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SUM OF SQUARES RINGS 

BENJAMIN FINE 

I n t r o d u c t i o n . One of the nicest results in elementary number theory is the 
following, giving the relation between quadrat ic residues and sums of squares. 

T H E O R E M . Let n be a positive integer. If —I is a quadratic residue mod n then 
n = u2 + v2. Conversely, if n = u2 + v2 with (u, v) = 1, then —I is a quadratic 
resdidue mod n. 

There are various proofs of this theorem (see [4]). In a recent paper [2] the 
above was reinterpreted and a new proof given in terms of the s t ructure of the 
modular group M = PSL2(Z) — the group of linear fractional transformations 
z' = (az + b)/(cz + d), with ad — be = 1, and a, b, c, d integers. T h e result 
was shown to depend on the fact t ha t M is group-theoretically a free product 
Z2 * Z 3 [6]. I t has been found t ha t for many rings R (especially rings of integers 
over number fields) PSL2(R) is either a free product or a generalized free 
product [1 ; 3]. T h e question then arises as to whether these rings satisfy sum 
of squares properties similar to Z. 

1. Let R be a commutat ive ring with an identi ty (not a field) with — 1 not a 
square in R. Then R is a sum of squares ring if it satisfies: 

551. If r G R and — 1 is a quadrat ic residue mod r then r = ± {u2 + v2). 
552. If r = u2 + v2 with (u, v) = 1 then — 1 is a quadrat ic residue mod r. 

By the theorem, Z is a sum of squares ring. In this paper we will give 
sufficient conditions for rings to be sum of squares rings, and then give certain 
families of concrete examples (other than Z ) . 

Our results depend on the following two lemmas; for simplicity, ring means 
commuta t ive ring with identi ty. 

LEMMA 1. If R is a ring with no non-trivial idempotents and if PSL2(R) has 
only one conjugacy class of trace 0 (or more strongly of order 2) then R satisfies 
SSI. 

Proof. We must show tha t if — 1 is a quadrat ic residue mod r, where r Ç R, 
then r = dt (u2 + v2). 

(1) Suppose tha t a2 + 1 = 0 (mod r) for some a 6 R implies t ha t 
a2 + 1 = rs or, equivalently, —a2 + rs = 1. This implies t ha t there is a 

matr ix T [ a r 
— s —a 

of trace 0 and determinant + 1 . Thus T G SL2(R). 
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Since R has no non-trivial idempotents, PSL2(R) == SL2(R)/(-\-I) (because 
Z(SL2(R) = {dt/} ) so the elements of PSL2(R) can be considered as matrices 
of determinant 1 which are identified with their negatives. 

Let f = =b \ _a _ r\ e PSL2(R) correspond to T. 

(2) Since there is only one conjugacy class of trace 0, T must be conjugate to 

(3) Conjugating -4 = by an arbitrary B = , G SL2(R) 

gives 

™-'-fc î][-ï :][: d —b I _ J — (ac + bd) a2 + b\ 
_c a j L — (c2 + d2) ac + bdj 

Now r is conjugate to Â, so J1 must be of this form with r as the upper right 
entry. However, since BAB-1 is unique only up to + or —, it follows that 
r = ± (a2 + b2). 

Note that in the general case, if there exist non-trivial idempotents then the 
same proof shows that if —1 is a quadratic residue mod r then r = e(u2 + v2) 
for some idempotent e. 

Furthermore, any element of trace 0 has order 2 in PSL2(R) [6], so the lemma 
is true under the stronger condition that PSL2(R) has only one conjugacy class 
of elements of order 2. 

Condition SS2 is handled by a second lemma. 

LEMMA 2. / / R is a ring such that the g.c.d. of any two elements is expressible 
as a linear combination of them, then R satisfies SS2. 

Proof. Suppose r = u2 + v2 with (u,v) = 1. Since g.c.d.'s are linearly 
expressible, there exist x and y in R such that ux + vy = 1. This implies that 

[ ti v I 
with determinant 1; hence M G SL2(R). 

-y x j 

Now A = £ SL2(R). Conjugating A by i f gives 

MAM'1 = , 2 , 2x where a = w;y + vx => 
L — (# + y ) « J L s o U 

Since determinants are preserved by conjugation, — a2 — rs = 1 or a 2 - f 
1 = — rs which implies that —1 is a quadratic residue mod r. 

COROLLARY. Euclidean rings, quotients of Euclidean rings, and polynomial 
rings satisfy SS2. 

