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Abstract 

Artificial Intelligence-based Computer Vision models (AI-CV models) for object detection can support 

various applications over the entire lifecycle of machines and plants such as monitoring or maintenance tasks. 

Despite ongoing research on using engineering data to synthesize training data for AI-CV model development, 

there is a lack of process guidelines for the creation of such data. This paper proposes a synthetic training data 

creation process tailored to the particularities of an engineering context addressing challenges such as the 

domain gap and methods like domain randomization. 

Keywords: artificial intelligence (AI), synthetic training data, annotation automation, domain gap, 
process improvement 

1. Introduction 
The utilization of Artificial Intelligence-based Computer Vision models (AI-CV model) can support a 

wide range of processes and applications along the life cycle of technical systems such as machines and 

plants by detecting components in photo and video data (Zhou et al., 2023). Current research on AI-CV 

models in engineering focuses on the detection of object categories like screws, bearings or pipes by 

utilizing training data sets with generic categories (Drost et al., 2017). In most industry use cases not 

the category but a specific component of a technical system is of interest. Hence, training data sets are 

needed which replace and extend the generic categories with identifiers for the individual system 

components. If these identifiers are article IDs of a product data management (PDM) system, the AI-

CV models can be linked to the entire data backend of the components (see Figure 1). 

 
Figure 1. Left: Category detection; Right: Component detection with PDM coupling 

https://doi.org/10.1017/pds.2024.226 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.226


 
2238 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 

In order to provide an extensive, high quality training data set as basis for AI-CV model development 

(Jain et al., 2020), currently thousands of photographs are manually annotated with the object locations 

and object categories in a time-consuming and error-prone process (Valtchev and Wu, 2021; 

Assadzadeh et al., 2022). The annotation process consumes a large part of the time needed to create 

training data sets for AI-CV. For example, Ono et al. state an annotation time of approx. two weeks for 

7.000 images by five annotators (Ono et al., 2023). 

In an industrial context, this means that a physical instance of the technical system must exist before the 

time-consuming process of capturing and manually annotating photographs can take place. Hence, the 

creation of training data is delayed until near-final prototypes are available late in the development 

phase. In specialized machine and plant engineering where prototypes are uncommon, AI-CV 

development only starts post construction, preventing their early use in these fields (see Figure 2). 

 
Figure 2. Front-loading of AI-CV-Model development when using synthetic training data 

The use of synthetic training data - virtually generated images and annotations through rendering - is 

ideal for the front-loading of AI-CV model development (see Figure 2). Particularly in the context of 

engineering, the geometry data of technical systems generated during development provide an excellent 

basis for deriving synthetic training data (Kohtala and Steinert, 2021) and automating renderings and 

annotations saves additional time.  

However, no current framework supports the creation of synthetic training data sets which enable AI-

CV models to detect individual components. Therefore, this research aims to develop a framework that 

maintains the link between engineering data (geometry data and article IDs) and training data throughout 

the entire AI-CV model development process. This paper focuses on the definition of a process for 

generating synthetic training data sets in an engineering context and answers the following research 

question: 

How does a process have to be designed that generates comprehensive and high-quality 

synthetic training data sets for AI-CV models from engineering data? 

Future research will complement and support the proposed process by investigating related methods, 

tools and an accompanying data model. 

 
Figure 3. The research objects of a framework for utilization of synthetic training data for 

AI-CV applications in engineering 

2. State of the art 

2.1. AI development processes 

Modern guidelines for the development of AI-CV models increasingly originate from industry and view 

the ML-based application development as a circular process that is intended to enable greater agility. 

These modern guidelines include the Microsoft Team Data Science-Process (TDSP) (Microsoft, 2023) 

and the DIN SPEC 13266 (DIN Deutsches Institut für Normung e.V., 2020). While the TDSP describes 

the general development of ML models, DIN SPEC 13266 focuses on deep learning-based CV models. 
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Other approaches include the Data Science Process Model (DASC-PM) (Schulz et al., 2022) and 

Engineering Data Driven Applications (EDDA) (Hesenius et al., 2019). 

Another focus is the development of software frameworks for the practical implementation of ML and 

AI-CV in particular (Orhei et al., 2021; Stephen Gould, 2012). These software implementations are 

usually based on generalized processes or frameworks that facilitate ML application and provide 

necessary tools for AI development with notable examples being scikit-learn and TensorFlow. 

