
JFP 13 (6): 1077–1085, November 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796803004891 Printed in the United Kingdom

1077

EDUCATIONAL PEARL

Haskell in Space

An interactive game as a functional programming exercise

CHRISTOPH LÜTH

FB 3 — Mathematik und Informatik, Universität Bremen, Bremen, Germany

(e-mail: cxl@informatik.uni-bremen.de)

Abstract

This paper describes a practical exercise set to an introductory functional programming

course. The exercise is to implement a small game involving a space ship in an asteroids

belt, after the fashion of the classic Asteroids arcade game. The positive experience suggests

that interactive graphics programs of this kind make good and entertaining programming

exercises for functional programming courses.

1 Introduction

Good programming exercises are hard to find, since they have to satisfy a number of

requirements: they should have an appropriate level of difficulty, should be easily yet

precisely explainable, and should motivate students. A good source of programming

exercises are interactive games (Aerts & De Vlamnick, 1999). In this paper, we

describe a practical exercise fitting the three criteria above, in which a version of the

interactive game Asteroids had to be implemented. The exercise was set to second-

year students at the end of an introductory course to functional programming, and

was well received by the students.

In Asteroids, the player manoeuvres a space ship through a number of asteroids

moving about the screen, which have to be dodged or preferably destroyed with

the ship’s laser. If the ship hits an asteroid, the game is over. These simple game

mechanics are quickly explained and lend themselves well to a functional description.

Moreover, the graphical setting of the game is a welcome change from the console-

based text interaction that students had become used to throughout the course until

then. Thus, the exercise also hopefully serves to convince students that functional

programming is about more than sorting lists, and can be useful in practical

situations.

The contribution of this paper is twofold: first, teachers or students of functional

programming may want to use this exercise as it is, or with slight modifications.

Secondly, in a wider context, it can serve as an example of the kind of programs

which are not too hard to write or explain, and which fit in well at the end of a

https://doi.org/10.1017/S0956796803004891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004891


1078 C. Lüth

functional programming course. The advantages and drawbacks of this particular

game are discussed in more detail below, but we believe the general idea of finishing

an introductory course to functional programming with a simple interactive graphical

game is widely applicable.

The rest of this paper is structured as follows: we first describe the setting of

the practical exercise, the course and its prerequisites. We then introduce the game

and its mechanics in more detail, covering also some historical aspects. This is

followed by a detailed tour of the implementation. We finish with an evaluation and

conclusions.

2 The practical exercise

2.1 Course and prerequisites

The practical exercise described here was set in an introductory functional program-

ming course. The students were in the second year of a four-year Diplom course.

In their first year, they had become acquainted with imperative and object-oriented

programming using Java; in the second year, they had been introduced to functional

programming using Haskell. Before this course, students did not have any previous

experience with functional or graphical programming.

The exercise was the last of the course; the students had two weeks to complete

it. At this point, the students had been taught functional programming for eleven

weeks, covering roughly the material in (Thompson, 1999), which was used as a

course book. They had seven previous exercise sheets running one or two weeks,

which posed several small functional programming exercises.

The exercise was set at the end of winter term 2001/2002 as described here. In this

year’s run of the course, we have used a slight variation of the exercise (described

in the conclusions).

2.2 Setting the exercise

Designing and implementing a small interactive game like Asteroids is a nice

short exercise for an experienced programmer, but it is too difficult to do from

scratch for second-year undergraduates who have just learnt the basics of functional

programming. We have to give them a hand.

In the lectures prior to handing out the exercise sheet, a basic reference system

was presented and explained in detail. The reference system allowed to manoeuvre a

small “space ship” across the screen (i.e. “space”), without any asteroids or bullets.

The architecture of the system had been designed in such a way that it would be

easily extendible towards the full game.

This reference system demonstrates basic functional graphics programming using

the Hugs Graphics Library (HGL), a lightweight portable graphics library usable

with Hugs and the Glasgow Haskell Compiler for a variety of operating systems,

including Windows, Linux, and Solaris. It also demonstrates how to react to user

events, such as button presses, and how to implement animations in HGL. All of this

could be explained in two lectures of 90 minutes each.

https://doi.org/10.1017/S0956796803004891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004891


Educational pearl 1079

x

y

x

y

v’vv

t

ω

Fig. 1. Determining the ship’s movement.

3 The game

In Asteroids, a small space ship has to be manoeuvred through a treacherous asteroid

belt. The space ship can be manoeuvred by turning it to the left or right, or by

accelerating it using a thruster. The ship’s momentum carries it along the direction

of its current velocity, which may not be the same as its current orientation, whereas

acceleration always operates in the direction of the orientation.

