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THE POISSON INTEGRAL OF A SINGULAR 
MEASURE 

PATRICK AHERN 

Let a be a finite positive singular Borel measure defined on Euclidean 
space R^. For w e R^ and y > 0, its Poisson integral is defined by the 
formula 

o(w, y) = CN JRN 

(U-wi2+/) (^+ 1 ) / 2 

where CN is chosen so that 

C/v L/v ,x n , .x CMA-W/I — 1-
dx 

Since a is singular, \ïmy->Qo(w, y) = 0> almost everywhere with respect to 
Lebesgue measure on R^. On the other hand, limv_^0

(J(vv
? y) = °° almost 

everywhere do. It follows that for all sufficiently small y, 

Ev = {w E:RN:a (w,y) > 1} 

is a non-empty open subset of R^. If a has compact support then I^J —> 0 
as y —> 0, where |isJ denotes the Lebesgue measure of Ev. In this paper we 
give a lower bound on the rate at which \EV\ may go to zero. The lower 
bound depends on the smoothness of the measure; the smoother the 
measure, the more slowly |2sv| may approach 0. This may be somewhat 
unexpected in that if the measure a is smooth then the maximum of a 
(H>, y) will go to oo more slowly, which should tend to make \EV\ to to 0 
more rapidly. The opposite is the case, however. The reason is that if the 
measure is smooth it must be well "spread out", and this spreading out of 
the measure has a greater influence on the size of Ey than does the slow 
growth of a(w, y) to oo. One consequence is that for the finite positive 
singular measure we have 

lim y~N/(N+V \EV\ > 0 . 

This result is sharp. 
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736 PATRICK AHERN 

In the second section we see the extent to which the results of the first 
section are sharp. We begin by getting bounds from above on \EV\ in case 
the support of o is compact and has Lebesgue measure 0. Then we show 
that the bounds from above agree with the bounds from below if a satisfies 
a certain homogeneity condition. If o is not homogeneous then we must 
apply our results not to o but to non-zero measures bounded by o but 
smoother than a. 

In the third section we give an application to a problem about inner 
functions in the unit disc. In [2] it was shown that if <p is a singular inner 
function then there is an e > 0 such that 

/ : 0(1 - \<ç{reld)\)d6 g € Vl - r. 

Using the results of Section 1 we can improve this to show that if 0 < q 
r e ] 

•2TT 

<oo there is an eq > 0 such that 

J o (1 ~ W(reld)\fd6 g 6, Vl 

This result together with a generalization of a theorem in [2] can be used to 
show that if <p is an inner function and if 

/o (1 " r) a ( /o " *' W 6^d BVtqdr < °° 
for some /?, q, such that 

then <p is a Biaschke product. This was conjectured by M. Jevtic [6] when 

p = q-

1. For x, w e R^ we let d(x, w) = max|x/ — w7|. Then we have 

d(x9 w) â |x - w\ â VNd(x, w) 

where 

\x ~ w\2 = 2 (Xi - W /)
2 . 

i=\ 

We define the closed cube of side 28 about x as 

g(jc, S) = {w G RN:d(x9 w) ^ 8}. 

Note that |Q(x, S)| = (28)^. The symbol a will always denote a finite 
positive singular Borel measure on R^. 
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THE POISSON INTEGRAL 737 

We will want to apply Egorov's theorem to the family of functions 

/«(*) = °(Q(x,8))8-N, 8>0. 

Since Egorov's theorem doesn't hold without restriction for families 
indexed by an uncountable set, (see [9]), we include the following. 

LEMMA 1. If e > 0 is given there exists a measurable set E such that 
o(RN\E) < € and a(Q(x, 8))8~N —> oo uniformly on E, as 8 —> 0. 

Proof Let {ry-} be an enumeration of the positive rational numbers, and 
let 

S(n, k) = n i {x:o(Q(x, rj) )rf N ^ k}. 
rj<n 

Then S(n, k) is measurable and S(n + 1, k) 3 S(n, k). By the 
differentiation theorem for singular measures [3], 

a( U S(n, k) ) = o (R% 

and hence 

lim o (S(n, k) ) = a(RN), for each A: > 0. 

