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Differential modular forms on Shimura curves, II:

Serre operators

Alexandru Buium

Abstract

One of the main results announced in Part I (Compositio Math. 139 (2003), 197–237)
is proved. The main technique consists in developing a coordinate free version of some
of the theory of Serre operators on differential modular forms introduced by Barcau.

1. Introduction, main concepts, and main results

1.1 Introduction
This paper is a direct continuation of [Bui03]; among other things we will prove here the last
assertion of Theorem 1.2 in [Bui03] which was stated without proof in [Bui03]. For the convenience
of the reader, the Introduction to the present paper will be made independent of [Bui03]; on the
other hand, in the main body of the paper, we will rely heavily on the concepts and results of
[Bui03].

Differential modular forms were introduced in [Bui00]. Our main motivation was to provide a geo-
metric setting for the quotient of a modular curve by the isogeny equivalence relation. This quotient
does not exist in usual algebraic geometry but, rather, in an extension of the latter; this extension
of algebraic geometry can be called δ-algebraic geometry and was introduced in [Bui95] and [Bui96].
In [Bar03], Barcau introduced a new technique in the study of differential modular forms. His tech-
nique was based on an analogue, in δ-algebraic geometry, of Serre’s operators on classical modular
forms [Kat73b]. Some of the main results in [Bar03] depend however on the explicit structure of
the algebra of classical modular forms and involve computations in the ‘coordinates given by the
Eisenstein series E4 and E6’. One of the aims of the present paper is to develop a ‘coordinate free’
approach to some of the theory in [Bar03]. This allows us to apply the technique of Serre operators
to differential modular forms in situations where ‘no coordinates are available’ (e.g. for modular
curves with level structures or for Shimura curves); for instance we will prove, in this way, the last
assertion of Theorem 1.2 in [Bui03].

Throughout this paper we denote by W := Z[φ] the ring of polynomials with Z-coefficients in
a variable φ. For w = w(φ) =

∑
aiφ

i ∈ W and s ∈ Z we set w(s) =
∑

ais
i. We set deg(w) :=∑

ai = w(1). (So deg here is not the degree of w as a polynomial in φ but rather as an element in
the semigroup ring of the semigroup Z+.) We let ord(w) be the largest integer i such that ai �= 0;
if w = 0 we set ord(w) = 0. We denote by ord(w̄) the largest integer i such that ai �≡ 0 mod p; we
set ord(w̄) = 0 if w ∈ pW . We let W+ be the set of all w ∈ W with ai � 0 for all i. We let W (r)
be the subgroup of all w ∈ W such that ord(w) � r. Let φ act as a ring endomorphism of a ring A.
Assume that either λ ∈ A×, w ∈ W , or that λ ∈ A, w ∈ W+; then we write

λw := λa0(φ(λ))a1 · · · (φm(λ))am ∈ A.
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A. Buium

Throughout the paper R will denote the completion of the maximum unramified extension of the
ring of p-adic integers, Zp, where p is a prime � 5. We let k = R/pR = F̄p, and we let K be
the quotient field of R. We let φ act on R as the unique ring automorphism lifting the p-power
Frobenius on k. The rest of this section is devoted to introducing our main objects and stating our
main results. In §§ 2–7 we develop the Serre operator theory (discussing the modular and Shimura
cases simultaneously). Section 8 is devoted to the conclusion of the proofs of our main results.

1.2 Shimura curves
Let D be a non-split indefinite quaternion algebra over the rationals equipped with an order OD

which is stable under the canonical involution. We assume D is split at p. Let X be a smooth affine
curve over R with geometrically irreducible fibers and let (A, i, θ) be a polarized false elliptic curve
over X which is formally universal at each k-point of X; here i : OD → End(A) is the ‘multiplication
by OD’ map, θ is the unique ‘natural principal polarization compatible with i’, and A is said to be
formally universal at a k-point of X if the completion of A along its fiber at that point is the formal
universal deformation of that fiber (cf. [DT94], [Buz97], [Bui03]). For simplicity, we shall refer to X
as being a Shimura curve. (For instance X can be an affine étale open set of the pull-back to R of a
Shimura curve over Z[1/N ], N �≡ 0 mod p, parameterizing families of false elliptic curves with some
level structure that makes the moduli problem representable, cf. [Buz97]; sometimes these curves
are referred to as fake/false modular curves.) We fix now a k-point P0 ∈ X(k) of X and we let
(A0, i0, θ0) be the polarized false elliptic curve over k obtained from (A, i, θ) by pull-back via P0.
We assume A0 is ordinary and (A0, θ0) is a Jacobian. (By [Bui03, Lemma 2.6], for any fixed D,
there exists p0 such that for all primes p � p0 there exists a Shimura curve X containing a k-point
that corresponds to an ordinary Jacobian.) We denote by X̂ the p-adic completion of X and by X for

the completion of X at the closed point P0. We let S = O(X̂) and Sfor = O(X for). By abuse of
notation we still denote by (A, i, θ) the induced false elliptic curve over S or Sfor respectively. If, in
addition, one is given bases b and b̌ of the physical Tate modules TpA0 and TpǍ0 respectively such
that (A0, i0, θ0, b, b̌) is a D-frame (in the sense of [Bui03, § 2.4]) then we have a natural identification
Sfor � R[[T ]]. (Recall that (A0, i0, θ0, b, b̌) is called a D-frame if b and b̌ correspond to each other via
the polarization θ0 : A0 → Ǎ0 and, in addition, any lifting of (A0, i0) to R has Serre–Tate matrix,
with respect to b and b̌, of the form diag(q, qd), d := disc(D).) Throughout the paper, whenever we
refer to the Shimura curve X we assume that we have fixed the data:

A, i, P0, b, b̌.

Let us note that OD acts on the S-module H10 := H0(A,Ω1
A/S). Let e11 be the image of the

idempotent
(

1 0
0 0

)
via the map

Mat2(S)op � Oop
D ⊗Z S → EndS(H10), (1.1)

where the isomorphism above is induced by a fixed isomorphism

j : OD ⊗ Zp � Mat2(Zp) (1.2)

as in [Bui03, § 1.2]. Then define the S-module of false 1-forms

L := e11H
10.

Replacing S by Sfor in the construction above we define in a similar way the Sfor-module Lfor.

1.3 Modular curves
Similar objects can be considered in the modular curve context. If X is a smooth curve over R,
with geometrically irreducible fibers, and A is a smooth elliptic curve over X which is formally
universal at each k-point of X, then we shall refer to X as being a modular curve. (For instance
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Differential modular forms on Shimura curves, II

X can be an étale affine open set of the pull-back to R of a modular curve over Z[1/N ], N �≡ 0
mod p, parameterizing families of elliptic curves with some level structure that makes the moduli
problem representable.) We fix a k-point P0 ∈ X(k) corresponding to an ordinary elliptic curve.
We may consider the corresponding objects S, Sfor, A, A0, etc. We define the S-module of 1-forms,
as usual, by L = H10 = H0(A,ΩA/S). Replacing S by Sfor in the construction above we define
in a similar way the Sfor-module Lfor. If θ : A → Ǎ is the natural polarization and (A0, θ0, b, b̌)
is a 1-frame (in the sense of [Bui03, § 2]) then we have an induced identification Sfor � R[[T ]].
(Recall that (A0, θ0, b, b̌) is a 1-frame if b and b̌ are bases of the physical Tate modules TpA0 and
TpǍ0 respectively which correspond to each other via the polarization θ0.) Throughout the paper,
whenever we refer to the modular curve X we will assume we have fixed the data:

A,P0, b, b̌.

