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Abstract

The trace of the n-framed surgery on a knot in S3 is a 4-manifold homotopy equivalent
to the 2-sphere. We characterise when a generator of the second homotopy group of such
a manifold can be realised by a locally flat embedded 2-sphere whose complement has
abelian fundamental group. Our characterisation is in terms of classical and computable
3-dimensional knot invariants. For each n, this provides conditions that imply a knot
is topologically n-shake slice, directly analogous to the result of Freedman and Quinn
that a knot with trivial Alexander polynomial is topologically slice.

1. Introduction

Question. Let M be a compact topological 4-manifold and let x ∈ π2(M). Can x be represented
by a locally flat embedded 2-sphere?

Versions of this fundamental question have been studied by many authors, such as [KM61,
Tri69, Roh71, HS71]. The seminal work of Freedman and Quinn [Fre82, FQ90] provided new
tools with which to approach this problem. In independent work of Lee and Wilczyński [LW90,
Theorem 1.1] and Hambleton and Kreck [HK93, Theorem 4.5], the methods of topological surgery
theory were applied to provide a complete answer for simply connected, closed 4-manifolds,
in the presence of a natural fundamental group restriction. That is, they classified when an
element of the second homotopy group of such a 4-manifold can be represented by a locally
flat embedded sphere whose complement has abelian fundamental group. Lee and Wilczyński
[LW97] later generalised their theorem to apply to simply connected, compact 4-manifolds with
homology sphere boundary. In this article, we expand our understanding to another general class
of 4-manifolds with boundary.

Our main result is an answer to the sphere embedding question for 4-manifolds called knot
traces, with x a generator of the second homotopy group. Let νK be an open tubular neigh-
bourhood of a knot K in S3 and let n be an integer. The n-framed knot trace Xn(K) is the
smooth 4-manifold obtained by attaching a 2-handle D2 × D2 to the 4-ball along νK ⊂ S3,
using framing coefficient n and smoothing corners. The boundary of Xn(K) is the n–framed
surgery S3

n(K) := (S3�νK) ∪ D2 × S1, where ∂D2 × {1} is attached to the n-framed longitude
of K.
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Embedding spheres in knot traces

Theorem 1.1. Let K be a knot in S3 and let n be an integer. A generator of π2(Xn(K)) can
be represented by a locally flat embedded 2-sphere whose complement has abelian fundamental
group if and only if:

(i) H1(S3
n(K); Z[Z/n]) = 0; or equivalently for n �= 0,

∏
{ξ|ξn=1} ΔK(ξ) = 1;

(ii) Arf(K) = 0; and
(iii) σK(ξ) = 0 for every ξ ∈ S1 such that ξn = 1.

The theorem is stated in terms of some well-known knot invariants that arise from a Seifert
matrix V for K. The Alexander polynomial ΔK(t) ∈ Z[t, t−1] can be most quickly defined as
det(tV − V T ). Then the Arf invariant of K in Z/2 is 0 if ΔK(−1) ≡ ±1 mod 8 and is 1 if
ΔK(−1) ≡ ±3 mod 8. Finally the Tristram–Levine signature, for ξ ∈ S1 ⊆ C, is the signature
of the Hermitian matrix (1 − ξ)V + (1 − ξ)V T . These invariants are independent of the choice of
Seifert surface and Seifert matrix, and they are straightforward to compute from a knot diagram.

For certain choices of n, there are logical dependencies among the conditions (i), (ii), and
(iii) above. When n = 0, condition (i) states that H1(S3

0(K); Z[Z]) = 0, which is equivalent to
ΔK(t) = 1, which in turn implies both conditions (ii) and (iii). When n = ±1, conditions (i) and
(iii) are automatically satisfied.

When n �= 0, condition (i) is equivalent to the condition that Σ|n|(K), the n-fold cyclic
branched cover of S3 with branching set K, is an integral homology sphere. This is due to
the classical formula |H1(Σ|n|(K); Z)| =

∏
{ξ|ξn=1} ΔK(ξ) due to [Goe34, Fox56]. When n �= 0 is

even, condition (i) implies condition (ii), as follows. The expression
∏

{ξ|ξn=1} ΔK(ξ) equals the
resultant Res(ΔK(t), tn − 1) ∈ Z. Whenever m divides n, tm − 1 divides tn − 1, and so by the
characterising properties of resultants we have

Res(ΔK(t), tn − 1) = Res(ΔK(t), tm − 1) · Res(ΔK(t), (tn − 1)/(tm − 1)).

Since Arf(K) = 1 implies that Res(ΔK(t), t2 − 1) = ΔK(−1) �= 1, it follows that Arf(K) = 1
further implies that Res(ΔK(t), tn − 1) =

∏
{ξ|ξn=1} ΔK(ξ) is not equal to 1 for n even.

Throughout the paper we will assume knots are oriented in order to make various construc-
tions in the standard way. However, none of the conditions (i), (ii), or (iii) depends on a given
orientation for the knot, and so the characterisation provided by Theorem 1.1 is independent of
this choice.

The remainder of the introduction proceeds as follows. In § 1.1, we discuss the applications
of Theorem 1.1 to the study of whether a knot is shake slice. In § 1.2 we give a quick proof of
the main theorem for the case n = 0, and then some further results that we have obtained when
n = ±1. In § 1.3 we outline the topological surgery theory strategy we use to prove our main
result.

1.1 Shake slice knots
The embedding question for a generator of the second homotopy group of a knot trace is of
interest via the lens of knot theory.

Definition 1.2. A knot K is n-shake slice if a generator of π2(Xn(K)) ∼= Z can be realised
by a locally flat embedded 2-sphere S. We say a knot K is Z/n-shake slice if in addition
π1(Xn(K)�S) ∼= Z/n.

For every n ∈ Z, the fundamental group of the complement of an embedded sphere generating
π2(Xn(K)) abelianises to Z/n, so our condition that π1(Xn(K)) ∼= Z/n is just a more specific
way to express the abelian condition on the fundamental group.
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Theorem 1.1 can be viewed as a characterisation of when a knot K is Z/n-shake slice.
Although the term ‘n-shake slice’ was not coined until much later, classical obstructions to
being n-shake slice were already obtained in the 1960s. In the course of proving Theorem 1.1 we
obtained several new proofs of these classical results. Robertello [Rob65] showed that the Arf
invariant obstructs K from being n-shake slice, for every n. We give a new proof of Robertello’s
result in Proposition 6.5 for all n, and we outline a second new proof in Remark 4.7 for even n.
Both proofs are different from Robertello’s. Saeki [Sae92] has yet another proof in the smooth
category that uses the Casson invariant.

Tristram [Tri69] showed that the signatures σK(ξm
p ), for p a prime power dividing n, obstruct

K being n-shake slice. We provide a different proof in § 3 that also explains Tristram’s theorem in
the context of our results. Our proof is similar to that sketched by Saeki in [Sae92, Theorem 3.4].

For n = 0, it remains unknown in both the smooth and topological categories whether every
0-shake slice knot is slice. An immediate consequence of our theorem is that a knot is Z-shake
slice if and only if it is Z-slice: both correspond to Alexander polynomial one.

Now we describe some further consequences of Theorem 1.1 that are proved as corollaries
in § 2. First, we provide new examples of the difference between the smooth and topological
categories. Recall that a knot is smoothly n-shake slice if a generator of π2(Xn(K)) ∼= Z can be
realised by a smoothly embedded 2-sphere S.

Corollary 2.3. For every n > 0 there exist infinitely many knots that are n-shake slice but
neither smoothly n-shake slice nor (topologically) slice. These knots may be chosen to be distinct
in concordance.

We then show that being n-shake slice for infinitely many n ∈ Z does not imply slice.

Corollary 2.4. There exist infinitely many non-slice knots, each of which is n-shake slice for
infinitely many n ∈ Z. Moreover, these knots may be chosen to be distinct in concordance.