Now choose nk so that 

o(RN\S (nk, k)) < e2~k 

and let 

E = n S(^, £). 
A: 

Then a(RN\E) < c. Let /c > 0 be given, then for all x e £ we have 

x e S(/i*, fc) = n {x:o(Q(x, rj))rfN ^ *:}. 
rJ<nk~X 

Now if 0 < 8 ^ «jT * and 0 < r,• g S then 

a(Ô(x,8)) è a(Ô(x, ry)) i= krfN. 

Since there are such r} as close to 8 as we please it follows that if i G £ 
and if 8 ^ nk then 

a ( Ô ( x , 8 ) ) 8 " ; v ^ k. 

LEMMA 2. 77zere exz'sta an eN > 0, depending only on N, such that if w, z 
G R \ y G R, w/7/2 d(w, z ) i « W 0 < j ; i 2 S . 77M?W 
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738 PATRICK AHERN 

o(w,y) ^ €Nya(Q(z, 8))8 -(N+\) 

Proof. If d(w, z) ^ 8 and x e Q(z, 8), then d(x, <o) ^ 28, it follows 
that 

a (w, >>) = CN J 
ydo(x ) 

(y2 +\x-w\2)<N+])n 

> r ( ydajx) 
= C " jQ(z,S) C V 2 + | J C _ W | 2 ) < * + 1 ) / 2 

2 4- AMTr w ^ 1 ( ^ + 0 / 2 /£(;,«) [45^ + Nd(x, w)z] 

CN yo(Q(z,8))8-(»+» = (N + 4N)(N+V)/1 

= €Nyo(Q(z,8))ô-lN+". 

We define the modulus of continuity of a by 

co(8) = sup o(Q(x, 8) ) 
XŒRN 

and we let 

8(y) = inf{8:co(8)8-<"+1> ^ ( c ^ ) " 1 } . 

We will need an elementary covering lemma; Q(x, 8) denotes the 
interior of Q(x, 8). Q(x, 8) is called an open cube. 

LEMMA 3. If A is a finite collection of open cubes, then there is a disjoint 
subcollection, B, such that if Q e A then there exists Q(x, 8) <E B with Q Q 
Q(x, 38). 

THEOREM 1. There is a constant T#, depending only on N, such that for 
any a there is a y0 > 0 with the property that ifO < y = >>o 

\EV\ = \{w:a(w,y) > 1}| ^ rN\\o\\ y/8(y). 

(Here \\a\\ = J ^ da.) 

Proof Let a be given. By Egorov's theorem (Lemma 1) and the 
regularity of a there is a compact set K such that 

o(K) ^ ||a||/2 and a(Q(x, 8) )8~N -> oo, 

uniformly on K, as 8 —> 0. In particular, there is a j 0 > 0 s u c n t n a t if 0 < 8 
^ jo t n e n 
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THE POISSON INTEGRAL 739 

o(Q(x, 8) )8~N ^ eN~\ for all x e K. 

Now fix 0 < y ^ y0 and x G K and define 

Ô(X,JO = inf{MÔ(x,fi))S-<"+ 1> ^ ( W ) " 1 } . 

We list some properties. 

i) a(Ô(x, Ô ( X , J O ) W * , j O ^ 0 =§ ( e ^ ) " 1 , 

ii) a(g(x, «)) 5 - ^ + » > ( e ^ ) " 1 , if 0 < 5 < 8(x, y), 

iii) y = 8(x, y), 

iv) 8(x, y) =g 5(y), 

v) If w G £>(*, 5(x, _y) ), then a(w, y) > 1. 

To prove i) note that there exists 8j \ S(x, y) such that 

o(Q(x,8j))Ôj-(N+]ï fk (eNyy]. 

Now for each j , 

a(Q(x, 8(x,y))8j-lN+» ^ a(Q(x, 8j) )ô/-<
Af+1> ^ ( c ^ ) " 1 . 

Now let7 —» oo. Number ii) follows from the definition of infimum. As for 
iii), if 0 < 8 < y, then 

a(<2(x, «))«-<"+1> = a(g(*, ô ) ) 6 - ^ - 1 ^ c ^ ô " 1 > ( c ^ ) " 1 

and hence 8(x, y) ^ y. Number iv) follows immediately from the fact 
that 

o(Q(x,8)) ^ « ( 8 ) . 