1.4 Differential modular forms on X and Xfor

In what follows we assume X is either a modular or a Shimura curve and we consider a certain
sequence of rings (Sr) and morphisms ϕ, φ : Sr → Sr+1 as follows. We define Sr to be the ring of
global sections

Sr = O(Jr(X))

on the p-jet space of order r, Jr(X̂) = Jr(X) of X/R in the sense of [Bui00, p. 103]. The morphisms ϕ
are induced by the natural projections Jr+1(X) → Jr(X) while the morphisms φ are defined by
φ(x) = xp + δx where δ is the natural ‘p-derivation’ in the theory of p-jet spaces of [Bui00, § 1].
The datum S∗ = (Sr, ϕ, φ) defines a prolongation sequence in the sense of [Bui00, § 1]; for the purpose
of this introduction we may ignore this. Also if Sfor � R[[T ]] corresponds to a given D-frame or
1-frame respectively, we consider a certain sequence of rings (Sr

for) and morphisms ϕ, φ : Sr
for → Sr+1

for

as follows. We set

Sr
for := R[[T ]][T ′, . . . , T (r) ]̂ ,

where ˆ denotes p-adic completion. The morphisms ϕ are the natural inclusions. The morphisms
φ are defined by φ(x) = xp + δx where δ is the unique p-derivation with δT = T ′, δT ′ = T ′′, and
so on. Again we have defined a prolongation sequence S∗

for. For each i � r we may consider the ring
homomorphism

ϕr−iφi : S
φ→ S1 φ→ S2 φ→ · · · φ→ Si ϕ→ Si+1 ϕ→ · · · ϕ→ Sr,

and we may define

Lϕr−iφi
:= L ⊗S (Sr, ϕr−iφi)

where (Sr, ϕr−iφi) is Sr viewed as an S-algebra via ϕr−iφi. Furthermore, if w ∈ W (r), w =
∑

aiφ
i,

we define the Sr-module

M r
X(w) := (Lϕr

)⊗a0 ⊗ (Lϕr−1φ)⊗a1 ⊗ · · · ⊗ (Lφr
)⊗ar .

We may call M r
X(w) the space of δ-modular forms of weight w on X. Replacing, in the definition

above, Sr by Sr
for we may define Sr

for-modules

M r
Xfor(w) := (Lϕr

for)
⊗a0 ⊗ (Lϕr−1φ

for )⊗a1 ⊗ · · · ⊗ (Lφr

for)
⊗ar .

We may call M r
Xfor(w) the space of δ-modular forms of weight w on X for.

1.5 Isogeny covariant series

For γ ∈ Zp set

Γ(T ) = Γγ(T ) = (1 + T )γ − 1 ∈ Zp[[T ]].
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Let F ∈ Sr
for = R[[T ]][T ′, . . . , T (r) ]̂ be a series and m � 0 an integer. Let us say that F is isogeny

covariant of weight m if F satisfies the functional equation

F (Γ(T ), δ(Γ(T )), . . . , δr(Γ(T ))) = γm · F (T, T ′, . . . , T (n)) (1.3)

for all γ ∈ Zp. Recall from [Bui03, Theorem 3.11] that if F satisfies Equation (1.3) for some
γ ∈ Zp which is not a root of unity then F satisfies Equation (1.3) for all γ ∈ Zp. Also, by
[Bui03, Theorem 3.11], we have that F is isogeny covariant of weight m if and only if there exists
a homogeneous polynomial Φ ∈ K[x1, . . . , xr] of degree m, such that

F = Φ(Ψ,Ψφ, . . . ,Ψφr−1
), (1.4)

where Ψ is the series

Ψ :=
1
p

log
1 + T p + pT ′

(1 + T )p
∈ R[[T ]][T ′ ]̂ .

So the isogeny covariant series of weight m in R[[T ]][T ′, . . . , T (r) ]̂ form an R-module of rank
(m + r − 1)!/[m!(r − 1)!].

1.6 Formally isogeny covariant differential modular forms
By ‘functoriality’, there is a naturally induced injective ‘Serre–Tate’ expansion map (at P0):

E : M r
X(w) → M r

Xfor(w) � Sr
for = R[[T ]][T ′, . . . , T (r) ]̂

(cf. the beginning of § 7 for details). A differential modular form g ∈ M r
X(w) with deg(w) even will

be called formally isogeny covariant (at P0) if E(g) is an isogeny covariant series of weight m :=
− deg(w)/2. (Our terminology is explained by the fact, to be exploited below, that if g ∈ M r

X(w)
‘comes from’ an isogeny covariant δ-modular form of weight w, in the sense of [Bui03, § 1], then g is
formally isogeny covariant; cf. [Bui03, Theorem 3.12].) Let us denote by Ir

X(w) the R-submodule of
all forms in M r

X(w) which are formally isogeny covariant (at P0). The first main result of the present
paper (Theorem 1.1) states that, if all k-points of X are ordinary, then Ir

X(w) has the maximum
possible rank (m + r − 1)!/[m!(r − 1)!]. Our second main result (Theorem 1.2) shows that the
above fails in the presence of supersingular points. This phenomenon was first discovered by Barcau
[Bar03] in the special case of differential modular forms on ‘modular curves of level 1’; as already
mentioned, his proofs depended on ‘computations’ in the coordinates E4 and E6. Our proofs will
follow Barcau’s strategy in [Bar03] but will require a coordinate free approach.

Theorem 1.1. Assume all k-points of X are ordinary. Let w ∈ W be such that

deg(w) = −2m ∈ 2Z, m � 0, ord(w) � r,

and let Φ ∈ R[x1, . . . , xr] be a homogeneous polynomial of degree m. Then there exists a δ-modular
form g ∈ M r

X(w) such that

E(g) = Φ(Ψ,Ψφ, . . . ,Ψφr−1
).

In particular

rank Ir
X(w) =

(m + r − 1)!
m!(r − 1)!

.

In the statement below for v =
∑r−1

i=0 aiφ
i ∈ W+ we write

xv = xa0
1 · · · xar−1

r .

Also we denote by | | : K → R the p-adic absolute value such that, say, |p| = p−1.

Theorem 1.2. Assume X contains a supersingular k-point. Let w ∈ W be such that

deg(w) = −2m ∈ 2Z, 0 � m < p, w(p) < −2mp, ord(w) � r.
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Let 0 �= g ∈ M r
X(w) be a δ-modular form such that

E(g) = Φ(Ψ,Ψφ, . . . ,Ψφr−1
),

where

Φ =
∑

λvx
v ∈ K[x1, . . . , xr]

is a homogeneous polynomial of degree m. Then there exists v such that

|λv| > |λm|.
In particular Φ �∈ K · xm

1 , hence

rank Ir
X(w) <

(m + r − 1)!
m!(r − 1)!

.

Theorem 1.2 shows that, in the presence of supersingular points, there are p-adic restrictions for
the coefficients of the polynomials Φ that represent formally isogeny covariant forms. As we will see
in this paper, for any fixed D, there exists p0 such that for all primes p � p0 there exists a Shimura
curve X containing a k-point that corresponds to an ordinary Jacobian and a supersingular k-point.
Note that the condition w(p) < −2mp is essential; as we shall recall from [Bui03], Theorem 1.2 above
fails for w = −1 − φ.

Theorem 1.2 will imply, for instance, the following corollary.

Corollary 1.3. Assume X contains a supersingular k-point. Then the following hold:

1) The R-modules I1
X(−1 − φ), I2

X(−1 − φ2), and I2
X(−φ − φ2) have rank one.

2) The R-modules Ir
X(w) vanish for all w with deg(w) = 0 and either w(p) < 0 or 0 < w(p) �

pord(w̄) − pord(w̄)−1.

As explained in [Bui03] the weights −1 − φ and −1 − φ2 in assertion 4 of Theorem 1.4 are the
two ‘basic weights’ in this theory.

1.7 Application to isogeny covariant differential modular forms

Fix a quaternion algebra D and a sufficiently big prime p. For any w ∈ W of even degree we defined
in [Bui03] the Zp-module ID(w) of isogeny covariant δ-modular forms on D of weight w (cf. [Bui03,
§ 1.8]. We have the following theorem.

Theorem 1.4.

1) The Zp-modules ID(w) are finitely generated.

2) ID(w) = 0 for deg(w) > 0.

3) ID(0) = Zp.

4) The R-modules ID(−1 − φ), ID(−1 − φ2), and ID(−φ − φ2) have rank one.

5) The R-modules ID(w) vanish for all w with deg(w) = 0, and either w(p) < 0 or 0 < w(p) �
pord(w̄) − pord(w̄)−1.