A question of Hedden [Max16] asks whether the concordance class of a knot must be deter-
mined by the infinite tuple of homology cobordism classes (S3

p/q(K))p/q∈Q. We provide evidence
for a negative answer to this question as follows, in what we believe is the first example of non-
concordant knots with the property that infinitely many of their integer surgeries are homology
cobordant.

Corollary 2.5. There exist infinitely many knots {Ki}, mutually distinct in concordance, and
an infinite family of integers {nj} such that S3

nj
(Ki) is homology cobordant to S3

nj
(U) for all

i, j ∈ Z.

We remark that 0 is not an element of our family of integers {nj}: S3
0(K) is homology

cobordant to S3
0(U) if and only if K is slice in an integral homology 4-ball (which, incidentally,

implies that S3
n(K) is homology cobordant to S3

n(U) for all n ∈ Z). It is currently an open
question in both categories whether there exists a non-slice knot that is slice in a homology ball.

We then show that, for most m and n, the m-shake slice and n-shake slice conditions are
independent.

Corollary 2.8. If m does not divide n then there exist infinitely many knots which are n-shake
slice but not m-shake slice. These knots may be chosen to be distinct in concordance.

The difference between n-shake slice and Z/n-shake slice can also be investigated using
Theorem 1.1. For composite n the theorem says there are extra signatures away from the prime
power divisors of n whose vanishing is necessary for an n-shake slice knot to be moreover Z/n-
shake slice; cf. [Sae92, Proposition 3.7]. Consider that every slice knot is n-shake slice for all n,
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but according to Cha and Livingston [CL04], for any choice of composite n and root of unity
ξn, there exist slice knots K with σK(ξn) �= 0. We will prove that examples of this sort are not
peculiar to composite n.

Corollary 2.10. For all n �= ±1, there exists a slice, and therefore n-shake slice, knot that is
not Z/n-shake slice.

1.2 The cases n = 0 and n = ±1
The cases n = 0 and n = ±1 for Theorem 1.1 are special, in that they can be proved relatively
quickly by appealing directly to results of Freedman and Quinn. We provide a quick proof for
n = 0 now. Recall that when n = 0 the three conditions in Theorem 1.1 reduce to ΔK(t) = 1.

Example 1.3 (The case n = 0). First assume a generator of π2(X0(K)) is represented by an
embedded sphere whose complement has fundamental group Z. Since n = 0, the normal bundle
of this sphere is trivial. Perform surgery on X0(K) along this 2-sphere to obtain a pair (V, S3

0(K))
where π2(V ) = 0, and π1(V ) ∼= Z, generated by a meridian of K. Now attach a 2-handle to a
meridian in the boundary. The cocore of the 2-handle is a slice disc D′ for K in a homotopy
4-ball B′ such that π1(B′ � D′) ∼= Z. Hence ΔK(t) = 1.

Now assume ΔK(t) = 1. By [Fre84, Theorem 7] and [FQ90, 11.7B] (see also [GT04,
Appendix]), K has a slice disc D in D4 with π1(D4 � D) ∼= Z. Cap this disc off with the core of
the 2-handle to obtain the desired sphere in X0(K). This completes the proof of Theorem 1.1
for n = 0.

To see a similarly quick proof for n = ±1, the reader is invited to skip ahead to Example 8.1.
In this case, we rely on the result of Freedman that as S3±1(K) is an integer homology sphere, it
must bound a contractible 4-manifold. When n = ±1 we have obtained a wholly different proof
of Theorem 1.1 using Seifert surface constructions. These methods, detailed in § 8, lead to the
two results described next.

For each n, one can measure how far a knot K is from being n-shake slice by considering
the minimal genus of a locally flat embedded surface generating H2(Xn(K)). This minimum is
called the (topological) n-shake genus gn

sh(K). For n = 1 we have a precise understanding of this
invariant.

Proposition 8.7. For every knot K there exists a locally flat embedded torus in X1(K) that
generates H2(X1(K)) and has simply connected complement. In particular,

g1
sh(K) = Arf(K) ∈ {0, 1}.

Now for a slice knot K, and for each n, a slice disc capped off by the core of the 2-handle in
Xn(K) geometrically intersects the cocore once. This suggests a way to measure of how far an
n-shake slice knot K is from being slice, by taking the minimum over all embedded spheres S
generating π2(Xn(K)) of the geometric intersection number of S with the cocore of the 2-handle
of Xn(K). We call this minimum the n-shaking number of K.

Since the algebraic intersection of S with the cocore of the 2-handle of Xn(K) is algebraically
one, the shaking number measures the difference between geometric and algebraic intersection
numbers. For closed surfaces, this difference was investigated in [MS99, Str03, Hor15, Sun10].

For a knot K, gtop
4 (K) denotes the (topological) 4-genus or slice genus, the minimal genus

among compact, oriented, locally flat surfaces in D4 with boundary K. The (topological) Z-slice
genus gZ

4 (K) is the minimal genus among such surfaces whose complement has infinite cyclic
fundamental group. Computable upper bounds for gZ

4 (K) are discussed in [FL18], and include
2gZ

4 (K) ≤ deg(ΔK) [Fel16]. For n = 1, as well as proving again that a knot with vanishing Arf
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invariant is 1-shake slice, the Seifert surface method provides explicit upper bounds on the
1-shaking number.

Proposition 8.8. For a knot K with Arf(K) = 0 we have

2gtop
4 (K) + 1 ≤ 1-shaking number of K ≤ 2gZ

4 (K) + 1.

In particular, for each integer k ≥ 0 there exists a 1-shake slice knot Kk such that the 1-shaking
number of Kk is exactly 2k + 1.

Note that for every n, the n-shaking number is always odd since the algebraic intersection
of the generator of π2(Xn(K)) with the cocore of the 2-handle is 1. Thus this is a complete
realisation result for 1-shaking numbers.

1.3 Proof outline
Having already proved Theorem 1.1 for the case of n = 0 above, we now restrict to n �= 0. The
components of the ‘only if’ direction are proven respectively in Proposition 3.3, Proposition 6.5,
and Proposition 3.5. As mentioned previously, with different approaches Proposition 6.5 is due
to Robertello [Rob65] and Proposition 3.5 is due to Tristram [Tri69] (see also [Sae92]).

Now we will outline the proof of the ‘if’ direction. Given a group π and closed 3-manifolds
M1 and M2, together with homomorphisms ϕi : π1(Mi) → π, we say a cobordism W from M1 to
M2 is over π if W is equipped with a map π1(W ) → π restricting to the given homomorphisms
on the boundary.

The key idea of our proof is that for a fixed knot K, a generator of π2(Xn(K)) can be
represented by a locally flat embedded 2-sphere S with π1(Xn(K)�S) ∼= Z/n if and only if
there exists a homology cobordism V from S3

n(K) to the lens space L(n, 1) over Z/n, extending
standard maps π1(S3

n(K)) → Z/n and π1(L(n, 1)) → Z/n, such that π1(V ) ∼= Z/n and V ∪L(n,1)

Dn is homeomorphic to Xn(K), where Dn denotes the D2-bundle over S2 with euler number n.
The proof of the ‘if’ direction involves constructing such a cobordism V when the list of

invariants in Theorem 1.1 vanish. Here is an outline.

(1) Show there exists a cobordism W between S3
n(K) and the lens space L(n, 1) and a

map W → L(n, 1) × [0, 1] that restricts to a degree-one normal map (Definition 4.2)
f : S3

n(K) → L(n, 1) × {0} and the identity map L(n, 1) → L(n, 1) × {1} (see § 4). This uses
the assumption that Arf(K) = 0 when n is even and no assumptions when n is odd.

