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THE MACNEILLE COMPLETION 
OF A UNIQUELY COMPLEMENTED LATTICE 

JOHN HARDING 

ABSTRACT. Problem 36 of the third edition of Birkhoff's Lattice theory [2] asks 
whether the MacNeille completion of uniquely complemented lattice is necessarily 
uniquely complemented. We show that the MacNeille completion of a uniquely com­
plemented lattice need not be complemented. 

Questions regarding the axiomatics of Boolean algebras led Huntington to conjecture, 
in 1904, that every uniquely complemented lattice was distributive. By 1940, Hunting­
ton's conjecture had been verified for the classes of modular lattices, atomic lattices, 
and complemented lattices which satisfy DeMorgan's laws. Then, a 1945 paper of Dil-
worth [3] proved the quite unexpected result that any lattice could be embedded into a 
uniquely complemented lattice. It is presently unknown whether a complete uniquely 
complemented lattice must be distributive. This question has been answered in the affir­
mative for the classes of continuous lattices (and therefore algebraic lattices), complete 
lattices with compact unit, as well as the classes mentioned above. The construction of 
Dilworth seems to have shed little light on this subject, as the uniquely complemented 
lattices constructed by his method need not be complete. For a thorough description of 
the results mentioned above and of the history of Huntington's conjecture, see [6] and 

[1]. 
Glivenko's theorem states that the MacNeille completion (also known as the com­

pletion by cuts) of a Boolean algebra is a Boolean algebra. One might hope for a 
generalization of this result to uniquely complemented lattices. Indeed, Birkhoff raised 
this question in the third edition of Lattice theory [2] as did Saliï in Lattices with unique 
complements [6]. We show that the MacNeille completion of a uniquely complemented 
lattice is not necessarily complemented. 

The example given here is based on Dilworth's original construction of uniquely 
complemented lattices given in [3], and we will assume a knowledge of this paper. 
For convenience, a result of [3] will be referred to simply by using italicized script, 
for example Theorem 4.4. I have attempted to keep the notation here consistent with 
[3]. Some of the results of [3] have however been rephrased to conform with modern 
terminology. 

The object of particular interest here is what Dilworth would refer to as the free 
uniquely complemented lattice generated by a totally unordered set P. We give a brief 
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outline of the construction given in [3]. 
The set O of operator polynomials over P {Definition 1.1) would commonly be 

referred to today as the term algebra of type D, U, * over P, where D and U are binary 
operation symbols, and * is a unary operation symbol. The symbol = (Definition 1.3) 
is used to denote equality between members of O. A rather complicated definition of a 
binary relation Z> over O is given by Definition 7.5, Definition 2.1 and Definition 2.2, 
and a relation ~ is defined on O by setting A~B if A 2 B and B D A. Theorem 2.2 gives 
an alternate description of the relation 2 which is much better suited to our purposes. As 
the set P we are considering is totally unordered, by the opening remarks in the proof of 
Theorem 2.24 we have the following version of Theorem 2.2. 

THEOREM 1 (Theorem 2.2). A D B in O if and only if one of the following holds; 
(1) A: 
(2) A i 
(3) A. 
(4) B 
(5) B 
(6) A. 

= B. 
= Ai 
= AX 

= BX 

= BX 

= A\ 

UA2 with A] D B orA2 2 B. 
(1A2 withAi D B andA2 2 B. 
UB2 with A D Bx and A D B2. 
DB2 with A DBiorAD B2. 
andB = B\ withA\~B\. 

There is a small clash between Theorem 2.1 and what has become accepted terminol­
ogy. In modern terms, the relation D is a quasi-ordering of O and Of~ is a lattice under 
the partial ordering inherited from D. The least upper bound of A/~ and B/~ being 
given by (A U B)/~ and the greatest lower bound by (A Pi B)/~. 

