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Abstract

A balanced directed cycle design with parameters (v, k, 1), sometimes called a (v, k, l)Cf-design, is
a decomposition of the complete directed graph K^ into edge disjoint directed cycles of length k. A
complete classification is given of (v, k, ^C^-designs admitting the holomorph [<pa,b '• x *-*• ax + b \
a,b € l0, (a, v) = 1) of the cyclic group lv as a group of automorphisms. In particular it is shown that
such a design exists if and only if one of (a) k = 2, (b) p = 1 (mod k) for each prime p dividing v, or (c)
k is the least prime dividing v, k2 does not divide v, and p = l(mod£) for each prime p > k dividing v.

1991 Mathematics subject classification (Amer. Math. Soc): 05B30, 20B25.

In 1987, Brand and Huffman [2] showed that there were essentially two types of
balanced directed cycle designs, sometimes called Mendelsohn designs, admitting a
one-dimensional affine group AGL(l, q) over a field as a group of automorphisms.
The two types of examples correspond roughly to the additive and multiplicative
structure of the field GF(q). This paper was motivated by their result. We classify
all balanced directed cycle designs on v points admitting the holomorph {<pab : x v-+
ax + b | a, b e ~Iv,(a,v) = 1} of /„ as automorphisms. Again there are two basic
types of designs, based on the additive and multiplicative structure, and these basic
designs are combined in a well-defined manner to give the complete class of examples.

We shall be concerned with balanced directed cycle designs with parameters
(v, k, 1). Such designs have been called in the literature (v,k, 1)Q*-designs and
2-(u, k, 1) Mendelsohn designs, (see [2, 3, 4]). We shall use the former notation. A
(v, k, 1)0"* -design is a decomposition of the complete directed graph K^ into edge
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disjoint directed cycles of length k. The automorphism group AutX> of such a design
V is the subgroup of permutations of the points of ATj* which permute the cycles in the
decomposition among themselves. If H < Aut T> we shall say that T> admits H as a
group of automorphisms. A method often used for constructing these cycle designs is
the so-called difference method in which the set of v points of the design is identified
with a group G of order v in such a way that G, acting by right multiplication, is
admitted as a group of automorphisms. We shall say that such a design is based on
G. This difference method of construction was discussed in [1] , and the designs
described in [2] and [4] arise in this way. The normalizer of the group G (acting by
right multiplication) in the symmetric group of all permutations of a set of v points
is called the holomorph Hoi (G) of G and is the group generated by G and by Aut G
(acting naturally on the set of v points still identified with G). Our aim is to classify
all (v, k, l)C^* designs based on Zv and admitting the full holomorph Hoi (lv) as
automorphisms. For cyclic groups G = Zv the holomorph comprises simply the maps
<Pa,b : x \-+ ax + b where a , i € Z, and (a, v) = 1. As G = /„ is abelian we use ad-
dition as the group operation, so G acting by addition is the subgroup {<j>x,* \b G 1V\
of Hoi (Iv), and Aut /„ = {(f>a0 \ (a, v) = 1} consists of the multiplication maps by
integers relatively prime to v.

As described in [2], (v, k, 1)Q* designs V based on a group G may be described
quite compactly by the corresponding difference family T> which consists of one k-
tuple m(£?) of non-identity elements of G corresponding to each orbit 6 of G on the
cycles of T>. We define V for additive abelian groups. (The definition for general
groups is given in [4].) For a G-orbit 6 and cycle x = (x,\,..., xk) in C, the /t-tuple

is defined as

m(6) = (x2-xux3-x2,...,xk- Xt-uX! - xk).

Clearly m(£?) is independent of the cycle x in 6 as any other member of 6 is of the
form x + b = (*, + b, x2 + b,..., xk + b) for some b e G. Note that x, and hence
m (&), are given only up to a cyclic shift, for example (JC2, . . . . JC*, JCI) denotes the same
cycle and we write x = y to mean that the it-tuple y may be obtained from x by some
cyclic shift. The design T> is easily recovered from T> since if m(&) = (xi,..., xk)
then

6 = {(*,x + x2,x + x2 + x3,...,x + x2 + ... + xk) \ x G G}.