(2) Use the computation of the simple surgery obstruction groups Ls
4(Z[Z/n]) in terms of mul-

tisignatures to show that we can replace W with a homology cobordism V between S3
n(K)

and L(n, 1) over Z/n, with V homotopy equivalent to L(n, 1) × I (see § 5). This uses the
assumptions that H1(S3

n(K); Z[Z/n]) = 0 and σK(ξm
n ) = 0 for all m.

(3) Let X := V ∪L(n,1) Dn. Note that a generator for π2(X) is represented by an embedded
sphere in Dn. Use Boyer’s classification (Theorem 7.1) to conclude that X is homeomorphic
to Xn(K) (see § 6). This uses the assumption that Arf(K) = 0 when n is odd and no
additional assumptions when n is even. More precisely, according to the classification, X
is homeomorphic to Xn(K) automatically when n is even, and if and only if ks(X) =
ks(Xn(K)) = 0 when n is odd; the latter equality follows since Xn(K) is smooth. We show
in Proposition 6.8 that Arf(K) = ks(X).
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An interesting aspect of the proof (of both the ‘if’ and ‘only if’ directions) of Theorem 1.1
is that the Arf invariant appears in different places for n odd and n even. However, in each case
its vanishing is required.

Recent work of Kim and Ruberman [KR20] uses similar techniques to prove the existence
of topological spines in certain 4-manifolds. Their argument is in some ways structurally quite
similar to ours, since both works follow a surgery theoretic strategy. There is no overlap between
our results: every knot trace Xn(K) admits a PL-spine consisting of the cone on K union the
core of the attached 2-handle, as is crucially used in [KR20]. Moreover, there is a key difference:
Kim and Ruberman have flexibility in their choice of a second 3-manifold, whereas we have a
fixed choice of S3

n(K) and L(n, 1).

Conventions
From § 3 onwards, we assume for convenience that n > 0. The case of n = 0 was proved in
Example 1.3. When n < 0, the argument is the same as for −n. Throughout, manifolds are
compact and oriented, and knots are oriented.

2. Corollaries to Theorem 1.1

Before embarking on the main work of proving Theorem 1.1, we use it to prove several knot
theoretic corollaries. For a knot K in S3, let Cn,1(K) denote the (n, 1)-cable of K.

Corollary 2.1. Let K be any knot and let n be an integer. Suppose that n is even or
Arf(K) = 0. Then Cn,1(K) is Z/n-shake slice.

Proof. We use the formulae for the Alexander polynomial and signatures of a satellite knot, due
respectively to Seifert [Sei50] and Litherland [Lit79], to verify the conditions of Theorem 1.1 for
Cn,1(K).

Since Cn,1(U) = U we have ΔCn,1(K)(t) = ΔK(tn) and σCn,1(K)(ω) = σK(ωn) for all ω ∈ S1.
Letting ωn denote a primitive nth root of unity, we therefore have for 1 ≤ k ≤ n that

σCn,1(K)(ω
k
n) = σK(ωnk

n ) = σK(1) = 0.

We have that
n∏

k=1

ΔCn,1(K)(ωn) =
n∏

k=1

ΔK(ωn
n) = 1.

Levine [Lev66, Proposition 3.4] showed that Arf(J) = 0 if and only if ΔJ(−1) ≡ ±1 mod 8, and
so since

ΔCn,1(K)(−1) = ΔK((−1)n) =

{
ΔK(−1) n odd,

1 n even

we obtain as desired that Arf(Cn,1(K)) = 0. �
Remark 2.2. Gordon [Gor83] observed that for any knot K

S3
n(Cn,1(K)) = L(n, 1) # S3

1/n(K).

This gives a slightly more direct argument that Cn,1(K) is Z/n-shake slice whenever n is even or
Arf(K) = 0, as follows. Let C be the contractible 4-manifold with boundary S3

1/n(K) guaranteed
by [Fre82, Theorem 1.4′], and define V to be the boundary connected sum of L(n, 1) × I and C.
The manifold V is now a homology cobordism from S3

n(Cn,1(K)) to L(n, 1) that is homotopy
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equivalent to L(n, 1) × I. This allows one to skip the work of §§ 4 and 5 constructing a homology
cobordism and go straight to proving that V ∪ Dn is homeomorphic to Xn(Cn,1(K)) using the
results we prove in § 6 and Boyer’s classification (Theorem 7.1), which when n is odd requires
Arf(Cn,1(K)) = Arf(K) = 0.

We can use Corollary 2.1 to obtain many new examples of n-shake slice knots.

Corollary 2.3. For every n �= 0 there exist infinitely many topological concordance classes of
knots that are n-shake slice but not smoothly n-shake slice.

Proof. In both the smooth and topological categories a knot K is n-shake slice if and only if −K
is (−n)-shake slice. So it suffices to show the n > 0 case as follows.

We can use the description of S3
n(Cn,1(K)) from Remark 2.2 to show that Cn,1(K) is often

not smoothly n-shake slice. Given an integer homology sphere Y , Ozsváth and Szabó asso-
ciate a so-called d-invariant d(Y ) ∈ Q, with the property that d(Y ) = 0 if Y bounds a rational
homology ball [OS03a]. We show that if Cn,1(K) is smoothly n-shake slice for some n > 0, then
d(S3

1(K)) = 0 as follows.
Suppose that Cn,1(K) is smoothly n-shake slice via a sphere S in Xn(J). The exterior of

S can be quickly confirmed to be a smooth homology cobordism between S3
n(J) and L(n, 1);

see Lemma 3.1. Therefore S3
n(Cn,1(K)) = L(n, 1) # S3

1/n(K) and S3
n(U) = L(n, 1) are homology

cobordant via some smooth W . By summing W with −L(n, 1) × I along D4 × I ⊂ W , we further
obtain that S3

1/n(K) is smoothly rationally homology cobordant to S3. Therefore, d(S3
1/n(K)) =

d(S3) = 0. Furthermore, since n > 0 we have d(S3
1/n(K)) = d(S3

1(K)) by [NW15, Proposition
1.6].

Now for each j ∈ N let Kj := T2,8j+1. Note that since Kj is alternating and the ordinary
signature σKj (−1) < 0, [OS03b, Corollary 1.5] implies that d(S3

1(K)) �= 0. So Cn,1(Kj) is not
smoothly n-shake slice, despite being Z/n-shake slice by Corollary 2.1. One can use Litherland’s
satellite formula [Lit79] to compute that the first jump of the Tristram–Levine signature function
of Cn,1(Kj) occurs at e2πiθj , where θj = 1/2n(8j + 1). Therefore the knots Cn,1(Kj) are distinct
in concordance. �

In another direction, we are able to show that there exist non-slice knots which are neverthe-
less n-shake slice for infinitely many n ∈ Z. It is presently unknown in either category whether
0-shake slice implies slice, and so the question of whether being n-shake slice for all n ∈ Z implies
slice appears both interesting and difficult.

Corollary 2.4. There exist knots that are Z/n-shake slice for every prime power n ∈ Z, but
are not slice. Moreover, these knots may be chosen to represent infinitely many concordance
classes.

Proof. Let J be a knot with Alexander polynomial equal to the mth cyclotomic polynomial,
where m is divisible by at least 3 distinct primes. Since J# − J does not have trivial Alexander
polynomial, there exist infinitely many non-concordant knots sharing its Seifert form [Kim05].
We show that any such knot K is Z/n-shake slice for all prime powers n.

By [Liv02], we have |H1(Σ|n|(J))| = 1, so condition (i) of Theorem 1.1 follows immediately:

∏
{ξ|ξn=1}

ΔK(ξ) = |H1(Σ|n|(K))| = |H1(Σ|n|(J))|2 = 1.
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For conditions (ii) and (iii), observe that since K shares a Seifert form with the knot J# − J ,
we have that Arf(K) = 0 and for every ω ∈ S1 we have

σω(K) = σω(J) + σω(−J) = 0. �
We remark that it is open whether there is a smoothly non-slice knot that is smoothly n-shake

slice for infinitely many n. The smooth analogue of the next result is also open.