Assertions 1–3 in Theorem 1.4 (and also assertion 4 for ID(−1 − φ)) were proved in [Bui03,
Theorem 1.2]. The rest of the assertions will be proved in the present paper. Note that assertion 4
in Theorem 1.4 proves, in particular, the last assertion in Theorem 1.2 [Bui03], which was stated
there without proof.
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2. Normalized basis of H1

Assume first X is a Shimura curve. Let us consider the OD-equivariant exact sequence of S-modules

0 → H10 → H1 → H01 → 0, (2.1)

where

H10 := H0(A,Ω1
A/S), H1 := H1

DR(A/S), H01 := H1(A,O),

and let us choose an OD-equivariant right inverse

τ : H01 → H1 (2.2)

to the projection π : H1 → H01; this will induce an OD-equivariant splitting of (2.1). Such an
OD-equivariant right inverse always exists; indeed, if τ ′ is any right inverse of H1 → H01 then

τ := e11τ
′e11 + e12τ

′e21

is an OD-equivariant right inverse. In the above formula,

e11, e12, e21, e22 ∈ EndS(H1) (2.3)

are the images of the natural idempotents via the map

Mat2(S)op � Oop
D ⊗Z S → EndS(H1),

where the isomorphism above is induced by the isomorphism (1.2).

At various points in this paper we are going to make constructions depending ‘functorially’ (in a
sense to be made precise later) on (X, τ). Some of the constructions will actually not depend on τ
and we are going to point out the situations when this happens.

Define

L := e11H
10, H := e11H

1, Q := e11H
01. (2.4)

(Note that our notations are at variance with those in [DT94].) The restriction of the map (2.2)
induces a right inverse τ : Q → H to the projection H → Q; we set L′ := τ(Q).

Replacing S by Sfor in the constructions above we have Sfor-modules

H1
for,Lfor,Hfor,Qfor,L′

for.

If X is a modular curve then, since 6 is invertible in R, the exact sequence (2.1) has a splitting
τ : H01 → H1; cf. [Kat73b, p. 163]. We set, in this case,

L := H10, H := H1, Q := H01, L′ := τ(Q). (2.5)

We define corresponding Sfor-modules H1
for,Lfor, . . .

Going back to the case X is a Shimura curve, let ω1 be a local basis of L and ω = (ω1, ω2)t

the corresponding false 1-form in the sense of [Bui03, § 1.4]; in particular ω2 = e12ω
1. (Here the

t superscript denotes the transpose of a row vector.) The commutative diagrams

A

i(α+)

��

θ �� Ǎ

i(α)ˇ
��

A
θ �� Ǎ
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for α ∈ OD, induce commutative diagrams

H0(A,TA/S)

i(α+)
��

θ∗ �� H1(A,O)

i(α)∗

��
H0(A,TA/S) θ∗ �� H1(A,O)

at the level of Lie algebras; here + is the involution considered in [Bui03, § 1.2]. Let ξ = (ξ1, ξ2)t

be the unique local basis of H1(A,O) such that

〈θ−1
∗ ξ, ωt〉 = I, (2.6)

where I is the identity matrix; we call ξ the θ-dual of ω. We claim that the following formula holds:

i(α)∗ξ = j(α+)tξ, α ∈ OD. (2.7)

Indeed, if i(α)∗ξ = k(α)ξ then

j(α+)t = 〈θ−1
∗ ξ, ωtj(α+)t〉 = 〈θ−1

∗ ξ, i(α+)∗ωt〉
= 〈i(α+)θ−1

∗ ξ, ωt〉 = 〈θ−1
∗ i(α)∗ξ, ωt〉 = k(α),

which proves (2.7). Note that by our normalizations in [Bui03, § 1.2],

j(α+)t =
(

d 0
0 1

)
j(α)

(
d−1 0
0 1

)
,

where d is the discriminant of D. In particular (2.7) shows that

e11ξ
1 = ξ1, e22ξ

2 = ξ2, e12ξ
1 = dξ2,

so ξ1 is a local basis of Q. Define

η1 := τ(ξ1), η2 := τ(ξ2);

by OD-equivariance of τ we have

e11η
1 = η1, e22η

2 = η2, e12η
1 = dη2 (2.8)

in particular η1 is a local basis of L′. Note that

ω1, η1, ω2, η2 (2.9)

is a local basis of H1. A local basis of this form will be called normalized ; it is uniquely determined
by its first vector ω1. Note that

〈η, ωt〉θ = I,

where 〈 , 〉θ is the bilinear, antisymmetric pairing on H1 induced by θ (cf. [FC90, p. 81]). Recall that,
(A, θ) is isomorphic to the Jacobian of a curve then 〈 , 〉θ identifies with the cup product on the
curve.

If X is a modular curve, ω = ω1 is a local basis of L, and ξ = ξ1 satisfies Equation (2.6) then
we set η1 := τ(ξ) and we refer to

ω1, η1 (2.10)

as a normalized basis for H1.

One defines normalized bases of H1
for similarly; we use the same notations as above with for as

a subscript: ω1
for, . . . . When no confusion is likely to arise we will drop, however, the for subscript.
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3. The operators ∂ and ∂r

Let X be either a Shimura curve or a modular curve.
Let Ω̂ denote the p-adic completion of Ω1

S/R and let Ωfor = R[[T ]] dT . Recall that we have at our
disposal the Gauss–Manin connection

∇ : H1 → H1 ⊗ Ω̂. (3.1)

By the functoriality of the Gauss–Manin connection, ∇ commutes with eij so (3.1) induces a con-
nection

∇ : H → H⊗ Ω̂. (3.2)

If X is a Shimura curve then, with respect to a basis as in (2.9), we may write (3.1) as

∇ω1

∇η1

∇ω2

∇η2


 =




σ11 σ12 0 0
σ21 σ22 0 0
0 0 σ11 σ12d
0 0 σ21d

−1 σ22







ω1

η1

ω2

η2


 , (3.3)

where σij ∈ Ω̂. Similarly, if X is a modular curve, we have(∇ω1

∇η1

)
=

(
σ11 σ12

σ21 σ22

)(
ω1

η1

)
. (3.4)

In particular the ‘Kodaira–Spencer matrix’

〈∇ω, ωt〉θ
equals

σ12 ·
(

1 0
0 d

)
(3.5)

in the Shimura curve case and equals σ12 in the modular curve case. Since A is formally universal
at all k-points, the reduction mod p of the matrix (3.5) is nowhere vanishing. It follows that σ12 is
a nowhere vanishing 1-form. Note that σ12 is independent of the choice of τ .

We claim now that the bilinear maps

L ×L → Ω̂, L′ × L → S (3.6)

(x, y) 
→ 〈∇x, y〉θ
induce isomorphisms

L⊗2 � Ω̂, L⊗(−1) � L′. (3.7)

(The isomorphisms (3.7) are well known; cf. [DT94, Lemma 7, p. 454], for Shimura curves and
[Kat73b] for modular curves; we will reprove them here in order to review the explicit bilinear
maps (3.6) that realize them.) Indeed, in the Shimura curve case, it is enough to check (3.7) in a
local normalized basis (2.9). In such a basis, however, the bilinear maps (3.6) send

(ω1, ω1) 
→ σ12, (η1, ω1) 
→ 1, (3.8)

and we are done. Of course, the isomorphisms (3.7) are independent of τ . A similar argument works
for modular curves.

For the rest of this section we let X be either a Shimura curve or a modular curve.
The connection (3.2) induces a connection

∇ : Symm(H) → Symm(H) ⊗ Ω̂ (3.9)
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on the symmetric algebra of H. Using the natural inclusion L → H, its right inverse given by the
second projection π : H = L ⊕ L′ → L, and the isomorphism (3.7), we get an R-derivation ∂ = ∂τ ,
depending on the splitting map τ in (2.2):

∂ :
⊕
n�0

L⊗n = Symm(L) → Symm(H) ∇→ Symm(H) ⊗ Ω̂S/R � Symm(H) ⊗ L⊗2

→ Symm(H) ⊗ Symm(H) mult→ Symm(H) π→ Symm(L) =
⊕
n�0

L⊗n.