These follow from the fact that g.c.d.'s are linearly expressible in these types 
of rings. 
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2. Using these results, we first give sufficient conditions for a Euclidean 
domain to be a sum of squares ring. 

THEOREM 1. A Euclidean domain D with trivial units and char D F^ 2 is a 
sum of squares ring if its norm function TV is subadditive and 0 ^ N(b) = TV (a) 
implies N(a + kb) < TV (a) for some k in R. 

Proof. By the corollary, a Euclidean ring satisfies 552 so we need only show 
551. We do this by showing PSLi{D) has one conjugacy class of trace 0. Since 
there are trivial units, this is sufficient by Lemma 1. 

Let f £ PSL2(D) with tr f = 0. So f = =fc \ a b\. We will show T is 

r o n lc ~aJ 

conjugate to A = ± I . ft . 
Let 5 = {conjugates of f in PSL2(D)} and let V = dh \ a _ |M € with 

TV (a) minimal (since TV is integer valued, F exists). 
If TV (a) = 0 then a = 0, so 

' - [ Î ÎM-Î; ] 
since •—07 = 1 and D has trivial units. 

Suppose TV(a) > 0. Then since a2 + 1 = - 0 7 it follows that TV(0) • TV(7) = 
N(a2 + 1) = TV(a)2 + 1 (since TV is subadditive). Therefore, TV(0) g TV(<x) 
or TV (7) g TV (a), for if TV(0) ^ TV (a) + 1, or TV (7) ^ TV (a) + 1 we would 
have that TV(0) • TV (a) = TV (a)2 + 2N(a) + 1 > TV (a)2 + 1. 

Assume TV (7) ^ TV (a) (the proof works equally well if TV (0) ^ TV (a:)). Then 
by assumption, there exists a & in R such that TV (a + ky) < TV (a), unless 
7 = 0. 

Conjugate F = db \ a __H by tf = =fc R H Then = TF t/ftf-1 6 5, 

but 

LO IJL7 -aJLO lJ L 7 -a -ky J ' 

But TV (a + &Y) < N(a), contradicting the minimality of TV (a), unless 7 = 0. 

But then T = ± n _ and this implies that —a2 = 1, or a2 = —1, which 

is impossible since D has trivial units and char D 7^ 2. It follows that TV (a) = 0 

and V = ± n , completing the proof. 

From the above theorem we can recover the fact that Z is a sum of 
squares ring since absolute value is subadditive and 0 < b ^ a implies that 
0 = a - b < a. 
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3. We now present some concrete examples. 

THEOREM 2. Let p be a prime. If p = 3 (mod 4) and n > 1, then Zpn} the ring 
of integers mod pn, is a sum of squares ring. 

Proof. ZPn is a commutative ring with identity. The condition p = 3 (mod 4) 
guarantees that — 1 is not a square in Zpn. Also, since n > 1, Zpn is not a field. 

Since Zvn is a quotient of Z, Zpn satisfies 552 by the corollary to Lemma 2. 
We must then show it satisfies 551. Since a2 = 1 (mod pn) implies that 

a = dzl(mod) £w, it must be that Zvn has no non-trivial idempotents, so 551 
will follow if PSL2{Zvn) has one conjugacy of trace 0. But this follows from a 
result of D. L. McQuillan [5], which showed that all elements of PSL2{Zpn) of 
trace 0 are conjugate, for all primes p and all n ^ 1. 

Let us now consider the case of a field, in particular a polynomial ring over 
a field. 

THEOREM 3. Let K be afield, in which —lis not a square. If PSL2(K) has one 
conjugacy class of trace 0, then the polynomial ring K\x] is a sum of squares ring. 

Proof. K\x] satisfies 552 from the corollary to Lemma 2, so we must show it 
satisfies 551. Since K[x] has no non-trivial idempotents, this will follow if 
PSL2(K[x]) has one conjugacy class of trace 0. 

Let 2" = zb Ç PSL2(K[x\). We will show that T is conjugate 

to an element of PSL2(K). 

Let 5 = {conjugates of T} and let V = ± \ , J G S with deg / mini­

mal. If g = 0 or h = 0, then — f2 = 1 or f2 = — 1, contradicting the fact that 
— 1 is not a square in K (only units in K[x] are in K). Hence g ^ 0 and ^ 0 . 
If / Ç K, then since p + 1 = — gh implies that deg g + deg h = 2 deg / , 
it follows that g and & are also in K so FG PSL2(K). 