Finally, we want to use Lemma 2 to prove v). If w G <2(X, Ô(X, y) ), then 
<i(x, w) < 8(.x, 7). By iii), y ^ 8 (x, j>) and hence there is a <5, d(.x, y) < 8 
< 8(x, y), and y ^ 2 8. It now follows from Lemma 2 that 

a(w,j;) ^ £ ^ a ( Ô ( x , S ) ) Ô - ^ + 1 ) . 

This last expression is greater than 1 by ii). This establishes i)-v). 
To proceed with the proof of Theorem 1, we take a fixed y, 0 < y ^ y0. 

Now 

K ç u <2(*> S(x,.y)/3), 
xeK 

and so by the compactness of K and the covering Lemma 3 there exists 
x\, . . . , xn £ AT such that { Q(XJ, 8(xj, 7)/3} is a disjoint collection and 
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K ç uQ(xj,8(x/9y)). 

We have 

^ fk a(K) ë 2 a(e(^S(^^)) 
2 7 = 1 

ë 2 o(Q(xr 8(Xj, y) ) 
7 = 1 

^ ( w r 1 2 5(x/,v)'v+1 

7 = 1 

7 = 1 

= (3/2AW)-'«(y) 2 [| 8(̂ ,>')]JV 

/I 

= o/iywr'soo 2 i Ô(*,-, Ô(^J)/3| 
7 = 1 

= (3/2f(€Ny)-'ô(y)\ U £(*,, «(*,•, j)/3)| 

S (3/2)'v(£'
vy)-,fiO')|j.Ûi ô(*/, «(*/. JO )l 

It follows that 

\Ey\ S T^||cy|ly/fiO), where Tyv = ( 2 / 3 ) % / 2 . 

The proof is complete. 

Before stating a corollary, note that if a and ju are two such measures, 
and coa ^ cô , then S0 ^ S .̂ This follows from the inequality 

Wo(8)fi-^+1> =i ^ ( 6 ) 5 ^ + » . 

COROLLARY. 77zere w an 7]N > 0, depending only on N, such that for every 
o there is an y0 > 0 with the property that ifO < y = yo then 

\EV\ ^ VN(\\a\\yf/^+l\ 
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THE POISSON INTEGRAL 741 

Proof. Let JU be a point mass at 0 G R^ with total mass ||a||. Then 

1*0) SEE ||a||, 8 > 0, 

and hence 

«8 ^ Ml ^ «„. 

We conclude that <5„ ë 8^. We may calculate that 

W = (.M\tNy)mN+n 

and hence that 

|£v,| i= r„||a|| jV^OO â TW||a|ly/(||a|| c ^ ) 1 / ^ + l ) 

= r)N(M\y)m{N+i)-

We shall see in the next section that if a consists of a single point mass 
then yN/(N+l) is the exact rate of vanishing for \Ey\. Of course it is not 
difficult to check this by direct calculation. 

2. In this section we investigate the extent to which Theorem 1 is sharp. 
To see what is happening we make the following observation: suppose that 
JU ^ a, then of course co^ ^ <oa and hence 8^ = 8a. It follows that 

\{w/o(w,y) > 1}| ^ \{w:fow,y) > 1}| ^ rN \Hy/8^(y). 

Note that y/S^iy) goes to zero more slowly than y/8a(y). In other words, 
we get the most information from Theorem 1 by applying it to the 
smoothest possible (non-zero) measure /A, with /x ^ a. That is to say that 
we can't expect the inequality of Theorem 1 to be reversed unless a has the 
property that if 0 ^ \x ̂  a and \i =É 0 then fi is not really smoother than a. 
The point of this section is to show that for such "homogeneous" measures 
the inequality of Theorem 1 can be reversed. 

Definition. The measure o is said to be homogeneous if there exists e > 0 
such that for all x e support a, o(Q(x, 8) ) i^ eco(8). 

First we shall get a bound from above on \Ey\ for any a whose support 
has Lebesgue measure 0. Then we will show that this bound agrees with 
the bound from below given by Theorem 1 when o is homogeneous. 

