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We investigate the expressiveness of two classical distributed paradigms by defining the first

encoding of the pure mobile ambient calculus into the synchronous π-calculus. Our

encoding, whose correctness has been proved by relying on the notion of operational

correspondence, shows how the hierarchical ambient structure can be reformulated within a

flat channel interconnection amongst independent processes, without centralised control. To

easily handle the computation for simulating a capability, we introduce the notions of

simulating trace (representing the computation that a π-calculus process has to execute to

mimic a capability) and of aborting trace (representing the computation that a π-calculus

process executes when the simulation of a capability cannot succeed). Thus, the encoding

may introduce loops, but, as it will be shown, the number of steps of any trace, therefore of

any aborting trace, is limited, and the number of states of the transition system of the

encoding processes still remains finite. In particular, an aborting trace makes a sort of

backtracking, leaving the involved sub-processes in the same starting configurations. We also

discuss two run-time support methods to make these loops harmless at execution time. Our

work defines a relatively simple, direct, and precise translation that reproduces the ambient

structure by means of channel links, and keeps track of the dissolving of an ambient.

1. Introduction

The comparison of different languages is a crucial topic in the area of formal languages,

see for example, Sangiorgi (1996), Palamidessi (2003), Busi et al. (2009). It is a tool to

characterise the expressiveness power of different languages, whereas all languages have

the same computational power. This kind of investigation plays an important role in

modelling case studies which come from different areas and at different abstract levels.

Here, we compare two classical, yet very different paradigms for mobility: the Mobile

Ambient (MA) calculus and the π-calculus. MAs (Cardelli and Gordon 2000) have been

introduced to model distributed systems where complete computing environments (i.e.

programs being executed) may change their location. In contrast, the π-calculus (Milner

et al. 1992) allows only names or pieces of code, in its higher order version, to be sent

along communication channels. The two languages use different paradigms for distributed

computing, although both of them are Turing-equivalent.

MAs are characterised by the ambient construct, n[. . . ], that defines computing envir-

onments. Actions on ambients, called capabilities, can destroy an ambient (open n), or
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make an ambient enter a second one (in n), or make an ambient leave the ambient within

which it lies (out n).

In spite of the fact that the two languages are very well known and very well studied,

we believe that our work can still be of interest as it shows how an ambient construct

embodies two different functionalities: the delimitation of a location, and the bearer of an

identity. This study is also at the base of the work in Bodei et al. (2013) that introduces

a multiparty interaction process algebra, the link-calculus.

We define an encoding that allows π-processes to mimic the execution of a capability

(corresponding to a MA transition) by performing a number of π-calculus transitions.

These series of transitions are required to guarantee that all the conditions for a correct

capability simulation are satisfied. Since we do not have a one-to-one operational

correspondence between the MA and the π-calculus transitions, we collect all the π

processes that have a corresponding MA process in a set, called Aπ. We will show that

given a MA process P , with Q ∈ Aπ its π-calculus encoding, then if there exists P ′ such

that P → P ′, it follows that there exist Q′ ∈ Aπ and n > 0 processes Q1, . . . , Qn /∈ Aπ

such that Q → Q1 · · · → Qn → Q′, where Q′ is the encoding of P ′.

To prove the correctness of our encoding, we relay on the notion of operational

correspondence: (1) we prove that whenever the MA process executes a capability, then

its π-calculus encoding can execute a series of transitions that mimic the capability; (2)

we prove that whenever a translating π-calculus process performs a transition, this is part

of a computation trying to simulate a capability. When the capability simulation does

not succeed, our encoding introduces loops, still keeping the number of states introduced

finite, thus we get this somewhat ‘weak’ soundness.

In order to prove the main properties of our encoding, we introduce the notions

of simulating traces and aborting traces. A simulating trace corresponds to a series

of transitions simulating a capability execution. When the conditions required for the

execution of a capability do not hold, we have an aborting trace that leaves no side-effects

of its execution. Thus, the final state of a simulating trace records the effects of a capability

execution, whilst the final state of an aborting trace is congruent to the initial one, in the

hypothesis that only transitions related to that single trace have been fired. Summarising,

the main points of our encoding are:

— the divergence introduced is, from a practical point of view, harmless, as we will see in

Subsection 4.5, that we can easily discriminate between the execution of a simulating

trace and the execution of an aborting trace (which is the cause of our divergence);

— there is not a process which has a central control of the execution of the encoding

process, as each sub-process produced by the translation function only reflects the

activities of the corresponding MA sub-process;

— it is compositional with respect to the parallel and the non-deterministic operators, up

to minor preliminary settings.

The structure of our paper is as follows. Section 2 introduces the MA calculus, Section 3

presents the π-calculus. In Section 4, we formally define our encoding and its properties,

together with some examples to help the intuition. In particular, in Subsection 4.5,

we discuss the harmless character of the divergence introduced by our encoding. In
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Section 5, we present our conclusions. Appendix A shows the code of the auxiliary

encoding functions. Appendix B contains the proofs of Proposition 4.3, Proposition 4.4,

Theorem 4.1, and Theorem 4.2.

Related work. To show the expressiveness of the ambients, in Cardelli and Gordon

(2000), an encoding of the π-calculus into the pure MAs is presented; Levi and Sangiorgi

(2003) proposes an encoding of the π-calculus into Safe Ambients, and Zimmer (2003)

defines an encoding of the π-calculus into the pure Safe Ambients.

Vice versa, there are some implementations of MAs in other formalisms for distributed

computations.

In Cenciarelli et al. (2005), Gadducci and Monreale (2010), the target language consists

of a graphical formalism, thus the encoding follows a completely different mechanism

from the one we adopt. The only similarity with our work is that each ambient construct

generates a sub-process separated from the processes generated by the ambient content.

In our work, these sub-processes (encoding the content of an ambient and of the ambient

itself) are linked by special channels that we will call coordinates.

The work in Fournet et al. (2000) presents an encoding of MAs into the Join calculus, a

calculus that provides constructs for defining local, possibly nested environments, equipped

with local rules. This kind of constructs allows the encoding of the ambient nesting

structure by means of upper and down links between nested environments. The execution

of a capability is then simulated by the changing of the links between environments and

thus by changing the nested structure of the environments. Our target calculus does not

have constructs for environments, thus our encoding is based on a different notion of

links (coordinates) from children to parent ambients.

To the best of our knowledge, the only encoding of MAs into the π-calculus is

proposed in Ciobanu and Zakharov (2007). Here, the basic idea is that each ambient,

and its content, is encoded in a π-calculus subprocess; the simulation of capabilities is

ruled by a distinguished π-calculus process that randomly chooses two sub-processes,

checks the necessary conditions for a capability to be executed and, if they hold, the two

sub-processes reproduce the execution of a capability. Our encoding does not rely on a

process acting as a central capability execution controller.

In Brodo et al. (2003), we have proposed an encoding of the pure MA calculus into

a version of the π-calculus where the application of the congruence rules is strictly

controlled: Each inference rule of the operational semantics is equipped with side

conditions which force the application of the congruence to reproduce the effects of the

capabilities executions. Here, the main result was then to prove that the MA transition

system (TS) is a proper subset of the π-calculus one.

The work in Phillips and Vigliotti (2008) shows that the MAs without communication,

restriction, and open capability can solve the leader election problem. As a consequence,

the MAs cannot be encoded into the π-calculus with separated choice (i.e. input and

output cannot be mixed in the same choice), and without divergence. In fact, in our

encoding, we can introduce loops and we do not use the separated choice. We rather use

the ‘mixed’ choice.

The work in Gorla (2010) gives a set of requirements for an encoding from MAs to

π-calculus. It requires an encoding to be compositional (the encoding of a compound term
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must be expressed in terms of the encoding of its components), to have an operational

correspondence (namely, that the computations of a source term must correspond to the

computations of the encoded term, and vice versa), to be name invariant (the encoding

should reflect all the name substitutions carried out in the source term), to be divergence

reflecting (the encoding should avoid introducing infinite computations), and to be success

sensitive (the encoding should reflect the behaviour with respect to a success). One of

the main results in Gorla (2010) states that there is not an encoding of MAs into

the asynchronous π-calculus which satisfies the abovementioned requirements. Our work

does not contradict such a result, as we may introduce divergence. Our encoding rather

represents a step in the direction of defining a translation as accurately as possible.

As we will see, our encoding function has a compositional style up to some preliminary

syntactical settings. It may introduce loops, that we avoid by applying a run time support

that allows to check if the structural conditions for executing the simulation of a capability

hold. We prove the correctness of our encoding by relying on the notion of operational

correspondence.

This means that our encoding processes can mimic all the capabilities that the source

processes can perform, and only them. As we will see later, in Section 4, we encode the

free ambient names as restricted names (that we will call structural names) over which

we impose not to apply α-conversion. With this restriction, we can detect the presence of

original ambient names, hence we could say that our encoding is success sensitive to the

presence of the ambient names, up to syntactical restrictions.

2. The mobile ambients

We briefly recall the syntax and the semantics of the pure MAs, i.e. the version without

communication primitives and variables.

Definition 2.1. Let n range over a numerable set of names N . The set of MA processes

PMA (with metavariables P , P ′, . . . ) and the set of capabilities Cap (with metavariable M)

are defined below:

P ::= 0 | M.P | (νn)P | P |P ′ | !P | n[P ]

M ::= in n | out n | open n

Intuitively, the null process 0 does nothing. X is the process variable. The process M.P

executes the capability M and then behaves as P ; (ν n)P defines P to be the scope of the

name n; P | P ′ may alternatively behave as P or as P ′ and the two sub-processes may

also interact; !P creates new parallel copies of the process P ; n[P ] denotes the ambient n

containing process P . The capability in n allows an ambient enter ambient n; out n allows

an ambient exit ambient n; open n destroys ambient n.

The semantics of the MAs is given by the rules in Table 1, and by the smallest

congruence relation ≡ satisfying rules in Table 2, up to α-congruence to identify processes

that differ in the choice of bound names. The relation →∗ is the reflexive and transitive

closure of →. We adopt the classical notion of free and bound names of process P ,

denoted as fn(P ) and bn(P ), respectively.
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Table 1. Semantic rules for mobile ambients.

n[in m.P |P ′]|m[R] → m[n[P |P ′]|R] In m[n[out m.P |P ′]|R] → n[P |P ′]|m[R] Out

open n.P |n[P ′] → P |P ′ Open P → P ′ ⇒ (ν n)P → (ν n)P ′ Res

P → P ′ ⇒ n[P ] → n[P ′] Amb P → P ′ ⇒ P |P ′′ → P |P ′′ Par

P ′ ≡ P , P → R,R ≡ R′ ⇒ P ′ → R′ ≡

Table 2. Structural congruence rules for mobile ambients.

P ≡ P P ≡ P ′ ⇒ P ′ ≡ P P ≡ P ′, P ′ ≡ R ⇒ P ≡ R

P |P ′ ≡ P ′ |P (ν n)(ν m)P ≡ (ν m)(ν n)P P ≡ P ′ ⇒ P |R ≡ P ′|R
(ν n)0 ≡ 0 (ν n)(P |Q) ≡ P | (ν n)Q, if n /∈ fn(P ) P ≡ P ⇒ (ν n)P ≡ (ν n)P ′

P | 0 ≡ P (ν n)(m[P ]) ≡ m[(ν n)P ], if n 	= m P ≡ P ′ ⇒ n[P ] ≡ n[P ′]

(P |P ′) |R ≡ P | (P ′ |R) !P ≡ P |!P , up to α-conversion P ≡ P ′ ⇒ M.P ≡ M.P ′

3. The π-calculus

We consider the polyadic version of the π-calculus (π for short).

Definition 3.1. Let N be a numerable set of names ranged over by a, b, . . . , z, which will

function as all communication channels, variables, and data values. The set of processes

Pπ (with metavariables Q,Q′, . . . ) and the set of prefixes A (with metavariable π) are

defined below:

Q ::= 0 | π.Q | (νa)Q | Q|Q′ | Q + Q′ | [x = a]Q | [x 	= a]Q | A(ñ)

π ::= a(x̃) | a (b̃),

where b̃ and x̃ stand for tuples of variables and tuples of names pairwise different.