If we choose a normalized local basis (2.9) or (2.10) (according as X is a Shimura curve or a modular
curve) then

⊕
n�0 L⊗n is locally isomorphic to a ring of polynomials S[x], where the variable x

corresponds to ω1, and the derivation ∂ satisfies

∂(x) =
σ11

σ12
x3 (3.10)

∂(s) =
ds

σ12
x2, s ∈ S. (3.11)

(The above formulae make sense because σ12 is an invertible 1-form. Note also that the value of ∂(s)
does not depend on the choice of τ .) In particular ∂(L⊗n) ⊂ L⊗(n+2). (If X is a modular curve then
the R-derivation ∂ is, of course, the Serre operator for modular curves; cf. [Kat73b, Appendix].)
We claim that ∂ above uniquely extends to an R-derivation:

∂ :
⊕
n∈Z

L⊗n →
⊕
n∈Z

L⊗n.

Indeed, by the uniqueness part of the claim, it is enough to check the claim locally on S; but, locally
on S,

⊕
n∈ZL⊗n is a ring of fractions of

⊕
n�0 L⊗n (because R[x, x−1] is a ring of fractions of R[x])

and the claim is clearly true in this case.
All that was said so far in this section can be done for the Gauss–Manin connection

∇for : Hfor → Hfor ⊗ Ωfor

in place of ∇; one just has to put subscripts (or, if one prefers, superscripts) ‘for’ to all objects
involved.

Recall that we defined in § 1 the Sr-module M r
X(w) of δ-modular forms of weight w on X

and the Sr
for-module M r

Xfor(w) of δ-modular forms of weight w on X for. We will also need to consider
the space

M̄ r
X(w) := M r

X(w) ⊗R k.

which we call the space of δ-modular forms of weight w on X mod p. Let M(w) = MD(w) be the
space of δ-modular forms of weight w on D (in the sense of [Bui03, § 1.8]) or M(w) = M1(w) be
the space of δ-modular forms of weight w and genus 1 (in the sense of [Bui03, § 1.7]) according
as X is a Shimura curve or a modular curve. Then there are natural R-module maps

M(w) ⊗Zp R → M r
X(w) (3.12)

defined as follows. Let f ∈ M(w) and let x = ω1 be a local basis of L; then, in the Shimura curve
case, consider the false 1-form ω := (ω1, ω2)t, where ω2 := e12ω

1, and consider the element of
M r

X(w) defined locally by

f(A, i, θ, ω) · x⊗w, (3.13)

where, if w =
∑

aiφ
i, then

x⊗w = xw :=
∏

(xϕr−iφi
)ai .
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The ‘local section’ (3.13) does not depend on the choice of ω1 and defines a ‘global’ element in
M r

X(w) which we take to be the image of f in M r
X(w). A similar definition can be given in the

modular curve case. Note also that we have natural ring homomorphisms

ϕ, φ :
⊕

w∈W (r−1)

M r−1
X (w) →

⊕
w∈W (r)

M r
X(w)

induced by the homomorphisms

ϕ : M r−1
X (w) → M r

X(w), φ : M r−1
X (w) → M r

X(φw).

As a rule we shall view ϕ as an inclusion. Let us define a sequence of rings (M r
X) by

M r
X = O

(
Jr

(
Spf

(( ⊕
m∈Z

L⊗m

)̂ )))
, (3.14)

where Jr denotes, as usual, the p-jet space of order r of a smooth formal scheme; cf. § 1.4. Similarly
we define a prolongation sequence (M r

Xfor) as follows. We choose a basis xfor of Lfor; when it is clear
that we are dealing with the formal case we will usually write x in place of xfor. (However, note
that, typically, the basis xfor will not come from a local basis of L!) We let⊕

m∈Z
L⊗m

for � R[[T ]][x, x−1]

be the corresponding isomorphism and we set

M r
Xfor := R[[T ]][x, x−1, x′, . . . , x(r), T ′, . . . , T (r) ]̂ . (3.15)

The Sr
for-algebras M r

Xfor can be called the spaces of δ-modular functions on X for. We also let

M̄ r
Xfor := M r

Xfor ⊗R k

and call this the space of δ-modular functions on X for mod p.

Proposition 3.1. Fix r � 1. Then the following hold.

i) There are natural inclusions ⊕
w∈W (r)

M r
X(w) ⊂ M r

X

inducing inclusions

M̄ r
X(w) ⊂ M̄ r

X

for each w.

ii) There is a unique derivation

∂r : M r
X → M r

X ,

depending on τ , with the following properties:

1) ∂r vanishes on M r−1
X ,

2) ∂r ◦ δr = φr ◦ ∂ on
⊕

m∈Z L⊗m, and
3) ∂r(M r

X(w)) ⊂ M r
X(w + 2φr).

iii) The M̄ r−1
X -derivation

∂̄r : M̄ r
X → M̄ r

X

obtained by reducing ∂r modulo p has the property that its restriction to any of the spaces
M̄ r

X(w) does not depend on τ .

iv) If an element f ∈ M r
X(w) is invertible in M r

X then its inverse lies in M r
X(−w).
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v) If X1 ⊂ X is an affine open subscheme then

M r
X ∩ M r

X1
(w) = M r

X(w).

Before we give the proof, some remarks are in order.

Remark 3.2. As will be clear from the proof:

1) M r
X is not the p-adic closure of

⊕
w∈W (r) M r

X(w).

2) The induced map
⊕

w∈W (r) M̄ r
X(w) → M̄ r

X is not injective.

Let us also note that:

3) Conditions 1 and 2 in Proposition 3.1 formally imply that

∂r ◦ φr = prφr ◦ ∂ on
⊕
m∈Z

L⊗m.

4) A statement identical to that of Proposition 3.1 holds for X,L replaced by X for,Lfor.

We need the following general construction in [BZ04].

Lemma 3.3 [BZ04]. Let (Br) be a prolongation sequence such that either

i) B is the p-adic completion of a smooth R-algebra and Jr(Spf B) = Spf Br are the p-jet spaces
of Spf B or

ii) Br = R[[T ]][x, x−1, x′, . . . , x(r), T ′, . . . , T (r) ]̂ , B := B0.

Let ∂ : B → B be an R-derivation. Then, for each r � 1, there exists a unique derivation

∂r : Br → Br

with the following properties:

1) ∂r vanishes on Br−1,

2) ∂r ◦ δr = φr ◦ ∂ on B.

Proof of Proposition 3.1. The proposition is, clearly, a local statement on X. So we may, and will,
assume that L is a free S-module and, hence, upon choosing a basis x of L, we have induced
identifications ⊕

m∈Z
L⊗m = S[x, x−1], (3.16)

⊕
w∈W (r)

M r
X(w) = Br := Sr[x, x−1, φx, φx−1, . . . , φrx, φrx−1], (3.17)

where φix are variables and φ sends φix into φi+1x, for i � r − 1. Set

B := S[x, x−1]̂ .

Then, by continuity, the derivation

∂ : S[x, x−1] → S[x, x−1]

induces an R-derivation ∂ : B → B. Let Br := M r
X , i.e. Spf Br := Jr(Spf B). By the general

properties of p-jet spaces in [Bui00, pp. 104–105],

Br = Sr[x, x−1, x′, . . . , x(r) ]̂ , (3.18)

where x′, . . . , x(r) are new variables with δx(i) = x(i+1). The ring Br in (3.17) is embedded into the
ring Br of (3.18) via

φx 
→ xp + px′, φ2x 
→ (xp + px′)p + p((x′)p + px′′), . . . .
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Note that if S̄r := Sr/pSr then the image of M̄ r
X(w) = S̄r · x̄⊗w in M̄ r

X equals S̄r · x̄w(p) so the map
M̄ r

X(w) → M̄ r
X is injective. This proves assertion i in Proposition 3.1.

By Lemma 3.3 there is a derivation

∂r : Br → Br

satisfying the properties listed there. We claim that ∂r sends the ring Br into itself. To check the
claim, note first that, by property 1 in Lemma 3.3, we have ∂(Sr−1) = 0 and

∂r(x) = · · · = ∂r(φr−1x) = 0,

which implies, of course, that

∂r(x−1) = · · · = ∂r(φr−1x−1) = 0.

Also, for s ∈ S, Equation (3.11) implies that

∂r(δrs) = φr(∂(s)) = φr

(
ds

σ12
x2

)
= φr

(
ds

σ12

)
(φrx)2 ∈ Sr · (φrx)2.

