
High Power Laser Science and Engineering, (2019), Vol. 7, e66, 6 pages.
© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/hpl.2019.52

Detection of laser-induced optical defects based on
image segmentation

Xinkun Chu 1, Hao Zhang1, Zhiyu Tian1, Qing Zhang1, Fang Wang2, Jing Chen2, and Yuanchao Geng 2

1Institute of Computer Application, China Academy of Engineering Physics, Mianyang 621900, China
2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China

(Received 25 June 2019; revised 20 October 2019; accepted 9 November 2019)

Abstract
A number of vision-based methods for detecting laser-induced defects on optical components have been implemented
to replace the time-consuming manual inspection. While deep-learning-based methods have achieved state-of-the-art
performances in many visual recognition tasks, their success often hinges on the availability of a large number of labeled
training sets. In this paper, we propose a surface defect detection method based on image segmentation with a U-shaped
convolutional network (U-Net). The designed network was trained on paired sets of online and offline images of optics
from a large laser facility. We show in our experimental evaluation that our approach can accurately locate laser-induced
defects on the optics in real time. The main advantage of the proposed method is that the network can be trained end to
end on small samples, without the requirement for manual labeling or manual feature extraction. The approach can be
applied to the daily inspection and maintenance of optical components in large laser facilities.

Keywords: deep learning; defect detection; laser-induced defects

1. Introduction

Defects on the surface of optics are among the earliest
indications of degradation which are critical for the main-
tenance of optical systems. Early detection of the defects
allows preventive measures to be taken to prevent the defects
from growing to an unrepairable size. Large laser facilities,
such as the National Ignition Facility (NIF)[1] and the Laser
Megajoule (LMJ)[2], routinely operate at high ultraviolet
fluences above the damage threshold of optical components.
The laser-induced defects on optics, once initiated, will grow
rapidly in subsequent exposure to high fluence, until to the
point at which the entire optical component needs to be
replaced. Therefore, it is critical for sustainable operation to
detect and monitor defects in the early stage.

Various image processing techniques, such as the thresh-
old method, Otsu’s method and Fourier transform[3–5], have
been implemented for defect detection to replace the time-
consuming and error-prone manual inspection. Scientists
at the Lawrence Livermore National Laboratory (LLNL)
have conducted a lot of valuable researches in the field of
damage online inspection. Using linescan phase-differential
imaging, LLNL developed a process for rapid detection
of phase defects in the bulk or surface of large-aperture

Correspondence to: Y. Geng, No. 64 Mianshan Road, Mianyang 621900,
China. Email: gengyuanchao@caep.cn

optics[6]. A threshold is set on the brightest pixel value to
select candidates for further assessment of their fratricidal
threat. LLNL also designed the local area signal-to-noise
ratio (LASNR) algorithm[7] for accurate and rapid inspection
of the optics from the NIF. The algorithm estimates the
strength of signal within an object versus the noise in its
local neighborhood. However, the accuracy and robustness
of these image processing techniques are largely affected by
varying situations like illumination conditions, shading and
noises.

Machine-learning-based models outperform the image
processing techniques in accuracy and robustness, and
have been successfully applied in computer vision tasks
such as object detection and classification. LLNL extracted
various features from each damage site and employed
ensemble of decision trees to identify false damage sites
from hardware reflections[8]. Harbin Institute of Technology
(HIT) developed the final optics damage inspection (FODI)
system for the laser facility at the China Academy of
Engineering Physics (CAEP)[9, 10]. HIT manually extracted
features associated with each damage site, and then used
extreme learning machine to distinguish true and false
damage sites and predict the damage size. The success of
the machine learning models above relies on the manually
custom-built features based on the experience of domain
experts. Nathan et al.[11] built convolutional neural network

1

https://doi.org/10.1017/hpl.2019.52 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9749-2536
https://orcid.org/0000-0002-7510-7799
mailto:gengyuanchao@caep.cn
https://doi.org/10.1017/hpl.2019.52


2 X. Chu et al.

(CNN) with features auto-generated from data, and found
that it outperforms the method using custom-built features
in finding the subtle, rare, incomplete repairs of damage.
However, typical CNNs rely heavily on the availability of a
large labeled training sample. The label for each potential
damage site is identified by a microscope. It is difficult and
time-consuming to obtain a large labeled sample in practice
for training the models.

