions on X. The mapping A 7→ Â is easily seen to be
completely contractive , hence completely positive as well.

If f ∈ L∞(X, µ), then the Toeplitz operator T f on H is defined by

T f (x) = PH( f x) x ∈ H,

where PH is the orthogonal projection of L2(X, µ) onto H. When f ∈ M(H), then
the Toeplitz operator with symbol f equals the multiplication operator induced by
f . The map f 7→ T f is completely positive, contractive and weak∗ continuous on
L∞(X, µ).

Now for each f ∈ L∞(X, µ) define its Berezin transform by B( f )(λ) = T̂ f (λ),
λ ∈ X. In this way one obtains a unital, completely positive and contractive map

B : L∞(X, µ)→ L∞(X, µ)

which is also weak∗ continuous because both the Toeplitz map f → T f and the

Berezin transform A → Â are weak∗ continuous. Moreover, it is clear from its defi-
nition that B( f ) = f for every f ∈ M(H). Since B is positive, we see that the same
holds true when f̄ ∈ M(H).

2 Dual Spaces of Operators and Factorizations

In this section H will be a complex separable Hilbert space. We shall now recall
several definitions and results from the theory of dual algebras that will be needed
in the sequel. A dual algebra is by definition a weak∗ closed subalgebra of B(H)
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containing the identity. For basic definitions and properties of dual algebras we refer
to [7].

Let C1(H) be the Banach space of all trace-class operators on H endowed with the
trace norm ‖ · ‖1. Then B(H) is identified with the dual of C1(H) via the pairing

〈T, L〉 = trace(TL) T ∈ B(H), L ∈ C1(H).

For every pair of vectors x, y ∈ H, one denotes by x⊗ y the rank-one operator on H
defined by (x ⊗ y)(h) = (h, y)x, h ∈ H.

Let M ⊂ B(H) be a weak∗ closed subspace and let M⊥ be its preannihilator in
C1(H). For each L ∈ C1(H) one denotes by [L] its class in the quotient space QM =
C1(H)/M⊥. Then M may be identified with the dual of QM via the pairing

〈T, [L]〉 = trace(TL) T ∈M, [L] ∈ QM.

A weak∗ closed subspace M ⊂ B(H) is said to have property (A1(r)) for some
r ≥ 1 if for each ε > 0 and for each [L] ∈ QM there exist vectors x, y ∈ H such that
[L] = [x ⊗ y] and moreover, ‖x‖, ‖y‖ ≤ ((r + ε)‖[L]‖)1/2.

A much stronger factorization property is the following. A weak∗ closed subspace
M ⊂ B(H) has the property (Aℵ0 (r)) for some r ≥ 1 if for each ε > 0 and for each
infinite array {[Li j]}∞i, j=0 in QM such that∑

j≥0

‖[Li j]‖ <∞ ∀i ≥ 0,

∑
i≥0

‖[Li j]‖ <∞ ∀ j ≥ 0,

there exist sequences of vectors {xi}∞i=0and {y j}∞j=0in H such that

[Li j] = [xi ⊗ y j] 0 ≤ i, j <∞

and moreover, such that

‖xi‖ ≤ ((r + ε)
∑
j≥0

‖[Li j]‖)1/2 ∀i ≥ 0,

‖y j‖ ≤ ((r + ε)
∑
i≥0

‖[Li j]‖)1/2 ∀ j ≥ 0.

Given a weak∗ closed subspace M ⊂ B(H) one denotes by E0(M) the set of all
elements [L] ∈ QM for which there exist sequences of vectors {xn}∞n=1 and {xn}∞n=1

in the unit ball of H, weakly convergent to 0, such that limn→∞ ‖[L]−[xn⊗ yn]‖ = 0
and, moreover, limn→∞(‖[xn ⊗ z]‖ + ‖[z ⊗ yn]‖) = 0, ∀z ∈ H.

The space M is said to have property X0,1 if the absolutely convex hull of the set
E0(M) is dense in the closed unit ball of the predual QM. We shall need the following
basic result. This theorem is stated in [7] for dual algebras; however its proof holds
for weak∗ closed spaces as well.
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Theorem 2.1 ([7, Theorem 3.6]) Every weak∗ closed subspace of B(H) with property
X0,1 has property (Aℵ0 (1)) .

Let (Y,F, ν) be a separable, σ-finite measure space and letD be a separable Hilbert
space. Let L2(ν,D) be the Hilbert space of all Bochner-measurable and square inte-
grable D-valued functions on Y . For a pair of vectors x, y ∈ L2(ν,D) one denotes by
x · y the scalar valued integrable function defined by

(x · y)(s) = (x(s), y(s))D s ∈ Y,

where ( · , · )D holds for the scalar product in D.