Roughly, the null process 0 cannot perform any action. The process π.Q executes action

π and then behaves as Q. The input a(x̃) allows an ordered tuple of names b̃, that has

been received along channel a, to replace the tuple of placeholders x̃ following the same

order; the output a (b̃) allows the ordered tuple of names b̃ to be sent along channel

a. Process (νa)Q behaves as Q, where name a is local. We write (νã) for the sequence

(νa1) . . . (νan), where a = a1 . . . an. Process Q|Q′ independently executes Q and Q′, and the

two processes may also communicate. Process Q + Q′ non-deterministically behaves as Q

or as Q′. The match process [x = a]Q behaves as Q only if placeholder x will be substituted

by name a, whereas [x 	= a]Q behaves as Q only if placeholder x will be substituted by a

different name from a. Each agent identifier A has a unique defining equation of the form

A(x̃) = Q, where x̃ = fn(Q), and the names in x̃ are pairwise distinct. We would like to

remark that the translating function, see Definition 4.1, adopts meaningful names for the

process identifiers such as Amb(. . . ), In(. . . ), Out(. . . ), Open(. . . ), and Opened(. . . ) to help

the understanding of the target code. In other words, this choice makes more clear the

presence of ambients and capabilities, and of dissolved ambients.

The semantics of the π-calculus is defined by the reduction rules in Table 3, and by

the smallest congruence relation satisfying rules in Table 4, up to α-equivalence, that

https://doi.org/10.1017/S0960129516000256 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129516000256


The mobile ambients and the π-calculus 207

Table 3. Reduction semantics for π-calculus.

P → P ′ ⇒ P |Q → P ′|Q (R-PAR)

P → P ′ ⇒ (ν n)P → (ν n)P ′ (R-RES)

P ≡ Q,Q → Q′, Q′ ≡ P ′ ⇒ P → P ′ (R-STRUCT)

(a(x̃).Q + Q′) | (a(b̃).R + R′) → Q{b̃/x̃}|R (R-COM)

Table 4. Congruence rules for π-calculus.

(Q1|Q2)|Q3 ≡ Q1|(Q2|Q3) Q1|Q2 ≡ Q2|Q1 Q|0 ≡ Q

(Q1 + Q2) + Q3 ≡ Q1 + (Q2 + Q3) Q1 + Q2 ≡ Q2 + Q1 Q + 0 ≡ Q

Q(ã) ≡ R[ã/x̃], if Q(x̃) = R [x 	= y]Q ≡ 0, if x 	= y [x = x]Q ≡ Q

(ν n)(ν m)Q ≡ (ν m)(ν n)Q (ν n)Q ≡ Q, if n /∈ fn(Q) (ν n)0 ≡ 0

(ν n)(Q1|Q2) ≡ (ν n)Q1|Q2, if n /∈ fn(Q2)

(ν n)(Q1 + Q2) ≡ (ν n)Q1 + Q2, if n /∈ fn(Q2)

(ν n)[u = v] P ≡ [u = v] (ν n)P , if n 	= u and n 	= v

(ν n)[u 	= v] P ≡ [u 	= v] (ν n)P , if n 	= u and n 	= v

Q1 ≡ Q2, Q2 ≡ Q3

Q1 ≡ Q3

Q2 ≡ Q1

Q1 ≡ Q2

Q ≡ Q

identifies processes that differ in the choice of bound names. We would like to remark

that, see Parrow (2001), the choice of a reduction semantics is based on the facts that

the processes generated by our encoding function, see Definition 4.1, have no τ prefixes,

all the sums are guarded and the match and mismatch constructs are guarded or can be

evaluated, i.e. all the variables have been substituted with data values when the match

and mismatch are evaluated.

The rule (R-PAR) says that if P reduces to P ′, then P |Q can reduce to P ′|Q. The rule

(R-RES) allows a reduction to take place under a name restriction. The rule (R-STRUCT)

allows to apply congruence rules, see Table 4, to derive transitions between congruent

processes. Finally, rule (R-COM) allows an interaction on a channel a to take place

between two processes put in parallel: one offering the input prefix and the other one

offering the output prefix. If b̃ and x̃ are empty tuples, then a synchronisation takes place,

otherwise there is a data communication: Each variable in the ordered tuple x̃ in Q′ is

substituted by the corresponding names in the tuple b̃, following the same order.

The transition relation →∗ is the reflexive and transitive closure of the possible empty

sequence of the transition relation →.

Functions fn(), bn(), define the notions of free names and bound names of prefixes,

respectively, and are defined as follows:

Kind π fn(π) bn(π)

Output a(ỹ) {a, ỹ} �
Input a(ỹ) {a} {ỹ}

The function n(), that collects all the names in a prefix, is defined as n(π) = fn(π) ∪ bn(π).

The function fn(), bn(), and n() are extended in the standard way to processes.
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4. The encoding

We aim to define a direct encoding from the MAs to the π-calculus, i.e. we would like to

have the following property:

Let P be a MA process and Q ≡ T (P ) its π-calculus encoding, see Definition 4.1, then if

P → P ′, then ∃ Q′ such that Q →∗ Q′ and Q′ ≡ T (P ′).

To get this result, we have to face the problem that in the source language (MA) the

effect of the execution of an open capability causes the fact that ambient boundaries

dissolve; whereas in the π-calculus encoding, the mimicking of an open capability has the

effect to make the involved process Amb(. . . ) evolve in a process Opened(. . . ). Hence, there

is no more a syntactical correspondence between the source and the target language. To

bypass the problem, we could introduce an equivalence relation for abstracting away from

the presence of the forwarders, i.e. the Opened(. . . ) processes, as proposed in Brodo (2011).

We discard this cumbersome solution as it also leads to a slightly weaker result. Instead,

we adopt the solution in Bodei et al. (2013) that offers a simple theoretical presentation,

and allows us to get a stronger result; thus, we introduce the ambients with brackets,

where each bracket keeps trace of the execution of an open capability.

4.1. Ambients within brackets

We just extend the syntax of MA with the possibility of enclosing a process P within a
pair of brackets:

P ::= · · · | �P �

making the presence of brackets inessential w.r.t the behaviour of the process. In order

to do this, we introduce the additional structural congruence axioms:

�(ν n)P � ≡ (ν n)�P � P ≡ Q ⇒ �P � ≡ �Q�

Finally, we define the notion of passive context C, to adjust the basic reduction rules to
deal with the presence of an arbitrary number of balanced brackets.

C,D,E ::= • | �C� | C|P | P |C

and write C(P ) to denote the process obtained by replacing the hole • in C with P . Thus,
we add the suitable reduction rules, and we use the symbol →p to denote the reductions
between MA processes equipped with passive contexts:

(In)
D(n[C(in mP ) ]) |E(m[R ]) →p D(0) |E(m[ n[C(P ) ] |R ])

(Out)
m[D(n[C(outmP ) ]) ] →p n[C(P ) ] |m[D(0) ]

(Open)
C(open nP ) |D(n[Q ]) →p C(P ) |D(�Q�)

P →p Q
(Brac)

�P � →p �Q�

4.2. The encoding function

The translation will assign a unique name (introduced under a restriction operator) to

each ambient, even to each pair of brackets �. . .�. This helps to easily denote the position of
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Table 5. The graphical representation of the encoding.

A = n[in n.P1|m[out n.P2]] | n[openm.P3] | n[P4]

top

���������
�� ��������

n[](a,top)

�������
��

n[](b,top)

��

n[](c,top)

��
in n.P

(a,top)
1 m[](d,a)

��

openm.P
(b,top)
3 P

(c,top)
4

out n.P
(d,a)
2

(1)

B = n[n[P1|m[out n.P2]] | openm.P3] | n[P4]

top

�� ��������

n[](b,top)

��������
�� ��

n[](c,top)

��
n[](a,b)

�����
��

��

openm.P
(b,top)
3 P

(c,top)
4

P
(a,b)
1 m[](d,a)

��
out n.P

(d,a)
2

(2)

C = n[n[P1]|m[P2]|openm.P3] | n[P4]

top

��������
��������

n[](b,top)

����
��

�� 		����� n[](c,top)

��
n[](a,b)

����

m[](d,b)

��

openm.P
(b,top)
3 P

(c,top)
4

P
(a,b)
1 P

(d,b)
2

(3)

D = n[n[P1]|P2|P3] | n[P4]

top



			
	

��






n[](b,top)

����
�� �� ����

�� n[](c,top)

��
n[](a,b)

����

P
(b,top)
2 P

(b,top)
3 P

(c,top)
4

P
(a,b)
1

(4)

an ambient within the ambient hierarchy. For example, in the configuration m[. . . | n[. . . ]],
we assign the name a (for ambient) to the ambient n and the name p (for parent) to the

ambient m. The pair (a, p), associated to ambient n, says that it is univocally identified

by a, and it lies within the ambient m, univocally identified by p. The pair (a, p) stands

for the coordinates of the ambient: The first component records the information who I

am, the second one records the information where I am. Our translating function will also

introduce a special name, top, to identify the topmost ambient that contains all the other

ones; and in m[. . . | n[. . . ]], the ambient m will have (p, top) as coordinates.

To give a graphical idea of our encoding, let us consider process A ∈ Pπ in Table 5

(1), where we also depict the tree structures of the nested ambients: we assign the unique

names a, b, c, d to the four ambients in process A, so that their complete coordinates result

(a, top), (b, top), (c, top), (d, a), respectively. Note that all the sub-processes lying within an

ambient share the same coordinates. We then let process A evolve to B by executing

the in n capability, see Table 5 (2), where the coordinates of the components involved

in the capability execution have been modified consequently. When the capability out n

fires, B evolves to C and correspondingly, the coordinates of our encoding change as

in Table 5 (3). Process C evolves to D by executing the open m capability that dissolves

ambient m, and the coordinates change as in Table 5 (4).
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Table 6. Definitions of In(a, inn), Out(a, outn), and Open(a, openn).

In(a, inn) = Start(a, inn) @ Link1in(a, pc, ax, px, inn) @

Link2in(a, px1, pc, ax, px, pc1, inn) @

Link3in(a, px1, pc, ax, px, pc1, pc2, inn)@

SimulateIn(a, p, pc, ax, px, pc1, pc3, ax3, px3)

Out(a, outn) = Start(a, outn) @ Link1out(a, pc, ax, px, outn) @

Link2out(a, px1, pc, ax, px, pc1, pc1, outn) @

SimulateOut(a, px1, pc, pc1, ax3, px3, outn)

Open(a, openn)= Start(a, openn) @ Link1open(a, pc, ax, px, openn) @

Link3open(a, px1, pc, ax, px, pc1, pc1, openn) @

SimulateOpen(a, px1, pc, pc1)

Start(a, chcap) = (ν pc)chcap(pc).pc(ax, px).0

SimulateIn(a, p, pc, ax, px, pc1, pc3, ax3, px3) = pc(ax, px).pc1(a, ax).pc3(ax3, px3).0

SimulateOut(a, p, pc, pc1, ax3, px3) = pc(ax3, px3).pc1(a, px3).0

SimulateOpen(a, p, pc, pc1) = pc(a, p).pc1(a, p).0

Definition 4.1. Given P ∈ PMA, the encoding function T : PMA → Pπ is defined by means

of an auxiliary function Tma: T (P ) � (ν m̃)Tma(P , top)|Amb(top), where m̃ = {m | m ∈
fn(Tma(P , top)) ∧ m ∈ {in x, out x, open x | x ∈ fn(P )}} ∪ {top}. The function Tma : PMA ×
N → Pπ is defined as follows:

1. Tma(in n.P , a) � In(a, inn)@Tma(P , a)

2. Tma(out n.P , a) � Out(a, outn)@Tma(P , a)

3. Tma(open n.P , a) � Open(a, openn)@Tma(P , a)

4. Tma((ν n)P , a) � Tma(P [nν/n], a)

5. Tma(0, a) � 0

6. Tma(P | P ′, a) � Tma(P , a) | Tma(P ′, a)

7. Tma(!P , a) � Ide(ñ), where

Ide(ñ) = Ide(ñ)|Tma(P , a) ∧
ñ = fn(P ) ∧ Ide is a new name

8. Tma(n[P ], a) � (ν b) (Amb(b, a, ñ) | Tma(P , b)), where

ñ = {inn, outn, openn}
9. Tma(�P �, a) � (ν b) (Opened(b, a) | Tma(P , b))

The definitions of the process constants Amb(b, a, ñ), Amb(top), In(a, inn), Out(a, outn),

and Open(a, openn) are in Table 6 and in Table 7. The definition of the operator @ :

Pπ × Pπ → Pπ is in Table 8.
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Table 7. Definitions of Amb(a, p, ñ), and Opened(a, a′). For the sake of readability, the

parameter lists of the process constants are deliberately not complete.