Corollary 2.5. There exist infinitely many knots {Ki}, mutually distinct in concordance, and
an infinite family of integers {nj} such that S3

nj
(Ki) is homology cobordant to S3

nj
(U) for all

i, j ∈ N.

Proof. This follows immediately from Corollary 2.4 and Lemma 3.1. �
We are also able to show that homology cobordism of the n-surgeries is often not enough to

determine that a knot is n-shake slice, as follows.

Corollary 2.6. For each odd n ∈ N, there exists K such that S3
n(K) and S3

n(U) are topolog-
ically homology cobordant but K is not n-shake slice. In fact, for each odd n there exist knots
representing infinitely many concordance classes that satisfy this.

Proof. By the proof of Theorem 1.1, if n is odd and K is a knot with
∏

{ξ|ξn=1} ΔK(ξ) = 1 and
σK(ξ) = 0 for all nth roots of unity ξ, then S3

n(K) and S3
n(U) = L(n, 1) are homology cobordant.

As discussed in the proof of Corollary 2.3, for every knot J the knot K = Cn,1(J) satisfies these
conditions. However, if Arf(J) �= 0, then since Arf(K) = Arf(J) we obtain that Cn,1(J) is not
n-shake slice (or even, for the cognoscenti, n-shake concordant to the unknot). Therefore the
set {Cn,1(T2,8j+3}j≥1 is an infinite collection of such knots, all distinguished in concordance
by the first jump of their Tristram–Levine signature functions, which occur at e2πiyj , where
yj = 1/2n(8j + 3). �

We remark that in the examples of Corollary 2.6, S3
n(K) and S3

n(U) are homology cobordant
not just with integer coefficients, but also with Z[Z/n]-coefficients.

We also compare the difference between m-shake slice and n-shake slice for m �= n.

Corollary 2.7. If m | n and K is Z/n-shake slice, then K is Z/m-shake slice.

Proof. First, note that if n = 0 and K is Z/n-shake slice then ΔK(t) = 1, and so the conditions
(i), (ii), and (iii) of Theorem 1.1 are satisfied for all m ∈ Z.

So assume n �= 0. Since
∏

{ξ|ξm=1} ΔK(ξ) divides
∏

{ξ|ξn=1} ΔK(ξ) and both are integers, if
the criterion (i) holds for n, then it also holds for m. The signature and Arf invariant conditions
are immediate. �
Corollary 2.8. If m does not divide n then there exist infinitely many knots that are n-shake
slice but not m-shake slice. These knots may be chosen to be distinct in concordance.

Proof. Let q be a prime power which divides m but not n. Let K be any knot with Arf(K) = 0
and σK(e2πik/q) �= 0 for all k = 1, . . . , q − 1. Such knots are easy to find, for example by taking
K = T2,8N+1 for sufficiently large N . Now let J = Cn,1(K), and note that since Arf(K) = 0
Corollary 2.1 tells us that J is n-shake slice. However, σCn,1(K)(e2πi/q) = σK(e2πin/q) �= 0, since
q does not divide n. So J is not m-shake slice.

We can obtain {Jj}j∈N representing infinitely many concordance classes of n-shake but
not m-shake slice knots by letting Jj = Cn,1(T2,8(N+j)+1) for sufficiently large N . As in the
proof of Corollary 2.3, these knots are distinguished in concordance by the first jump of the
Tristram–Levine signature, which occurs for Jj at e2πixj , where xj = 1/2n(8(N + j) + 1). �
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Remark 2.9. For many pairs (n, m) such that m does not divide n, one can also find examples
of n-shake slice knots which are not m-shake slice by considering certain linear combinations of
(2, 2k + 1) torus knots. For example, one can verify that Kn := 6T2,4n+1# − 4T2,6n+1 satisfies
the conditions of Theorem 1.1 for n, and hence is Z/n-shake slice. Additionally, computation of
Tristram–Levine signatures shows that if m does not divide 2n, then Kn is not m-shake slice.

Finally, we show in almost all cases that Z/n-shake slice is a strictly stronger condition than
n-shake slice.

Corollary 2.10. A knot is (±1)-shake slice if and only if it is Z/1-shake slice. For all other n
there exists a slice, and therefore n-shake slice, knot that is not Z/n-shake slice.

Proof. The ‘if’ direction of the first sentence is obvious. For the other direction, observe that an
embedded sphere S representing a generator of π2(X±1(K)) has a normal bundle νS with euler
number ±1 (see Lemma 6.1). Since νS → S is a homotopy equivalence, νS is simply connected.
Since the euler number is ±1, ∂(DνS) ∼= S3, where DνS denotes the disc bundle of the normal
bundle. We know that X±1(K) is simply connected. Apply the Seifert–Van Kampen theorem to
the decomposition

X±1(K) = (X±1(K)�DνS) ∪S3×(1,∞) νS

to deduce that π1(X±1(K)�DνS) ∼= π1(X±1(K)�S) ∼= {1} ∼= Z/1. This proves the reverse
direction.

For the second sentence, the knot K = 41#41 is slice and hence n-shake slice for all n. But
K has |H1(Σn(K))| �= 1 for all n > 1, and hence is not Z/n-shake slice for |n| > 1 by condition
(iii) of Theorem 1.1. Recall that when n = 0, the conditions of Theorem 1.1 reduce to triviality
of the Alexander polynomial. But since ΔK(t) = (t2 − 3t + 1)2, this knot K is not Z/0-shake
slice either. �

When n = ±1, the conditions (i) and (iii) of Theorem 1.1 are automatically satisfied, so
Corollary 2.10 immediately gives the following.

Corollary 2.11. A knot K is (±1)-shake slice if and only if it is Z/(±1)-shake slice if and
only if Arf(K) = 0.

If a knot is n-shake slice, then it has vanishing Arf invariant [Rob65], so Corollary 2.11
immediately gives the following.

Corollary 2.12. If a knot K is n-shake slice for some integer n, then it is (±1)-shake slice.

Changing the orientation on an n-trace Xn(K) results in the trace X−n(−K), and so K is
n-shake slice if and only if −K is (−n)-shake slice. Surprisingly, the conditions in Theorem 1.1
show that an even stronger symmetry holds, as in the following corollary.

Corollary 2.13. A knot K is Z/n-shake slice if and only if it is Z/(−n)-shake slice.

Here of course Z/n ∼= Z/(−n), but the 4-manifolds Xn(K) and X−n(K) are generally differ-
ent. In particular, we know of no reason to believe that a knot is n-shake slice if and only if it
is (−n)-shake slice.

For any n, it remains unknown in both the smooth and topological category whether n-shake
slice knots have n-shake slice connected sum. As the invariants involved in conditions (i), (ii),
and (iii) of Theorem 1.1 are all additive under connected sum we have the following immediate
corollary.

Corollary 2.14. If K and J are Z/n-shake slice, then so is K#J .

2250

https://doi.org/10.1112/S0010437X21007508 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007508


Embedding spheres in knot traces

3. Obstructions to Z/n-shake sliceness

In this section we prove that the conditions listed in Theorem 1.1 on the knot signatures and the
Alexander polynomial are indeed necessary conditions for a knot to be Z/n-shake slice. Some
of these results have been shown by Tristram [Tri69] and Saeki [Sae92]; we include our own
proofs for completeness, for the convenience of the reader, and to introduce the identification
of certain Atiyah–Singer/Casson–Gordon signatures with Tristram–Levine knot signatures that
will be needed later on. As stated in the conventions section, we henceforth assume that n > 0.