Finally, assume d e g / ^ 1. Since f2 + 1 = — g& implies that deg g + 
deg h = 2 deg / , it follows that deg g ^ deg / or deg h ^ deg/ . Since i£ is a 
field, by the division algorithm we can find a g G K[x] such that 

deg (/ + qg) < deg/ . Conjugating V by £/ = M gives 

* - "**•• - ±[i \\\i * J - [i -?] = ±[ / + . ' s;] 
which is in 5 and deg (/ + qg) < deg/ , contradicting the minimality of deg/ . 
Therefore, deg / ^ 1 so f £ K implies that g, h £ K (since g, h ^ 0) and 

V = [ { _ ^ ] € PSL2(K). 

Since PSLi(K) has only one conjugacy class of trace 0, and every T with 
tr T = 0 € P5i 2 (X[x]) is conjugate to F € PSL2(K), then PSZ,(#[*]) has 
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only one conjugacy class of trace 0, showing K[x] satisfies 551 and is therefore 
a sum of squares ring. 

THEOREM 4. If p is a prime, p = 3 (mod 4), then Zp[x] is a sum of squares 
ring (Zp = finite field of order p). 

Proof. This follows from Theorem 3 and McQuillan's results cited above. 
(The condition p = 3 (mod 4) is necessary so that —1 is not a square in Zp.) 

THEOREM 5. If F is an ordered field, and if every positive element of F has a 
square root, then F[x] is a sum of squares ring. 

Proof. Since F is ordered, —1 is not a square. Therefore, by Theorem 3 it 
suffices to show PSL2(F) has only one conjugacy class of trace 0. 

Let T = db * . We will show that T is conjugate to ± .. . 

Since a2 + 1 = — rs, we have — rs > 0. Assume r > 0, so s < 0. Let 
s = -s > 0. 

Conjugating by arbitrary £ SL2(F) gives 

\u v J I 0 1H [ n —v\ _ \ — (vn + urn) u2 + v2 | 
[_m njL — l 0J L — m u \ L — (n2 + m2) vn + um J 

[-îi] Therefore, to show T is conjugate to ± 1 n we must find u, v, m, n 

such that 
(1) u2 + v2 = r, 
(2) m2 + n2 = 5, 
(3) un — vm = 1, and 
(4) — (vn + um) = 2. 
Now solving (1), (2), (3) is sufficient for if u, v, m, n satisfy (1), (2), (3) then 

[u v~\ 1" 0 l l [" n -v~\ _Tp r 1 
Lm nJL-l O j L - m u J ~ L^ - j s j 

implies j82 = a2 or /3 = dz a = db (vn + um). 
If a = —vn — um we are done. If a = vn + um, then —u, —n,v,m also 

satisfy (1), (2), (3) and give the right value for a. 
Now we show that (1), (2), (3) can be solved. First choose u and v with 

u2 -\- v2 — r and u ^ 0. This can be done since r > 0, and every positive ele­
ment has a square root. We now solve for n, m. From (3), n = (1 + vm) /u and 
from (2), m2 + n2 = m2 + (1 + vm)2/u2 = s. It follows that u2m2 + v2m2 + 
2vm + 1 — su2 = 0 or (u2 + v2)m2 + 2vm + 1 — su2 = 0. Since every positive 
element has a square root, this is solvable for m if the discriminant is non-
negative, that is, if 

4v2 - 4:(u2 +v2)(l - su2) ^ 0 

(equivalently, v2 — (u2 + v2) (1 — su2) ^ 0) 
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or if 

suA + su2v2 — u2 ^ 0 (equivalently, u2(su2 + sv2 — 1) ^ 0). 

But since u ^ 0 it must be that su2 + sv2 — 1 â 0, (that is, s(w2 + v2) — 
1 ^ 0) or sr - 1 ^ 0. 

But sr = 1 + a2 implies that sr — 1 = a2 ^ 0, so it is solvable for m. 

Therefore T is conjugate to db n and PSL<i(F) has one conjugacy 

class of trace 0, so F[x] is a sum of squares ring. 

As an immediate consequence we get the following: 

COROLLARY. If R denotes the real field, and A is the field of real algebraic num­
bers over Q, then R[x], and A[x] are sum of squares rings. 

4. In closing, two questions are presented which arise in the light of the 
examples. 

(1) If R is both an integral domain and a sum of squares ring, must it be a 
unique factorization domain? In the examples, Z and K[x] were both, and 
these are UFD's. 

(2) If R is a sum of squares ring, is R[x] also a sum of squares ring? In 
par t icular , is Z[x] a sum of squares ring? 
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