Amb(a, p, ñ) = inn(pcx).pcx(a, p).Busy(a, p, pcx, in, ñ)

+

outn(pcx).pcx(a, p).Busy(a, p, pcx, out, ñ)

+

openn(pcx).pcx(a, p).Busy(a, p, pcx, open, ñ)

+

a(pcx).pcx(a, p).Busy(a, p, pcx, nocap, ñ)

+

a(pcx, pc
′
x).pcx(nomatch, nomatch).Amb(a, p, ñ)

Opened(a, a′) = a(pcx).pcx(a
′, a′).Opened(a, a′)

+

a(pcx, pc
′
x).pcx(ã

′).Opened(a, a′)

Busy(a, p, pc, cap, ñ) = pc(anew, fnew).([anew = release]Amb(a, p, ñ)

+

[anew 	= release]Simulation(ãnew, pnew, cap, ñ))

+

a(pcx).pcx(busy, busy).Busy(a, p, pc, cap, ñ)

+

a(pcx, pc
′
x).pcx(a, p).Busy(a, p, pc, cap, ñ)

Simulation(ã, p, cap, ñ) = [cap = open]Opened(a, anew)

+

[cap 	= open]Amb(a, p, ñ)

Table 8. Definition of the @ operator.

0@Q = Q R|R′@Q = R@Q|R′@Q [a = x]R@Q = [a = x](R@Q)

π.R@Q = π.(R@Q) R + R′@Q = R@Q + R′@Q [a 	= x]R@Q = [a 	= x](R@Q)

(νã)R@Q = (νã)(R@Q) Ide(ñ)@Q = R@Q, if Ide(ñ) ≡ R

A detailed explanation for the treatment of names by our encoding function is provided.

For each capability in the MA source process, the Rules 1, 2, 3, in Definition 4.1, introduce

a name composed by the capability name (in, our, open) and by the ambient name which

is the argument of the capability. This kind of names are only used as communication

channels, i.e. they will not be sent as data, and we distinguish them as structural names.

Together with the special name top, the structural names are closed under restriction

by the function T (. . . ) (in Definition 4.1) to force synchronisation. We impose that the

structural names will not be α-converted. This restriction will be required later, when we

discuss about compositionality.
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Rule 4, of function Tma(. . . ) in Definition 4.1, deals with the encoding of restriction.

With original restricted names, we identify those names that were already restricted in the

MA source processes and that we keep separated from the others by adding the special

symbol ν as subscript. For example, consider the MA process (ν n)n[], then its encoding

will be

(ν top, a, innν , outnν , opennν)(Amb(top)|Amb(a, top, ñ).

To clarify the difference between the structural names and the original restricted names,

we consider the MA process n[]|(νn)n[], and its translation where the free name n has

been translated with the three names inn, outn, openn, and the restricted name n has been

translated as innν , outnν , openν:

(ν inn, outn, openn)(ν innν , outnν , openν)(ν a, b, top)(Amb(top)|Amb(a, top, ñ)|Amb(b, top, ñν)).

The third kind of restricted names (the generic names) is defined by the auxiliary function

Tma(. . . ), and it includes all the restricted names that are neither structural names nor

original restricted names. Also, the encoding function introduces a set of free names: in,

out, open, nocap, nomatch, busy, release; these names have been introduced to perform

some technical checks on the status of the computation; more details on free names will

be given in the following.

Some more comments are required for Rule 7 in Definition 4.1. We remark that

we can guarantee the uniqueness for each process identifier introduced to translate

the recursion operator !P of the source language. We can use a third argument

for the function Tma(. . . ) to keep track of the syntactical position with respect to

the parallel operators. In fact, we can assume that during the encoding phase no

structural congruence rule can be applied. For example, MA process !P |!P will be

translated as (ν ˜names)(Amb(top)|IdeP0(ñ)|IdeP1(m̃)), where IdeP0(ñ) = IdeP0(ñ)|P and

IdeP1(m̃) = IdeP1(m̃)|P , for some set of names ñ and m̃, with { ˜names} ⊆ {ñ} ∪ {m̃} ∪ {top}.
For the sake of readability, we prefer not to show the complete list of parameters

of process identifiers where we only specify the coordinates and the channel names

directly derived from the encoding: The complete parameter list can be easily derived

from the process identifier definitions. For example, the complete parameter list of

process In(. . . ) should include the free names busy and release: In(a, inn, busy, release)

(the same for Out(. . . ), Open(. . . )); the complete parameter list for process Amb(top) is

Amb(top, busy, release); the complete parameter list of processes Amb(. . . ) is

Amb(a, p, ñ, in, out, open, nocap, nomatch, release, busy). All the names that we added in

the above parameter lists are the free names introduced by our encoding function.

In particular, the names busy and release are used by Busy(. . . ), in Table 7, and by

Release1(. . . ), Release2(. . . ), Release3(. . . ), in Table A5, respectively, to send the message

that the trace will abort. The names in, out, and open are used by Amb(. . . ), in Table 7,

to discriminate between the three types of capability. The name nocap is used by process

Amb(. . . ), in Table 7, when it is involved in a trace which is not involved in a capability.

The name nomatch is sent by Amb(. . . ) to inform the other sub-processes involved in the

trace that the structural conditions are not satisfied.
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As mentioned before, hereafter, we assume that no α-renaming is applied on the

restricted set of structural names. This assumption allows to show that our encoding

is compositional with respect to the parallel and the non-deterministic operators, up

to preliminarily settings. In fact, if we have Q1 = T (P1), Q2 = T (P2), and Q3 =

T (P1|P2), where Q1 = (νñ)(Amb(top)|Tma(P1, top)), Q2 = (νm̃)(Amb(top)|Tma(P2, top)), and

Q3 = (νω̃)(Amb(top)|Tma(P1|P2, top)), we can obtain the direct encoding of P1|P2 by setting

T (P1|P2) = (νz̃)(Amb(top)|Tma(P1, top)|Tma(P2, top)), where z̃ = ñ ∪ m̃ = w̃. Please note that

no α-renaming has been applied on the set of names {ñ} ∪ m̃ ∪ {top}.
For example, consider P = a[in b]|b[], then Q = T (P ) = (ν ina, outa, opena, inb, outb, openb,

top) (Amb(top)|(ν c)(Amb(c, top, ã)|In(c, inb))|(ν d)Amb(d, top, b̃)),

Q1 = T (a[in b]) = (ν ina, outa, opena, top)(Amb(top)|(ν c)(Amb(c, top, ã)|In(c, inb))), and

Q2 = T (b[]) = (ν inb, outb, openb, top)(Amb(top)|(ν d)Amb(d, top, b̃)).

Following the above preliminary syntactic settings, we can easily obtain the encoding of

P starting from Q1 and Q2.

The @ operator takes Q1, Q2 ∈ Pπ as arguments, and returns a process that behaves as

Q1 and when it stops, behaves as Q2, in other words @ substitutes all the occurrences of

0 in Q1 with Q2.

In MA processes, the ambient names carry out two different roles: denoting delimited

spaces, the ambients, and allowing capabilities to act on them. Our encoding keeps the

two roles separated: the original ambient name allows interactions to happen and we

introduce a new name to univocally identify each ambient: in Definition 4.1, the Rule

8 introduces the unique name b for the identifier Amb(b, a, ñ), and the original name n

becomes the suffix for the channel names inn, outn, openn. The construction of the channel

names in Rules 1, 2, 3, in Definition 4.1, follows the same idea. Rule 9 introduces a

(νb)Opened(b, a) sub-process, corresponding to the MA �. . .� construct. As mentioned

before, the introduction of passive contexts in MA is due to the fact that our encoding

generates an Opened(. . . ) process every time an open capability is simulated (see code

in Table 7, the subprocess Simulation(a, p, cap, ñ), case [cap = open]); instead, in classical

MAs, when P executes an open capability, P → P ′, in P ′ an ambient construct is just

dissolved. The problem arises as the π-calculus process Opened(. . . ) has not a syntactical

correspondence in the classical MA source processes. With passive contexts, the execution

of an open capability in MAs exactly produces a passive context which is encoded as an

Opened(. . . ) process. Please note that the first argument of Opened(b, a) is the fresh name

associated to the ambient that has been dissolved, see Definition 4.1 Rule 8. The process

Opened(a, a′) (see the definition in Table 7) acts as a forwarder from the dissolved process

Amb(a, . . . ) to the one, Amb(a′, . . . ), that substitutes it (i.e. its previous parent ambient).

Relying on the notion of the operational correspondence, we will prove the correctness of

our encoding: A derived π process can simulate a capability execution in a finite number

of steps, and that all the steps that a derived π process may execute belong either to the

simulation of some MA capability (that we will call simulating trace) or to a series of

transitions returning to an existing state (that we will call aborting trace).

Example 4.1. Given the MA process P = open n.0|n[in m.0]|m[open n.0], it can execute one

of the two open capabilities. We assign unique identifiers to ambients: a to ambient n, and
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b to m. The translation works as follows: (1) for each ambient n, we generate a process

Amb(. . . ); (2) for each sequential MA process, we generate a process identifier encoding

all the capabilities, linked by the sequential operator dot. Applying our encoding, we get

T (P ) ≡ Q = (ν top, inn, openn, outn, inm, outm, openm)

Amb(top)|Open(top, openn) {ambient top and top level capability}
| (ν a)(Amb(a, top, ñ)|In(a, inm)) {ambient n and its content}
| (ν b)(Amb(b, top, m̃) | Open(b, openn)) {ambient m and its content}

Graphically,

In the above picture, the left part of the graph, representing the MA process, is quite

intuitive: The ambients n and m are at the topmost position in the nested ambient

structure; on the right part of the graph, the π-calculus processes are represented as a

rectangle when there is a translation of a MA ambient, and as an oval when there is

a translation of a capability. Please note how the π-calculus processes are connected by

(unique) channel names and thus reflecting the original nested ambients structure.

As it is shown in Table 6, the simulation of a capability begins with the Start()

routine that contacts the process Amb(. . . ) over which the capability acts. Then, processes

LinkNcap(. . . ) (with N ∈ {1, 2, 3}, and cap ∈ {in, out, open}) contact the other processes

Amb(. . . ) involved in the capability simulation and check if the actual coordinates are

compatible with the capability simulation (see processes CheckNcap(. . . ), with N ∈ {1, 2, 3},
and cap ∈ {in, out, open}, in Tables A2–A4, A6 in Appendix A). If this is not the case, re-

covery routines (see processes ReleaseN, with N ∈ {1, 2, 3, 4} in Table A5, in Appendix A),

restore the initial situation. Instead, if the coordinates of the processes Amb(. . . ) involved

verify the required structural conditions, then the computation ends with the final steps of

the simulation in SimulateIn(. . . ), or SimulateOut(. . . ), or SimulateOpen(. . . ) (see process

definitions in Table 6).
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It is important to remark that our encoding does not rely on a process acting as a

central capability execution controller, in particular, the process Amb(top) only acts as the

encoding of the topmost parent ambient, that does not have a syntactical correspondence

in the MA processes. In fact, our encoding is based on a network of channels where each

encoding of an ambient knows its unique name and the unique name of the encoding

of its parent ambient. For the top level ambients in the MA processes, there is not

such a parent ambient, and we force the encoding to add this further process Amb(top):

T (P ) = (ν ñ)(Amb(top)|Tma(P , top)). The behaviour of the process Amb(top) can be checked

in Table A6 in Appendix A, and it is possible to verify that it is a short version of the

code of Amb(. . . ) processes, as Amb(top) can not be the target of a capability (on channels

intop, outtop, and opentop) and hence it is not equipped to act as the target ambient of a

capability.

4.3. Traces

To simplify the proofs of our properties, we introduce the notion of traces, which we will

denote with ξ.

A trace can be a simulating trace, when a capability is simulated (Definition 4.2), or can

be an aborting trace, when no capability is simulated (Definition 4.3), i.e. a sort of back-

tracking is executed and the final state of an aborting trace is congruent to its initial one.