We shall usually describe such a design V by giving its difference family V. Moreover
[2] and [ 1 ] give a criterion for deciding when a collection of ^-tuples of elements of a
group G of order v is the difference family of a (v, k, l)Cj~* design based on G. We
quote their result here as it will be used very often in the paper. If m = (xu ...,xk)
and if c is the least positive integer such that x, = xi+c for all i, (reading subscripts
modulo k), we shall refer to the otuple (xu ..., xc) as theirs/ period of m. Note
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that, since m is denned up to a cyclic shift, the first period of m is also denned up to a
cyclic shift.

DIFFERENCE FAMILY CRITERION. Let Gbea group of order v, let k > 2, and let V
be a set ofk-tuples of elements ofG (where we take each k-tuple to be identified with
all its cyclic shifts). Then T> is the difference family of a (v, k, l)C^* design based on
G if and only if the following both hold.
(a) T) is contained in

Sk(G) = {(*!, ...,xk)\Xi e G, and for all i, j = 1 , . . . , *,

xi+i + • • • + *,-+; = 0 if and only if j = k}

(The subscripts are to be taken modulo k.)
(b) Each non-identity element of G occurs exactly once in the first period of exactly

one k-tuple oft).

If v is prime then Brand and Huffman [2] have classified all (v, k, \)C^ designs
admitting Hoi (2U), while if v is square free such designs were shown in [4, Theorem
5.10] to be obtainable by a generalized product construction from the Brand and
Huffman designs for the prime factors of v. We treat the general case here. Our result
is stated below, (where y(xu x2,..., xk) denotes (yxu yx2,..., yxk)).

THEOREM 1. Let v = p\l ... pe; where the /?, are primes, the e, are positive integers,
r > 1, and if r > 1 then p\ < p2 < • • • < pr. Let T> be the difference family of a
(v, k, 1)C^ design based on Zv and admitting Hoi (#„), where k > 1.

(a) Then one of the following holds.

(i) * = 2.
(ii) Pi = 1 (mod/fc) for each i = 1 , . . . , r.

(iii) k is the least prime dividing v, k2 does not divide v, and, /?, = 1 (mod&)
for each 1 < i < r.

(b) The difference family V is the disjoint union of subsets T>(d) (where d is a divisor
ofvandd < v) defined as follows.

(i) Ifk^pi,orifk = p\ and v/d is not a power of p\, then T)(d) consists
of the k-tuples dj(l, a,..., ak~l) where 1 < j < v/d, (jd, v) = d, and
a has multiplicative order k modulo v/d. (The element a depends only
on d.)

(ii) If k = p\ and v/d = p\, e < ex, then either ex = e = 1 and T>(d)
consists of the k-tuples dj (1, 1 , . . . , I) for 1 < j < px — 1, or k = px =
2,ex > 2 and V(d) consists of the k-tuples dj(\, -I) for 1 < j < 2e.
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Conversely, each set of k-tuples (up to cyclic shifts) T> defined as in (b) is the
difference family of a (v, k, l)C^ design based on Zv and admitting Hoi (Zu).

An immediate consequence of this classification is a classification of the set of
parameters (v,k) for which designs of this type exist.

COROLLARY 2. There exists a (v,k, l)Cf design based on Zv and admitting
Hoi (lv), where k > 1, if and only if one of the following holds.

(a) k = 2.
(b) p = 1 (modk) for each prime p dividing v.
(c) k is the least prime dividing v, k2 does not divide v, and, p = 1 (modk) for

each prime p > k dividing v.

The cases in the corollary above may be made disjoint by requiring k > 2 in (b) and
(c). These results will be proved in the next section.

REMARK. One general observation arising from the proof of Theorem 1 is that,
whenever a (v, k, 1)C^ design based on a group G admits an automorphism a e
AutG such that the centralizer CQ(O~) of a in G is very small, the value of k is
severely restricted.

To illustrate this point we have included, in Section 2, a classification of all such
designs for which CG(CT) is cyclic of order 2 or 4.

1. Proof of Theorem 1

Let V be a (v, k, 1)C^ design based on G = Zv and admitting Hoi (G), and let T> be
its difference family. Write v = p\s ... pe/ where the p, are primes, the e, are positive
integers, r > 1, and px < p2 < • • • < pr. If r > 2 then G = Gx © • • • © Gr, where
G, := 7Lp'i, and a convenient isomorphism is given by x h-> (vix, v2x,..., vrx) where
Vj := u/pf and the i-th entry vtx is taken modulo p'1. (Note that we are identifying
the additive group Zv/d with dZv for a divisor d of v.) Moreover the automorphism
group of G also decomposes as Aut G = Aut G\ x • • • x Aut Gr and an isomorphism
is given by <p \-+ (<j>i,..., (pr) where for each j , (v,x)</>, := Vi(x(f>), and

( v x x , . . . , vrx)(<h, ...,<t>r) := ((vxx)4>u ..., (vrx)(j>r).