Lemma 3.1. If a knot K is n-shake slice via an embedded sphere S in Xn(K) then W :=
Xn(K) � ν(S) is a homology cobordism from S3

n(K) to L(n, 1). If K is further Z/n-shake slice
via S, then π1(W ) ∼= Z/n.

Proof. The first statement follows from computation using the Mayer–Vietoris sequence for
Xn(K) = W ∪ ν(S). The second statement is immediate from the definition. �
Remark 3.2. In this section, we only use the hypothesis that the manifolds S3

n(K) and L(n, 1)
are homology cobordant via a homology cobordism W with π1(W ) ∼= Z/n. This hypothesis is
sufficient to establish conditions (i) and (iii) of Theorem 1.1 However, one cannot make this
weaker assumption, at least when n is odd, if we wish to conclude that Arf(K) = 0. In particular,
for every knot K we know that S3

1(K) is homology cobordant to L(1, 1) = S3 by a simply
connected cobordism [Fre82, Theorem 1.4′] (see also [FQ90, 9.3C]), but of course some knots
have Arf invariant 1. On the other hand, the existence of a smooth homology cobordism would
be enough to imply that Arf(K) = 0 [Sae92].

Proposition 3.3. Let K be a knot such that S3
n(K) and L(n, 1) are homology cobordant via

a homology cobordism W with π1(W ) ∼= Z/n. Then H1(S3
n(K); Z[Z/n]) = 0 = H1(Σn(K); Z).

Proof. We will show that the n-sheeted cyclic cover Yn := (S3
n(K))n of S3

n(K) has trivial integral
homology. Since H1(Yn; Z) = 0 implies that H1(S3

n(K); Z[Z/n]) = 0, this will imply the first part
of our desired result. By the universal coefficient theorem, it suffices to show that H1(Yn; Fp) = 0
for all primes p.

Let p be a prime. For each k ∈ N and space X, let bp
k(X) denote the dimension of Hk(X; Fp)

as a Fp-vector space. Let W̃ be the Z/n-cover of W , and observe that since W̃ is simply connected
we have H1(W̃ ; Fp) = 0. It follows that

0 = n · χ(W ) = χ(W̃ ) = 1 + bp
2(W̃ ) − bp

3(W̃ ).

Here the first equality holds since W has the same Euler characteristic as a closed 3-manifold.
By considering the long exact sequence of the pair (W, ∂W ), we obtain that

H3(W̃ ; Fp) ∼= H1(W̃ , ∂W̃ ; Fp) ∼= Fp,

and hence that bp
2(W̃ ) = 0. It then follows from the same long exact sequence that bp

1(∂W̃ ) =
bp
1(Yn � S3) = 0, and so we have established the first claim.

Let E(K) denote the exterior of the knot K in S3 and μK and λK denote the meridian and
longitude respectively. By definition the manifold S3

n(K) = E(K) ∪ (S1 × D2), where {pt} × ∂D2

is identified with nμK + λK and S1 × {pt} with λK . Therefore, we have that

Yn = (E(K) ∪ (S1 × D2))n = En(K) ∪ (S1 × D2),

where {pt} × ∂D2 is identified with μ̃n
K + λ̃K and S1 × {pt} with λ̃K , where ·̃ denotes a lift to

the n-fold cover En(K) → E(K).
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We also have that
Σn(K) = En(K) ∪ (S1 × D2)

where {pt} × ∂D2 is identified with μ̃n
K and S1 × {pt} with λ̃K . Since λ̃K is null-homologous in

En(K), we see that H1(Σn(K)) and H1(Yn) are isomorphic quotients of H1(En(K)). �
We extract the next statement from the proof of Proposition 3.3 for later use.

Corollary 3.4. Let K be a knot such that S3
n(K) and L(n, 1) are homology cobordant via

a homology cobordism W with π1(W ) ∼= Z/n and let W̃ denote the Z/n-cover of W . Then

H2(W̃ ; Fp) = 0 for every prime p.

We would now like to prove the following. Note that the first statement implies that if a
knot K is n-shake slice then σω(K) = 0 for every qth root of unity ω, where q is a prime power
dividing n. This was originally proved using different methods by Tristram [Tri69].

Proposition 3.5 [Tri69]. Let K be a knot such that S3
n(K) and L(n, 1) are homology cobordant

via a homology cobordism W . Then σω(K) = 0 for every qth root of unity ω, where q is a prime
power dividing n. If π1(W ) ∼= Z/n, then σω(K) = 0 for every nth root of unity ω.

Our strategy in proving Proposition 3.5 will be to relate the Tristram–Levine signature of
K at the nth roots of unity to the Atiyah–Singer/Casson–Gordon signatures [AS68, CG78] of
the 3-manifold S3

n(K). We will then use the n-fold cyclic cover of the hypothesised homology
cobordism W between S3

n(K) and L(n, 1), capped off in a certain nice way, to compute these
Casson–Gordon signatures. We therefore recall the definition of the Casson–Gordon signatures
of a 3-manifold, as given in [CG78]. For every n ∈ N we think of the cyclic group Z/n as coming
with a canonical multiplicative generator t.

To a closed oriented 3-manifold Y and a map φ : H1(Y ) → Z/n, we wish to associate
σk(Y, φ) ∈ Q for k = 1, . . . , n − 1. Let Ỹ → Y be the covering induced by φ, and note that there
is a canonical covering transformation τ of Ỹ corresponding to t ∈ Z/n.

Now suppose there exists a Z/n branched covering of 4-manifolds Z̃ → Z, branched over
a surface F contained in the interior of Z, and such that ∂(Z̃ → Z) = (Ỹ → Y ). Suppose in
addition that the covering transformation τ̃ : Z̃ → Z̃ that induces rotation through 2π/n on the
fibres of the normal bundle of F̃ is such that it restricts on Ỹ to τ . An explicit construction
as given, for example, in the proof of [CG78, Lemma 3.1], shows that such a branched cover
does always exist. Then H2(Z̃; C) decomposes as

⊕n−1
k=0 Vk, where Vk is the ξk

n-eigenspace of the
τ̃ -induced action on second homology, and as before ξn := e2πi/n. Let σk(Z̃) denote the signature
of the intersection form of Z̃ restricted to Vk. Define, for k = 1, . . . , n − 1, the signature defect

σk(Y, φ) := σ(Z) − σk(Z̃) − 2([F ] · [F ])k(n − k)
n2

. (3.6)

Casson and Gordon [CG78] used the Atiyah–Singer G-signature theorem [AS68] to show that
σk(Y, φ) is an invariant of the pair (Y, φ) for each 0 < k < n.

Proposition 3.7. Let K be a knot and W be a cobordism between S3
n(K) and L(n, 1) over

Z/n. Let ξn = e2πi/n and 1 ≤ k ≤ n − 1. Then

σξk
n
(K) = σk(W̃ ) − σ(W ),

where σk(W̃ ) is the signature of the intersection form of the Z/n-cover of W induced by the map
H1(W ) → Z/n when restricted to the ξk

n-eigenspace of the action of the generator of the group

of deck transformations on H2(W̃ , C).
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Proof. Our proof follows from computing σk(S3
n(K), φ), where φ : H1(S3

n(K)) → Z/n is the
canonical map sending the meridian μK to 1 ∈ Z/n, in two different ways.

First, observe that in this setting the surgery formula of [CG78, Lemma 3.1] is particularly
simple and reduces to

σk(S3
n(K), φ) = 1 − σξk

n
(K) − 2k(n − k)

n
. (3.8)

Second, let W̃ → W be the n-fold cyclic cover. We have that

∂(W̃ → W ) = (S̃3
n(K) → S3

n(K)) � (S3 → L(n, 1)).