An element A of O is defined to be reflexive (Definition 3.2) if A~(X*)* for some X 
in O. The set of all operator polynomials which contain no reflexive sub-polynomials 
is denoted by N. An operator polynomial A Ç iVis union singular (Definition 4.1, 
Lemma 4.1) if A DX,X* for some X, X* G N and A is crosscut singular if X, X* D A for 
some X, X* G N.A is called singularif it is either union or crosscut singular. We denote by 
M the set of all operator polynomials which contain no singular sub-polynomials together 
with the two symbols u and z. We extend the relation D to M by setting u D A D z for 
all AGM. Again making allowances for differing terminology, we may state the results 
given in the proof of Theorem 4.1 as 

THEOREM 2 (Theorem 4.1). M/~ is a lattice. Furthermore the join ofA/~ andB/~ 
is (A U #)/— if A U B is nonsingular and is u/~ if A U B is singular, while the meet of 
A/~ and B/~ is given by (A Pi #)/— if A P\ B is nonsingular and is zj— if AC\B is 
singular. 

In fact, each element of M/~ has exactly one complement (Theorem 4.2), and M/~is 
the free lattice with unique complements generated by the unordered set P (Theorem 4.5). 
An alternate characterization of M/~ is given by considering the variety V of lattices 
with an additional unary operation _L which satisfies x + x1 > v, JC • xx < y and x11 = x. 
Then the proof of Theorem 4.5 shows that M / ^ is freely generated in V by the set Px : 

1 Saliï expresses concern [6, p. viii] that there are no explicit examples of uniquely complemented lattices 
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We recall the construction of the MacNeille completion [5] of a partially ordered 
set Q. For a subset S of Q, define L(S) = {x G Q : x < s for each 5 G 5} and 
U(S) = {x G Q : s < x for each s G 5}. The subset S is called a normal ideal of <2 if 
5 = LU(S). It is well known that S is a normal ideal of Q if and only if S is the intersection 
of principal ideals of Q. Therefore the collection of normal ideals of Q, partially ordered 
by set inclusion, forms a complete lattice which is called the MacNeille completion of 
Q (sometimes this is referred to as the completion by cuts). For normal ideals / and J of 
<2, the join of / and J in the MacNeille completion is LU(I ^ J), while the meet is given 
by I ^ J (the symbols w, ^ denote set union and intersection). 

We focus our attention on the MacNeille completion of the lattice M/~ constructed 
above. In the following, / and J will be normal ideals of M / ~ , neither containing the 
unit u/~ of M / ~ and both distinct from the zero ideal {z/—}. 

LEMMA 1. Let A, B be operator polynomials in M. 
i) IfA/~, B/~ G I then AU B G M and (AU B)/~ G /. 

ii) / / A / ~ B/~eJ then AU B G M and (AU B)/~ G /. 
Hi) IfA/~, B/~e U(I) then AHB G M and(AHB)/~ G U(I). 
iv) IfA/~, B/~e U(J) thenAHB G Mand(Ar\B)/~ G U(J). 

PROOF. Each of these is a simple consequence of Theorem 2 since / and J are ideals 
distinct from {z/—} which do not contain u/~. 

LEMMA 2. IfU(I — J) = {u/~}, then for B,C eM with B/~ G U(l) and C/~ G 
U(J), BUC is singular. 

PROOF. The join of B/~ and C / ~ is u/~, therefore by Theorem 2 BUC is singular. 

LEMMA 3. For A, B G M, ifAUB is singular, then there is X* G M with AUB D X, X*. 

PROOF. Let A,B e M with AUB singular. As A, B are nonsingular, AUB must be 
union singular, so AUB D Y,Y* for some F, 7* G N. By Theorem 2.7 either A 2 F* 
or 5 5 7*; we assume that A D F*. By Theorem 2.11 there is a sub-polynomial X* of 
A with X~Y. As X* is a sub-polynomial of A and A G M, by definition X, X* G M. But 
X~F, which implies that X * ~ r . Therefore A U 5 D X, X*. 

DEFINITION 1. For A G M let A be {X*/~ : X* G M and A D X*} and for T Ç M / ~ 

let î b e {X*/~ G T : X* G M}. 

LEMMA 4. For each A G M, A is finite. 