In recent years, fully convolutional networks with U-
shaped architecture (U-Net) have been lauded for pre-
cise segmentation and efficient use of available samples.
Models based on U-Net are commonly used in image
analysis tasks in medical diagnosis, biological science and
cosmology[12–15]. Dong et al.[16] used features sampled from
the earlier U-Net layers to identify defects in radiographs of
aerospace welds. Inspired by these works, we present our
approach to detection of optical defects that leverages the
power of U-Net. We trained the network end to end on paired
sets of online and offline images of optics from a large laser
facility. The main advantage of the proposed method is that
the network can be trained from very few images without
manual labeling or manual feature extraction.

The paper is outlined as follows. First, we introduce the
structure of the detection model based on U-Net. Then, we
explain in detail about the methodology used in building
the model, including the overall architecture, the preparation
of the training set, the specifics of its implementation and
training procedure. Finally, we show the robustness and
adaptability of the model for online detection on the laser fa-
cility using novel optical images never seen by the network.

2. U-Net for defect detection

Convolutional neural networks serve as the network back-
bones for image segmentation due to the high representation
power and filter sharing properties. The U-Net architecture
is built upon the fully convolutional networks. It consists of
a contracting path to capture context and a symmetric ex-
panding path that enables precise localization. The schematic
representation of our model used for defect detection is
shown in Figure 1, which follows the original architecture
proposed by Ronneberger et al. in 2015[12]. The dimensions,
padding method and other parameters of the model are
adjusted to make the model better suited to our task.

The network consists of four major operations, convo-
lution, up-convolution, max pooling and feature forward-
ing, as shown by the arrows in Figure 1. The operation
of convolution processes an image using a receptive field
that detects specific attributes like lines and edges. More
complex attributes are detected as the layers go deeper.
An up-convolution is the transpose matrix operation of the
normal convolution, which remaps the detected attributes
into the image space. Pooling layers are inserted between
the successive convolutional layers to reduce the amount

Figure 1. Schematic representation of the proposed U-Net model for defect
detection. The boxes correspond to multi-channel feature maps, connected
by different operations (denoted by arrows). The length and height of each
box represent the number of filters (N = 32) and the x–y size, respectively.

Figure 2. The overall architecture to train the model for detection of optical
defects in real time.

of parameters and computational cost. The high-resolution
features from the contracting path on the left are forwarded
to the expanding path by combining with the up-sampled
output. In addition, dropout layers are added at the end of the
contracting path to prevent the model from over-fitting. The
final convolutional layer’s output has the same dimension as
the input. A sigmoid function is applied to convert the output
to the probability of real laser-induced defects.

3. Methodology

3.1. Overall architecture

Figure 2 shows the overall architecture of our method to
train the model for online detection of optical defects. Raw
images of optics were taken from the monitoring system
of a large laser facility, as described in detail in Ref. [9].
The training set consists of pairs of online regions and
corresponding masks of real defects (Figure 2(a)). The
masks were created by the images of optics taken offline.
Figure 2(b) is the unfitted U-Net model with untrained
parameters. The structure of the model has been shown
in Section 2. We trained the model using the training set

https://doi.org/10.1017/hpl.2019.52 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2019.52


Detection of laser-induced optical defects 3

to learn the mapping from the online optics to the masks
of real defects. To test whether the system could make
accurate predictions for novel online images, the trained U-
Net (Figure 2(d)) was used to locate defects for images from
different beamlines. The input (Figure 2(c)) of the trained
U-Net is thus the online image of the optic. The output
(Figure 2(e)) is a mask whose value is the network’s certainty
that an input element is a part of real defects.

3.2. Training set preparation

To train the U-Net to detect defects from online images,
we first prepared a dataset of training samples, consisting
of pairs of regions from online images and corresponding
masks created by the offline images. The online images of
the optics were acquired using the camera system placed at
the center of the target chamber between the laser shots.
Defects on the optics scatter light into the CCD yielding
bright signals against dark backgrounds. However, a po-
tential defect site on the online image can fall into one
of several categories, such as real laser-induced defect,
hardware reflection, light spot, reflection from the exit sur-
face or damaged CCD pixels. Figure 3 shows examples of
some categories to illustrate the difficulty in distinguishing
between them.