Note that ∂r(δrs) is independent of the choice of τ . Since any element of Sr is a p-adic limit of
Sr−1-linear combinations of products of elements of the form δrs, with s ∈ S, it follows easily that

∂rsr ∈ Sr · (φrx)2 (3.19)

for all sr ∈ Sr and that the value of ∂rsr does not depend on the choice of τ . Finally, Equation (3.10)
implies that, for any m ∈ Z,

∂r((φrx)m) = ∂r(φr(xm)) = prφr(∂(xm)) = prφr

(
m

σ11

σ12
xm+2

)

= mprφr

(
σ11

σ12

)
(φrx)m+2. (3.20)

Note that the value of ∂r((φrx)m) really depends on the choice of τ ; but its reduction mod p
vanishes, so, in particular, it does not depend on τ . This ends the proof of our claim and hence
the construction of ∂r. Assertions 1 and 2 in part ii of Proposition 3.1 have already been checked.
Assertion 3 in part ii as well as part iii of Proposition 3.1 follow immediately from (3.19) and (3.20).

To prove assertion iv of Proposition 3.1, we, again, note that this is a local matter so we
are reduced to showing that if an element s ∈ Sr is such that s · xw is invertible in the ring
Sr[x, x−1, x′, . . . , x(r) ]̂ then s is invertible in Sr (and hence s−1 · x−w is the inverse of s · xw). Write

s · xw ·
(∑

si0i1...irx
i0(x′)i1 · · · (x(r))ir

)
= 1,

with all si0i1...ir in Sr. Denoting by upper bar classes in S̄r := Sr/pSr we obtain

s̄ ·
( ∑

s̄i0,i1,...,irx
i0+w(p)(x′)i1 · · · (x(r))ir

)
= 1,

and hence we get

s̄ · s̄−w(p),0,...,0 = 1 in S̄r.

So s̄ is invertible in S̄r; since Sr is p-adically complete, it follows that s itself is invertible in Sr.
Assertion v of Proposition 3.1 is again local so we need to show that if S1 = O(X1)̂ and s1 ∈ Sr

1

is such that s1 · xw belongs to Sr[x, x−1, x′, . . . , x(r) ]̂ then s1 ∈ Sr. Write w =
∑

aiφ
i,

s1 · xw = s1 · xa0(xp + px′)a1 · · · ((x(r))p + px(r+1))ar ,

s1 · xw =
∑

si0i1...irx
i0(x′)i1 · · · (x(r))ir ,
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with all si0i1...ir in Sr. Picking out the coefficient of

xa0(x′)a1 · · · (x(r+1))ar ,

we get that pdeg(w) · s1 = sa0a1...ar ∈ Sr. Since pnSr
1 ∩ Sr = pnSr (cf. Lemma 4.2 below) we get that

s1 ∈ Sr.

Note that all our constructions above are functorial in (X, τ), in the following sense. Assume we
have pairs (Xi, τi), i = 1, 2, and an open immersion X2 → X1 of schemes such that the pull-back
of τ1 is τ2. Then it is easy to check that there is a natural ring homomorphism M r

X1
→ M r

X2
that

is compatible with weights and with the actions of ∂r and φ. Similarly if we have a pair (X, τ) and
a k-point P0 then there is a natural ring homomorphism M r

X → M r
Xfor that is compatible with

weights and with the actions of ∂r and φ.

4. The Hasse invariant

Assume first that X is a Shimura curve.
Let (Ā, ī, θ̄), L̄, ω̄ and ξ̄ be obtained, from (A, i, θ), a false 1-form ω, and its θ-dual ξ (cf. Equa-

tion (2.6)), by base change to S̄ := S/pS. Note that the semilinear map

F ∗ : H1(Ā,O) → H1(Ā,O)

induced by the absolute p-power Frobenius on Ā commutes with all S̄-linear endomorphisms

i(α)∗ : H1(Ā,O) → H1(Ā,O).

Consider the Hasse–Witt matrix h̄ ∈ Mat2(S̄) of Ā with respect to the basis ξ̄; hence, by definition,

F ∗ξ̄ = h̄ξ̄. (4.1)

Let

Zp → Fp, x 
→ c(x)

be the canonical projection. Then, for all α ∈ OD, we have

h̄c(j(α+)t)ξ̄ = h̄i(α)∗ξ̄ = i(α)∗h̄ξ̄ = i(α)∗F ∗ξ̄ = F ∗i(α)∗ξ̄
= F ∗(c(j(α+)t)ξ̄) = F (c(j(α+)t))F ∗ξ̄ = c(j(α+)t)h̄ξ̄.

We conclude that

h̄c(j(α+)t) = c(j(α+)t)h̄

for all α. This forces h̄ to be a scalar matrix, h̄ ∈ S̄. Consider now the local section

H̄ := h̄(ω̄1)p−1 ∈ M̄0
X(p − 1).

It is easy to see that the above section does not depend on the choice of ω; hence these local sections
are well defined and glue together to give a ‘global section’ H̄ ∈ M̄0

X(p − 1) which we may call the
Hasse invariant. (This H̄ is well known to the experts and is alluded to in [DT94].) Now L is, of
course, algebraizable, i.e. there exists an invertible O(X)-module L such that L = L .̂ We choose
now a section H ∈ L⊗(p−1) whose reduction modulo p is H̄ and we set

Xord := Spec
{( ⊕

m�0

L⊗m(p−1)

)/
(H − 1)

}
, Sord := O(Xord)̂ .

If x is a local basis for L, then, locally,

Xord = SpecO(X)[xp−1/H] (4.2)
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so Xord is an affine open subscheme of X. Note that the p-adic completion of Xord does not depend
on the particular choice of H. In what follows we let the index ‘ord’ denote ‘base change from
X to Xord’. If X ⊗ k contains supersingular points (i.e. false elliptic curves with non-invertible
Hasse–Witt matrix), then, of course, Xord ⊗ k �= X ⊗ k.

Lemma 4.1. Fix a quaternion algebra D. Then, for all except finitely many primes p, one can find a
Shimura curve X that contains a supersingular k-point and a k-point corresponding to an ordinary
Jacobian.

Proof. Consider a Shimura curve X over Z[1/N ] parameterizing false elliptic curves with an
appropriate level structure such that the corresponding moduli functor is representable; cf.,
say, [Buz97]. By [Bui03, Lemma 2.6], for all but finitely many primes p, the curve X ⊗ Fp has
a k-point (k = F̄p) corresponding to an ordinary Jacobian. By [DT94, p. 454, proof of Corollary 3],
for all but finitely many primes p, the curve X ⊗Fp has a k-point corresponding to a supersingular
false elliptic curve. We conclude by noting that any two closed points on a curve are contained in
an affine open set.

If X is a modular curve then the Hasse invariant is, again, a section H̄ ∈ M̄0
X(p − 1) and we

define X, Xord by the same formulae as above.
For the rest of this section we continue to assume that X is either a Shimura curve or a modular

curve.
We will need later a number of technical facts about the spaces M r

X and M r
Xord

; we collect them
in the Corollary 4.3 below. We first prove a general lemma.

Lemma 4.2. Let B be the p-adic completion of a smooth R-algebra such that B ⊗ k is an integral
domain. Let b ∈ B\pB and let C be the p-adic completion of B[1/b]. Let

Jr(Spf B) = Spf Br, Jr(Spf C) = Spf Cr,

B̄r = Br ⊗ k, C̄r := Cr ⊗ k.

The the following hold:

1) The maps B̄r−1 → B̄r are injective. In particular the maps Br−1 → Br are injective with
torsion free cokernel. Moreover B̄r and Br are integral domains and we have an equality
between groups of units (B̄r)× = B̄×.

2) The maps B̄r → C̄r are injective. In particular the maps Br → Cr are injective with torsion
free cokernel.

3) C̄r−1 ∩ B̄r = B̄r−1.

4) If f, g ∈ Br, fg ∈ pnBr, f �∈ pBr then g ∈ pnBr.

5) Br ∩ pnCr = pnBr.

6) If c ∈ (Cr)×, 1 � v(p) � pord(v̄), and cv ∈ Br+ord(v), then c ∈ Br. Similarly, if c ∈ Cr and
cφ ∈ Br+1, then c ∈ Br.