Definition 4.2 (simulating trace). Let Q,Q′ be two π-calculus processes, and let P , P ′ be

two MA processes such that P →p P
′. Let ξ = Q → Q1 → · · · → Qt → Q′, with t > 0, be

a computation, then we say that ξ is a simulating trace of Q if t is the minimum number

such that T (P ) = Q, T (P ′) = Q′, and �P̂ ∈ PMA s. t. T (P̂ ) = Qi ∀i ∈ {1, . . . , t}.

Definition 4.3 (aborting trace). Let Q be a π-calculus process, and let P be a MA process,

and let ξ = Q → Q1 → · · · → Qt → Q, with t > 0, be a computation. We say that ξ is a

aborting trace of Q if t is the minimum number such that T (P ) = Q, and �P̂ ∈ PMA s. t.

T (P̂ ) = Qi ∀i ∈ {1, . . . , t}.

We will write Q →ξ
∗Q′ to denote the execution of all and only the transitions corresponding

to trace ξ, and with Q →ξ Q
′, we refer to a generic transition of the trace ξ.

We identify a strict subset of the π-calculus processes, that we denote as Aπ , composed

by processes that are a parallel composition of: Amb(. . . ), In(. . . ), Out(. . . ), Open(. . . ),

Amb(top), and Opened(. . . ).

Formally,

Aπ = {Amb(top), Amb(a, p, ñ), In(b, in x), Out(c, out x), Open(d, open x), Opened(e, f) |
a, p, b, c, e, f ∈ N ∪ {top} ∧ x ∈ N ∧ ñ ∈ {(in x, out x, open x)|x ∈ N }}

The set Aπ identifies a super-set of the π-calculus processes encoding the MA processes. Of

course, the above definition could be refined in a way that we could prove the following:

Q ∈ Aπ iff ∃P ∈ PMA such that T (P ) = Q. This result requires a cumbersome definition

that will be not applied in the rest of the work instead we will use the result in the

following Proposition 4.1.
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Proposition 4.1. Let P be a MA process, then T (P ) ∈ Aπ.

Proof. The proof directly derives from the definition of the encoding function T () in

Definition 4.1. The most interesting cases are:

— rules 1, 2, and 3: Each capability is encoded by a process of the form In(. . . ), Out(. . . ),

and Open(. . . ), respectively, and the first parameter of each of the previous processes

is the actual name identifying the process encoding the ambient that contains the

capability;

— rule 8: A new name, say b, is introduced to be associated to the new ambient and it

is recorded, together with the previous name identifying the parent ambient, say a, in

the process Amb(b, a, . . . );

— rule 9: A bracket ��, (recall the MAs with brackets in Section 4.1), recording that an

ambient has been dissolved, is encoded by a forwarder process Opened(b, a) that just

redirects the requests on channel b to channel a.

The processes directly generated by our encoding are in Aπ , whereas their derivatives

may not be in Aπ, but, as we will show in Theorem 4.1, if T (P ) ≡ Q ∈ Aπ, and Q → Q′,

then there exist Q′′ ∈ Aπ such that Q′ →∗ Q′′.

To help this intuition, Figure 1 shows the relationship between the MA TS and

the π-calculus TS. In the figure, the MA states S1, S2, S3, S4, S5, S6 have a direct

correspondence in the π-calculus TS: T (Si) = Si′, with i ∈ [1, 6]. Please note that where

the MA needs only one transition to move from one state to another by executing a

capability, the π-calculus needs a number of transitions, i.e. a simulating trace. Not all

the intermediate states of the simulating traces are shown. In the π-calculus TS, there

are also other kinds of computation paths, where the single transitions of two (or more)

different traces are interleaved, shown in grey. Along these paths, none of the intermediate

states have a direct correspondence with the MA states (we have depicted this situation

with grey clouds). In the π-calculus, TS an aborting trace ξ is also depicted, starting and

ending in state S5′.

Now, we can precisely identify the first transition of a trace, as stated by the following

proposition.

Proposition 4.2. The first transition of a trace ξ is always generated by a communication

between a sub-process of the form: In(. . . ), Out(. . . ), Open(. . . ), and a process of the form

Amb(. . . ).

Proof. The proof directly derives from Definition 4.2, and Definition 4.3. A trace is

defined as a computation of a process Q = T (P ), with P ∈ PMA, and, by Proposition 4.1,

we have Q ∈ Aπ . Thus, by definition of the set Aπ , the only possible interaction for a

process in Aπ is between a sub-process of the form: In(. . . ), Out(. . . ), Open(. . . ), and a

process of the form Amb(. . . ), on a channel of the form in x, out x, open x, respectively,

for some x.
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Fig. 1. A graphical comparison between the MA TS and the π-calculus TS, where Si′ = T (Si), for

i ∈ [1, 6].

Fig. 2. The graphical representation of the encoding of the process P .

In the following Example 4.2 we will show a complete execution of a simulating trace,

and to help the intuition, we graphically outline the temporal creation of new channel

names used to link the sub-processes involved in the trace in order to complete the

capability simulation.

Example 4.2. We consider the simple MA process P = m[in n]|n[], where the ambient m

has the capability to enter the ambient n. The translation of the process P is

T (P ) = (ν top, a, b, m̃, ñ)(Amb(top)|Amb(a, top, m̃)|In(a, inn)|Amb(b, top, ñ)). To simplify the

presentation, we will refer to π-calculus processes encoding ambients and capabilities as

ambients and capability, respectively.

In Figure 2, we give a graphical representation of T (P ), and we use the notation already

adopted in Example 4.1: A square for a π-calculus process encoding an ambient, and an

oval for a π-calculus process encoding a capability. In this simulation, four sub-processes

are involved: the one encoding the ‘in’ capability (In(a, inn)), and the three ones encoding
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the ambients involved (the ambient that moves, Amb(a, top, m̃), the receiving ambient,

Amb(b, top, ñ), and the ambient Amb(top) containing the previous two). Please note that

in this case the two ambients, Amb(a, top, m̃) and Amb(b, top, ñ), have a common parent

ambient Amb(top); in general, we can have two different parent ambients, for each one of

the two involved processes of type Amb(. . . ), and this is a cause for a trace to evolve in

an aborting trace.

In Table 9, we show the trace execution performed by the process T (P ). To simplify

the presentation, we use the restriction operator (ν c̃hs), where c̃hs stands for one or more

of the private channel names introduced along the trace computation: pc, pc1, pc2, and

p3. In Figure 3, we outline the creation of the previous four private channel names used

to link all the ambients which make up the environment where the capability acts. For

the sake of legibility, here and later on in the paper, we will label each transition with

the input and the output prefixes taking part in it, whereas, according to the semantics in

Table 3, there should be no labels.

To simplify the execution, in our example, no Opened(. . . ) sub-processes are involved,

thus the trace execution needs the minimum number of transitions, 11, to complete the in

simulating trace.

— In the first transition, from state 1 to state 2, a private channel pc is created by

In(a, inn) and sent to process Amb(b, top, ñ), see picture (a) in Figure 3.

— In the second transition, from state 2 to state 3, process Amb(b, top, ñ) sends back to

In(a, inn) its coordinates along the private channel pc.

— In the third transition, from state 3 to state 4, a private channel pc1 is created by

In(a, inn) and sent to process Amb(a, top, m̃), see picture (b) in Figure 3.

— In the fourth transition, from state 4 to state 5, process Amb(a, top, m̃) sends back to

In(a, inn) its coordinates along the private channel pc1.

— In the fifth transition, from state 5 to state 6, some checks on the received coordinates

are performed by In(a, inn). If all the checks succeed, In(a, inn) creates a private channel

pc2 and sends it to Amb(top), see picture (c) in Figure 3.

— In the sixth transition, from state 6 to state 7, the process Amb(top) sends back to

In(a, inn) its coordinates along the private channel pc2.

— In the seventh transition, from state 7 to state 8, a private channel name pc3 is created

by In(a, inn) and sent to process Amb(top), see picture (d) in Figure 3.

— In the eighth transition, from state 8 to state 9, process In(a, inn) performs some

checks to verify that Amb(a, top, m̃) and Amb(b, top, ñ) have a common parent ambient

(otherwise the simulation trace would turn out to be an aborting trace), and the parent

ambient, that is in this case process Amb(top), sends its coordinates along the private

channel pc3, see picture (e) in Figure 3.

— In the ninth transition, from state 9 to state 10, process In(a, inn) sends the new

coordinates (that in this case are useless) to Amb(b, top, ñ) along the private channel

pc, and closes the communication with Amb(b, top, ñ), see picture (f) in Figure 3.

— In the tenth transition, from state 10 to state 11, process In(a, inn) sends the

new coordinates to Amb(a, top, m̃) along the private channel pc1, and closes the

communication with Amb(a, top, m̃), see picture (g) in Figure 3.
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Table 9. A complete execution of a in simulating trace.

1. (ν c̃hs)(Amb(top) | Amb(a, top, m̃) | In(a, inn) | Amb(b, top, ñ))

→ (ν pc)〈inn(pc), inn(pcx)〉

2. (ν c̃hs)(Amb(top) | Amb(a, top, m̃) | pc(ax , px).Link1in(a, pc, ax, pcx, inn)@Link2in(. . . )@

Link3in(. . . )@SimulateIn(. . . ) | pc(b, top).Busy(b, top, pc, in, ñ))

→ 〈pc(b, top), pc(ax, px)〉

3. (ν c̃hs)(Amb(top) | Amb(a, top, m̃) | Link1in(a, pc, b, top, inn)@Link2in(. . . )@

Link3in(. . . )@SimulateIn(. . . ) | Busy(b, top, pc, in, ñ))
→ (ν pc1)〈a(pc1), a(pcx)〉

4. (ν c̃hs)(Amb(top) | pc1(a, top).Busy(a, top, pc1, nocap, m̃) |
pc1(ax1 , px1).[ax1 = busy]Release1(a, px1 , pc, inn)@Inn(a, inn)

+[ax1 	= busy]Check1in(a, px1 , pc, b, top, pc1, ax1 , px1 , inn)@Link2in(. . . )@

Link3in(. . . )@SimulateIn(. . . ) |
Busy(b, top, pc, in, ñ))

→ 〈pc1(a, top), pc1(ax1 , px1)〉

5. (ν c̃hs)(Amb(top) | Busy(a, top, pc1, nocap, m̃) |
Link2in(a, top, pc, b, top, pc1, inn)@Link3in(. . . )@SimulateIn(. . . ) | Busy(b, top, pc, in, ñ))
→ 〈(ν pc2)top(pc2), top(pcx)〉

6. (ν c̃hs)(pc2(top, top).Busy(top, pc2) | Busy(a, top, pc1, nocap, m̃) |
pc2(ax2 , px2).[ax2 = busy]Release2(a, top, pc, pc1, inn)@Inn(a, inn)

+[ax2 	= busy]Check2in(a, top, pc, b, top, pc1, pc2, ax2 , px2 , inn)@

Link3in(. . . )@SimulateIn(. . . ) |
Busy(b, top, pc, in, ñ))

→ 〈pc2(top, top), pc2(ax2 , px2)〉

7. (ν c̃hs)(Busy(top, pc2) | Busy(a, top, nocap, m̃) | Link3in(a, top, pc, b, top, pc1, pc2, inn)@SimulateIn(. . . ) |
Busy(b, top, pc, in, ñ))

→ 〈top(pc3, pc2), top(pcx, p
′
x)〉

8. (ν c̃hs)(pc3(top, top).Busy(top, pc2) | Busy(a, top, pc1, nocap, m̃) |
pc3(ax3 , px3).([ax3 = busy]Release3(a, top, pc, pc1, pc2, inn)@Inn(a, inn)

+[ax3 	= busy]Check3in(a, top, pc, b, top, pc1, pc2, pc3, ax3 , px3 , inn)@

SimulateIn(. . . )) |
Busy(b, top, pc, in, ñ))

→ 〈(pc3(top, top), pc3(ax3 , px3)〉

9. (ν c̃hs)(Busy(top, pc2) | Busy(a, top, pc1, nocap, m̃) | SimulateIn(a, top, pc, b, top, pc1, pc2, top, top) | Busy(b, top, pc, in, ñ))

→ 〈pc(b, top), pc(anew, pnew)〉

10.(ν c̃hs)(Busy(top, pc2) | Busy(a, top, pc1, nocap, m̃) | pc1(a, b).pc2(top, top).0 | Amb(b, top, ñ))
→ 〈pc1(a, b), pc1(anew, pnew)〉

11.(ν c̃hs)(Busy(top, pc2) | Amb(a, b, m̃) | pc2(top, top).0 | Amb(b, top, ñ))
→ 〈pc2(top, top), pc2(anew, pnew)〉

12.(ν c̃hs)(Amb(top) | Amb(a, b, m̃) | 0 | Amb(b, top, ñ))
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Fig. 3. The creation and the use of private channels during an ‘in’ capability simulation.
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— In the eleventh transition, from state 11 to state 12, process In(a, inn) sends the new

coordinates (that in this case are useless) to Amb(top)along the private channel pc2,

and closes the communication with Amb(top), see picture (h) in Figure 3.