Thus we have also Hoi (G) = Hoi (G() x • •• x Hoi (Gr). Let / := { 1 , . . . , r} and
for x e Zv define

/ ( * ) : = { / | U,-JC#O (modp?')},
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the supjwrt of x in the direct sum decomposition above, and define d(x) = (x, v), the
greatest common divisor of x and v. First we show that, for m € T>, the values of
these two functions on an entry in m are independent of the entry.

LEMMA 1.1. For m = (glt..., gk) e T) we have I(g\) = • • • = I(gk), which we
shall denote by I(m), andd(gi) = • • • = d(gk), which we shall denote by d(m).

PROOF. The fact that I(gi) = • • • = /(#*) was proved in [4, Proposition 5.6(a)].
As m is only given up to cyclic shifts we may suppose that d(gt) < d(gj) for all /.
Suppose that, for some i, d(gi) ^ d(gt). Then, for some prime p = Pj (1 < j < r)
and for some integer e, (1 < e < ej), pe divides g, but not g\. Since I(g\) = /(&•)
we must have e < e;, whence the integer a := 1 + v/pe is relatively prime to v.
Thus 0o,o € Hoi (G) c AutZ>, and so fixes V setwise. So m<f>aio is an element of
V containing gi(j>a,o = gi whence m0a,o = m by the Difference Family Criterion.
However this is not possible since gi<pa,o ^ gi- Thus d(gt) = d(gt) for all i.

Thus T> is partitioned into disjoint subsets T){d) — [m e T> \ d(m) — d) for each
proper divisor d < v of v. Since each non-zero element of G occurs in some jt-tuple
of T>, each set T){d) is non-empty. Next we show that T> has many subdesigns with
similar symmetry properties to T> itself. Note that this set of subdesigns contains all
the designs given by [4, Proposition 5.6(b)].

LEMMA 1.2. Let d < v be a divisor of v. Then the union V[d] = \Jd/bi>{b) is
a difference family for a (v/d, k, 1)C^ design based on Zv/d admitting Hoi (Zv/d)-
(Here we are identifying 1v/d with d1v.)

PROOF. By the Difference Family Criterion for t>, each element dx of dlv occurs
exactly once in the first period of exactly one &-tuple m in T>, and by Lemma 1.1,
m e T>[d]. We identify Zv/d with dlv as above, and with this identification it is
easily checked that each element of T)[d] lies in yk(lv/d). It follows that V[d] is a
difference family for a (v/d, k, 1)Q* design based on Zv/d. Moreover Aut 1V acting
on dlv induces every automorphism of d~Zv, and fixes V[d] setwise. Thus the design
corresponding to T>[d] admits Hoi (lv/d).

By considering the cases where v/d is prime we obtain strong restrictions on the value

COROLLARY 1.3. Either k divides pi — 1 for all i = 1 , . . . , r, or k = p\ and k
divides pt — 1 for alii > 1.
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PROOF. Choosing v/d = p, in Lemma 1.2 we obtain a (p,, &, 1)Q* design admit-
ting Hoi (Zp.), and so by [2] , either k = p, or k divides p,•, — 1. If k = p, for some i

then we must have k = p l t for k = p, , i > 2, implies that fc divides py — \, whereas
P\ < Pi-

Theorem 1 will be proved by induction on r. First we deal with the case r = 1, that
is the case where v is a prime power.

THEOREM 1.4. Let V be the difference family of a (pe, k, \)C^ design based on
Tp, and admitting Hoi (Zp0, where p is a prime and e is a positive integer. Then either
k divides p — \ork = p. Moreover

(a) ifk divides p — \ then V consists of the k-tuples pbj(\,a(b),a (b)2,..., a (b)k~l)
where 1 < j < pe~b, j is not divisible by p, a{b) has multiplicative order k
modulo pe~b, and 0 < b < e.

(b) if k = p then either e — 1 and T> consists of the k-tuples j (I, I,..., I) for
I < j < p — l.or k = p = 2, e > 2 and V consists of the k-tuples 2bj{\, —1)

for 1 < j < 2e~b, j odd, and 0<b<e.