Despite numerous guidelines, there's a lack of adapted approaches for developing AI-CV models in 

engineering product development and notably in handling synthetic training data for these applications. 

2.2. Synthetic training data 

While high-quality data sets for everyday objects are readily available (Lin et al., 2014; Downs et al., 

2022; He et al., 2022), there is a deficit for industry-specific applications. In such cases, data sets have 

to be manually created from scratch, which poses a significant challenge for implementing ML-based 

object detection models in industrial applications (Wong et al., 2019). 

Consequently, there is increasing interest in using synthetic training data derived from the geometry 

models of components and generated in a controlled environment. This approach enables precise control 

of synthesis parameters and the automatic generation of pixel-precise annotations (Mayer et al., 2018), 

which allows for faster generation of extensive data sets avoiding human inaccuracies (Ono et al., 2023). 

Synthetic data has a promising role in the realm of product development (Kohtala and Steinert, 2021). 

Initially, the lack of physical components in the early stages means there is no opportunity to capture 

photos for training data. Traditionally used tools, such as CAD systems and the geometric data created 

with them open up a novel pathway for creating synthetic training data sets (Pasanisi et al., 2023). While 

this method is scalable due to its highly automatable nature and independence from a physical prototype, 

effectively utilizing this data is not trivial due to the often-encountered distribution mismatch between 

training and real test data, which leads to a significant performance drop (Chen et al., 2018). In response 

to this challenge several techniques have been explored to improve the generalization capability of 

models trained on predominantly synthetic data, which are discussed in the following sections. These 

approaches support the creation of training data sets that are not constrained by the limitations of real-

world data, enabling highly scalable model development early in the development process. Additionally, 

they simplify and accelerate the process of adapting or expanding these datasets to specific problems 

while also enabling the simulation of events that are rare or impossible to replicate in reality. 

2.2.1. Domain gap 

Leveraging synthetic data introduces unique considerations in the AI development process. Render 

engines, which are grounded in mathematical models, employ assumptions which simplify complex 

real-world phenomena. The divergence between model-driven synthetic data and photos of real 

environments is termed the domain gap. If overlooked during the data generation process, this gap can 

diminish the generalization ability of CV models trained purely on synthetic data. (Park et al., 2020) 

2.2.2. Domain randomization and domain adaptation 

Domain randomization is a method for synthetic data generation that artificially expands the parameter 

space of the training data set to overcome the domain gap. The method systematically varies parameters 

such as object pose, lighting, textures and backgrounds in non-realistic ways in order to guide the neural 

network to grasp the fundamental features of objects. Thereby the generalization ability of the CV model 

is improved (Salas et al., 2020; Tremblay et al., 2018). 

A further method to overcome the domain gap is domain adaptation. In this approach, a model trained 

predominantly on synthetic data is enhanced by incorporating a subset of real-world data during its 

training phase. Multiple studies have demonstrated that adding a relatively small set of real training 

images into a largely synthetic data set can significantly improve the models ability to generalize in the 

target domain (Horváth et al., 2023; Tremblay et al., 2018). However, using realistic renderings to 

handle the domain gap is also investigated in literature (Denninger et al., 2019). 
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3. Constraints and requirements for the process 
In this chapter constraints and requirements for the process are derived from the requirements and the 

availability of engineering data - additionally typical requirements for engineering AI systems are taken 

into account from literature (Ahmad et al., 2023; Schulz et al., 2022).   

The specific context in which the AI-CV model will be used needs to be considered for the 

implementation of the process. One example is the support of maintenance work with augmented reality 

devices. In this task, an AI-CV model only needs to be able to identify the components required for the 

respective maintenance procedure. The proposed process must support both such a delimited problem 

definition as well as the creation of a training data set for all components of a system. 

Also, different AI-CV models require different formatting of the generated training data set. For 

example, Mask R-CNN requires a training data set in the COCO format (He et al., 2017), while YOLO 

models define their own formatting (Hussain, 2023). Furthermore, the desired type of object 

identification also influences which annotations must be included in the training data set, ranging from 

simply naming the category of the objects on image/video data to pixel-precise differentiation of several 

instances of an object category (Lin et al., 2014). 