Please note that, in the previous example, in all the trace transitions, the process

In(a, inn) is always involved. As we will see later, we can then detect all the transitions

related to a specific trace, by only considering the process encoding the capability involved.

The next proposition proves two different facts:

i. When more traces interleave their transitions, no deadlock occurs and the computation

of each single trace is not altered, i.e. each trace can either successfully terminate or,

if the computation cannot proceed, aborts itself (making backtracking). The last case

happens when either the required structural conditions are not present, or the needed

processes are involved in the computation of other traces.

ii. Whenever a derivative of process Q ∈ Aπ executes a transition, then that transition

can only be part of a trace.

The proofs of the following Proposition 4.3, and Proposition 4.4 are in the Appendix B.

Proposition 4.3 (no trace interference).

Let P ∈ PMA be a MA process and let T (P ) ≡ Q be its encoding. If Q →∗ Q′, then ∃
Q′′ ∈ Aπ such that Q′ →∗ Q′′ and ∃ n � 1 traces ξ1, . . . , ξn such that Q →ξ1

∗ · · · →ξn
∗Q′′.

Previously, we have proved that all the traces start with an interaction between processes

of the form In(. . . ), or Out(. . . ), or Open(. . . ), and processes of the form Amb(. . . ). In the

following Proposition 4.4, we prove some further trace properties that allows one to

precisely detect the execution of a trace: how to distinguish the transition of a trace from

the transition of another one, and how to detect the last transition of a trace.

Proposition 4.4 (trace properties). Let P be a MA process, and let ξ be a trace executed

by the process Q = T (P ), then

1. the sub-process of the form In(. . . ), Out(. . . ), Open(. . . ), involved in the first transition

of a trace ξ, will be involved in all the transitions of ξ. We will call this sub-process

the sub-process characterising the trace ξ;

2. in the last transition of a trace ξ: Q →ξ Q
′, the sub-process C in Q, characterising the

trace, in Q′ will evolve into a composition of sub-processes In(. . . ), Out(. . . ), Open(. . . ),

Amb(. . . ), Opened(. . . ), and 0.

3. the number of the transitions of a trace is limited.

4.4. Operational correspondence

We rely on the notion of the operational correspondence to prove the correctness of our

encoding. To this end, the following Theorem 4.1 proves that whenever a MA process

executes a capability, then its π-calculus encoding can execute a series of transitions that

mimic the capability; Theorem 4.2 proves that whenever a translating π-calculus process

performs a transition, this is part of a computation trying to simulate a capability. The

proofs are in the Appendix B.
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Theorem 4.1 (operational correspondence 1). Let P be a MA process, and let Q ≡ T (P )

be its encoding. If Q →∗ Q′, then ∃ P ′ ∈ PMA, and Q′′ ∈ Aπ such that P →∗
p P

′, Q′ →∗ Q′′,

and Q′′ ≡ T (P ′).

In the following, we will use the classical notion for contexts: C{.} is any process with a

hole that will be filled by process P when we write C{P }. We write C{.} both for MA and

π processes. It will be clear from the context whether we refer to a MA or a π process.

Theorem 4.2 (operational correspondence 2).

Let P be a MA process, if P →∗
p P ′, then there exists a π-calculus process Q′ such that

Q = T (P ) →∗ Q′ and T (P ′) ≡ Q′.

4.5. Run time supports to avoid loops

In this section, we will discuss how the divergence introduced by our encoding is, in a

practical sense, harmless, as it can easily be detected and set apart.

We will consider two alternative methods for avoiding aborting traces. The first method

consists of a dynamic check over the process coordinates. Then, we will consider a second

alternative method based on a lookahead technique applied on a finite set of transition

steps. The first method (dynamic check) is more efficient from a computational viewpoint,

whilst the second method (lookahead) exploits the properties of traces which we have

shown in this paper.

Checking process coordinates.

We can avoid aborting traces by dynamically inspecting the syntax of the processes that

will be involved in the computation of a trace. This check can be fulfiled by inspecting

the parameters of those processes involved in the execution of a trace. Please remember

that the first transition of a trace is always performed by one process of the form In(. . . ),

or Out(. . . ), or Open(. . . ), and a process of the form Amb(. . . ), see Proposition 4.2. Also,

we have shown that along the trace more than one process of the form Amb(. . . ) and zero

or more processes of the form Opened(. . . ) can be involved. In any case, by checking the

coordinates of the processes involved in the first transition of a trace, before executing

it, it is possible to exactly detect all the processes that will be involved in the trace and

check their coordinates. This allows to understand if the trace would be an aborting or a

simulating one before executing.

As an example, let us consider the following process, where for simplicity we omit the

restriction of the names:

In(a, inn)|Amb(a, c, m̃)|Amb(b, c, ñ)|Amb(c, top, s̃)|Amb(d, b, ñ). This process reflects the fol-

lowing hierarchical structure (we use the ambient notation for an easier insight) where

each ambient is decorated with the unique names assigned by the encoding:

s[ m[in n]a | n[ n[ ]d]b]c.

Now, we can inspect the processes parameters to verify that the interaction between

processes In(a, inn) and Amb(b, c, ñ) will be the first transition of a trace that respects the

structural conditions for simulating a in capability (hence it will be a simulating trace).

In fact, the ambient a and b share the same parent ambient c.
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Differently, the interaction between processes In(a, inn) and Amb(d, b, ñ) would generate

a trace that does not fulfil the structural conditions required (and hence it would be an

aborting trace). In fact, the ambients d and a have two distinct parent ambients: b and s,

respectively. This kind of checks can be performed at execution time, by using a run-time

support which implements the analysis that we have described.

In the above example, no Opened(. . . ) processes have been considered. However, it

is always possible to verify the nature of a trace, i.e. simulating or aborting, even when

Opened(. . . ) processes are involved. Of course, the presence of Opened(. . . ) processes causes

an increased computation cost due to the further controls required to follow the chains

of expired names formed by the Opened(. . . ) processes.

We summarise all the possible situations in Table A1: The first two columns contain

the two processes that interact to initiate the trace; the third column contains a second

Amb(. . . ) process that is involved later in the trace; the fourth column contains the

Opened(. . . ) chain possibly involved in the trace; the fifth column says if the structural

conditions are satisfied (simulating trace) or not (aborting trace); the sixth column says

if the trace is a simulating or an aborting one (depending on the satisfaction of the

structural conditions in the previous column). Let us now explain the interpretation of the

first four rows of the table. In the first row, the two involved Amb(. . . ) processes share the

same parent ambient, thus the structural condition are satisfied. In the second row, the

process In(a1, inn) keeps a not updated name of the ambient where is lying. In this case,

if a chain of Opened(. . . ) processes connecting the name a1 to the name a2 exists, then

the structural conditions are still verified. In the fourth row, two chains of Opened(. . . )

processes connecting the names b1 and b2 to the same name do not exist, thus the trace

is aborting. The interpretation for the other rows is similar.

The formal proof for the results in Table A1 can be done by considering all the

possible kinds of traces, and by showing all the possible structural conditions that can be

found during the execution of a trace. Thus, the proof would be similar to the proof of

Proposition 4.3.

Lookahead technique.

The results in Propositions 4.2 and 4.4 allow to prove that it is always possible to check the

execution of the encoding π-calculus processes: In each state of the computation, we can

determine how many and which traces are running. In particular, by Proposition 4.4 point

1, each trace is characterised by a sub-process of the form In(. . . ), Out(. . . ), Open(. . . );

this sub-process participates in each transition of the trace. Proposition 4.4, point 3 states

that the number of transitions in each trace is limited, in fact, the number of transitions

of each trace depends on the capability simulated, on the type of release routine that is

possibly executed, and on the number of Opened(. . . ) processes involved. Please recall the

Example 4.2 where we show the complete execution of a trace simulating a in capability.

In the following, we use the notation →k , with k � 0, as a shorthand for k transition

steps. More formally, in case of a simulating trace, we can claim that if we have two MA

processes P , P ′ such that P 	≡ P ′, and T (P ) →k T (P ′), where k = 11+2N, or k = 8+2N,

with N is the number of Opened(. . . ) processes involved in the computation, then P →p P
′.

This property can be proved by exploit Proposition 4.4 and Theorem 4.1, here we also need
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to count the number of transition steps for each sub-case. In the case of an aborting trace,

we need to introduce the set TS(Aπ) to denote the TS generated by π-calculus processes

in Aπ. Please recall that we have defined the set Aπ as an over-approximation of the set of

processes generated by our encoding. Now, we can identify the aborting traces, i.e. those

generating divergence, in order to prune them from the TS(Aπ): If we have a MA process

P such that T (P ) → Q →k−1 T (P ), where k = 12+2N, or k = 11+2N, or k = 8+2N, or

k = 5+2N, where N is the number of Opened(. . . ) processes involved in the computation,

then we can eliminate the loop by defining TS(Aπ) = TS(Aπ) \ T (P ) → Q.

As before, the previous property can be proved by exploit Proposition 4.4 and

Theorem 4.1, here we also need to count the number of transition steps. It is important

to remark that it is possible to perform the above checks along the computation of the

π-calculus processes, and hence it suggests an effective run-time method to make the

divergence of our encoding harmless. In fact, as soon as the run-time support detects a

loop, the first transition of that loop can be dropped from the actual state of the TS.

More sophisticated checks could be implemented: When the run-time support detects an

aborting trace, then the interaction between the two initial involved processes can be

labelled as forbidden until some changes have occurred in the ambient nested structure

regarding the two above processes.

5. Conclusion and future work

We have proposed an encoding of the pure MAs into the polyadic π-calculus with match

and mismatch. We have encoded each ambient with a process identifier which shares a

private channel with the π-processes encoding its content. Each π-process encoding an

ambient also keeps trace of its position within the original ambient hierarchy by sharing a

second private name with its parent ambient. The two names keep the two basic notions

of an ambient separated: Who I am, and Where I am. The simulation of a capability

execution involves at least three processes: One encoding the capability, one encoding

the ambient over which the capability acts, and one encoding the ambient where the

capability is lying. If all the conditions required for the execution hold, i.e. if all the

involved sub-processes share the right channel names reflecting the correct hierarchical

ambient structure, the simulation ends successfully, otherwise the simulation aborts and

no side effects are produced. In the last case, our encoding introduces loops.

Our proposal represents an attempt to define an encoding of MA in the π-calculus as

precisely as possible. The main limitation is due to the possible divergence it introduces.

Nevertheless, we have also discussed how to check the execution of the traces in order

to make divergence detectable. We are confident that our technique could be applied for

translating other membrane calculi to π-calculus, such as Brane calculi (Cardelli 2005)

and P Systems (Pǎun 2000).

We have also introduced the mechanism of forwarding processes, i.e. every time a open

capability is simulated and an ambient name is disabled, we substitute the old process

encoding the ambient (Amb(a, b, ñ)), with a process Opened(a, b) that keeps trace of the

fact that all the requests on channels a must be redirected to channels b.
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This mechanism has also been used for the formulation of an open multiparty

interaction calculus, the link-calculus (Bodei et al. 2013), whose expressiveness has

been proved by the definition of an easy and direct encoding of the MAs.

The forwarding mechanism is also a way to keep track of the history of the dissolution

of ambients, and we are interested in applying it in a biological context where the code

could keep track of the moment a membrane disappears. The encoding technique we have

applied suggests that locality, which is an important aspect of real distributed systems,

also of biological systems, can be modelled as a third component in each interaction. See,

for example, a preliminary work in this direction (Bodei et al. 2014).
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Appendix A. Auxiliary Encoding Functions

Table A1. All the possible situations for process coordinates to verify or not structural

conditions.