PROOF. By Theorem 2.11 if A D X* there is a sub-polynomial Af of A with Ai~X, 
soAÏ~X*. 

LEMMA 5. There is B0 G M with #0/— G £/(/) an J B0 = 1 and Co e M with 
Q/— G £/(/) aw J Co = / . In particular 1 and J are finite. 

outside the class of Boolean algebras. Free algebras in a variety as simply described as V seem to be quite 
explicit. Of course this is a matter of opinion. 
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PROOF. By Lemma 4 we may choose B0 e M with Bo/ — G U(I) so that the 
cardinality of ft is minimal among all such possible choices. As Bo/ — is an upper 
bound of /, Bo contains I. If X* G M and X* /~ is not an element of /, then as / is a 
normal ideal there is some B G M with B/~ G U(J) and X* /^ not an element of B. 
Then for D = B H ft, by Lemma 1 D G M and D/~ G £/(/). As ft 2 £> we have D is 
contained in ft, so by the minimality of Bo we have D = Bo. So X* / ~ is not an element 
of ft- Therefore Bo =1 and by Lemma 4 / is finite. 

LEMMA 6. IfU(I^J) = {w/~}, f/̂ rc f/^re « y G M withX* /~ el ^ J so that 
for each B,C<EM with B/~ G U(I) and C/~ G U(J) we have BUCDX. 

PROOF. Let ft, Co G M be the operator polynomials given by Lemma 5. By Lemma 2 
ft U Co is singular, so by Lemma 3 there is some X* G M with ft U Co 2 X*. Then 
by Theorem 2.7 either ft 3 X* or Co 2 X*, so in either case / —' 7 is nonempty. 
By Lemma 5 / ^ J is finite, so we may choose Xjf,.. .,X* G M so that {X*/~ : 
1 < / < « } = 7 ^ 7 . Suppose the conclusion of the lemma does not hold. Then for 
each 1 < i < n we can find ft, Q G M so that ft/~ G U(I) and Q/~ G £/(7) but 
Bt U Q ~D Xi (~0 means "does not contain"). Set £ = ( ( • • • (ft n f t ) H f t ) • • •) Hf t 

and C = ( (• • • (Co H Ci) H C2) • • • J Pi C„. A simple induction using Lemma 1 shows 
that ft C G M and 5 / ~ G £/(/), C / ~ G £/(7). Further ft D 5 and C; D C for each 
0 < / < n. By Lemma 2 and Lemma 3 there is some X* e M with 5 U C 2 X,X*. 
Then by Theorem 2.7 either 5 D X* or C D X*. But ft 2 # and C0 2 C so in either 
case X*~X* for some 1 < i < n. Then by Theorem 2.5 X^X,- for some 1 < i < n, so 
ft U Ci 2 X| contrary to our choice of ft and Ct. 

LEMMA 1. If A e M and B\JC ^ A for each B,C e M with B/~ G U(I) and 
C/~ £ U(J), then A/~is in the ideal ofM/~ generated by I ^ J. 

PROOF. The proof is by induction on the rank of A (Definition 1.2). If A G P satisfies 
the conditions of the lemma, then A/~ is an element of / ^ J. Indeed, if A/~ is not 
in / •—- 7, then as / and J are normal ideals there are ft C G M with B/~ G £/(/) and 
C / ~ G £7(7) so that B - D A and C ~D A. Then by Theorem 1, B U C - O A. Similarly 
if A = Aj satisfies these conditions, then A/~ is an element ofl^J. For A = Ai U A2 

the conclusion follows from the inductive hypothesis. We have only to verify the claim 
for A = A\ Pi A2. Consider four cases. 