Definition. If K is compact and \K\ = 0 define 

9(8) = PK(8) = | U Q(x, 8)\. 
xeK 

LEMMA 4. PK{28) ^ 6N
PK{8). 
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Proof. Fix 8 > 0 and let € > 0 be given. Take L to be a compact subset 
of K28 ^ \L\ ^ (l-e)p(28). Now 

L ç u g(jc, 28), 
xeK 

so by compactness of L and Lemma 3, there are x\, . . . , xn e AT such that 
{g(xy, 28)} is disjoint and 

L ç u £(*/, 65). 

It follows that |L| ^ «(128)*. On the other hand 

U Q(xj9 S) ç KS 

and since these cubes are disjoint 

n(28f g \KS\ = p*(S). 

So, we have 

(l-€)p(28) ^ |L| ^ «(128)* = 6Nn(28)N ^ 6*p(8). 

Since € > 0 is arbitrary, the proof is complete. 

THEOREM 2. There is a constant DN, depending only on N, such that if K 
= support o is compact and \K\ = 0, then 

\Ey\ ta DNPK(8(y)). 

Proof Suppose that o(Q(w, 8) ) = 0, then 

A/ x _ r f ydo(x) 
o(œ,y) - CN Jd(xw)>8 b 2 + | j c - w | 2 ] ( ^ + 1 

)/2 

r S* [ ydo(x) 

k=0* 8<ct(x,w)^2k+>8 [y* + d(x9 w)2](N+l)/2 

CN 2 - j ^ y ^ Q ^ l ^ S ) ) 
k^O U ô) 

oo 

0 ^ 8 - ^ + ' ) 2 2-^+,>*ïo(2*+Ifi) 
k=0 

k = 0 

= 2Af+lCA,M5)ô" (A '+l ). 
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(We have used the obvious inequality co(28) ^ 2N co(8).) Now fix m, 
depending only on TV, so that 

^X2N^xCN2~m ^ 1 

and suppose that d(w, K) > 2m 8(y) = 8, then our calculation shows 
that 

a(w,>0 ^ 2N+lCNo>(2m8(y))(2m8(y)y(N+l) 

^ 2N+]CN2mNyio(8(y))2-(N+l)m8(yyiN+l) ^ 1, 

by the definitions of m and 8(y). In other words, 

Ev = {w:o(a,y) > 1} ç {w:d(w, K) < 2m8(y)} 

and so 

|£„| =i PK(2m8(y) ) ë 6mN
PK{8 (y) ) = Z)Np*(Ô (y) ). 

THEOREM 3. Suppose that o is homogeneous and that K = support o is 
compact and \K\ — 0. Then there is a constant A such that 

\Ey\ =i Ay8(yy\ 

Proof. Because of Theorem 2 it is sufficient to show that 

p(8(y) ) ^ Ay8(y)~x for some constant A. 

For this it is sufficient to show that there is a constant A such that 

PK(S)CU(S) â A8N, for all 8 > 0. 

For suppose this is established, then for 8 < 8(y) we have 

PK(8) ^ A8Na(8)-] â A8N+lù)(8yl8-} < A<LNy8~\ 

now let 8 —» 8(y) and we see that 

pK(S(y)) ^AeNy8(y)-\ 

To show that p#(ô)co(ô) ^ A8N, take 8 > 0 and let TJ > 0 be given. There is 
a compact set L, K Q L Q K§ such that 

|L| è ( l - 7 , )p (6 ) . 

By compactness of L and Lemma 3 there are x\, . . . , xn e Â  such that 
{ÔC*y'> S)} is a disjoint collection and 

L ç .IJ 6(jcy-, 38). 
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Hence \L\ ^ n(68)N. Now since {Q(XJ, 8)} are disjoint and o is 
homogeneous 

n 

\\o\\ â 2 o(Q(xj,8)) ^ n e a(8) 
7 = 1 

^ cco(fi)| L |(6Ô)"^ ^ 6(1 - ^ " ^ ( « M f i j f i " ^ . 

The theorem follows. 

We conclude this section by stating a theorem due essentially to 
Hausdorff, which guarantees the existence of homogeneous singular 
measures of any preassigned modulus of continuity. For the proof when N 
= 1, see[l], or [7]. 

THEOREM (Hausdorff). Suppose that œ is a positive increasing function 
defined for 8 > 0 such that co(28) = 2Nco(8) and 

lim o)(8)8~N = oo. 

Then there is a homogeneous singular measure o and positive constants A and 
B such that 

Au0(8) ^ w(S) ^ Baa(8), 8 > 0. 