Proof. By the ‘local product property’ of p-jet spaces [Bui00, p. 105], Spec B̄r → Spec B̄r−1 is
a locally trivial bundle in the Zariski topology with fiber an affine space. In particular B̄r are
integral domains and (B̄r)× = (B̄r−1)×. Then assertion 1 follows. By the ‘compatibility with open
immersions’ of p-jet spaces [Bui00, p. 105], we have Cr = Br[1/b]̂ . So C̄r = B̄r[1/b̄] is a ring of
fractions of B̄r; this proves assertion 2 and, due to faithful flatness of B̄r−1 ⊂ B̄r, it also proves
assertion 3. Now assertions 4 and 5 easily follow by induction. Let us check assertion 6. We will only
check the case c is invertible in Cr; the case c non-invertible and v = φ is similar. Let v =

∑
aiφ

i,
s := ord(v), t := ord(v̄). It is enough to prove that for any integer n � 1 we can write

c = bn + pncn, with bn ∈ Br, cn ∈ Cr+1. (4.3)
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(For if this is so then bn converges to c in Cr; but bn is a Cauchy sequence in Br due to assertion 5
and Br is complete, so bn converges to an element in Br and we are done.) We shall check (4.3) by
induction on n. Denote by x 
→ x̄ the canonical surjection Ci → C̄i. To check the case n = 1 note
that since cv ∈ Br+s we have cv(p) ∈ B̄r+s. Since SpecBr+s is smooth over k and connected, B̄r+s

is an integrally closed domain. Also B̄r+s and C̄r+s have the same quotient field. Since c̄ is integral
over B̄r+s we must have c̄ ∈ B̄r+s. By assertion 3 we get c̄ ∈ B̄r. So we can write c = b0 + pc1,
b0 ∈ Br, c1 ∈ Cr; this settles the case n = 1 in our induction. Assume now that condition (4.3)
holds for some n � 1. In particular we must have bn ∈ (Cr)× so we may write

cv = (bn + pncn)a0(bφ
n + pncφ

n)a1 · · · (bφs

n + pncφs

n )as

= bv
n + pn

( s∑
i=0

aib
v−φi

n cφi

n

)
+ p2nγ,

with γ ∈ Cr+s. Hence cv − bv
n ∈ Br+s ∩ pnCr+s = pnBr+s; cf. assertion 5. Write bv

n − cv = pnβn,
with βn ∈ Br+s. We have 0 �= c̄ ∈ C̄r ⊂ C̄r+1, b̄n �= 0, and

β̄nb̄pt−v(p)
n +

t∑
i=0

āib̄
pt−pi

n c̄pi

n = 0.

Now the latter equation shows that c̄n is integral over B̄r+s. Hence, as before, c̄n ∈ B̄r+s, and hence
c̄n ∈ B̄r. So there exists b ∈ Br and cn+1 ∈ Cr such that cn = b+pcn+1. Hence c = bn+1 +pn+1cn+1,
where bn+1 = bn + pnb, and our induction step follows.

Corollary 4.3. The conclusions of Lemma 4.2 are true for

Br = M r
X , Cr = M r

Xord
.

Proof. The conclusions of Lemma 4.2 are local on B. But, locally on X, M r
Xord

is the p-adic com-
pletion of M r

X [1/h] for some h.

5. The unit root space

Let X be either a Shimura curve or a modular curve.
By [Kat73a, p. 178, Theorem 4.1], there exists a subcrystal U ⊂ H1

ord, the unit root subspace, of
slope zero, and transversal to H10

ord, i.e.

H1
ord = H10

ord ⊕ U.

The following holds for X a Shimura curve.

Lemma 5.1. The unit root space U is an OD-submodule of H1
ord.

Proof. It is enough to check that UP is an OD-submodule of H1
P for all R-points P of Xord; here the

index P means ‘base change from S to R via P ’. Now, by the functoriality of crystalline cohomology,
the semilinear Frobenius φ acting on the de Rham module H1

P commutes with the action of OD.
By [Kat73a, p. 172, Theorem 2], there is a basis of H1

P of the form u1, u2, v1, v2, where u1, u2 form
a basis of UR, and

φu = u,

φv = pBv + Cu,

where u := (u1, u2)t, v := (v1, v2)t, and B,C ∈ Mat2(R). Write

i(α)∗u = Mu + Nv, α ∈ OD
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for some M,N ∈ Mat2(R). We get

Mu + Nv = i(α)∗(φu) = φ(i(α)∗u) = Mφu + Nφ(pBv + Cu),

hence N = pNφB. By induction, N must be divisible by pn for all n so N = 0. Consequently
i(α)∗U ⊂ U .

Next we define U := e11U in the Shimura curve case and U = U in the modular curve case.
Then U is a locally free Sord-module of rank one and, clearly, H = L ⊕ U . We claim that, if u1 is
a local basis of U and ω = (ω1, ω2)t is an invertible false 1-form or ω = ω1 is an invertible 1-form
(according as X is a Shimura curve or a modular curve), then

〈u1, ω1〉θ ∈ S×
ord.

Indeed, if we consider a normalized basis (2.9) or (2.10) respectively and we write(
ω1

u1

)
=

(
1 0

s21 s22

)(
ω1

η1

)
(5.1)

with s21, s22 ∈ Sord then s22 is invertible and

〈u1, ω1〉θ = s22,

which proves our claim.
Finally let us note that if X is a Shimura curve and one is given a basis u = (u1, u2)t of U and

a false 1-form ω = (ω1, ω2)t such that

〈u, ωt〉θ ∈ Z×
p · I, (5.2)

then e11u
1 = u1, e22u

2 = u2, and e12u
1 = du2; in particular u1 must be a basis of U . Indeed, we

may assume the pairing in (5.2) is the identity. Let ξ1, ξ2 be the images of u1, u2 in H01 and set
ξ = (ξ1, ξ2)t. Then

〈θ−1
∗ ξ, ωt〉 = I.

So u = τU (ξ) where τU : H01
ord � U ⊂ H1

ord is the OD-equivariant splitting defined by U and our
claim follows from (2.8).

6. The forms f∂ and P

Let X be a Shimura curve or a modular curve.
Following [Bar03] let us define the δ-modular form on Xord

f∂ ∈ M1
Xord

(−1 + φ)

as follows. Consider a normalized local basis (2.9) or (2.10) (according as X is a Shimura curve or
a modular curve) of H1

ord, let u1 be a basis of U and consider the local sections

f∂ :=
〈φu1, ω1〉θ

φ(〈u1, ω1〉θ)(ω
1)⊗(−1+φ) ∈ M1

Xord
(−1 + φ).

Clearly the above local sections are independent of the choices of ω1 and u1 so they glue together
to give a global section of M1

Xord
(−1 + φ). Similarly, following [Kat73b], we define the δ-modular

form on Xord (which is really ‘of order zero’, hence ‘non-differential’)

P ∈ M0
Xord

(2) = L⊗2
ord

as follows. We consider, as before, a normalized local basis (2.9) or (2.10) respectively of H1
ord plus
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a basis u1 of U and then we consider the local section

P :=
〈u1, η1〉θ
〈u1, ω1〉θ · (ω1)⊗2 ∈ L⊗2

ord = M0
Xord

(2).

Again this local definition gives a correct global definition.
Let us view f∂ and H as elements of M1

Xord
and let us denote by f̄∂ , H̄ ∈ M̄1

Xord
their images.

We have the following result (due to Barcau [Bar03] in the modular curve case).

Proposition 6.1. f̄∂ = H̄ in M̄1
Xord

.

Proof. Assume X is a Shimura curve; the case of modular curves is similar [Bar03]. Let ω be a
false 1-form, ξ the θ-dual basis of H01

ord and u a basis of the unit root space U such that π(u) = ξ
where π : H1

ord → H01
ord is the canonical projection. In particular 〈u, ωt〉θ = I, so u1 is a basis of U .