Now let Xn(U) denote the n-trace of the unknot, i.e. the disc bundle Dn over S2 with euler
number n. Let S be the n-framed embedded 2-sphere in Xn(U). There is an n-fold cyclic branched
cover X̃S of Xn(U) along S, which restricts on the boundary to the same (unbranched) cover
S3 → L(n, 1) we saw above. Note that X̃S is a punctured CP2.

We can therefore use Z := W ∪L(n,1) Xn(U) and Z̃ = W̃ ∪S3 X̃S to compute σk(S3
n(K), φ)

using (3.6). Note that H2(Z̃) ∼= H2(W̃ ) ⊕ Z, where the generator of the Z summand is represented
by the lift of S and hence has self-intersection +1, intersects trivially with all elements of H2(W̃ ),
and is preserved under the action of the covering transformation so lies in the 1-eigenspace.
Consequently, for 0 < k < n we have σk(Z̃) = σk(W̃ ) and hence

σk(S3
n(K), φ) = σ(Z) − σk(Z̃) − 2([S] · [S])k(n − k)

n2

= (σ(W ) + 1) − σk(W̃ ) − 2nk(n − k)
n2

. (3.9)

Since σk(S3
n(K), φ) is well defined, by comparing the formulae of (3.8) and (3.9) we obtain

as desired that

σξk
n
(K) = σk(W̃ ) − σ(W ). �

Versions of the next lemma have appeared in many places, the earliest of which we know of
is [Lev94, Lemma I.4.3 and II.3.2]. See also [COT03, Proposition 2.10].

Lemma 3.10. Let i : X → Y be a map of (spaces homotopy equivalent to) finite CW complexes
that induces isomorphisms i∗ : Hk(X; Z) → Hk(Y ; Z) for all k. Suppose ε : H1(Y ; Z) → Z/q is a
surjective map inducing Z/q-covers Ỹ → Y and X̃ → X.

If q is a prime power, then the induced map

ĩ∗ : Hk(X̃; Q) → Hk(Ỹ ; Q)

is an isomorphism for all k.

Proof. Let α : H1(Y ) → GLq(Q) be the map obtained by composing ε with the regular
representation

Z/q → GLq(Q)

k �→

⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 0 . . . 1
1 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦
k

.
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As usual, this regular representation endows Qq with the structure of a free Q[Z/q]-module of
rank one.

From the work of Friedl and Powell [FP12, Proposition 4.1] (applied with, in their notation,
H = {1}) we have that

i∗ : H∗(X; Qq) → H∗(Y ; Qq)

is an isomorphism. Then for Z ∈ {X, Y }, we have natural identifications

H∗(Z; Qq) = H∗(C∗(Z̃, Q) ⊗Q[Z/q] Qq) = H∗(C∗(Z̃, Q) ⊗Q[Z/q] Q[Z/q]) = H∗(Z̃, Q),

and the desired result follows. �
Proof of Proposition 3.5. Let W̃ denote the Z/n cover of W . Note that since W is a homology
cobordism between S3

n(K) and L(n, 1) we have that H2(W ) = 0 and so certainly σ(W ) = 0.
The case when π1(W ) ∼= Z/n follows quickly: Corollary 3.4 tells us that H2(W̃ ; Fp) = 0 for

all primes p, and hence that H2(W̃ ; Z) = 0 and so H2(W̃ ; C) = 0. Therefore, by Proposition 3.7
we have for k = 1, . . . , n − 1 that

σξk
n
(K) = σk(W̃ ) − σ(W ) = 0 − 0 = 0.

So we now assume only that W is a homology cobordism, with no condition on the funda-
mental group. Let q be a prime power dividing n, and let 1 ≤ k ≤ q − 1 be relatively prime to q.
Let φ : H1(S3

n(K)) → Z/q be the map sending the class [μK ] of the meridian of K to +1 ∈ Z/q.
We now argue exactly as in the proof of Proposition 3.7 to show that

(σ(W ) + 1) − σk(W̃ ) − 2k(q − k)
q

= σk(S3
n(K), φ) = 1 − σξk

q
(K) − 2k(q − k)

q

and hence, since H2(W ; Q) = 0, that

σξk
q
(K) = σk(W̃ ) − σ(W ) = σk(W̃ ).

But by Lemma 3.10, since the inclusion induced map

i∗ : H∗(L(n, 1); Z) → H∗(W ; Z)

is an isomorphism and q is a prime power, we have that

ĩ∗ : H∗(L̃(n, 1); Q) → H∗(W̃ ; Q)

is also an isomorphism. But since L̃(n, 1) is itself a lens space (or S3 if n = q), we have that

H2(L̃(n, 1); Q) = 0 and so H2(W̃ ; Q) = 0 as well. Thus the ξk
n-eigenspace Vk = 0, and so as desired

σξk
q
(K) = σk(W̃ ) = 0. �

4. Setting up the surgery problem

We will use surgery theory to construct the exterior of the desired embedded sphere in an n-trace.
We will eventually apply surgery in the topological category, but our initial input manifolds will
be smooth. We thus now recall the input to a surgery problem in the smooth category. There
is an analogous theory in the topological category, and we will discuss this below at the point
when it becomes necessary.

Definition 4.1. Given a smooth m-manifold X, the tangent bundle is classified up to iso-
morphism by a homotopy class of maps τX : X → BO(m) ⊂ BO. The unique stable bundle
νX : X → BO such that τX ⊕ νX : X → BO is null-homotopic is called the stable normal bundle

2254

https://doi.org/10.1112/S0010437X21007508 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007508


Embedding spheres in knot traces

of X. The manifold X can be stably framed if νX is null-homotopic, and a choice of null homo-
topy is called a stable framing. A choice of stable framing for X is determined by a choice of
stable trivialisation of the tangent bundle,that is, a choice of k and vector bundle isomorphism
TX ⊕ Rk ∼= Rm+k.

Recall that an oriented m-manifold X with (possibly empty) boundary has a fun-
damental class, denoted [X, ∂X] ∈ Hm(X, ∂X; Z), capping with which induces (twisted)
Poincaré–Lefschetz duality isomorphisms Hm−k(X, ∂X; Z[π1(X)])

∼=−→ Hk(X; Z[π1(X)]) and
Hm−k(X; Z[π1(X)])

∼=−→ Hk(X, ∂X; Z[π1(X)]) for every k.

Definition 4.2. A map (f, ∂f) : (X, ∂X) → (Y, ∂Y ) of smooth oriented m-manifolds with (pos-
sibly empty) boundary is called degree one if f∗([X, ∂X]) = [Y, ∂Y ]. Given a degree-one map f ,
a normal structure is an isomorphism of stable bundles νX � νY ◦ f . A degree-one map with
choice of normal structure is called a degree-one normal map. We will often write (X, f) for the
data of a degree-one normal map (suppressing the choice of stable bundle isomorphism).

For a topological space Y , a bordism Z between closed m-manifolds X and X ′ is over Y
if there is a proper map F : Z → Y × I such that F (X) ⊂ Y × {0} and F (X ′) ⊂ Y × {1}. If Y
and Z are smooth oriented m-manifolds and the map F is a degree-one normal map, then we
call (Z, F ) a degree-one normal bordism from (X, F |X) to (X ′, F |X′).

Remark 4.3. Given a degree-one map (f, ∂f) : (X, ∂X) → (Y, ∂Y ), if νY is null-homotopic, then
so is νY ◦ f . So f admits a normal structure if and only if X can be stably framed.

Furthermore, we will sometimes be interested in picking a normal structure on f that is
compatible with a given one on ∂f . To understand this, suppose we are given a choice of stable
framing on Y . This induces a choice of stable framing on ∂Y . Suppose we have a degree-one map
∂f : ∂X → ∂Y . A choice of normal structure on ∂f is equivalent to a choice of stable framing on
∂X. Suppose such a choice has been made. Then a degree-one map (f, ∂f) : (X, ∂X) → (Y, ∂Y )
admits a normal structure inducing the given one on the boundary if and only if X can be stably
framed compatibly with ∂X.

