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Abstract. In Ann. of Math. 121 (1985), 111^168, Coleman de¢nes p-adic Abelian integrals on
curves. Given a family of curves X/S, a differential o and two sections s and t, one can de¢ne
a function lo on S by lo�P� �

R t�P�
s�P� oP. In this paper, we prove that lo is locally analytic on S.
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1. Introduction

Let p be an odd prime number. Let K be a ¢nite extension ofQp, and let R be its ring
of integers. Let k be the residue ¢eld of R. Let S be a smooth af¢ne curve over R. Let
X !p S be a family of curves over S; in other words, suppose that X=S is proper and
smooth of relative dimension one. Let s and t be sections of this family, and set
D � s�S� [ t�S�.

Given a family of relative differentials of the second kind o on X=S whose polar
divisor does not meet the images of s and t, we would like to study the p-adic integrals
(as de¢ned by Coleman in [1]) of o from s to t on the ¢bers of the family X=S. One
possible de¢nition of these integrals is the following. For each P 2 S, the ¢ber
XP above P is a smooth curve, s�P� and t�P� are points of XP and oP is a differential
of the second kind on XP, so we can use the construction of [1] to de¢ne lo�P�
by lo�P� �

R t�P�
s�P� oP:

We view this as giving a function lo on S. Some interesting arithmetical properties
of the family X=S can be phrased in terms of lo. For example, the results of [1] imply

THEOREM 1.1. The divisor class of �s�P�� ÿ �t�P�� in XP is torsion if and only if
lo�P� � 0 for all o 2 G�S; p�O1

X=S�.

However, given the above de¢nition, there is no reason to expect that lo has any
good properties at all, since it is a priori only a set-theoretic function. Zarhin gives
an alternative construction of p-adic Abelian integrals in [4], but this constuction
does not lend itself to studying families. In this paper,we establish that lo is in fact
locally analytic on S. By `locally analytic,' we mean that lo is given by a convergent
power series on each residue class of S.
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2. Restriction to Residue Classes

To make our results precise, we must formalize the notion of restricting to a residue
class of S. The completion of S along a k-valued point P0 is isomorphic to
SpecR��T �� (for some non-canonical choice of a local parameter T ). We view base
change by the map SpecR��T �� ! S as restricting to the residue class of P0. A func-
tion on S can be pulled back to a function of T on the residue class.

The integrals lo will have denominators of p and hence will not be in the ring
R��T ��, so we introduce KffTgg, the ring of power series which are convergent in
the open disk of radius 1.More precisely, KffTgg consists of series

Pn
i�0 aiT

i such
that lim

i!1
jaijri � 0 for every real number 0W r < 1. One may regard KffTgg as

the ring of rigid analytic functions on an open unit ball.
Our main result can now be stated:

THEOREM 2.1. Let X=S be a family of curves ando a family of differentials as in the
introduction. On any residue class with local parameter T, the integral lo, viewed as a
function of T, is an element of KffTgg.

The proof of this theorem will be divided into two cases. First, we will give a proof
based on crystalline cohomology for the residue classes where the sections do not
meet mod p. Then we will give a fairly elementary proof for residue classes where
the two sections s and t are congruent mod p.

3. Disjoint Sections

To prove the analyticity of integrals on residue classes where the two sections do not
meet, we will use the language of crystalline cohomolgy. We will follow the notation
for F -crystals used in [3].

We wish to integrate differentials of the second kind on X=S. However, the
differential of a function that vanishes on D should integrate to zero. Thus we
may view the objects we are integrating as differentials of the second kind modulo
differentials of functions that are zero on D, i.e. as classes from H1

DR�X=S;D�.
An integral should assign a function on the base to each such class. The problem
of integration therefore amounts to ¢nding a section s of the dual of
H1

DR�X=S;D�, namely H1
DR��X nD�=S�, such that ho; si � lo.

The cohomology modules H1
DR��X nD�=S� and H1

DR�X=S;D� are F -crystals on S
(see [2]). Brie£y, this means that they are S-modules with an integrable, convergent
connection and an action of Frobenius; see [3] for more details. We will show that
the following properties determine a locally analytic section s and also characterize
Coleman's integrals:

(1) dho; si � hro; si.
(2) hdG; si � t�Gÿ s�G for G a function regular on D.

58 ROLAND DREIER

https://doi.org/10.1023/A:1002432618607 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002432618607


(3) Fs � ps, where F denotes the Frobenius endomorphism.