Write F ∗ξ̄ = h̄ · ξ̄ as in (4.1). For any g ∈ M1
Xord

let ḡ ∈ M̄1
Xord

denote the image of g. Also, let 〈 , 〉θ̄
be the pairing on H̄1 := H1 ⊗ k induced by θ, denote by v 
→ v̄ the natural map H1 → H̄1, and
denote by F ∗ the semilinear map on H̄1 induced by the p-power Frobenius. We get

f̄∂ = 〈F ∗ū1, ω̄1〉θ̄(ω̄1)⊗(φ−1) = 〈θ̄−1
∗ πF ∗ū1, ω̄1〉(ω̄1)⊗(p−1)

= 〈θ̄−1
∗ F ∗πū1, ω̄1〉(ω̄1)⊗(p−1) = 〈θ̄−1

∗ F ∗ξ̄1, ω̄1〉(ω̄1)⊗(p−1)

= h̄ · 〈θ̄−1
∗ ξ̄1, ω̄1〉(ω̄1)⊗(p−1) = h̄ · (ω̄1)⊗(p−1) = H̄.

Corollary 6.2. There is a form f∂ ∈ M1
Xord

(1 − φ) such that f∂ · f∂ = 1.

In view of this corollary it is reasonable to define, for any

v = v+ + v− ∈ W, v+,−v− ∈ W+,

the form

(f∂)v := (f∂)v+ · (f∂)−v− ∈ M1
Xord

(v(φ − 1)).

Proof. By Proposition 6.1 it follows that f̄∂ is invertible in M̄1
Xord

. Since M1
Xord

is p-adically com-
plete, f∂ itself must be invertible in M1

Xord
. We may conclude by assertion iv in Proposition 3.1.

7. Serre–Tate expansion of forms on X

For any weight w =
∑

aiφ
i ∈ W (r) we have a natural ring homomorphism (which we call the

Serre–Tate expansion map)

E : M r
Xord

→ Sr
for = R[[T ]][T ′, . . . , T (r) ]̂ (7.1)

defined as follows. First, by functoriality, we have a ring homomorphism

M r
Xord

→ M r
Xfor . (7.2)

Next assume X is a Shimura curve. The first component x = xfor := ω1 of the canonical false 1-form
ω = ωdef,D constructed in [Bui03, § 2.4] is a basis of Lfor, hence its image x⊗w = ω⊗w in M r

Xfor(w)
is a basis of the latter. (Note that x does not come a priori from a local basis of L!) Consider the
ring homomorphism

M r
Xfor = R[[T ]][x, x−1, x′, . . . , x(r), T ′, . . . , T (r) ]̂ → Sr

for = R[[T ]][T ′, . . . , T (r) ]̂ , (7.3)

defined by x 
→ 1, x′ 
→ 0, x′′ 
→ 0, etc.; note that this homomorphism sends

x⊗w = xa0(xφ)a1 · · · (xφr
)ar 
→ 1,
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hence it maps M r
Xfor(w) isomorphically onto Sr

for. We define the map (7.1) as the composition of
(7.2) and (7.3). In particular, if we view the map (7.2) as an inclusion, then

f = E(f)x⊗w (7.4)

for any f ∈ M r
Xord

(w). If X is a modular curve, the same construction can be performed with ω1

the canonical 1-form ωdef in [Bui03, § 2.1].
Now, if X is either a Shimura curve or a modular curve, then, exactly as in [Bui03, Theorem 2.7],

we have the following ‘Serre–Tate expansion principle’.

Theorem 7.1. The restriction of the homomorphism (7.1) to each M r
Xord

(w) is injective.

Consider now, in the Shimura curve case, the normalized basis ω1, η1, ω2, η2 of H1
for whose first

vector is x = ω1, cf. (2.9), and let u = udef,D be the basis of the unit root space Ufor defined by
Equation (2.6) in [Bui03, § 2.1]. In the modular curve case we let ω1, η1 be a normalized basis of
H1

for with x = ω1 and we let u = udef be the corresponding basis of Ufor. So recall that

φu = u, 〈u, ωt〉 = ε · I, ε ∈ Z×
p (7.5)

(cf. [Bui03, §§ 2.1 and 2.2]). (From that work, ε = 1 in the modular curve case.) In particular u1 is a
basis for U . Viewing f∂ as an element of M1

Xord
(−1 + φ), its image under the Serre–Tate expansion

map
E : M1

Xord
(−1 + φ) → R[[T ]][T ′ ]̂

is particularly simple, as the next proposition shows.

Proposition 7.2. E(f∂) = E(f∂) = 1. In particular

f∂ ∈ I1
Xord,for(φ − 1), f∂ ∈ I1

Xord,for(1 − φ).

Proof. It is enough to prove E(f∂) = 1. Using (7.5), we get that the image of f∂ in M1
Xfor equals

〈φu1, ω1〉
φ(〈u1, ω1〉)x−1xφ =

ε

φ(ε)
x−1xφ = x−1xφ

and we are done by (7.4).

In what follows write u1 = s21ω
1 + s22η

1, with s21 ∈ R[[T ]], s22 = R[[T ]]×, as in (5.1). Note that

ε = 〈u1, ω1〉 = s22.

Consequently
〈η1, u1〉 = s21,

hence

s21x
2 = −ε

〈u1, η1〉θ
〈u1, ω1〉θ x2 = −εE(P )x2,

and hence
s21 = −εE(P ).

By Equations (2.5) and (2.20) in [Bui03, § 2.1], we get

∇ω1 =
dT

1 + T
u1 = −εE(P )

dT

1 + T
ω1 + ε

dT

1 + T
η1.

In view of Equations (3.3), (3.10), and (3.11) we get

∂(x) = −E(P )x3, (7.6)

∂(T ) = ε−1(1 + T )x2. (7.7)

The next proposition describes the effect of ∂r on Serre–Tate expansions.
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Proposition 7.3. Let w =
∑r

i−0 aiφ
i. Then, for any f ∈ M r

Xord
(w), the following formula holds:

E(∂r(f)) = ε−1(1 + T φr
)

∂

∂T (r)
(E(f)) − arp

rE(f)(E(P ))φ
r
.

Proof. Let w′ = w − arφ
r. By (7.4) we may write

f = E(f)x⊗w′
(xφr

)ar .

Then, using Equations (7.6) and (7.7), Proposition 3.1, and Remark 3.2, we may compute:

∂r(f) = x⊗w′
[∂r(E(f)) · (xφr

)ar + E(f) · ∂r((xφr
)ar)]

= x⊗w′
[

∂

∂T (r)
(E(f))∂r(T (r)) · (xφr

)ar + E(f)ar(xφr
)ar−1∂r(xφr

)
]

= x⊗w′
[

∂

∂T (r)
(E(f))ε−1(1 + T φr

)(xφr
)2(xφr

)ar

+ E(f)ar(xφr
)ar−1(−prE(P )φ

r
(xφr

)3)
]

= x⊗w′
(xφr

)ar+2

[
∂

∂T (r)
(E(f))ε−1(1 + T φr

) − arp
rE(f)E(P )φ

r

]
.

This concludes the proof.

Recall from [Bui03, §§ 1.8 and 1.7] respectively that we denoted by ID(w) and I1(w) the spaces
of isogeny covariant differential modular forms of weight w in the Shimura curve and the modular
curve case respectively; let I(w) be ID(w) or I1(w) according as X is a Shimura or a modular curve.
Note that by the Serre–Tate expansion principle in [Bui03, Theorem 2.7], the map

M(w) ⊗Zp R → M r
X(w)

in (3.12) is injective; on the other hand, by [Bui03, Theorem 3.12], this map sends I(w)⊗Zp R into
Ir
X(w). So we get an injective map

I(w) ⊗Zp R → Ir
X(w). (7.8)

Let fa ∈ I(−1 − φa) be the δ-modular forms defined in [Bui03, § 1.10], and view f1, f∂ , P φ as
elements in M1

Xord
.

Proposition 7.4. ∂1f
1 = f∂ + pP φf1.

Proof. Both members of the equality belong to M1
Xord

(−1 + φ); cf. Proposition 3.1. By the Serre–
Tate expansion principle in Theorem 7.1 it is enough to show that the images of the two members
of the above equality under

E : M1
Xord

(−1 + φ) → R[[T ]][T ′ ]̂
coincide. Now, by [Bui03, Corollary 2.10] (in the Shimura curve case) and by the proof of [Bui03,
Lemma 2.4] (in the modular curve case), E(f1) = εΨ while, by Proposition 7.2, we have E(f∂) = 1.
A trivial computation, using the latter two formulae plus Proposition 7.3, shows that E(∂1f

1) and
E(f∂ + pP φf1) coincide.