Note that the lens space L(n, 1) is diffeomorphic to the result of n-surgery along the unknot.
In our applications, the target manifold for the map in the surgery problem will be either
(L(n, 1), ∅) or (L(n, 1) × I, L(n, 1) × {0, 1}). The tangent bundles of L(n, 1) and of L(n, 1) × I
are trivial, so in particular these manifolds can be stably framed. Choose once and for all a stable
framing for L(n, 1), and hence one for L(n, 1) × I.

Lemma 4.4. For any knot K, there exists a degree-one normal map f : S3
n(K) → L(n, 1) that is a

Z-homology equivalence and that extends to a homotopy equivalence f̄ : Xn(K) → Dn, where Dn

is the D2-bundle over S2 with euler number n. Additionally, one can arrange that the cocore of
the 2-handle of Xn(K) maps to the cocore of the 2-handle in the standard handle decomposition
for Dn.

Proof. There is a standard degree-one map from E(K) → E(U) that realises the homology equiv-
alence E(K) → S1 and is the identity map on the boundary; see e.g. [MP19, Construction 7.1]
for the details. As submanifolds of S3, both E(K) and E(U) have stably trivial tangent bundles
and can thus be stably framed. So this degree-one map can be given a choice of normal structure
by Remark 4.3. Now extend this degree-one normal map to the Dehn filling.

We construct the homotopy equivalence f̄ . By construction, f : S3
n(K) → S3

n(U) = L(n, 1)
sends a meridian of K to a meridian of the unknot U . We also have a handle decomposition
of Xn(K) relative to its boundary consisting of a 2-handle, attached along a meridian of K,
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and a 4-handle. Define f̄ : Xn(K) → Xn(U) = Dn by mapping the 2-handles and the 4-handles
homeomorphically to each other. To do this, first note that the attaching circle of the 2-handle of
Xn(U) is a meridian of U , so the attaching circle of the 2-handle of Xn(K) is sent to the attaching
circle of the 2-handle of Xn(U). Also the framings agree, so we can extend over the 2-handle.
Then note that attaching the 2-handles undoes the Dehn surgeries, converting both S3

n(K) and
S3

n(U) to S3. The 4-handles are attached to these copies of S3. Since every orientation-preserving
homeomorphism of S3 is isotopic to the identity, we may extend the map over the 4-handles.
Observe that f̄ is a homotopy equivalence by Whitehead’s theorem. �

Recall the Whitehead group Wh(Z/n) is a certain quotient of the algebraic K-group
K1(Z[Z/n]). When H1(S3

n(K); Z[Z/n]) = 0, a map f as in Lemma 4.4 induces a chain homo-
topy equivalence f̃∗ : C∗(S3

n(K); Z[Z/n]) → C∗(L(n, 1); Z[Z/n]) and thus determines a Z[Z/n]-
coefficient Whitehead torsion τ(f) := τ(f̃∗) ∈ Wh(Z/n). We will need the following technical
lemma later.

Lemma 4.5. If the knot K satisfies H1(S3
n(K); Z[Z/n]) = 0, then a map f as in Lemma 4.4 has

trivial Z[Z/n]-coefficient Whitehead torsion τ(f) = 1 ∈ Wh(Z/n).

Proof. Fix a cell complex A ∼= S1 × S1 and extend it to a cell complex B ∼= S1 × D2. Denote by
Y (K) and Y (U) any fixed choice of cell structures for E(K) and E(U) (we will make quite specific
choices later). For each of J = U, K, let M(J) denote the cell complex obtained as the mapping
cylinder of a map A → Y (J) which is a cellular approximation to the inclusion S1 × S1 → E(J).

Each of these spaces has a Z/n cover, determined by π1(L(n, 1)) ∼= Z/n and composing with,
where appropriate, the map f . Choose a lift of the cell structure on A to the Z/n cover, and

denote this by Ã. Extend this lift to B, M(J) and M(U) and write B̃, M̃(J) and M̃(U) for the
corresponding covering spaces. Write f̃ for a lift of f to the Z/n covers.

In this diagram we use cellular chain complexes and C denotes taking an algebraic mapping
cone. Strictly, we have replaced the maps f̃ and f̃ |

M̃(K)
by cellular approximations. This is thus

a diagram in the category of finite, finitely generated, based Z[Z/n]-coefficient chain complexes.
All complexes in the lower sequence are acyclic so by the multiplicativity of torsion under such
exact sequences, and the fact that the identity map has vanishing torsion, we obtain τ(f) =
τ(f̃∗) = τ((f̃ |

M̃(K)
)∗) ∈ Wh(Z/n).

We now choose convenient cell structures for E(K) and E(U). Let Y (K) and Y (U) be the
cell structures associated to Wirtinger presentations of the respective knot groups (see e.g. proof
of [Tur01, Theorem 16.5]), where for K we choose an arbitrary such presentation and for U we
choose the presentation of Z with no relations. By [Tur01, Lemma 8.4], the Whitehead torsions
τ(M(J), Y (J)) = 1 for each of J = K, U , so we have that τ((f̃ |

M̃(K)
)∗) may be computed by a
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cellular map F : Ỹ (K) → Ỹ (U) representing f̃ |
Ẽ(K)

. This map is given by

where we are writing Z[Z/n] = Z[t, t−1]/(tn − 1), m + 1 is the number of generators in the
Wirtinger presentation for π1(K), and ∂2(t) is determined by the relations in that presenta-
tion. Up to basis change, and a simple homotopy equivalence, the algebraic mapping cone C (F )
is

where ∂′
2(t) is the effect of deleting a row from the matrix ∂2(t), after the basis change. We then

compute that τ((f̃ |
M̃(K)

)∗) = τ(F ) =
[
∂′

2(t)
] ∈ Wh(Z/n).

When G is an abelian group, the determinant map det : K1(Z[G]) → (Z[G])× is a split sur-
jection (see e.g. [Mil66, p. 359]), and for any finite cyclic G the kernel of this map vanishes
[Oli88, Theorem 5.6]. So the determinant gives an isomorphism K1(Z[Z/n]) ∼= (Z[Z/n])×. The
matrix ∂′

2(t) is a presentation matrix for the Alexander module of K when considered over the
ring Z[t, t−1]. From this, and using the left regular representation of Z[Z/n], we may consider
∂′

2 as an mn × mn matrix over Z, such that the absolute value of the determinant |det(∂′
2)|

is the order of the first homology of the n-fold branched cover H1(Σn(K); Z). This, in turn,
is the order of H1(S3

n(K); Z[Z/n]), which we have assumed to be 1. Thus, as an element of
K1(Z[Z/n]) ∼= (Z[Z/n])×, we have that τ(F ) = det(∂′

2(t)) = ±1, under this isomorphism. Finally,
both +1 and −1 become the trivial element on passage to the Whitehead group Wh(Z/n), so
we obtain the desired result. �
Lemma 4.6. When Arf(K) = 0, there exists a degree-one normal map (S3

n(K), f) satisfying the
conditions of Lemma 4.4, and that is degree-one normal bordant over L(n, 1) to the identity map
(L(n, 1), Id).

Proof. Write f : S3
n(K) → L(n, 1) for the degree-one normal map obtained in Lemma 4.4. By

Remark 4.3, if we can show there is a degree-one map F : W → L(n, 1) × I describing a stably
framed cobordism over L(n, 1) from (S3

n(K), f) to (L(n, 1), Id), we will be done. (Note, we may
change the choice of stable framing on S3

n(K) during the course of the proof.)
Consider the closed 3-manifold

NK := E(K) ∪S1×S1 S1 × S1 × I ∪S1×S1 −E(U),

glueing so that the result is homeomorphic to the 0-framed surgery S3
0(K), but we decompose it

in this way for later. Choose a framing of the tangent bundle of NK that is a product framing on
S1 × S1 × I. This determines an element of [NK , g] ∈ Ωfr

3 (S1 × D2 × I), where the map g : NK →
S1 × D2 × I = E(U) × I has image

∂(S1 × D2 × I) = S1 × D2 ∪ S1 × S1 × I ∪ −S1 × D2,

and is obtained by glueing together the standard degree-one map E(K) → E(U) = S1 × D2, the
identity on S1 × S1 × I, and the canonical identification E(U) → S1 × D2.