Finally, the engineering context defines various constraints on the process. It can be assumed that a 

machine-readable data source of the components exists, for which an AI-CV model should be 

developed. This database needs to contain a representative geometric description of the components to 

be recognized (e.g., CAD files) and a unique identification of these components (e.g., article ID). 

Examples of suitable data sources are PDM systems. 

Table 1 outlines the requirements for a comprehensive AI-CV model creation process based on available 

data in engineering given the mentioned constraints. 

Table 1. Process requirements  

Process 

Adaptation of existing guidelines for the development of AI-(CV) systems. 

The process must be fully automatable. 

Synthetic training data 

The domain gap must be taken into account and measures for dealing with it have to be integrated. 

The generation of synthetic training data includes the generation of rendered images and annotation data. 

The generated synthetic training data must be reproducible. 

Integration of engineering methods and tools 

The input is geometry information and product structure information from engineering data sources (PDM). 

The continuous link between the engineering data and the synthetic training data must be ensured. 

The generated synthetic training data and parameters of the process must be documented and archived. 

Integration of AI methods and tools 

Modelling data can be formatted according to any data sets (e.g., YOLO, COCO, etc.). 

Data quality 

Generated data sets must contain complete, up to date, sufficient and non-redundant data (class symmetry). 

The correct and unambiguous assignment of synthetic images and annotation data must be ensured. 

The annotation must be pixel-precise, exceeding the quality of manual annotations. 

4. A process for the creation of synthetic training data utilizing 
engineering data 

4.1. Process overview 

A process for generating a synthetic Training Data Set shown in Figure 4 explicitly takes into account 

the requirements listed in Table 1. 
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It consists of four process steps: "Data Acquisition", "Generation of Synthetic Images", "Generation of 

Annotation Data" and "Formatting of Training Data Set". While Figure 4 depicts a linear process, 

iterations within the process are allowed. 

 
Figure 4. Process overview with process input (left), process output (bottom), process steps 

(middle) and preliminary data artefacts (right) 

The "Data Acquisition" process step includes selecting, extracting and preparing the data from 

engineering data sources specified within the Data Acquisition Configuration. The output, Component 

Data, includes the Geometry Data of all components needed for the Training Data Set as well as the 

Identification Data related to this geometry. The Identification Data containing the ID of each 

component in the data backend. A tight coupling between Geometry Data and Identification Data is 

needed to maintain these links throughout the following process steps. Within the "Generation of 

Synthetic Images" process step images are rendered using the Component Data. The rendering settings 

are specified in the Rendering Configuration. After the "Generation of Synthetic Images" Rendered 

Image Data, Rendered Localization Data and Annotation Metadata are created. The Rendered Image 

Data are the rendered pixel-based images of the system used for the training of the AI-CV-models. The 

Rendered Localization Data are also images rendered with the same camera settings as the Rendered 

Image Data but using a clear color-rendering of the components to pixel-precisely distinguish the 

components (see Chapter 5, Figure 9). The Annotation Metadata stores information about the 

components visible on the Rendered Image Data and the color-coding used for the Rendered 

Localization Data. The Annotation Metadata and the Rendered Localization Data are inputs for the 

third process step "Generation of Annotation Data". Here, the pixel-precise color-coding of the 

Rendered Localization Data is computed into annotations, which can be used by the training algorithms 

of the AI-CV-models. This includes the derivation of bounding box and mask coordinates for each 

component in every Rendered Localization Data, resulting in the Annotation Data. The last process step 

"Formatting of Training Data" converts the Annotation Data and Rendered Image Data to one or more 

formats of training data, specified by the Format Configuration. 

The process results are one or more complete, consistent, high-quality Training Data Sets that contain 

the IDs of the individual components of the system as categories and the required format for the 

subsequent training algorithm. The Training Data Sets are designed for direct use with the 

corresponding training algorithm. The individual process steps are described in detail below. 

4.2. Process step “Data Acquisition” 

In the "Data Acquisition" process step shown in Figure 5, Component Data is created, which 

encompasses both the geometry and a unique identification of the components. 
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The input Data Acquisition Configuration includes information on accessing the data sources from 

which the Component Data is extracted (e.g., PDM systems or overarching concepts as in Schwoch et 

al. (2023)) and specifies which components will be included in the Training Data Set. 