Most of the optics on site are under daily maintenance.
It will take long to accumulate sufficient number of defects
for training the network. We selected two badly damaged
optics after high exposure to the laser, which contained
several hundreds of real laser-induced defects. After the
online images were taken, the optics were disassembled from
the frame and passed through a cleaning system. Then the
offline images were collected by scanning the cleaned optic
in a non-disturbing light environment. The offline images
only contained laser-induced defects, without reflections,
light spots and other on-site noises; hence, it can be used
as the mask of real laser-induced defects for the online
image. Figure 4 is the schematic of the experimental setup to
illustrate the methodology in obtaining the online and offline
images.

To determine the mapping between the online and offline
images, a frame of reference was established by applying
fiducials making up groups of small dots at the four corners
of each optic. The circle Hough transform (CHT)[17], as a
feature-extraction technique for detecting circles, was further
applied to add additional obvious matching points between
the online and offline images of the inspected optic. A 3× 3
matrix, called homography[18], was then calculated based on
these matching points that warped the offline image to the
online image.

The resolution of the online and transformed offline im-
ages was around 3000 × 3000, which was too large for
the input of the neural network. The online images were
cropped into small images of 96× 96 pixel resolutions with

Figure 3. Examples of a potential damage site classified as: (a) real defect;
(b) hardware reflection; (c) reflection from the exit surface (marked in the
box); (d) light spot.

Figure 4. Schematic diagram of the methodology in obtaining the online
and offline images of the final optics.

Figure 5. An example of the prepared training dataset: (a) the cropped
region from the online image; (b) the matched region of (a) in the offline
image; (c) the 0–1 mask created by (b), with 1 for real defect and 0 for
background.

a stride of 48. Considering the pixel-level distortion and
shift between the online and offline images, we obtained
the matched offline region by searching the corresponding
neighborhood for each cropped region using the template
matching algorithm[19]. We compared the online regions (I )
against the offline regions (T ) of 144 × 144 by sliding and
computed a metric for each location[20]. The location with
the highest match value and the corresponding region of T
were selected to get the matched offline region.

The LASNR algorithm was applied to mark the position
of defects on the offline images and find the full extent
of each defect. All the marked sites on the offline image
could be considered as real defects; hence, 0–1 mask was
given for each pixel, with 1 for real defect and 0 for
background. Figure 5 shows an example of the prepared
dataset for illustration. The inputs to the network were the
cropped online images with 96 × 96 pixel resolutions, and
the target outputs were the corresponding masks of the same
dimension.

https://doi.org/10.1017/hpl.2019.52 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2019.52


4 X. Chu et al.

3.3. Implementation and training

Our implementation was realized in Python 3.6, using
the Keras[21] framework with TensorFlow backend.
TensorFlow[22] is a popular open-source library for deep
learning, and Keras is a high-level neural networks library
with a focus on enabling fast experimentation. All the
training and experiments were run on a standard workstation
with the Nvidia Tesla P100 GPU.

The total number of paired images for training the network
was 550 (with 96 × 96 pixel resolutions for both the online
samples and masks), after removal of images with all dark
backgrounds. The samples were split randomly with a ratio
of 4:1, yielding 440 training samples and 110 validation sam-
ples. The validation samples were used for early stopping
to prevent the network from over-fitting when the network
started to model the noise in the training samples.

For our task, the available training sample was quite
small. Data augmentation was essential to teach the network
the desired invariance. Morphology transformations like
rotation, shift in width and height, horizontal and vertical
flips, and variation in gray values were applied to images and
masks at the same time. The data samples and parameters
for augmentation were wrapped in a data generator, which
generated batches of tensor image data for each training
epoch.

The intensity distribution of the images was highly im-
balanced, as shown in Figure 6. The dark backgrounds
converged near 0 while the potential defects spread from 0
to 1.0 with a fraction of less than 3%. The bin near 1.0 was
caused by over-exposure of some of the potential defects.
The learning process was prone to get trapped in local
minima of the loss function with predictions strongly biased
toward 0. To solve the problem, we implemented a dice loss
function in Keras following Milletari et al. (2016)[23]. The
dice coefficient (DCE) between two regions is defined as

DCE =
2−→p −→g
−→p +−→g

, (1)

where −→p and −→g are vectors of the predicted results and
the ground truth, respectively. We trained the network by
minimizing the dice loss, which is defined as 1 − DCE.
Alternatively, we trained the network using the binary cross-
entropy loss and assigned more weights to the foreground.
It was found that training with the dice loss outperforms the
re-weighting method and the training process could quickly
pass the local minimum.