Starts Starts Involved in Opened(. . . ) Structure Kind

the trace the trace the trace processes chain

In(a, inn) Amb(c, b, ñ) Amb(a, b, m̃) Satisfied Sim

In(a1, inn) Amb(c, b, ñ) Amb(a2, b, m̃) a1 	= a2, ∃ n � 0 s. t.

Opened(a1, p1) . . . Opened(pn, a2) Satisfied Sim

In(a, inn) Amb(c, b1, ñ) Amb(a, b2, m̃) b1 	= b2, ∃ n, m � 0 s. t.

Opened(b1, p1) . . . Opened(pn, pj)

Opened(b2, p
′
1) . . . Opened(p

′
m, pi)

with pj = pi Satisfied Sim

In(a, inn) Amb(c, b1, ñ) Amb(a, b2, m̃) b1 	= b2, 	 ∃ n, m � 0 s. t.

Opened(b1, p1) . . . Opened(pn, pj)

Opened(b2, p
′
1) . . . Opened(p

′
m, pi)

with pj = pi Not satisfied Ab

Out(a, outn) Amb(b, c, ñ) Amb(a, b, m̃) Satisfied Sim

Out(a1, outn) Amb(b, c, ñ) Amb(a2, b, m̃) a1 	= a2, ∃ n � 0 s.t.

Opened(a1, p1) . . . Opened(pn, a2) Satisfied Sim

Out(a, outn) Amb(b2, c, ñ) Amb(a, b1, m̃) b1 	= b2, ∃n � 0 s.t.

Opened(b1, p1) . . . Opened(pn, b2) Satisfied Sim

Out(a, outn) Amb(b2, c, ñ) Amb(a2, b1, m̃) b1 	= b2, 	 ∃ n � 0 s.t.

Opened(b1, p1) . . . Opened(pn, b2) Not satisfied Ab

Open(a, openn) Amb(b, a, ñ) Amb(a, c, m̃) Satisfied Sim

Open(a1, openn) Amb(b, a, ñ) Amb(a2, c, m̃) a1 	= a2, ∃ n � 0 s. t.

Opened(a1, p1) . . . Opened(pn, a2) Satisfied Sim

Open(a2, openn) Amb(b, a1, ñ) Amb(a2, c, m̃) a1 	= a2, ∃ n � 0 s. t.

Opened(a1, p1) . . . Opened(pn, a2) Satisfied Sim

Open(a2, openn) Amb(b, a1, ñ) Amb(a2, c, m̃) a1 	= a2, 	 ∃ n � 0 s. t.

Opened(a1, p1) . . . Opened(pn, a2) Not satisfied Ab
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Table A2. Definitions of Link1in(. . . ), Link2in(. . . ), and Link3in(. . . ).

Link1in(a, pc, ax, px, inn) = (ν pc1)a(pc1).pc1(ax1, px1).

([ax1 = busy]Release1(a, px1, pc, inn)@In(a, inn)

+

[ax1 	= busy]Check1in(a, px1, pc, ax, px, pc1, ax1, px1, inn)

)

Check1in(a, px1, pc, ax, px, pc1, ax1, px1, inn) = [a = ax1]0 + [a 	= ax1]Link1in(ax1, pc, ax, px, inn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

linking the
Amb(a, px1 , s̃)
where the
capability lay

Link2in(a, px1, pc, ax, px, pc1, inn) = (ν pc2)px1(pc2).pc2(ax2, px2).

([ax2 = busy]Release2(a, px1, pc, pc1, inn)@In(a, inn)

+

[ax2 	= busy]Check2in(a, px1, pc, ax, px, pc1, pc2, ax2, px2, inn)

Check2in(a, px1, pc, ax, px, pc1, pc2, ax2, px2, inn) = [px1 = ax2]0 + [px1 	= ax2]Link2in(a, ax2, pc, ax, px, pc1, inn)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

linking the
Amb(px1 , px2 , s̃)
containing
the 2 Amb()
processes
involved in the
in capability
execution

Link3in(a, ax2, pc, ax, px, pc1, pc2, inn) = (ν pc3)px(pc3, pc2).pc3(ax3, px3).

([ax3 = busy]Release3(a, ax2, pc, pc1, pc2, inn)@In(a, inn)

+

[ax3 	= busy]Check3in(a, ax2, pc, ax, px, pc1, pc2, pc3, ax3, px3, inn)

Check3in(a, ax2, pc, ax, px, pc1, pc2, pc3, ax3, fx3, inn) = [ax3 = px]Verifyin(a, ax2, pc, ax, px, pc1, pc2, pc3, ax3, px3, inn)

+

[ax3 	= px]Link3in(a, ax2, pc, ax, ax3, pc1, pc2, inn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

second time
linking the
Amb(px, px3 , s̃)
containing
the 2 Amb()
involved in the
in capability
execution

Verifyin(a, ax2, pc, ax, px, pc1, pc2, pc3, ax3, px3, inn) = [ax2 = ax3] 0 + [ax2 	= ax3]Release4(a, ax2, pc, pc1, pc2, pc3, inn)
} checking the

structural conditions
for the in capability
to be simulated
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Table A3. Definitions of Link1out(. . . ), and Link2out(. . . ).

Link1out(a, pc, ax, px, outn) = (ν pc1)a(pc1).pc1(ax1, px1).

([ax1 = busy]Release1(a, px1, pc, outn)@Out(a, outn)

+

[ax1 	= busy]Check1out(a, px1, pc, ax, px, pc1, ax1, px1, outn)

)

Check1out(a, px1, pc, ax, px, pc1, ax1, px1, outn) = [a = ax1]0 + [a 	= ax1]Link1out(ax1, pc, ax, px, outn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

linking the
Amb(a, px1 , s̃)
where the
capability lay

Link2out(a, px1, pc, ax, px, pc1, outn) = (ν pc2)px1(pc2, pc2).pc2(ax2, px2).

([ax2 = busy]Release2(a, px1, pc, pc1, outn)@Out(a, outn)

+

[ax2 	= busy]Check2out(a, px1, pc, ax, px, pc1, ax2, px2, outn)

Check2(a, px1, pc, ax, px, pc1, ax2, px2) = [ax2 = px1]Verifyout(a, px1, pc, ax, px, pc1, pc2, outn)

+

[ax2 	= px1]Link2out(a, ax2, pc, ax, px, pc1, outn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

linking the
Amb(px1 , px2 , s̃)
for updating
the coordinates

Verifyout(a, px1
, pc, ax, px, pc1, pc2, cap) = [px1

= ax] 0 + [px1
	= px]Release3(a, px1

, pc, pc1, pc2, outn)@Out(a, outn)
} checking

the structural
conditions for the
out capability
to be simulated
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Table A4. Definitions of Link1open(. . . ), and Link3open(. . . ).

Link1open(a, pc, ax, px, openn) = (ν pc1)a(pc1).pc1(ax1, px1).

([ax1 = busy]Release1(a, px1, pc, openn)@Open(a, openn)

+

[ax1 	= busy]Check1open(a, px1, pc, ax, px, pc1, ax1, px1, openn)

)

Check1open(a, px1, pc, ax, px, pc1, ax1, px1, open) = [a = ax1]0 + [a 	= ax1]Link1open(ax1, pc, ax, px, openn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

linking the
Amb(a, px1 , s̃)
where the
capability lay

Link3open(a, px1, pc, ax, px, pc1, openn) = (ν pc2)px(pc2, pc2).pc2(ax2, px2).

([ax2 = busy]Release2(a, px1, pc, pc1, openn)@Open(a, openn)

+

[ax2 	= busy]Check3open(a, px1, pc, ax, px, pc1, ax2, px2, pc2, openn)

Check3open(a, px1, pc, ax, px, pc1, ax2, px2, pc2, openn) = [px = ax2]Verifyopen(a, px1, pc, ax, px, pc1, pc2)

+

[px 	= ax2]Link3open(a, px1, pc, ax, ax2, pc1, openn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

linking the
Amb(px, px2 , s̃)
containing the process
Amb() where the
open capability acts on

Verifyopen(a, px1, pc, ax, px, pc1, pc2) = [a = px] 0 + [a 	= px]Release3(a, px1, pc, pc1, pc2, openn)@Open(a, openn)
} checking

the structural
conditions for the
open capability
to be executed
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Table A5. Definitions of Release1(. . . ), Release2(. . . ), Release3(. . . ).

Release1(a, p, pc, cap) = pc(release, release).0

Release2(a, p, pc, pc1, cap) = pc(release, release).pc1(release, release).0

Release3(a, p, pc, pc1, pc2, cap) = pc(release, release).pc1(release, release).pc2(release, release).0

Release4(a, p, pc, pc1, pc2, pc3, cap) = pc(release, release).pc1(release, release).

pc2(release, release).pc3(release, release)0

Table A6. Definition of Amb(top).

Amb(top) = top(pcx).pcx(top, top).Busy(top, pcx)

+

top(pcx, pc
′
x).pcx(nomatch, nomatch).Amb(top)

Busy(top, pc) = pc(anew, pnew).Amb(top)

+

top(pcx).pcx(busy, busy).Busy(top, pc)

+

top(pcx, pc
′
x).[pc = pc′

x]pc(top, top).Busy(top, pc)

+

[pc 	= pc′
x]pc

′
x(nomatch, nomatch).Busy(top, pc)

Appendix B. Proofs

Despite we adopted a reduction semantics, in the proofs of this section, we use transition

labels to help the understanding of each π-calculus interaction.

Proposition 4.3 (no trace interference).

Let P ∈ PMA be a MA process and let T (P ) ≡ Q be its encoding. If Q →∗ Q′, then ∃
Q′′ ∈ Aπ such that Q′ →∗ Q′′ and ∃ n � 1 traces ξ1, . . . , ξn such that Q →ξ1

∗ · · · →ξn
∗Q′′.

Proof. The proof is by induction on the number n of traces involved in the computation.

base step n=0

By hypothesis, Q executes no traces; thus, we may also say that Q executes no transitions.

In fact, if Q → Q′ for some Q′, by Proposition 4.2, it would be the first move of a trace.

The thesis follows.

base step n=1

By Proposition 4.2, any transition that Q can execute can only be the first transition of

a trace, either a simulating or an aborting one. As there is only one trace, there is no

interference between different traces.

Then, the proof proceeds by cases on the type of the process Open(. . .), or Out(. . . ), or

In(. . . ) involved in the first transition of Q.
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case in

The proof proceeds by executing a trace computation simulating the in capability, which

we will denote as ξ. The computation is similar to the one in Example 4.2. Please note

that in the example we did not consider the causes that make a trace computation abort.

We will show in detail the causes of a trace to abort in the n+1-th step, thus we skip the

computation.

Let Q′ be a derivate of Q reached by only executing transitions of ξ. It is important

to remark that there are two ways for Q′ to evolve: continuing executing the trace ξ, or

starting a new one. Thus, we can conclude that by executing only one trace ξ, Q can only

perform transitions of trace ξ.

Cases out and open are similar.

inductive step n + 1

Let Q →∗ Q′ be a series of transitions related to n complete or incomplete traces; by

inductive hypothesis, there is no interference between them.

Also, by inductive hypothesis, the next transition of the process Q′ is either a transition

of one of the previous n traces or it is an interaction between processes Amb(. . . ) and

Open(. . .) (or Out(. . . ), or In(. . . )) on the channels open x, out x, in x, respectively, where

x stands for any name. A transition of the last type turns out to be the first transition of

the n + 1-th trace.

The proof proceeds by cases on the type of the possible transitions the n+1-th trace can

start with. To simplify the presentation, we do not precisely specify the list of restricted

names, that can be deduced by the definition of the encoding function T (. . . ), and we use

a generic (ν m̃).

case open

By hypothesis, Q′ ≡ (ν m̃)(R |Open(a, openn) |Amb(b, g, ñ)), for some process R, and some

names a, b, g; Q′ can execute the first two transitions of the n+1-th trace, involving

processes Open(a, openn) and Amb(b, g, ñ):

Q′ (ν pc)〈openn(pc),openn(x)〉
−−−−−−−−−−−−−−→ Q1

〈pc(b,g),pc(ax,px)〉−−−−−−−−−→ Q2, where

Q2 ≡ (ν m̃)(R |Link1open(a, pc, b, g, openn) |Busy(b, g, pc, open, ñ))
Now, process Link1open(. . . ) (see code in Table A4) tries to communicate along channel a,

and there are the following two possibilities:

a. A sub-process Amb(a, p, s̃) exists in R, for some names p and s;

b. A sub-process Amb(a, p, s̃) does not exist in R, for some names p and s.