We shall make use of a fundamental approximate factorization theorem that was
proved in [6] under an additional boundedness condition. without, however, sepa-
rability assumptions on the measure space. That condition was removed in [8] pro-
vided that the measure space is separable.

Theorem 2.2 ([6, 8]) Let (Y,F, ν) be a separable, σ-finite measure space and let D
be a separable Hilbert space. Let H ⊂ L2(ν,D) be a closed subspace. Assume that for
every measurable subset ω ⊂ Y with 0 < ν(ω) <∞ there exists a sequence {xn}∞n=1 of
unit vectors in H weakly convergent to 0 such that ‖χY\ωzn‖2 → 0, where χY\ω is the
characteristic function of the set Y\ω and ‖ · ‖2 holds for the norm in L2(ν,D). Then
for every function f ∈ L1(ν) there exist sequences of vectors {xn}∞n=1 and {xn}∞n=1 in H
weakly convergent to 0 such that ‖ f −xn · yn‖1 → 0 and ‖xn‖, ‖yn‖ ≤ ‖ f ‖1 ′2

1 , ∀n ≥ 1.

3 A Factorization Property for Multiplier Algebras

The main result of this paper is the following theorem.

Theorem 3.1 Let (X,B, µ) be a σ-finite measure space and let H ⊂ L2(X, µ) be a
separable reproducing kernel Hilbert space on X. Then the dual algebra of all multiplica-
tion operators T f on H with f in the multiplier algebra M(H) has property (A1(1)). If,
moreover, this algebra has no invariant one-dimensional subspaces, then it has property
(Aℵ0 (1)).

Proof We shall freely use the notations established above. We may assume that eλ 6=
0 for every λ ∈ X. Let T(B) = { f ∈ L∞(X, µ) : B f = f }, where

B : L∞(X, µ)→ L∞(X, µ)

is the Berezin transform. For instance, when H is the Bergman space on the unit
disc, then T(B) is precisely the space of all bounded harmonic functions on the disc
[13]. Coming back to the general case, T(B) is a weak∗ closed self-adjoint subspace of
L∞(X, µ). Moreover, since T(B) is the fixed point set of a completely positive, unital
and weak∗ continuous mapping on a von Neumann algebra, one can construct, by a
standard averaging procedure (see [4]), a completely positive, unital and idempotent
map Φ : L∞(X, µ) → L∞(X, µ) whose range equals T(B). By a well-known result
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from [11] there exist a von Neumann algebra R(B) and a weak∗ continuous unital
and completely isometric map θ from T(B) onto R(B) such that

θ( f )θ(g) = θ(Φ( f g)) f , g ∈ T(B).

In particular, it follows that R(B) is abelian. Since R(B) has separable predual, there
exists a separable finite measure space (Y,F, ν) such that R(B) is ∗-isomorphic with
L∞(Y, ν). We may therefore assume that R(B) = L∞(Y, ν).

Since both the Toeplitz map f → T f and the Berezin transform A → Â are
completely contractive (see the discussion above), it follows that the map f → T f is
completely isometric when restricted to T(B).

We then obtain a completely isometric unital map ρ : L∞(Y, ν)→ B(H) such that

ρ(θ( f )) = T f f ∈ T(B).

Let C∗(T(B)) be the C∗-subalgebra of B(H) generated by all Toeplitz operators
T f with f ∈ T(B). It then follows from [10, Theorem 4.1] that there exists a unital
∗-homomorphism π : C∗(T(B))→ L∞(Y, ν) such that π(T f ) = θ( f ) f ∈ T(B).

Let K(H) denote the C∗-algebra of all compact operators on H. Let us assume for
the moment that there are no one-dimensional C∗(T(B))-invariant subspaces of H.
Under this condition we claim that π(C∗(T(B)) ∩ K(H)) = {0}. In order to prove
this, recall first that there exists a family {H j} j≥0 of closed subspaces of H that are
C∗(T(B))-invariant and positive integers {m( j)} j≥1 such that

H = H0 ⊕
{⊕

j≥1
H(m( j))

j

}
and, corresponding to this decomposition,

C∗(T(B)) ∩ K(H) = {0} ⊕
{⊕

j≥1
((K(H j))(m( j)))

}
,

where H(m( j))
j holds for the orthogonal sum of m( j) copies of the space H j and

(K(H j))(m( j)) is the corresponding ampliation of K(H j).
Suppose now that π((K(H j))(m( j))) 6= {0} for some j ≥ 1. Since π takes val-

ues in a commutative C∗-algebra and K(H j) is simple, it follows that dim(H j) = 1.
However this contradicts our assumption that C∗(T(B)) has no one-dimensional in-
variant subspaces. This shows that π((K(H j))(m( j))) = {0} for all j ≥ 1, hence

π(C∗(T(B)) ∩ K(H)) = {0}.