 
Figure 5. Input, activities and output of process step "Data Acquisition" 

Within the "Data Selection" activity all included components and their structural relationships are 

analyzed and selected in the specified data sources. During "Data Extraction", the geometry and 

identification information of the components are loaded from the data sources. In "Data Preparation", 

the geometry is tessellated and formatted in a format that can be read by the rendering tool and the 

hierarchy and transformation matrices are extracted (Dammann et al., 2022). During all activities, it is 

essential to maintain the connection between the geometry and identification information in the data 

sources. 

The output is the Component Data, consisting of Geometry Data and Identification Data. The Geometry 

Data includes the geometric description of the components, their hierarchy and transformation matrices. 

The Identification Data contains the respective unique identifier of the data sources for each component 

(e.g., the article ID in the PDM system). Geometry Data and Identification Data are closely linked, 

allowing images, masks and annotations to be associated with the respective IDs of the data backend. 

4.3. Process step “Generation of Synthetic Images” 

In the "Generation of Synthetic Images" process step (see Figure 6), the Component Data is first 

imported into the used rendering environment. The import includes both the Geometry Data in the form 

of the tessellated geometries, as the basis for rendering, and the Identification Data. 

 
Figure 6. Input, activities and output of process step "Generation of Synthetic Images"  

The scene graph is then built up. The Geometry Data is used to reproduce the component hierarchy in 

the scene graph and to assign the correct geometry information and transformation matrices to the 

objects in the scene graph. By using the unique identifiers of the Identification Data, it is possible to 

link the objects in the scene graph with the component information in external systems like PDM 

(Stelzer et al., 2012). Information from the Render Configuration, such as camera transformations, 

lighting or materials is also used to create the scene graph. The Render Configuration has a central 

influence on the generalization of the AI-CV models trained on the generated Training Data Set to real 

environments (e.g., by using domain randomization or realistic renderings). After "Scene Building", the 

first output is the Annotation Metadata that stores information about the visible components in the 

Rendered Image Data and the Rendered Localization Data, which are both created in the subsequent 

"Rendering" activity. In "Rendering", information from the Render Configuration can also be used to 

create post-processing effects such as glare, overexposure, vignetting or blurring. 
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4.4. Process step “Generation of Annotation Data” 

The third process step is called "Generation of Annotation Data", shown in Figure 7. 

 
Figure 7. Input, activities and output of process step "Generation of Annotation Data"  

In the process step, the annotations are derived from the Annotation Metadata and the Rendered 

Localization Data. This is done in the "Annotation Derivation" activity. Alternate mathematical 

descriptions can be generated from the Rendered Localization Data for the annotation information 

available in pixel images. For segmentation masks, for example, this can be a polygon or spline 

description, while reference points and dimensions are generated for bounding boxes. Finally, the 

component identifiers of the Annotation Metadata and the annotation descriptions derived from the 

Rendered Localization Data are combined in the Annotation Data.   

4.5. Process step “Formatting of Training Data Set” 

The final Training Data Set is created in the last process step "Formatting of Training Data Set" which 

can be used directly to train corresponding AI-CV models (see Figure 8). 

 
Figure 8. Input, activities and output of process step "Formatting of Training Data Set" 

The input Format Configuration defines one or more formats of the Training Data Set to be generated. 

Examples of training data formats are the PASCAL VOC XML format (Everingham et al., 2010), the 

COCO format (Lin et al., 2014) and the YOLOv5 format (Jocher and Waxmann, 2023). It is possible to 

repeat this last process step with different format definitions. The different formats not only vary in 

terms of the file types of the annotations but also in the encoding of the various annotation information, 

like bounding box and mask definitions. In YOLOv5 format, bounding boxes are defined using relative 

center coordinates and width in both x and y directions, while COCO specifies the upper-left corner and 

widths. Similar variations apply to segmentation masks. Therefore, the annotation information is first 

converted into the specified format in the "Format Conversion" activity. 