First, we show the case b., as it is simpler, then we focus on the case a.

case b.

By definition of process Amb(. . . ) (see code in Table 7), there must exist one sub-process

Opened(. . . ) that has substituted the Amb(a, p, s̃) process as the effect of the simulation of

the open a capability. Please note that there could be a chain of Opened(. . . ) subprocesses

involved in the n + 1-th trace. Thus, we have to prove that the process Q2 executes some

transitions involving the Opened(. . . ) sub-processes and that the computation falls in the

case a. The proof proceeds by induction on the number of times op that any Opened(. . . )

sub-process is involved in the computation.
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base case op = 1

By hypothesis, we can write Q2 as

Q2 ≡ (ν m̃)(R′ |Link1open(a, pc, b, g, openn) |Busy(b, g, pc, open, ñ) |Opened(a, a′) |Amb(a′, p′,

s̃)),

for some names a′, p′, s, with R = R′ |Opened(a, a′)|Amb(a′, p′, s̃);

now, the process Q2 can execute two transitions, between processes

Link1open(a, pc, b, g, openn) and Opened(a, a′), for an updating of the coordinates:

Q2

(ν pc1)〈a(pc1),a(pcx)〉−−−−−−−−−−−→ Q′
2

(pc1(a′ ,a′),pc1(ax1 ,fx1))−−−−−−−−−−−−→ Q′′
2, where

Q′′
2 ≡ (ν m̃)(R′ |Link1open(a′, pc, b, g, openn) |Busy(b, g, pc, open, ñ) |Opened(a, a′) |Amb(a′, p′,

s̃)).

Now, the first parameter of Link1open(a
′, pc, b, g, openn) is updated and the computation

can proceed as in the following case a.

inductive case op + 1

By hypothesis, we can write Q2 as

Q2 ≡ (ν m̃)(R′ |Link1open(a, pc, b, g, openn) |Busy(b, g, pc, open, ñ) |Opened1(a, a
1) | . . . |

Openedn(a
n, an+1) |Amb(an+1, p, s̃), for some names a1, . . . , an+1, p, s, where

R = R′′ |Opened1(a, a
1) | . . . |Openedn(an, an+1) |Amb(an+1, p, s̃), and also by hypothesis, op

Opened(. . . ) sub-processes have already been involved in the computation, thus we have

Q′
2 ≡ (ν m̃)(R′ |Link1open(an, pc, b, g, openn) |Busy(b, g, pc, open, ñ) |Opened1(a, a

1) | . . . |
Openedn(a

n, an+1) |Amb(an+1, p, s̃).

Now, Q′
2 can proceed with the two transitions involving Openedn+1(a

n, an+1) and

Link1open(a
n, pc, b, g, openn):

Q′
2

(ν pc1)〈an(pc1),an(pcx)〉−−−−−−−−−−−−→ Q′′
2

〈pc1(an+1 ,an+1),pc1(ax1 ,px1)〉−−−−−−−−−−−−−−−→ Q′′′
2 , where

Q′′′
2 ≡ (ν m̃)(R′ |Link1open(an+1, pc, b, g, openn) |Busy(b, g, pc, open, ñ) |

Opened1(a, a
1) | . . . |Openedn(an, an+1) |Amb(an+1, p, s̃)).

Now, the first parameter of Link1open(a
n+1, pc, b, g, openn) is updated and we can say that

the computation can proceed as in the following case a.

case a.

There are three further sub-cases:

a1. The sub-process Amb(a, p, s̃) appears in Q2, i.e. it is not involved in any of the previous

n traces;

a2. The sub-process Amb(a, p, s̃) has evolved in its busy configuration, i.e. it appears in

Q2 in its form Busy(. . . );

a3. The sub-process Amb(a, p, s̃) appears in Q2 neither in its Amb(. . . ) configuration nor

in its Busy(. . . ) configuration. This happens when one of the input prefixes in the first

five rows of Amb(. . . ) code or in the two last rows of Busy(. . . ) code in Table 7 has

been fired. In this case, no deadlock can occur, as it is always possible to execute

the subsequent output prefix on the private channel pc. After that, the computation

follows either the case a1. or the case a2., depending if process Amb(a, p, s̃) is involved

or not in one of the previous n traces.
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First, we show the case a2. as it is simpler, then we proceed with the case a1.

case a2.

By hypothesis, the process Amb(a, p, s̃) is involved in one of the first n previous traces and

appears in Q2 in its busy configuration, i.e. Busy(a, p, pc′, cap, s̃), for some name pc′. We

can write

Q2 ≡ (ν m̃)(R′ |Busy(a, p, pc′, cap, s̃) |Link1open(a, pc, b, g, openn) |Busy(b, g, pc, open, ñ)),
where R = R′ |Busy(a, p, pc′, cap, s̃), and cap ∈ {in, out, open}.
The only possible transitions for the n+1-th trace are the interactions between processes

Busy(a, p, pc′, cap, s̃) and Link1open(a, pc, b, g, openn):

Q2

(ν pc1)〈a(pc1),a(pcx)〉−−−−−−−−−−−→ Q3

〈pc1(busy,busy),pc1(ax1 ,px1)〉−−−−−−−−−−−−−−−→ Q4 ≡
(νm̃)(R′ |Busy(a, p, pc′, cap, s̃) |Release1(a, pc, openn) |Busy(b, g, pc, open, ñ)).
As the process Busy(a, p, pc′, cap, s̃) has sent the message ‘busy’, the computation of the

n+1-th trace ends as an aborting trace and no more interferences with the other traces

are possible:

Q4

〈pc(release,release),pc(ax1 ,px1)〉−−−−−−−−−−−−−−−−→ Q5 ≡ (νm̃)(R′ |Busy(a, p, pc′, cap, s̃) |Amb(b, g, ñ) |Open(a,
openn)).

The computation has backtracked and the process has returned to a state congruent with

Q′: Q5 ≡ Q′.

case a1.

By hypothesis, we have

Q2 ≡ (νm̃)(R′ |Amb(a, p, s̃) |Link1open(a, pc, b, g, openn) |Busy(b, g, pc, open, ñ)), where R =

R′ |Amb(a, p, s̃).
Now, the only two possible transitions for the n+1-th trace are between processes,

Amb(a, p, s̃) and Link1open(a, pc, b, g, openn), and we have the following:

Q2

(ν pc1)〈a(pc1),a(pcx)〉−−−−−−−−−−−→ Q3

〈pc1(a,p),pc1(ax1 ,px1)〉−−−−−−−−−−−→ Q4 ≡
(νm̃)(R′ |Busy(a, p, pc1, nocap, s̃) | Check1open(a, p, pc, b, g, pc1, a, p, openn) |Busy(b, g, pc,
open, ñ)).

The process Check1open(a, p, pc, b, g, pc1, a, p, openn) can evolve to process

Link3open(a, p, pc, b, g, pc1, openn) as the received name a is the expected one, see the code

of Check1open(. . . ) process in Table A4; thus, we have

Q4 ≡ (νm̃)(R′ |Busy(a, p, pc1, nocap, s̃) | Link3open(a, p, pc, b, g, pc1, openn) |Busy(b, g, pc,
open, ñ)).

Now, there are three possibilities for the coordinate g, i.e. the parent of b:

a1.1. the coordinate g is updated and the structural condition for the capability to be

executed is satisfied, i.e. g = a;

a1.2. the coordinate g is updated and the structural condition for the capability to be

executed is not satisfied, i.e. g 	= a;

a1.3. the coordinate g is not updated. This case requires the same reasoning made in the

previous case b., where the trace involves one or more Opened(. . . ) processes in order
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to update the coordinates, and we fall again in either case a1.1. or case a1.2. Thus, we

skip this case.

case a1.1.

By hypothesis, g = a, thus, we can substitute g with a:

Q4 ≡ (νm̃)(R′ |Busy(a, p, pc1, nocap, s̃) | Link3open(a, p, pc, b, a, pc1, openn) |Busy(b, a, pc,
open, ñ)).

The n+1-th trace evolves by executing the two following transitions between processes:

Busy(a, p, pc1, nocap, s̃) and Link3open(a, p, pc, b, a, pc1, openn):

Q4

(ν pc2)〈a(pc2,pc2)a(pcx,pc
′
x)〉−−−−−−−−−−−−−−−→ Q5

〈pc2(a,p),pc2(ax2 ,px2)〉−−−−−−−−−−−→ Q6 ≡ (νm̃)(R′ |
Busy(a, p, pc1, nocap, s̃) | Check3open(a, p, pc, b, a, pc1, a, p, pc2, openn) |Busy(b, a, pc, open, ñ)).
Please note that the process Check3open(a, p, pc, b, a, pc1, a, p, pc2, openn) can evolve to

process SimulateOpen(a, p, pc, pc1) as the received name a verifies the mismatch a 	= busy,

and the two matches a = a (see the code of processes Link3open(. . . ), Check3open(. . . ), and

Verifyopen(. . . ) in Table A4).

Then, the n+1-th trace concludes the capability simulation with the two following

transitions:

Q6

〈pc(a,p),pc(anew ,pnew)〉
−−−−−−−−−−−→ Q7

〈pc1(a,p),pc1(anew ,pnew)〉
−−−−−−−−−−−−→ Q8 ≡ (νm̃)(R′ |Amb(a, p, s̃) |C |Opened(b, a)),

where C stands for the continuation of the sub-process Open(a, openn).

We have shown how the n + 1-th trace concludes its computation simulating the open n

capability without any interference.

case a1.2.

By hypothesis, g 	= a, thus there exists a process Amb(g, g′, r̃) for some g′ and r. There are

three further sub-cases:

— case a1.2.1., the process Amb(g, g′, r̃) appears in Q4, i.e. it is not involved in any of the

previous n traces;

— case a1.2.2., the process Amb(g, g′, r̃) has evolved in its busy configuration, i.e. it appears

in Q4 in its form Busy(. . . );

— case a1.2.3., the process Amb(g, g′, r̃) appears in Q4 neither in its Amb(. . . ) configuration

nor in its Busy(. . . ) configuration. This happens when one of the input prefixes in the

first five rows of Amb(. . . ) code or the two last rows of Busy(. . . ) code in Table 7 has

been fired. In this case, no deadlock can occur, as it is always possible to execute

the subsequent output prefix on the private channel pc. After that, the computation

follows either the case a1.2.1. or the case a1.2.2., depending if process Amb(g, g′, r̃) is

involved or not in one of the previous n traces.

In the second case a1.2.2., the n + 1-th trace aborts, and the proof is similar to the case

a2.; thus, we skip it.

In the first case a1.2.1., Amb(g, g′, r̃) is not involved in other traces and the computation

of the n + 1-th trace proceeds from process Q4:

Q4 ≡ (νm̃)(R′′ |Busy(a, p, pc1, nocap, s̃) |Link3open(a, p, pc, b, g, pc1, openb) | Busy(b, g, pc,

open, ñ) |
Amb(g, g′, r̃)), where R′ = R′′|Amb(g, g′, r̃).
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Q4 can evolve by executing the two following transitions between processes:

Link3open(a, p, pc, b, g, pc1, openn) and Amb(g, g′, s̃):

Q4

(ν pc2)〈g(pc2),g(pcx)〉−−−−−−−−−−−→ Q5

〈pc2(g,g′),pc2(ax2 ,px2)〉−−−−−−−−−−−−→ Q6 ≡
(νm̃)(R′′ |Busy(a, p, pc1, nocap, s̃) | Release3(a, p, pc, b, g, pc1, pc2, openn) | Busy(b, g, pc,

open, ñ) |
Busy(g, g′, pc2, nocap, r̃)).