(1) For all B,CeM with B/~ G f/(7) and C / ~ G £7(7), 5 U C D Ai. 
(2) For all B,CeM with £ / ~ G £/(/) and C / ~ G (7(7), B U C D A2. 
(3) For all B,C£M with £ / ~ G £/(7) and C / ~ G £/(7), 5 D Ai HA2. 
(4) For all B.CeM with fl/~ G £/(/) and C / ~ G £/(7), C D Ax H A2. 
First we show that one of these cases must apply. If ft, Q for 1 = 1 , . . . , 4 witness a 

failure of case 1, then set £ = ((ft n ft) H ft) H ft and C = ((Ci H C2) H C3) n C4. 
By Lemma 1 ft C G M with B/~ G £/(/) and C / ~ G £/(7). By Theorem 1 either 
fl U C 2 Ai, fl U C D A2, fl 2 Ai H A2 or C D AÏ H A2. But ft D B a n d C , O C for 
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each 1 < / < 4 contradicting our choices of #;, C/. Therefore one of the four cases must 
apply. 

If the first case applies, then by the inductive hypothesis A \ / ^ is in the ideal generated 
by / ^ / , so A/~ is also in the ideal generated by / ^ J. The second case is obviously 
similar. The third case implies that A/~ is an element of / since / is a normal ideal, and 
the fourth case implies that A/~ is an element of J. 

THEOREM 3. The MacNeille completion ofM/~ is a sublattice of the ideal lattice of 
M/~. 

PROOF. Let / and J be normal ideals of M / ~ . The meet of / and J in the MacNeille 
completion of M / ~ is I ^ J which agrees with the meet of / and J in the ideal lattice 
of M / ~ . The join of / and / in the MacNeille completion of Af/~ is LU(I ^ J) which 
is an ideal containing / and / . We must show that LU(I ^ J) is contained in the ideal 
generated by / •— J. It will do no harm to assume that / and J are distinct from {z/—} 
and neither contains u/~. We consider two cases. 

If U(I — J) = {w/-}> t n e n b v Lemma 6 there is X* G M with X*/~ G I — / so 
that for each B,C eM with B/~ G U(I) and C/~ G U(J) we have B U C D X. So by 
Lemma 7 X/~ is in the ideal generated by / ^- J. ButX* / ~ is also in the ideal generated 
by I ^ J and u/~is the join oîX/~ and X*/—• Therefore the ideal generated by I ^ J 
is all of Mj~ and hence contains LU{I ^ J). 

Let D G M with D / ~ G U(I — 7). Then for B,C G M with fl/~ G £/(/) and 
C / ~ G U(J), by Lemma 1 5 H D G M and C D D G M. Further (B HD)/~e U(I) and 
( C f l D ) / - G £/(/), and since D is nonsingular (BnD)U(CnD) e M. For A G M 
with A / ~ G L£/(/ — J) and 5, C G M with £ / ~ G £/(/) and C / ~ G £/(./), we have 
that (BHD)U (CDD) DA. So BU C D A for each B, C G M w i t h £ / ~ G £/(/) and 
C/~ £ U(J), then by Lemma 7 Aj~ is in the ideal generated by / ^ J. 

THEOREM 4. 77ie complemented elements of the MacNeille completion ofMj~ are 
exactly the principal ideals ofMj ~. 

PROOF. This follows from Theorem 3 since each element of M / ~ has only one 
complement. 

THEOREM 5. If the generating set P has more than one element, then the MacNeille 
completion ofMj^ is not complemented. 

PROOF. Note that if P has only one element, then M / ~ is a four element Boolean 
algebra. Assume that P has at least two elements. By Theorem 4 it is enough to show 
that M / ~ has a normal ideal which is not principal, this is equivalent to showing that 
M / ~ is not complete. By Theorem 1, 0/~ is freely generated as a lattice [7, 8] by 
P/~ ^ {A*/~ : A G O}. So by [4] each chain in Of~ is at most countable. As M / ~ 
is a sub-poset of 0 / ~ , each chain in M/~ is also at most countable. Noting that the 
sublattice of M/~ generated by P/~ is freely generated by P / ~ , by Theorem 4.7 M / ~ 
contains a sublattice freely generated by a countable set. Therefore M / ~ contains a 
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chain isomorphic to the rationals. Any complete lattice containing a chain isomorphic 
to the rationals must contain a chain isomorphic to the MacNeille completion of the 
rationals, that is, the extended reals. As each chain in M/~ is at most countable, M/~ 
is not complete. 
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