Conversely each such family of k-tuples is a difference family for a (pe,k, l)C^
design based on Zp< and admitting Hoi (Zp0-

Note that each it-tuple in V is to be identified with all of its cyclic shifts, so for example
p"d, a(b) a{bf-x) = pba(b)(l, a{b),..., a(

PROOF. By Corollary 1.3, it either divides p — 1 or is equal to p . In the arguments
below we shall verify that each of the it-tuples in (a) or (b) lies in yk(Zp,). Then it
follows immediately from the Difference Family Criterion that each V as given in the
theorem is the difference family of a {pe, k, 1)C^ design based on TLP<. Clearly each
<pao € AutTLp< fixes T> setwise and hence the designs admit Hoi (Zp»)- It remains to
establish the form of the it-tuples in T>. Assume first that k = p.

If e = 1 then the ^-tuples in V are the it-tuples j{\, 1 , . . . , 1) for 1 < j < p - 1
by [2, Theorem 2.3]. So we may assume that e > 2. By the Difference Family
Criterion there is a unique &-tuple m in T> with pe~2 as an entry, and, by Lemma
1.1, each entry in m is divisible by pe~2 but not by p'~x. Since the sum of the
entries in m is zero modulo pe, and since k = p, m is not a constant it-tuple. Thus
m = (pe~2, pe~2a,...) for some a not divisible by p, with 2 < a < p2. Then (f>a 0 e
Aut Up*, and m<j)a,o has pe~2a = pe~2<j>a,a as an entry, whence m<f>a0 = m and we have
m = pe~2(l, a, a2,..., ap~l) and ap = 1 (modp2). However ap = a (modp) and
so we must have a — 1 + bp for some 1 < b < p — 1. Now the sum of the entries
of m is zero modulo pe, and so 1 + a + • • • + ap~x = 0 (mod p2). However, modulo
p2, 1 + a + • • • + a"'1 = £0<,<p_,(l + ibp) = p + bp2(p - l ) / 2 and this is zero
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modulo p2 if and only if p = 2. It follows that every £-tuple in V must be of the form
(j, —j) as in part (b).

Thus we may assume that k divides p — 1. In particular p is odd. For each
b — 0 , . . . , e — 1 there is a unique &-tuple mb in V with pb as an entry, and each entry
of mb is divisible by pb but not by ph+1 by Lemma 1.1. Since k is not divisible by
p, mb is not a constant k-tuple, so mb = (pb, pba,...) where a, which may depend on
b, is not divisible by p, and a ^ 1 (mod pe~b). Then 0aO e Aut Zp< and m0a,o = /n
since /n</>a>0 has / / a = pb<j>afi as an entry. It follows that m = p*(l, a , . . . , a*"1) and
ak = 1 (mod/>"-*). Suppose that a = 1 + cp for some c. Then the sum of the entries
in m, modulo pb+l, is pbk, and this contradicts the fact that m e yk(Zp<). Thus
a =£ 1 (modp). Then the sum of the first J entries of m is /Aa' — l)/(« — 1) and
this is zero modulo /?" if and only if a' = 1 (mod pe~b), since a — 1 is not divisible
by p. Since w e ^ ( Z ^ ) the element a must have order k modulo pe~b. Thus mb

is of the required form. Finally, since V is invariant under Hoi (Zp0, V contains
pbj(\, a,..., a*"1) for all j not divisible by p. Thus 1> is as in part (a), and the proof
of Theorem 1.4 is complete.

Now we shall complete the proof of Theorem 1. It is easily verified that the Difference
Family Criterion holds for the set of ^-tuples given in (b) so that V, as given in (b),
is the difference family for a (v/d, k, 1)Q* design based on G = 2V, and this design
admits Hoi (G). Also the restrictions on the values of k follow from Corollary 1.3.
It remains to establish that the k-tuples in V must be of the form given in (b). If
v = pi' ... pe