We trained the network using the Adam optimizer. The
Adam optimization is an extension to stochastic gradient
descent that can be used to update the network weights. The
initial learning rate was 10−3, which allowed the network
to converge fast. The network was trained iteratively with a
mini-batch of size 50 until the loss of the validation samples

Figure 6. Intensity distribution of the training samples (in log scale).

Figure 7. The curves of training and validation loss with respect to the
number of iterations. We used a learning rate of 10−3 for the first 500
iterations and changed the learning rate to 10−4 for later iterations.

did not decrease. For each iteration, we fed randomly aug-
mented samples as input to the network. Then, we changed
the learning rate to 10−4 and iterated the above process
for fine-tuning of the model. Figure 7 shows the curves of
training and validation loss with respect to the number of
iterations.

4. Results

To test the robustness and adaptability of the model for
online detection, we took images of optics from different
beamlines and prepared the testing set following the same
method used to produce the training set. The online images
were cropped into small regions of 96× 96 pixel resolutions
and fed as input to the trained U-Net model. Then the
predictions by the model were used to locate the real laser-
induced defects on the online image and get the predicted
mask. The total number of testing samples was 636 (with
96 × 96 pixel resolutions). The sample contained 415 real
laser-induced defects. The trained U-Net model achieved
a DCE of 86.2% on the testing set. Figure 8 shows the
predictions of defects by the trained model (Figure 8(c)),

https://doi.org/10.1017/hpl.2019.52 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2019.52


Detection of laser-induced optical defects 5

Figure 8. Predictions of real defects by the trained model on the test images.
(a) The online image of an inspected optic. (b) 0–1 mask created by the
offline images of the same inspected optic. (c) Predicted mask by the trained
U-Net model. Bottom panels show a zoom-in on a highly contaminated
region.

compared with the mask of real defects created by the
offline image (Figure 8(b)), on one of the inspected optics
(Figure 8(a)) as an example. As shown by the bottom panels
of the figure, the trained model could separate real defects
from backgrounds such as hardware reflections and light
spots.

To further characterize the performance of the trained U-
Net model, we calculated the precision (P) and recall (R) in
object level, as given in terms of the number of true positives
(TP), false positives (FP) and false negatives (FN):

P = TP/(TP+ FP), (2)

R = TP/(TP+ FN), (3)

where TP in our case corresponds to real defects correctly
marked by the prediction of the model, FP/FN corresponds
to false/real defects incorrectly marked as real/false defects
by the model. The recall was 95.7% and the precision
was 92.5% for the trained U-Net on the testing set. The
FP/FN mainly came from some tiny defects of several pixels
contaminated with backgrounds. And the F1 score, defined
as

F1 = 2PR/(P + R), (4)

was 0.94. We implemented the algorithm on a platform with
user interface. It took less than 30 s to process an entire
online image of 3000 × 3000 pixels on the platform, which
met the system’s requirement for online detection between
the laser shots on the laser facility.

5. Conclusion

In this paper, a vision-based approach for detecting optical
defects has been proposed based on image segmentation.
The proposed deep learning system can accurately locate

laser-induced defects on the optics in real time. Unlike
typical classification models where the output to an image is
a single label, the U-Net model is able to assign a class label
to each pixel. Moreover, the detection model can be trained
end to end on small samples without the requirement for
manual labeling or manual feature extraction. The proposed
method is especially strong at detecting defects when each
sample may contain multiple adjacent objects. In our case,
the model removes the fake defects from reflections by
learning the relative spatial and intensity information, where
we had limited success with typical classification models
in previous studies. The proposed approach may have wide
applications in the online detection and maintenance of large
laser facilities where a large number of labeled samples are
not available.

Nevertheless, we encountered some limitations of the
current method. First, it is assumed that the object inspected
does not have complicated structures. Hence, the offline
images can be used as the mask of real defects. Second,
the network’s predictive ability relies on the quality of the
imaging system. In our study, the detailed information of the
defects was lost due to exposure. Third, the method did not
make use of the successive online images taken per week in
discriminating the tiny defects from backgrounds. Tracking
and predicting the growth of each defect in successive online
images will be an important topic for future research.

References

1. M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J.
E. Heebner, E. S. Bliss, D. R. Speck, T. G. Parham, P. K.
Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W.
Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A.
Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E.
Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert,
A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin,
R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N.
LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl,
B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W.
McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand,
J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R.
A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz,
G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, Fusion Sci.
Technol. 69, 25 (2016).