Corollary 7.5. ∂̄1f̄
1 = H̄ in M̄1

X .

Proof. By Propositions 7.4 and 6.1 we have

∂̄1f̄
1 = f̄∂ = H̄ ∈ M̄1

Xord
.

We conclude by the injectivity of M̄1
X → M̄1

Xord
; cf. Corollary 4.3.
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8. Proofs of Theorems 1.1, 1.2, and 1.4

Proof of Theorem 1.4 (Assuming Corollary 1.3). Assertions 1–3 of Theorem 1.4 were proved in
[Bui03, Theorem 1.2]. To prove assertion 4 it is enough to show that the R-modules

ID(−1 − φ) ⊗Zp R, ID(−1 − φ2) ⊗Zp R, ID(−φ − φ2) ⊗Zp R (8.1)

have rank one. Note that

f1, f2, (f1)φ, (8.2)

are elements of the modules (8.1) respectively; (cf. [Bui03, Corollary 2.10]). So these modules have
rank at least one. By Lemma 4.1 one can find X containing a supersingular k-point and a point
corresponding to an ordinary Jacobian. On the other hand the three modules (8.1) can be embedded
into the modules

I1
X(−1 − φ), I1

X(−1 − φ2), I1
X(−φ − φ2)

via the map (7.8). So the modules (8.1) have rank at most one by Corollary 1.3. This proves
assertion 4 in our theorem. Assertion 5 is proved similarly.

Proof of Corollary 1.3 (Assuming Theorem 1.2). The R-modules in assertion 1 of the corollary have
rank at least one because they contain (the images of the elements) (8.2). The module I1

X(−1− φ)
has rank at most one by Theorem 7.1. Hence the module I1

X(−1 − φ) has rank one. The modules
I2
X(−1 − φ2) and I2

X(−φ − φ2) have rank at most 2 by Theorem 7.1 again. However, they cannot
have rank 2 due to Theorem 1.2. So they have rank one. This proves assertion 1 in the corollary.
Let us prove assertion 2. The case w(p) < 0 follows directly from Theorem 1.1. So assume

deg(w) = 0, 0 < w(p) � pord(w̄) − pord(w̄)−1. (8.3)

In particular w �∈ pW . Let us examine the case w = φ−1 first. Take g ∈ I1
X(φ−1). So, by definition,

E(g) = λ ∈ R. Consequently the form h := g · (f1)φ belongs to I2
X(−1 − φ2) and has Serre–Tate

expansion E(h) = λεΨφ. On the other hand, by [Bui03, Corollary 2.10], the form f2 ∈ I2
X(−1−φ2)

has Serre–Tate expansion

E(f2) = ε(Ψφ + pΨ).

Since, by assertion 1 of Corollary 1.3, I2
X(−1−φ2) has rank one, it follows that h and f2 are linearly

dependent; hence E(h) and E(f2) are linearly dependent. This forces λ = 0 hence g = 0. This proves
assertion 2 for w = φ − 1. Let us note that f∂ �∈ M1

X ; for if f∂ ∈ M1
X , since f∂ ∈ M1

Xord
(φ − 1),

it would follow that f∂ ∈ M1
X(φ− 1) (cf. assertion v in Proposition 3.1). Since E(f∂) = 1 we would

get f∂ ∈ I1
X(φ−1), contradicting the case w = φ−1 of assertion 2 that we just proved. Let us prove

now assertion 2 for arbitrary w satisfying condition (8.3). Let g ∈ Ir
X(w). So again E(g) = λ ∈ R.

Since deg(w) = 0 we may write w = (φ − 1)v′. Hence

E(g) = E(λ · (f∂)v
′
),

hence g = λ · (f∂)v
′
. Note that m′ := ord(v̄′) = ord(w̄) − 1 =: m − 1 and v′(p) = w(p)/(p − 1) so

v′ �∈ pW and

1 � v′(p) � (pm − pm−1)/(p − 1) = pm−1 = pm′
.

If λ �= 0 we get

g ∈ M r
X ∩ λM r

Xfor = λM r
X

(cf. assertion 5 in Lemma 4.2). So (f∂)v
′ ∈ M r

X . Since f∂ ∈ (M1
Xord

)×, by assertion 6 in Lemma 4.2
we get f∂ ∈ M1

X , a contradiction. So λ = 0 and, hence, g = 0.
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Proof of Theorem 1.2. Assume |λv| � |λm| for all v and seek a contradiction. We may assume

E(g) = εmpnΨm + pn
∑
v �=m

λvΨv,

where λv ∈ R, and the summation extends over all v ∈ W+, v �= m, such that ord(v) � r − 1 and
deg(v) = m. Since deg(−w + m(−1− φ)) = 0, −w + m(−1 − φ) is divisible by φ− 1 in Z[φ]. Write

−w + m(−1 − φ) = −m′ · (φ − 1), m′ ∈ Z[φ].

Similarly, for any v as above, we may write

−w + v(−1 − φ) = −v′ · (φ − 1), v′ ∈ Z[φ].

Note that since w(p) < −2mp we have −m′(p) > m. We claim that

g = pn(f1)m(f∂)m
′
+ pn

∑
v �=m

λv(f1)v(f∂)v
′

in M r
Xord

. (8.4)

Indeed, both members of Equation (8.4) belong to M r
Xord

(w) and, by Proposition 7.2, they have
the same image via the Serre–Tate expansion map. By the Serre–Tate expansion principle in
Theorem 7.1, Equation (8.4) follows. By Corollary 4.3,

g ∈ pnM r
Xord

∩ M r
X = pnM r

X ,

so g = png1 with g1 ∈ M r
X and, hence, by Proposition 6.1,

ḡ1 = (f̄1)mH̄m′(p) +
∑
v �=m

λ̄v(f̄1)v(p)H̄v′(p) in M̄ r
Xord

, (8.5)

where an upper bar on top of an element in M r
Xord

denotes, as usual, the image of the corresponding
element in M̄ r

Xord
. By Lemma 4.2, assertion 1, the equality (8.5) holds in M̄1

Xord
. Now take ∂̄m

1 in
the above equality. By Corollary 7.5, we get

∂̄m
1 ḡ1 = m! · H̄m+m′(p) +

∑
v �=m

P (v(p),m)λ̄v(f̄1)v(p)−mH̄m+v′(p) in M̄1
Xord

, (8.6)

where we set P (a, b) = a(a − 1) · · · (a − b + 1). Since v(0) < m we must have

0 = P (v(0),m) ≡ P (v(p),m) mod (p),

hence the sum
∑

v �=m in Equation (8.6) vanishes; so we get

(∂̄m
1 ḡ1) · H̄−m′(p)−m = m̄! �= 0 in M̄1

Xord
. (8.7)

Since −m′(p) − m > 0, both members of the equality (8.7) belong to M̄1
X . By Lemma 4.2,

assertion 2, the equality (8.7) holds in M̄1
X . Hence H̄ is invertible in M̄1

X , hence H̄ is invertible in M̄0
X

(cf. Corollary 4.3). Now if x is a local basis of L, then, locally on X, M̄0
X has the form S̄[x, x−1],

hence H̄ has, locally on X, the form h̄xp−1, with h̄ ∈ S̄×. We deduce that Xord ⊗ k = X ⊗ k,
a contradiction. This closes the proof.

Proof of Theorem 1.1. By our assumptions, X̂ = X̂ord; we may assume Φ = εmxi0
1 · · · xir−1

r . Set v =
i0 + i1φ + · · · + ir−1φ

r−1. Since deg(v) = m the weight w + (1 + φ)v is divisible by φ − 1 in Z[φ] so
we may write w + (1 + φ)v = (φ − 1)v′ for some v′ ∈ Z[φ]. But then

E((f1)v · (f∂)v
′
) = εm · Ψv = Φ(Ψ, . . . , φr−1Ψ).

Let us remark that the proof above shows that, in Theorem 1.1, the set

{(f1)v · (f∂)v
′ | v ∈ W+, ord(v) � r,deg(v) = −deg(w)/2}

is a basis of the K-linear space Ir
X(w) ⊗ K.
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