The ship can fire laser bullets to destroy the asteroids. They are fired in the ship’s

current orientation, always have the same velocity, and travel in a straight line for

a certain time, until they disappear.

The asteroids come in three sizes. Initially, there is a random amount between

one and five of the largest size. If an asteroid is hit by a bullet, it breaks up into a

random number of one to three asteroids of the smaller size. If an asteroid of the

smallest size is hit, it disperses into space dust. This way, the player can clear the

screen of all asteroids. Once this is achieved, a new level is reached, and another

random amount of large asteroids appears.

3.1 A short introduction to space travel

Mathematically, the ship can be described as follows: it always has a current velocity,

which is a vector�v, and an orientation, which is an angle ω. If the ship flies straight

ahead, velocity and orientation have the same direction (figure 1, left). If the ship

turns, the direction of the orientation will differ from that of the velocity. Since the

ship always accelerates in the direction of its orientation, the new velocity �v′ is given

by adding the old velocity�v and the thrust�t (figure 1, right):

�v′ =�v +�t (1)

The vector �t = (ω, l) is given in polar form by the orientation ω and a length l,

which is either a constant L if the ship is currently accelerating, or 0 if it is not.

Thus, change of direction is achieved by turning the ship into a different direction

and accelerating, and equally deceleration is achieved by accelerating against the

current velocity. Later on, we will be able to translate this mathematical description

into a functional program easily.

https://doi.org/10.1017/S0956796803004891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004891


1080 C. Lüth

3.2 A brief look at history

The original Asteroids arcade game was introduced in 1979 by Atari, Inc. It

additionally featured hyperspace (allowing the space ship to relocate instantaneously

at a random location), and an enemy spaceship which would appear at random and

fire laser bullets at the player. Although we did not require the students to implement

these, their addition would make a nice variation on the exercise.

However, the game can be traced back directly to the seminal Spacewar game,

written in 1961/62 at MIT by Stephen Russell, Peter Samson, Dan Edwards, and

Martin Graetz, together with Alan Kotok, Steve Piner, and Robert A. Saunders

(Edwards & Graetz, 1962). Spacewar featured two space ships which were operated

by turning and accelerating exactly like in Asteroids. However, there were no

asteroids, and the game was played by two players trying to destroy the other

player’s ship with the laser bullets the ships could fire.

Spacewar was originally implemented on the Digital PDP-1 machine (Graetz,

1981). This was one of the first so-called mini-computers, allowing reactive user

interaction via a CRT display and keyboard, as opposed to the mainframe computers

mainly in use in those days, where user interaction consisted in handing in a batch

of data (programs and input) to the operator, and getting back a printout of the

results some hours later (or even the next day). Spacewar was one of the first,

and one of the most enduringly popular programs making use of the new user

interaction capabilities.1 This corroborates our premise that simple graphical games

like Spacewar or Asteroids provide a good motivation to students and programmers.

4 The implementation

This section gives a guided tour to the implementation of the reference system.

Essentially, this is the material that students need to be familiar with in order to

successfully finish the exercise; thus, the contents of this section are the contents of

the lectures preceding the handing out of the exercise sheet.

Figure 2 shows an overview of the system architecture. In general, we model the

reactive animation in a loop, which draws the current state, calculates the next state,

and waits until the next iteration. This is the contents of the Main module. In order

to calculate the state, we use the mathematical description from section 3.1; the

linear geometry required is provided by the Geometry module. As can be seen, the

Hugs Graphics Library HGL completely hides the implementation of the graphics by

the operating system (such as X Windows for Unix-based systems, or the relevant

libraries provided by Windows operating systems).

4.1 The Geometry module

The Geometry module provides utility functions for linear geometry, and abstract

datatypes for geometric figures.

1 The game survives until this day: the project web site at MIT’s Media Group http://lcs.www.
media.mit.edu/groups/el/projects/spacewar offers the original Spacewar as a Java applet.

https://doi.org/10.1017/S0956796803004891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004891


Educational pearl 1081

Fig. 2. System architecture overview.

The basic types Angle and Point come from HGL, and are defined

type Angle = Double type Point = (Int, Int)

The utility functions consider points as vectors from the origin to that point, and

provide functions to add vectors, calculate the length, and multiply with a scalar. A

fourth function converts polar coordinates into vectors:

add :: Point-> Point-> Point

len :: Point-> Double

smult :: Double-> Point-> Point

polar :: Double-> Angle-> Point

Implementing these functions earlier in the course provides a useful small program-

ming exercise in its own right.