In the "Creation of Annotation File" activity the converted Annotation Data is put into one or more 

annotation files, depending on the chosen target format. Annotation files vary in file types (.csv, .json, 

.yaml-files) and inner structure, including category encoding differences. Nevertheless, all annotation 

files contain at least the following information: the path to the Rendered Image Data which the 

annotations describe, the category of the object delimited by the annotations and the form of the 

annotation regarding its type (bounding box, mask, etc.). 

The last activity "File and Folder Arrangement" includes the arrangement of all files and folders of the 

Training Data Set. It needs to be ensured that paths from the Annotation Data to the Rendered Image 

Data are consistent to the resulting folder structure. Finally, the format consistent Training Data Set can 

be transferred to the machine or cloud application which performs the training. 
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5. Exemplary implementation of the process 
Figure 9 shows an exemplary creation of a Training Data Set for identifying quadcopter components. 

 
Figure 9. Creation of a training data set for the identification of quadcopter components 

The Data Acquisition Configuration defines the use of a CAD-assembly of the quadcopter and the 

information, that all of its components should be included in the training data set. After the "Data 

Acquisition" the CAD-geometry is available as .stl-files representing the individual parts and 

assemblies. The Identification Data links each .stl.-file to a unique ID. After "Generation of Synthetic 

Images" multiple Rendered Image Data of the components are rendered according to the information 

within the Render Configuration. In this example domain randomization is used to overcome the domain 

gap. For each Rendered Image Data instance (e.g., RID_Image_35 in Figure 9) exists a corresponding 

Rendered Localization Data (e.g., RLD_Image_35 in Figure 9) which is rendered using identical camera 

settings but highlights each component with a unique color. Annotation Metadata stores the links 

between Rendered Image Data and Rendered Localization Data as well as the color-coding for the 

components in each Rendered Localization Data instance. After "Generation of Annotation Data" the 

color encoded component locations in the Rendered Localization Data are converted to segmentation 

masks and bounding box information. The final process step "Formatting of Training Data Set" results 

in a YOLOv5 format conform file and folder structure including the Rendered Image Data and 

corresponding bounding box annotations. In YOLOv5 format, categories are encoded numerically 

within annotation files while an additional metadata file (YOLO metadata.yaml in Figure 9) maps the 

numbers to their respective category (here 0 maps to category 4711, 1 to 9856 and 5 to 8756). 

The main tools used to conduct the exemplary implementation of the process are the 3D graphics 

software Blender combined with a python API to automate the generation of synthetic images using 

domain randomization methods to diminish the domain gap between training data and a physical 

prototype. The training data set comprises 500 images, featuring 300 variations in camera perspective 

of the main assembly, along with varying lighting color and intensity, 25 unique object textures, 25 

different backgrounds and distractors for simulating occlusion. The selection of parameters is guided by 

a series of experiments that investigated their impact on the performance of the object detection model, 

details of which will be presented in future work. 

The resulting YOLOv5 Training Data Set is used to train a YOLOv7 model with an mAP@0.5 of 

71,21% on real world images which corresponds to given literature (Tremblay et al., 2018; Ono et al., 

2023). Figure 10 shows the real-time detection with the trained YOLOv7 model in video data. 

 
Figure 10. Example of component detection with the trained YOLOv7 model on video data 
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6. Summary and outlook 
Detecting specific components of a technical system using AI-CV models requires training data sets 

that include distinct identifiers and annotations for each component. The availability of geometric 

models in engineering encourages the automated generation of synthetic training data via methods like 

domain randomization. However, current research gives no support for the creation process of synthetic 

training data in an engineering context. 

This contribution provides a support for engineers in the form of a consistent process derived from 

literature review and the analysis of the requirements of an engineering context. The process activities, 

their relationships and inputs/outputs are presented and specified. Finally, the successful application of 

the process is demonstrated with a YOLOv5 formatted training data set for the identification of 

quadcopter components. The application of domain randomization shows great potential for synthetic 

training data sets with high detection rates (mAP@0.5 of 71,21%) utilizing a YOLOv7 detection model 

on real world images. The described process has potential for full automation, thus eliminating tedious 

manual work and reducing the time needed to develop AI-CV models in engineering.    

Further research aims are the development of a data model to accompany the process and the integration 

of the framework into the entire product life cycle focusing on product development. Further methods 

and tools are investigated for the targeted control of domain randomization and the systematic 

investigation of the influence of the parameters of domain randomization on model generalization.  
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