2. A. Casner, T. Caillaud, S. Darbon, A. Duval, I. Thfouin, J.
P. Jadaud, J. P. LeBreton, C. Reverdin, B. Rosse, R. Rosch,
N. Blanchot, B. Villette, R. Wrobel, and J. L. Miquel, High
Energy Dens. Phys. 17, 2 (2015).

3. Z. He and L. Sun, Appl. Opt. 54, 9823 (2015).
4. G.-H. Hu, Q.-H. Wang, and G.-H. Zhang, Appl. Opt. 54, 2963

(2015).
5. W. Zhu, L. Chen, Y. Liu, Y. Ma, D. Zheng, Z. Han, and J. Li,

Appl. Opt. 56, 7435 (2017).
6. F. L. Ravizza, M. C. Nostrand, L. M. Kegelmeyer, R. A.

Hawley, and M. A. Johnson, Proc. SPIE 7504, 75041B (2009).
7. L. M. Kegelmeyer, P. W. Fong, S. M. Glenn, and J. A.

Liebman, Proc. SPIE 6696, 66962H (2007).
8. G. M. Abdulla, L. M. Kegelmeyer, Z. M. Liao, and W. Carr,

Proc. SPIE 7842, 78421D (2010).

https://doi.org/10.1017/hpl.2019.52 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2019.52


6 X. Chu et al.

9. G. Liu, F. Wei, F. Chen, Z. Peng, and J. Tang, in Chinese
Conference on Pattern Recognition and Computer Vision
(2018), p. 237.

10. F. Wei, F. Chen, B. Liu, Z. Peng, J. Tang, Q. Zhu, D. Hu,
Y. Xiang, N. Liu, Z. Sun, and G. Liu, Opt. Eng. 57, 053112
(2018).

11. T. N. Mundhenk, L. M. Kegelmeyer, and S. K. Trummer, Proc.
SPIE 10338, 103380H (2017).

12. O. Ronneberger, P. Fischer, and T. Brox, in International
Conference on Medical Image Computing and Computer-
assisted Intervention (2015), p. 234.

13. T. Falk, D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y.
Marrakchi, A. Böhm, J. Deubner, Z. Jäckel, K. Seiwald, A.
Dovzhenko, O. Tietz, C. Dal Bosco, S. Walsh, D. Saltukoglu,
T. L. Tay, M. Prinz, K. Palme, M. Simons, I. Diester, T.
Brox, and O. Ronneberger, Nat. Meth. 16, 67 (2019).

14. E. M. Christiansen, S. J. Yang, D. M. Ando, A. Javaherian, G.
Skibinski, S. Lipnick, E. Mount, A. O’Neil, K. Shah, A. K.
Lee, P. Goyal, W. Fedus, R. Poplin, A. Esteva, M. Berndl, L.
L. Rubin, P. Nelson, and S. Finkbeiner, Cell 173, 792 (2018).

15. P. Berger and G. Stein, Mon. Not. R. Astron. Soc. 482, 2861
(2019).

16. X. Dong, C. J. Taylor, and T. F. Cootes, in European
Conference on Computer Vision (2018), p. 398.

17. P. V. C. Hough, in 2nd International Conference on High-
Energy Accelerators and Instrumentation (1959), p. 554.

18. R. Szeliski, Computer Vision: Algorithms and Applications
(Springer, 2010).

19. R. Brunelli, Template Matching Techniques in Computer
Vision: Theory and Practice (Wiley, 2009).

20. OpenCV, https://docs.opencv.org/master/de/da9/tutorial
template matching.html (2019).

21. F. Chollet, https://github.com/fchollet/keras (2015).
22. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C.

Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R.
Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R.
Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V.
Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, arXiv:1603.04467 (2016).

23. F. Milletari, N. Navab, and S. A. Ahmadi, in Fourth
International Conference on 3D Vision (2016), p. 565.

https://doi.org/10.1017/hpl.2019.52 Published online by Cambridge University Press

https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://docs.opencv.org/master/de/da9/tutorial_template_matching.html
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
http://www.arxiv.org/abs/1603.04467
https://doi.org/10.1017/hpl.2019.52

	Detection of laser-induced optical defects based on image segmentation
	Introduction
	U-Net for defect detection
	Methodology
	Overall architecture
	Training set preparation
	Implementation and training

	Results
	Conclusion
	References