However, the main purpose of the Geometry module is to implement two datatypes

supplementing HGL’s graphical capabilities. HGL supports drawing polygons, but not

rotating, scaling or translating them. Moreover, when implementing the bullets and

asteroids, we will need a way to efficiently check if two such polygons intersect,

e.g. to check if the space ship hit an asteroid. As with the basic geometry above,

implementing intersection algorithms for two polygons earlier in the course serves

as another useful programming exercise.

To this end, two kinds of geometric figures are supported. On the more abstract

level, we have geometric figures which can be scaled, rotated, and moved about:

data Figure = Polygon [Point]

| Circle Dimension

| Translate Point Figure

| Scale Double Figure

| Rotate Angle Figure

These figures can be translated into an abstract type Shape; a shape can be efficiently

drawn and checked for intersection with other shapes:

type Shape

shape :: Figure -> Shape

drawShape :: Figure-> Graphic

https://doi.org/10.1017/S0956796803004891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004891


1082 C. Lüth

contains :: Shape-> Point-> Bool

intersect :: Shape-> Shape-> Bool

Internally, shapes are polygons or circles, with translation, rotation and scaling

normalised to absolute coordinates. Since this can be expensive, we only do this

once. Graphic is HGL’s type representing drawable primitives (like polygons or

circles).

4.2 The main loop and the state

As mentioned above, we model the reactive animation in a loop, which about every

30 ms draws the current state on the screen, calculates the next state, and waits until

the next iteration. This allows a clean separation of concerns: on the one hand, the

state is given by a data type State, which contains the data for all objects on the

screen: the ship, and later on the asteroids and the bullets. A function nextState

calculates the next state, given the user input and the previous state, according to the

principles laid out in section 3.1. On the other hand, a function drawState renders

the state on the screen. Hence, the main loop of the game is:

loop :: Window-> State-> IO ()

loop w s =

do setGraphic w (drawState s)

getWindowTick w

evs<- getEvs

s’<- nextState evs s

loop w s’

The function getWindowTick is from HGL and waits until the full 30 ms have passed

(30 ms being the “tick” here), and the function getEvs gets all the events which

have occurred while waiting for the next tick.

4.3 The ship

The state of the ship is a labelled record containing the current position pos, velocity

vel, orientation ornt, thrust thrust and angular speed hAcc (i.e. the speed with

which the ship is turning). We also have to keep track the ship’s Shape, to allow

efficient check for intersection with other objects.

data State = State { ship :: Ship }

data Ship = Ship { pos :: Point,

vel :: Point,

ornt :: Double,

thrust :: Double,

hAcc :: Double,

shape :: Shape }

https://doi.org/10.1017/S0956796803004891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004891


Educational pearl 1083

thrust and hAcc are changed whenever the user presses a key to turn left or right

(in this case hAcc is set to hDelta or -hDelta, a constant which determines how

fast the ship is turning), or releases such a key (in this case, hAcc is reset to zero), or

presses or releases the thrust key (which sets or resets thrust). This is implemented

by a function

procEv :: State-> Event-> State

which does a straightforward case distinction on the key press and release events.

The function nextState calculates the next state state of the ship, given the

current one and a list of events which have occurred in the meantime. It uses

procEv to process the events, and afterwards the function moveShip (shown below)

to calculate the ship’s new position.

nextState :: [Event]-> State-> IO State

nextState evs s =

s1{ship= moveShip (ship s1)} where

s1= foldl procEv s evs

The function moveShip computes the position, velocity and orientation from the

current ship state, as described in section 3.1.

moveShip :: Ship-> Ship

moveShip(Ship{pos= pos, vel= vel,

hAcc= hAcc, thrust= t, ornt= o}) =

setShape

(Ship{pos= add pos vel,

vel= if l> vMax then smult (vMax/l) vel1 else vel1,

thrust= t,

ornt= o+ hAcc,

hAcc= hAcc}) where

vel1= add (polar t o) vel

l = len vel1

The new position is given by adding the velocity to the old position (modulo the size

of window; this is omitted above). The new velocity is given by adding the current

velocity and the thrust as vectors; however, if the resulting velocity’s magnitude

exceeds a global constant vMax, it is multiplied with a real factor to make its

magnitude equal to vMax. Thus, the magnitude of the velocity never exceeds vMax

but the direction can still to change.2 After moving the ship, a new shape has be

calculated; this is what the function setShape does.