We then obtain for every f ∈ T(B) that

‖T f ‖ = ‖π(T f )‖ = dist(T f , ker(π)) ≤ dist(T f ,C
∗(T(B)) ∩ K(H)) = ‖T f ‖ess,

where ‖T f ‖ess holds for the essential norm of T f . Furthermore, using the Lebesgue
dominated convergence theorem it follows that the closed unit ball in ρ(L∞(Y, ν)) is
compact in the strong operator topology.
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Recall now that we have a completely isometric unital and weak∗ continuous map

ρ : L∞(Y, ν)→ B(H).

It then follows from the Stinespring Dilation Theorem [17] coupled with a well-
known result from von Neumann algebras theory (see [16, Proposition 2.7.4]) that
there exist a separable Hibert space D and an isometry Γ : H → L2(ν,D) such that
for all g ∈ L∞(Y, ν)

(ρ(g)x, y)H = (Mg(Γ(x)),Γ(y))L2(ν,D) ∀x, y ∈ H,

where Mg is the multiplication operator on L2(ν,D) induced by g. For more details

on this see [15, Lemma 4.1]. Let H̃ = Γ(H), and for any x ∈ H denote x̃ = Γ(x). Let
ω ⊂ Y be a measurable subset with ν(ω) > 0. Since ρ is isometric on L∞(Y, ν) and
the Calkin map is isometric on ρ(L∞(Y, ν)), it then easily follows that there exists a
sequence {xn}∞n=1 of unit vectors in H converging weakly to 0 such that

‖χω z̃n‖2 → ‖χω‖∞ = 1.

Equivalently, ‖χY\ω z̃n‖2 → 0.
It now follows from Theorem 2.2 that for every f ∈ L1(ν) there exist sequences of

vectors {xn}∞n=1 and {xn}∞n=1 in H weakly convergent to 0 such that

‖ f − x̃n · ỹn‖1 → 0 and ‖x̃n‖, ‖ ỹn‖ ≤ ‖ f ‖1/2
1 ∀n ≥ 1.

This is equivalent to say that for every element [L] in the predual of ρ(L∞(Y, ν))
there are sequences of vectors {xn}∞n=1 and {xn}∞n=1 in H weakly convergent to 0 such
that ‖[L]− [xn⊗ yn]‖ → 0 and, moreover, ‖xn‖, ‖yn‖ ≤ ‖[L]‖1/2, ∀n ≥ 1. Since the
unit ball of ρ(L∞(Y, ν)) is compact in the strong topology, one may easily see that

‖[xn ⊗ z]‖ + ‖[z ⊗ yn]‖ → 0 ∀z ∈ H.

We may now apply Theorem 2.1 and infer that the space {T f : f ∈ T(B)} has
property (Aℵ0 (1)). In particular, the dual algebra of all multiplication operators has
the same property as well.

Now, for the general case, let K0 be the closed span of all one-dimensional sub-
spaces of H that are T f -invariant for every f ∈ M(H) (if any). Since all these op-
erators are subnormal, it follows that K0 is reducing for every T f with f ∈ M(H).
Let K1 = H 	 K0 and assume that K1 6= 0. Then K1 is again a reproducing kernel
Hilbert space on X and for each f ∈ M(H) the restriction of T f to K1 is again a mul-
tiplication operator for K1. In addition there are no one-dimensional subspaces of
K1 that are invariant for all its multiplication operators. It then follows from what we
have already proved that the algebra of all multiplication operators of K1 has property
(Aℵ0 (1)).

On the other hand, given f ∈ M(H), the restriction of T f to K0 is a normal
operator, hence the dual algebra on K0 generated by all these operators is a subalgebra
of an abelian von Neumann algebra therefore it has the property A1(1).

Finally the dual algebra {T f : f ∈ M(H)} on H is a subalgebra of the direct sum
of two dual algebras with property A1(1) hence it also has the same property (see
[14]).
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In the particular case when H is the Bergman space on the unit disc in the complex
plane, the fact that its multiplier algebra has property (Aℵ0 (1)) was proved in [2]. In
the case of Bergman spaces on multidimensional domains, a similar result was proved
in [5].

Multiplier algebras with property (A1(1)) have been recently studied in connec-
tion with the Nevanlinna-Pick interpolation problem in reproducing kernel Hilbert
space (see [12] and the references therein).
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