3. In this section we give some applications of the previous sections to 
inner functions. We refer to [8] for details about the structure of inner 
functions. We shall use Theorem 1 in the unit disc rather than the upper 
half plane when N = 1. In the disc it takes the following form. 

THEOREM 4. There is a constant T > 0 such that for any positive singular 
Borel measure o on the unit circle there is an rg with the property that 

| {6:o(re>e) > 1} | i= r||a|| ( l - r ) Ô ( r ) " 1 if r0 =§ r < 1. 

Of course 

I /v \~r2 

o(rew) = — I —3 m da(t) and 
277 J "* \re — e \ 

8(r) = inf {8:u(8) 8~2 ^ (c,(l -r) )~]}. 

In particular we have the following corollary. 

COROLLARY. For each o there are constants c > 0 and 0 < r0 < 1 such 
that 
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I {6:o(re(6) > 1} | è « V l - r , if r0 S r < 1. 

THEOREM 5. If a is a measure on the unit circle and 

ri* eit + z 

<P(Z) = exp { - / -j da(t) } 
J u e — z 

is the associated inner function, then for each q < oo there is a constant eq > 
0 such that 

r: JO ^ ,. . „ , , _ ! 
I0 (1 - 1 *(/*") | ) * — è € , ( l - r ) ô ( r ) -

Proo/. Let Er = {0:a(/-e,(>) > 1}, by Theorem 4, 

\Er\ me(\-r)S(ryl 

for some c > 0 if r is close to 1. Now 

/ ^ (1-1 « P ( ^ ) I )*<# ^ / £ , (1-1 «P(^) I )«<# 

ê ( l - e - 1 ) < ? | £ / . | = ^ ( l - / - ) Ô ( r ) - ' . 

COROLLARY 1. 7/<p w a singular inner function then for each q < oo //zere 
w <2 constant eq > 0 swc/z //ztf/1 

/r ( l - | < p ( r ^ ) | ) ^ > 6 , V l - r . 

Proof This follows from the corollary to Theorem 4 in the same way 
Theorem 5 follows from Theorem 4. 

COROLLARY 2. If q> is a singular inner function, /? > 0, g > 0, a > — 1, 
andp(\-(2q)~l) ^ \ + a, then 

/>->• (/'..(^T^rir- oo. 

The result we are aiming for in this section is the corollary to Theorem 6 
below. Theorem 6 allows us to replace the quantity 1 —| y(rée\/\— r by 
W(reie) | in Corollary 2 to Theorem 5. We need two preliminaries. The first 
is just a formal statement of a method used by Hardy and Littlewood. 

LEMMA 5. Suppose thatf[0, 1) —» [0, oo) and F(r) = sup 0 ^ p ^ r f(p) and 
that 0 < p = 1, z7ze« zTzere is a constant Cp such that 

{J\f(r)dr)P =g Cp J\(\-r)P-xF(r)Pdr. 

https://doi.org/10.4153/CJM-1983-042-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-042-0


746 PATRICK AHERN 

Proof. Let rn = 1-2 }\ then 

{f0f(r)dr)P = {Ï fl/M)" 
\ / \ w = ] n i / 

/ OO V ^ OO 

( 1 - 2 ^ ) S /Vu 
= ^ ^ 2 Ffo)' / (1-/•)'" ' </r 

P n = \ J r» 
OO / y i f - l >., 

< C, 2 / F ( r ) ^ l - r ) ^ - 1 ^ ^ C, \-F(rf(\-ry-xdr. 

We have used the fact that i7 is increasing. 
We also need a general version of Hardy's inequality, see [5], page 

245. 

LEMMA 6. Iff(0, oo) -» [0, oo), /? > 1, a > — 1, and p > 1 + a, 

After a change of variables in Lemma 6 we get the following. 

LEMMA 7. i / / : (0 , 1) -> [0, oo), /> > 1, a > - 1 , andp > 1 + a 

fo O-'Hdb f\fWp)P* * k ^ ) ' /I (1-rWry *. 
The case/? > I, q = 1 and a = 0 of the next theorem was proved by 

Alan Gluchoff [4]. The case p = q = 1 was proved in [2]. 