3.1. CONSTRUCTION OF INTEGRALS

The section s will be a locally analytic (Coleman uses the term ``£abby'') section of
the cohomology sheaf; in other words, s will be given locally as a section of the
pullback of the cohomology to each residue class, with no relation required between
residue classes. We have the following:

THEOREM 3.1. For each k-valued point P0 of S such that s and t do not meet above
P0, there is a unique section s of H1

DR��X nD�=S� restricted to the residue class above
P0 satisfying the following conditions:

(1) dho; si � hro; si for all o 2 H1
DR�X=S;D�.

(2) hdG; si � t�Gÿ s�G for G a function on X regular on D.
(3) Fs � ps, where F denotes the Frobenius endomorphism of H1

DR��X nD�=S�.

Proof. Choose a local parameter T for the residue class above P0. We will use the
notationÿ
 KffTgg to denote the pullback of an S-module to the residue class above
P0. Let H be H1

DR��X nD�=S� 
 KffTgg. We seek a section s of H.
First, the pairing on cohomology is compatible with the connections, which means

that for any sections o and s,

ho;rsi � hro; si � dho; si:
Condition 1 in the statement of the theorem may then be understood as requiring
that ho;rsi � 0 for all o, i.e. as requiring that s be horizontal. Therefore, we must
¢nd a vector with the desired properties in the ¢nite-dimensional K-vector space
of horizontal sections of H.

For the remainder of the proof, we restrict to the residue class above P0. There is a
horizontal exact sequence

0! H1
DR�X=S� 
 KffTgg ! H ÿ!Res

H0
DR�D�0 
 KffTgg ! 0;

where H0
DR�D�0 denotes the degree 0 part of H0

DR�D� (the residues of a differential
form must sum to 0). Using Proposition 3.1.2 of [3], we obtain a corresponding exact
sequence of horizontal sections

0! �H1
DR�X=S� 
 KffTgg�r ! Hr ! �H0

DR�D�0 
 KffTgg�r ! 0:

This is an exact sequence of K-vector spaces. However, since all three vector spaces
arise as spaces of horizontal sections of F -crystals, they are all equipped with a
s-linear endomorphism (where s denotes the Frobenius automorphism of K) which
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we will call the action of Frobenius and write as F. A priori this endomorphism
depends on a choice of lift of Frobenius, but convergence shows that every lift
in fact gives the same endomorphism. Let n be the integer such that sn is the identity
on K . Then Fn is a K-linear endomorphism of all the vector spaces in the exact
sequence above, and the maps of the exact sequence respect this map.
�H0

DR�D�0 
 KffTgg�r is a one-dimensional K-vector space where Fn acts as
multiplication by pn. �H1

DR�X=S� 
 KffTgg�r is a 2g-dimensional K-vector space
where Fn acts with eigenvalues of complex absolute value pn=2 (by comparison with
crystalline cohomology and the Riemann hypothesis). Since these eigenvalues have
different complex absolute value, this extension of vector spaces splits naturally
in a unique Fn-invariant way.

Condition 2 speci¢es the image of s in �H0
DR�D�0 
 KffTgg�r, namely that it should

have residue �1 on t and residue ÿ1 on s. Condition 3 gives the action of F, which
means that s must actually be the unique preimage of these residues coming from
the Frobenius-invariant splitting (and upon which Fn acts as multiplication by pn).

3.2. COMPARISON WITH COLEMAN'S INTEGRALS

We would now like to show that the integrals constructed in the proof of Theorem 3.1
agree with the integrals constructed in [1]. As in the introduction, de¢ne a function lo
on S by lo�P� �

R t�P�
s�P� oP, where the integral is to be interpreted as in [1]. We now

prove the following:

THEOREM 3.2. Let P be a point of S. If s is the locally analytic section of
H1

DR��X nD�=S� constructed in Theorem 3.1 and o is a section of H1
DR�X=S;D�,

let sP and oP denote their pullbacks to the ¢ber above P. Then hoP; sPi � lo�P�.
Proof. Let P0 be the reduction of P. Since everything is at most locally analytic, we

will restrict to the residue class above P0. In particular, for the remainder of this
proof, we will write S and X for the restriction of these objects to the residue class
of P0.

Let n be the positive integer such that P0 is ¢xed by the nth power of Frobenius.
There is a commutative diagram of af¢noids

The reduction of this diagram commutes with ~f, the nth power of the Frobenius map
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on S0:

Therefore Theorem 1.1 of [1] implies that there is a lift f of the nth power of
Frobenius to S such that P is the Teichmuller point of f above P0.