To draw the ship we have to calculate its shape. It is given by a global constant,

which is rotated by current orientation, and moved to the current position:

2 Actually, the maximum speed of a ship in space would be given by friction (of whatever little gas
particles there in interstellar or interplanetary space) and relativity effects, which would make the
magnitude of the velocity approach a maximum asymptotically, not linearly as is the case here.

https://doi.org/10.1017/S0956796803004891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004891


1084 C. Lüth

Fig. 3. The finished Asteroids game.

spaceShip :: Figure

spaceShip = Polygon [(15, 0), (-15, 10),

(-10, 0), (-15, -10), (15, 0)]

setShape :: Ship-> Ship

setShape s = s{shape= shape (Translate (pos s)

(Rotate (ornt s) spaceShip))}

Figure 3 shows a screenshot of the finished game, with asteroids and all; the

background is originally black, but has been set to white for better typesetting.

The full source code for both the reference system, and a reference solution, can

be found at the web page (Lüth, 2001). The reference solution comprised about

220 lines of Haskell, the reference system described here about 90 lines, and the

Geometry module 110 lines (excluding comments).

5 Conclusion

The exercise was very popular with the students. Out of 129 finishing the course,

79 returned a questionnaire which was handed out, and from these 32 named this

exercise as their favourite exercise sheet (out of a total of eight exercise sheets).

Since one of the other exercises had been a small game as well, the popularity of

the exercise cannot be attributed to the fact that it was a game alone, but also that

it used animated graphics. Some students went well out of their way to embellish

the solutions they handed in (a pick of the best can be found at the web page).

It remains open to debate whether the particular game of Asteroids has been a

good choice. In favour of it are the simple game mechanics, the comparatively easy

algorithms, and the geometry algorithms that could be used earlier in the course as

exercises. However, as opposed to the games such as those presented in Aerts and

De Vlamnick (1999), the game cannot be extended with strategies or other such

https://doi.org/10.1017/S0956796803004891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004891


Educational pearl 1085

constructs which would particularly benefit from functional programming; in fact,

the embellishments mentioned above were all concerned with more fancy graphics.

The style of implementation in this exercise is fairly straightforward, as opposed

to the more abstract style of reactive graphical programming proposed in Hudak

(2000), which allows a very elegant, declarative description of animated objects

(the functional animation library FAL). However, in our experience this abstraction

unfortunately tends to go over the heads of the students in a first introductory

course to functional programming. We have used FAL in the year before, and set

a similar exercise to this one, but the completion rate (both of the course and the

exercise) and popularity of that exercise was far below this year’s.

We hope that the practical exercise introduced in this small paper can be useful

to other teachers (and students) of functional programming languages, either by

directly using it, or by developing similar exercises on their own. Variations on this

exercise include the original Spacewar game, or a game we have invented for this

year’s rerun of the course: we have a star in the middle of the game, with old space

satellites orbiting around it. The player has to collect the old space satellites with

his ship by using a tractor beam (which obviously can only be used if you are very

close to the ship). The star exerts a strong gravitational force, which complicates

the ship’s manoeuvring. Optionally, at some point a space ship of a rival space junk

collection company appears, and opens up fire on our ship.

To sum up, the exercise was easy to write (a fact only made possible by the

existence of the Hugs Graphics Library, showing the usefulness of a light-weight,

portable graphics library for teaching), and popular. We hope it can serve as an

inspiration for other teachers to develop similar exercises; this will certainly be

beneficial to the reception of functional programming at the undergraduate level.

References

Aerts, K. and De Vlamnick, K. (1999) Games provide fun(ctional programming tasks).

Functional and Declarative Programming in Education, FDPE’99.

Edwards, D. J. and Graetz, J. M. (1962) PDP-1 plays at Spacewar. Decuscope, 1(1).

(Available at http://www.wheels.org/spacewar/decuscope.html.)

Graetz, J. M. (1981) The origin of Spacewar. Creative Computing, August. (Available at

http://www.enteract.com/~enf/lore/spacewar/spacewar.html.)

Hudak, P. (2000) The Haskell School of Expression. Cambridge University Press.

Lüth, C. (2001) Haskell in Space web page. http://www.informatik.uni-bremen.de/

~cxl/haskell-in-space.

Reid, A. (n.d.) The Hugs Graphics Library. http://www.haskell.org/graphics.

Thompson, S. (1999) Haskell: The craft of functional programming. Second ed. Addison-Wesley.

https://doi.org/10.1017/S0956796803004891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004891