THEOREM 6. Suppose that a > — 1, g > 0, /? > 1 + a, <2«<i //*#/ <p /s #A? 

inner function. Then 

if and only if 
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Proof. For any function <p, holomorphic and bounded by 1 we have 

1 — r 
and so one direction is clear. In the other direction we start with the 
inequality 

3.1 1 - | cp(r̂ ) I ^ / J v V ) I dp, 

which is valid for almost all 6 because <p is an inner function. First we 
suppose that q ^ 1 and apply the continuous form of Minkowski's 
inequality to 3.1 to obtain 

/ rim d6\]/ci fx 

3.2 y J o (1 - I <p(reie) | )* — J tk ] y Mq(p, v ') dp 

where as usual, 

/ 1 f2" a \X,C1 

Mq(p, <pl) = (— J Q | <p'(peld) \qd0\ Now raise both sides of 

3.2 to the power;?, multiply by (1— r)a~p and integrate on r to get 

- /:<.-* (/r(^^rp""* 
= fo V-'?'" ( / ! M&> <t')àp)Pdr. 

At this point we distinguish 2 sub-cases; p > 1, and/? ^ 1. If p ^ 1 we 
apply Lemma 5 and use the fact that Mq (p, <p') is increasing to see that the 
right hand side of 3.3 is at most a constant times 
3.4 fo(l-rf -P j \ Mq(p, „')P ( 1 -p)P- [dpdr 

= / ^ M,(p, <p')(l-pf-' / „ (l-rf-Pdrdp 

1 /"' 
\-a Jo Mjptfp'ni-pydp, 

becausep > 1 + a. This completes the proof if q = 1 and/? = 1. If q = 1 
and/? > 1, we return to 3.3 and write the right hand side as 

3-5 foQ-H^r frM<tf>>™,Ydr-
By Lemma 7, this is bounded by a constant times 

3.6 f0(l-r)aM^r,v')Pdr. 
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This completes the proof when q = 1. 
When q < 1 we return to 3.1 and raise both sides to the power q to 

obtain 

3.7 ( 1 - | rtre'6) \ f g ( / ' | v\péB) \ dp)''. 

By Lemma 5 the right hand side of 3.7 is at most a constant times 

3.8 f (1-p)*-1 max | „'('*") fdp. 
J ' 0<t<p 0<t<p 

If we now integrate on 6 and use the Hardy-Littlewood complex maximal 
theorem we obtain 

fin jû r\ 

3.9 J Q (1 -1 cp(r^) | f— ta Cq J r (1 -pf~ XMq(p, vy dp. 

Now raise both sides of 3.9 to the power p/q, multiply by (1— r)a~p and 
integrate on r to arrive at 

™ /:«-;K/r(idr^j),ir* 
ê C fQ (\-rf-r(J\ (l-Py-[Mq(p, vy dp)Plqdr. 

Again two sub-cases are considered. First suppose that/?/g ^ 1. We note 
that (1 — p)q~x Mq(p, y)q is increasing since q < 1 and apply Lemma 5 to 
see that the right hand side of 3.10 is bounded by a constant times 

3.11 J Q^-rf-P J ( l - p / ^ ^ M ^ p , <py(\-pjr]dsdr 

= /o (l"r)a~p j \ M« (p> vyo -py - 1 dpdr 
< c JoMC{(p,<py(\-prdp. 

If pi q > 1, we return to the right hand side of 3.10 and apply Lemma 7 as 
at an earlier point in the proof. We omit the details. This completes the 
proof of Theorem 6. 

COROLLARY. If<p is a singular inner function yp > 0, q > 0, a > — 1, and 

2q > 
p\\— — I = 1 + «, then 

/ 

1 
(\-r)aMq(r9 y'fdr = oo. 

o 
We point out that it follows from the inequalities for the atomic inner 

function proved by Jevtic, [6], that if <p is the atomic function and 

https://doi.org/10.4153/CJM-1983-042-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-042-0


THE POISSON INTEGRAL 749 

p\ 1 ——- 1 < 1 + a then 

(\-r)aMq(r, <p'fdr < oo. 

As a final remark we say that Theorems 5 and 6 can be used to show 
how the smoothness of the measure o determines whether or not 

fQ(\-r)«M^r,<p'Ydr<oo 

as was done in [1] for the case/? = q = 1. 
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