r
r with r = 1 then part (b) follows from Theorem 1.4. So we may

assume that r > 2 and that part (b) holds for integers v' with less than r distinct
prime divisors. Let m e V. If I(m), as defined just before Lemma 1.1, is a proper
subset of { 1 , . . . , /-} then, by Lemma 1.2, m lies in V[d], where d = d(m), and V[d]
is a difference family for a (v/d, k, 1)Q* design based on 1v/d = d1v admitting
Hoi (I-v/d)- By induction it follows that m = dj(l, a,..., ak~l) for some j such that
(dj, v) = d and some a with multiplicative order k modulo v/d. Moreover, since T> is
fixed setwise by Hoi (Iv), it follows that every m' eT> with d(m') = d is of the form
m' = dj'(l, a,..., ak~l) with the same a. Thus these /:-tuples are of the required
form, and so we may assume that I(m) = { 1 , . . . , r), that is, writing d = d(m), that
v/d is divisible by p\ ... pr. Consider first the £-tuple m with d as an entry. We
shall show that m = d(\, a,..., ak) for some a with multiplicative order k modulo
v/d. Then, as V is fixed setwise by Hoi (ZJ, all other m' e V with d(m') = d are of
the form m' = dj(l, a,..., ak~x) for some j such that 1 < j < v/d, (jd, v) = d,
and with the same a. Note that m is not the constant /t-tuple (d,d,... ,d) since the
sum of the entries of (d,d,..., d) is kd which is not zero modulo v since k < p\
and v/d is divisible by px... pr. Thus we have m = (d,da,...) where (da, v) = d,
and a ^ 1 (mod v/d). Moreover, as each /?, divides v/d, we must have (a, v) = 1,
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so <t>afi e Aut (G) and m<f>afi e *£>• As da = d4>afi is an entry of m<f>afi we have
m<t>afi = "i and it follows that w = d(l, a , . . . , a*"1) and a* = 1 (modv/d). Suppose
that (a — 1, v) ^ 1, so that a = 1 + cp, for some 1 < i < r, and c ^ 0 (mod t>).
Let the power of /?, dividing d be pf, so / + 1 < e,. Then, modulo p / + 1 , the sum
of the entries of m is dk. Since this sum is zero modulo v it follows that p, divides
k whence k = p\. In this case since k is prime and m is not a constant &-tuple, m
must have period k whence a must have order k modulo v/d. On the other hand, if
(a — 1, v) = 1 then the sum of the first t entries of m, namely d(a' — \)/{a — 1), is
zero modulo v if and only if a' = 1 (mod v/d), and again a must have order/: modulo
v/d. Thus in this case also the &-tuples are of the required form, and the proof of
Theorem 1 is complete.

2. Designs based on groups admitting an automorphism with small centralizer.

In this section we classify all balanced directed cycle designs based on a group G
and admitting an automorphism a of G such that the centralizer of a in G is cyclic of
order 2 or 4.

THEOREM 2.1. Let G be a group of order v and a an automorphism of G such
that the centralizer in G of a is a cyclic subgroup of order 2 or 4. If T> is the
difference family of a (v,k, \)C^ design based on G and admitting {a), then k = 2

= {(g,g-l)\g e G

Before presenting the proof of this theorem we note that there are many examples of
groups G admitting automorphisms of this type. Any even ordered abelian group has
such an automorphism, and so do many non-abelian groups, for example dihedral or
generalized quaternion groups with order divisible by 4.

PROOF. Let H = (h) be the subgroup of G centralized by a. There is a unique
element m in T> with h as an entry. Then, as ma also has ha = h as an entry, m° = m
and all of the entries of m lie in H \ {1}. Suppose first that H has order 2. Then, as
m e ^ t ( G ) , we must have k = 2 and m = (h, h). For any g e G \ {1} it follows
that the element of V with g as an entry is (g, g~l) as required.

Suppose now that H has order 4. If all three elements of H \ {1} are entries of m
then m has period 3, but in m, cyclically ordered, there are adjacent entries h, h3 or
h3, h with product 1 contradicting the fact that m e yk(G). Thus not all elements
of H \ {1} occur as entries of m. If h and h3 occur in m then k = 2 and m = (h, h3).
hi this case V = {(g, g~l) | g e G \ {1}} as in the theorem. If h and h1 occur
as entries of m then a second element m' of V has all its entries equal to h3. As
m' e yk(G) we conclude that k = 4, while m e yk{G) implies that k = 8. Thus
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we may assume that m = (h,h,h, h), k = 4, and similarly that a second element of
V is (h3, h3, h3, h3). But then a third element of V has all entries equal to h2, and
(h2, h2, h2, h2) $ 5fk (G). This contradiction completes the proof of the theorem.

It is easy to get fairly strong information about the difference sets in other cases, but
we do not get a complete classification. For example if the centralizer in G of a is
Z2 x Z2 then similar arguments show that either T> is the difference set in Theorem
2.1, or k = 3. However we do not know when such difference sets with k = 3 exist.
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