Please note that process Link3open(a, p, pc, b, g, pc1, openb) evolves to process

Release3(a, p, pc, b, g, pc1, pc2, openn) as the received name g verifies the mismatch g 	= busy,

the match g = g, and the mismatch a 	= g (see the code of processes Link3open(. . . ),

Check3open(. . . ), and Verifyopen(. . . ) in Table A4). At this point, the n+1-th trace can only

abort by performing the three following transitions:

Q6

〈pc(release,release),pc(anew ,pnew)〉
−−−−−−−−−−−−−−−−−→ Q7

〈pc1(release,release),pc1(anew ,pnew)〉
−−−−−−−−−−−−−−−−−−→

Q8

〈pc2(release,release),pc2(anew ,pnew〉
−−−−−−−−−−−−−−−−−−→ Q9 ≡ (νñ)(R′′ |Amb(a, p, s̃) |Open(a, openn) |Amb(b, g, ñ) |

Amb(g, g′, s̃)).

Here, we have shown that the n+1-th trace aborts as there are not the structural conditions

for the openn capability to be simulated.

cases in, out

The proofs for the cases in and out are similar to case open, i.e. we have to show all the

possible evolutions for the two traces similarly to the previous case open; thus, we skip

the two proofs.

We have shown two facts: (1) for any possible evolution of the n+1-th trace, no interference

with the previous n traces is possible, and (2) any transition performed by an encoding

process can only be part of a trace.

Proposition 4.4 (trace properties).

Let P be a MA process, and let ξ be a trace executed by the process Q = T (P ), then

1. the sub-process of the form In(. . . ), Out(. . . ), Open(. . . ), involved in the first transition

of a trace ξ, will be involved in all the transitions of ξ. We will call this sub-process the

sub-process characterising the trace ξ;

2. in the last transition of a trace ξ: Q →ξ Q′, the sub-process C in Q, characterising the

trace, in Q′ will evolve into a composition of sub-processes In(. . . ), Out(. . . ), Open(. . . ),

Amb(. . . ), Opened(. . . ), and 0.

3. the number of the transitions of a trace is limited.

Proof.

1. The proof consists in executing all the possible evolutions of each type of traces (a

simulating trace, mimicking an in or an out or open capability, or an aborting trace),

and it is similar to the one in Proposition 4.3.

2. The proof consists in executing all the possible evolutions of each type of traces (a

simulating trace, mimicking an in or an out or open capability, or an aborting trace),

focussing the attention on how the involved sub-processes evolve from the source state

to the target state of each transition. Thus, it is similar to the one in Proposition 4.3.
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3. The proof consists in executing all the possible evolutions of each type of traces (a

simulating trace, mimicking an in or an out or open capability, or an aborting trace),

and it is similar to the one in Proposition 4.3.

By counting the number of transitions of each trace, we can also be more precise and

declare the exact number of transitions for each kind of trace:

— a trace simulating an in capability has a length of 11 + 2N;

— a trace simulating an out or an open capability has a length of 8 + 2N;

— an aborting trace,

– using the recovery routine Release1, has a length of 5 + 2N;

– using the recovery routine Release2, has a length of 8 + 2N;

– using the recovery routine Release3, has a length of 11 + 2N;

– using the recovery routine Release4, has a length of 12 + 2N;

where N is the number of the Opened(. . . ) processes involved in the computation of

the trace.

Theorem 4.1 (operational correspondence 1).

Let P be a MA process, and let Q ≡ T (P ) be its encoding. If Q →∗ Q′, then ∃ P ′ ∈ PMA,

and Q′′ ∈ Aπ such that P →∗
p P

′, Q′ →∗ Q′′, and Q′′ ≡ T (P ′).

Proof. In Proposition 4.3, we have shown that process Q can only execute transitions

which are part of a trace. Thus, we can provide a proof by induction on the number n of

the traces involved in the computation of Q.

base case n=0

By hypothesis, Q executes no traces, thus we may also say that Q executes no transitions;

in fact, if Q → Q′, by Proposition 4.2, it would be the first move of a trace. Then, we let

P execute no transition and we set Q = Q′′, and P = P ′. The thesis follows.

base case n=1

By hypothesis, in the computation Q →∗ Q′, only one trace is involved. There are two

possibilities: (a) it is an aborting trace or (b) a simulating one.

In the case (a), we have to prove that there is a process Q′′ ∈ Aπ such that Q →∗ Q′′,

and Q′′ ≡ Q. The proof consists in showing the execution of any possible aborting trace,

and proceeds similarly to one of the cases (a1.2), (a.1.2.1), (a.1.2.2), and (a2) of the

Proposition 4.3. The thesis follows by letting P execute no transition, and by setting

P ′ ≡ P .

In the second case (b), there are three possibilities: the trace simulates an in, an out, or

an open capability.

case in

By hypothesis, Q can execute a simulating trace mimicking an in capability; thus, it

follows that

Q ≡ (νm̃)(In(b, inn)|S |Amb(b, d, s̃)|N|Amb(c, d, ñ)|R|Amb(d, t, r̃)|D), where (b, d), (c, d), (d, t)

are the coordinates assigned by the translation function to the π-calculus sub-processes
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encoding of the ambients s, n, r, respectively; and where S , N, and R, are the encoding of

the MA sub-processes located within the ambients s, n, and r, respectively, and where D

is the encoding of the context where the ambient d is located. Now, the proof continues

by structural induction on Q, where the base case is when D ≡ 0 and d = t = top, i.e.

when the context is null.

base case R ≡ 0 and d = t = top

We can rewrite Q as Q ≡ (νm̃)(In(b, inn)|S |Amb(b, top, s̃)|N|Amb(c, top, ñ)|Amb(top)|0).

For simplicity, we only consider the case where no Opened(. . . ) process is involved in

the computation, as the case where one or more Opened(. . . ) processes participate in the

computation evolves similarly to case (b) of the Proposition 4.3.

The process Q evolves in Q′′ by simulating the in n capability:

Q →∗ Q′ →∗ Q′′ ≡ (νm̃)(S |C|Amb(b, c, s̃)|N|Amb(c, top, ñ)|Amb(top)), where C is the

encoding of the continuation of In(b, inn), i.e. In(b, inn)@C ≡ Tma(in nP1, b), for some

MA process P1. We skip all the details of the above computation as they are similar to

case a1.1. of the Proposition 4.3; the only difference is that we should proceed by cases

on the number of transitions that Q has already executed evolving in Q′: Q →∗ Q′.

By definition of the encoding function, T (P ) = Q, we derive

P ≡ s[in n.P1|P3]|n[P2], with S = Tma(P3, s), N = Tma(P2, n).

At this point, the process P executes the in capability as follows:

P →p P
′ ≡ n[s[P1|P3])|P2]. The encoding of P ′ is: T (P ′) ≡

(νm̃)(Tma(P1, b)|Tma(P3, b)|Amb(b, c, s̃)|Amb(c, top, ñ)|Amb(top)|Tma(P2, c)).

Now, we have the thesis: Q′′ is congruent to T (P ′) as it correctly records the changing

of the ambient hierarchy: After the computation, process encoding ambient n, identified

by name c, has become the parent of process encoding ambient s, identified by the

name b.

inductive case R 	≡ 0 and d 	= top, t 	= top

By the Proposition 4.3, in the previous base case, along the computation for the simulation

of the in n capability, there is no possibility of synchronisation with other sub-processes

in the context R (when the sub-processes Opened(. . . ) are involved in the computation,

we fall again in the case already shown in the case b. of Proposition 4.3); thus, no side

effects are produced on the context R. In particular, d 	= top and t 	= top means that the

interacting processes are nested in the hierarchical ambient structure, and this situation

does not change the execution of the computation.

Then, we skip the inductive case of the structural induction, as it is similar to the base

case.

case out

The proof proceeds similarly to case in.

case open

By hypothesis, Q can execute a simulating trace mimicking an open capability; thus, it

follows that:

Q ≡ (νm̃)(R|Open(b, openm)|S |Amb(b, d, s̃)|N|Amb(c, b, ñ)), where (b, d) and (c, b) are the

coordinates of translation of the ambients s and n, respectively, and where S and N

are the translation of processes within the ambients s and n, respectively, and R is the

encoding of the context.
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As before, the proof continues by structural induction on Q, where the base case is when

R ≡ 0 and d = top, i.e. when the context is null.

base case R ≡ 0 and b = top

We can rewrite Q as Q ≡
(νm̃)(Open(top, openn)|S |Amb(top)|N|Amb(c, top, ñ)). For simplicity, we only consider the

case where no Opened(. . . ) process is involved in the computation, as the case where one

or more Opened(. . . ) processes participate in the computation evolves similarly to case b.

of the Proposition 4.3.

Now, the process Q can execute the simulation of an open capability, evolving in Q′′, as

follows: Q →∗ Q′ →∗ Q′′ ≡ (νm̃)(C|S |Amb(top)|N|Opened(c, top)), where C is the encoding

of the continuation of Open(b, openn), i.e. Open(b, openn)@C ≡ Tma(open n.P1, b) for some

MA process P1; the computation is similar to case a1.1. of the Proposition 4.3; thus, we

skip all the steps of the computation.

By definition of the encoding function we have, P ≡ open n.P1|P3|n[P2], where S =

Tma(P3, top), and N = T1(P2, n).

Now, the process P executes the open capability as follows: P →p P
′ ≡ P1|P3|�P2�.

The translation of P ′ is

T (P ′) = (ν m̃)(Tma(P1, top)|Tma(P3, top)|Amb(top)|Opened(c, top)|Tma(P2, c)), where c is a

restricted name (corresponding to restricted name c in the process Q′′).

The process Opened(c, top), that has replaced the process Amb(c, top, ñ), corresponds to

the translation of the new passive context surrounding P2, that has been created after the

execution of the open capability in P ′.

The thesis follows.

inductive case R 	≡ 0 and b 	= top

As before, by the Proposition 4.3, the context R is not altered by the simulation of the

open capability, and the interacting processes can also be located in a nested position in

the hierarchical ambient structure, i.e. b 	= top with no changes in the execution of the

computation; thus, we skip the inductive case of the structural induction.

inductive case n+1

By hypothesis, the computation Q →∗ Q′ involves n traces. Then, we may also assume

that process Q′ starts the n + 1-th trace.

By Proposition 4.3, we can say that the n+1-th trace can correctly proceed its computation

with no interferences with the previous n traces. Now, as in the base case (n = 1), there

are two possibilities: (a) the n+ 1-th trace is an aborting trace; (b) the n+ 1-th trace is a

simulating trace, and in the case (b), we have three choices: the simulation of an in, or of

an out, or of an open capability. The proof proceeds similarly to the previous base case,

and by inductive hypothesis we get the thesis.

Theorem 4.2 (operational correspondence 2).

Let P be a MA process, if P →∗
p P ′, then there exists a π-calculus process Q′ such that

Q = T (P ) →∗ Q′ and T (P ′) ≡ Q′.

Proof. The proof is by induction on the number n of the transitions executed by P .

base case n = 0
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By hypothesis, P executes no transition, and we let Q execute no transition; it follows

that T (P ) = Q, and we have the thesis.

base case n = 1

The proof proceeds by cases on the type of capability that process P executes: in, out, or

open.

case open

By hypothesis P ≡ G{D(open n.P1)|C(n[P2])} →p P
′ ≡ G{D(P1)|C(�P2�)}.

For simplicity, we assume that the context G contains an ambient t, where the sub-process

D(open a.P1)|C(a[P2]) lies.

The encoding of process P :

T (P ) = Q ≡ (ν m̃)(R|Open(b, openn)|Amb(b, d, t̃)|Amb(a, b, ñ)|Tma(P2, a)), where (a, b), and

(b, d) are the coordinates associated to the translation of the ambients n and t, respectively;

R is the encoding of the contexts G,D, and C.

Now, Q can execute the open simulating trace:

Q
τ̃−→∗(ν m̃)(R|C|Amb(b, d, t̃)|Opened(a, b)|Tma(P2, a)), where C is the encoding of the process

P1: Open(a, openn)@C ≡ Tma(open n.P1, a). We will skip the details of the computation, as

the execution is similar to the ones in the proof of Proposition 4.3.

The direct encoding of P ′ is

T (P ′) = Q1 ≡ (ν m̃)(R|C|Amb(b, d, t̃)|Opened(a, b)|Tma(P2, a)).

The process Q1 is congruent to Q′, up to α-conversion, and the thesis follows.

cases in and out

The others in and out cases are simpler, as no new passive context is created.

inductive case n + 1

By hypothesis, P →n
p P1. The proof proceeds similarly to the base case, by also considering

that, by Proposition 4.3, the interleaved execution of n+ 1 (simulating or aborting) traces

causes no side-effects on the previous n computations.
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