Because f ¢xes P, the induced endomorphisms F of H1
DR�X=S;D� and

H1
DR��X nD�=S� restrict to K-linear endomorphisms of the stalks of these sheaves

above P (which are K-vector spaces). sP is characterized as the unique element
ofH1

DR��X nD�=S� which has residue �1 at t�P� and ÿ1 at s�P� and is an eigenvector
of F with eigenvalue pn.

Let l�P� be the element of H1
DR��X nD�=S� (the dual of H1

DR�X=S;D�P) deter-
mined by ho; l�P�i � lo�P�. If we show that l�P� satis¢es the same conditions
on residues and the action of Frobenius as sP, then this will imply l�P� is equal
to sP. First, one easily sees that the condition of ``the fundamental theorem of
calculus'' (Proposition 2.4 of [1]) for l�P� is equivalent to the condition on the
residues of sP.

To check the second condition, we must determine the action of Frobenius on l�P�.
Let m be the positive integer such that the nmth power of Frobenius ¢xes the
reductions s�P0� and t�P0�. Again by Theorem 1.1 of [1], this time considering
the diagram

there is a lift f1 of the nmth power of Frobenius to XP ¢xing s�P� and t�P�, inducing
an endomorphism F1 of F -crystals. Then for any differential of the second kind
o on XP, the change of variables formula for p-adic integrals (Theorem 2.7 of [1])
implies thatZ t�P�

s�P�
o �

Z f1�t�P��

f1�s�P��
o �

Z t�P�

s�P�
F1o;

or in different notation, ho; l�P�i � hF1o; l�P�i.
The duality pairing on cohomology maps into H2

DR, which is then identi¢ed with
the ground ¢eld via the trace, and Frobenius acts as multiplication by p on the
one-dimensional space H2

DR. F1 is invertible. De¢ne an endomorphism V as
pnmFÿ11 . By functoriality, for any o and t,

hF1Vo;F1ti � F1hVo; ti � pnmhVo; ti:
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However, we also have

hF1Vo;F1ti � hpnmo;F1ti � pnmho;F1ti:
So we obtain the fact that hVo; ti � ho;F1ti (informally, ``the adjoint of Frobenius
is Verschiebung'').

Combining the above, we obtain that for any o,

ho;F1l�P�i � hVo; l�P�i
� hF1Vo; l�P�i
� hpnmo; l�P�i
� ho; pnml�P�i:

Therefore F1l�P� � pnml�P�, so Frobenius does act with the same eigenvalue on l�P�
as on sP. This completes the proof that l�P� � sP.

4. Kernel of Reduction

Note that the two sections s and t of the familyX=S give one section u of the Jacobian
J (a family of Abelian varieties) of X=S by setting u�P� equal to the divisor class
of�t�P�� ÿ �s�P��. Then

lo�P� �
Z t�P�

s�P�
oP �

Z u�P�

0
oP;

where the ¢rst integration is performed on XP and the second integration is
performed on JP.

To complete the proof of Theorem 2.1, we must show that lo varies analytically on
the residue class of a k-valued point P0 of S such that s�P0� � t�P0�. Then on the
residue class of P0, the image of u lies in the kernel of reduction on J. As described
in [1], the integral can be thought of as a formal logarithm on the Jacobian. By
computing this directly, we will show that lo is locally analytic on the residue class
of P0. Because we are working in the kernel of reduction, we merely need to carry
out the standard construction of formal logarithms with R��T �� and KffTgg replacing
R and K .

We can choose local coordinates �U1; . . . ;Ug� for the kernel of reduction of J so
that the identity element of each ¢ber of J is at �0; . . . ; 0� (where g is the genus
of X ). Since the polar divisor of o does not meet the images of s and t, o can
be given locally as

Xg
i�1

Ci�T ;U1; . . . ;Ug�dUi;

where each Ci 2 R��T ;U1; . . . ;Ug��. The section u is given locally by Ui � ui�T � for
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ui 2 R��T ��. In fact, since the image of u is contained in the kernel of reduction, each ui
is contained in the ideal generated by p and T .

To compute the integral lo, we ¢rst formally integrate each Ci with respect to Ui,
which introduces denominators of p, but only of a very mild type: a term containing
Upn

i introduces a denominator of pn to the integral, so the coef¢cients will grow
at a small enough rate for the ¢nal result to lie in KffTgg. To obtain the ¢nal result,
we substitute ui for Ui in the formal integral. Since every ui is contained in the ideal
�p;T �R��T ��, this substitution is well-de¢ned and is a member of KffTgg. This com-
pletes the proof of our main result.
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