We have Ωfr
3 (S1 × D2 × I) ∼= Ωfr

3 (S1). The map from S1 to a point induces a split short exact
sequence 0 → Ω̃fr

3 (S1) → Ωfr
3 (S1) → Ωfr

3 → 0. Thus Ωfr
3 (S1) ∼= Ωfr

3 ⊕ Ωfr
2 , where we have used the
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isomorphism Ω̃fr
3 (S1) ∼= Ω̃fr

2 (S0) ∼= Ωfr
2 , coming from the fact that Ωfr∗ (−) is a generalised homology

theory and thus satisfies the suspension axiom. Under this isomorphism, the projection of [NK , g]
to Ωfr

3
∼= Z/24 is given by the framed bordism class of NK . Since any element in Ωfr

3
∼= Z/24 can be

realised by a suitable framing on S3, the framing of NK can be modified in a small neighbourhood
until the element in Ωfr

3
∼= Z/24 vanishes; see e.g. [CP14, p. 13] for details.

The map from Ωfr
2
∼= Ω̃fr

2 (S0) ∼= Ω̃fr
3 (S1) → Ω3(S1) is given by applying the reduced suspen-

sion, sending the class of f : F 2 → pt to f × Id: F × S1 → S1 in Ω3(S1), and framing F × S1 via
the product framing with the trivial framing on S1. Under the projection Ω3(S1) → Ωfr

2 , the class
[NK , g] is thus mapped to a framed surface F given by taking the transverse preimage of a regu-
lar point in S1 under g. Recall that g was obtained using the standard degree-one normal maps
E(K) → E(U) and E(U) → E(U). Under these, generic transverse point preimages are Seifert
surfaces, FK and FU , respectively for the knots K and U . Thus the projection to Ωfr

2 is the Arf
invariant of the framed surface F = FK ∪ ({pt} × S1) ∪ −FU . Since we assumed that Arf(K) = 0
this component already vanishes in Ωfr

2 . So overall we obtain [NK , g] = 0 ∈ Ωfr
3 (S1 × D2 × I)

Write W ′ for a framed null bordism of (NK , g) over S1 × D2 × I. Now attach D2 × S1 × I to
S1 × S1 × I such that D2 × S1 × {t} attaches to S1 × S1 × {t} with the n-framing, and similarly
attach the n-framed D2 × S1 × I to the codomain S1 × D2 × I. This yields a map F : W →
L(n, 1) × I that describes a framed cobordism from (S3

n(K), f) to (L(n, 1), Id), over L(n, 1). To
see that the cobordism is framed, note that we can glue the two framings together along the
product framing on both pieces W ′ and D2 × S1 × I.

We finally also note that the map F : W → L(n, 1) is degree one. This can be computed by
considering the naturality of the long exact sequences in homology of the pairs (W, ∂W ) and
(L(n, 1) × I, L(n, 1) × {0, 1}), and the fact that both components of ∂F are already known to
be degree one. �
Remark 4.7. For even n, there is a sequence of group homomorphisms

given from left to right by: the inclusion of L(n, 1) as the 3-skeleton, the surjective group
homomorphism Z/n → Z/2, and the forgetful map.

An argument similar to that of [HS13, Lemma 4.2] can be made to determine that
ΩSpin

3 (B(Z/2)) ∼= ΩPin−
2

∼= Z/8. This argument would take us too far afield here, but we allow
ourselves to consider the consequences. Under this isomorphism, the element of Z/8 is detected
by the Brown invariant of a Pin− structure on the surface in M that is the transverse preimage
of RP2 ⊆ RP3, the 3-skeleton of B(Z/2). Let (M, f) ∈ ΩSpin

3 (B(Z/2)) with f−1(RP2) = N ⊂ M .
The Pin− structure on N gives a Z/4 enhancement of the Z/2 intersection form on N , which
counts the number of half twists modulo 4 of the bands. If the surface N is orientable, then
the enhancement lies in 2Z/4 and the Brown invariant lies in 4Z/8 ∼= Z/2, computing the Arf
invariant of the surface N with respect to the Spin structure on N pulled back from M [KT90,
§ 3].

In our case, the map f is the one from Lemma 4.4, and is constructed as a Pontryagin–Thom
collapse on a normal neighbourhood of a Seifert surface, followed by the extension to the Dehn
filling. Thus in this case, the surface N = f−1(RP2) ⊂ S3

n(K) is represented by a capped off
Seifert surface for K. This shows that the obstruction to vanishing of (S3

n(K), f) ∈ ΩSpin
3 (B(Z/2))

is given by the Arf invariant of the knot.
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For even n, Remark 4.7 shows that the bordism of Lemma 4.6 cannot exist unless Arf(K) = 0.
This is not so for n odd, and to demonstrate this we now include an alternative existence proof
for degree one normal bordism, with no Arf invariant assumption, when n is odd.

Lemma 4.8. For n odd, there exists a degree-one normal map (S3
n(K), f) that satisfies the

conditions of Lemma 4.4 and is degree-one normal bordant over L(n, 1) to the identity map
(L(n, 1), Id).

Proof. Write f : S3
n(K) → L(n, 1) for the degree-one normal map obtained in Lemma 4.4. Again,

by Remark 4.3, the objective is to show there is a degree-one map F : W → L(n, 1) × I describing
a stably framed cobordism over L(n, 1) from (S3

n(K), f) to (L(n, 1), Id).
We show that there is a choice of stable framing for S3

n(K) such that [S3
n(K), f ] −

[L(n, 1), Id] = 0 ∈ Ωfr
3 (L(n, 1)).

Consider the Atiyah–Hirzebruch spectral sequence for Ωfr∗ (−), with E2 page E2
p,q =

Hp(L(n, 1); Ωfr
q ) and converging to Ωfr

p+q(L(n, 1)). By inspection of the differentials, this sequence
collapses already at the E2 page, so the groups Hp(L(n, 1); Ωfr

q ) form iterated graded quo-
tients for a filtration of Ωfr

3 (L(n, 1)). We note that by the Pontryagin–Thom theorem, we have
Ωfr

q = Z, Z/2, Z/2, Z/24 when q = 0, 1, 2, 3 respectively.
We analyse the groups on the E2 page in turn by considering the CW decomposition of

L(n, 1) with a single p-cell ep for each of p = 0, 1, 2, 3 and recalling that the E1 page is given by

E1
p,q = Ccell

p (L(n, 1); Z) ⊗ Ωfr
q
∼= Ω̃fr

q (S0) ∼= Ω̃fr
p+q(e

p/∂ep) ∼= Ωfr
p+q(X

(p), X(p−1))

where X(p) denotes the p-skeleton of L(n, 1). The groups on the E2 page can be considered as
a sequence of obstructions to finding a framed null-bordism of S3

n(K) � −L(n, 1) over L(n, 1) so
we analyse these obstructions in turn.

At q = 0, a representative class for [S3
n(K), f ] − [L(n, 1), Id] ∈ Ωfr

3 (L(n, 1)) is given by a cycle
in E1

3,0 = Ωfr
3 (X(3), X(2)). The resulting class in E2 vanishes if we can do surgery on the disjoint

union S3
n(K) � −L(n, 1) in a way that respects the degree-one normal maps to L(n, 1) and

such that the effect of surgery maps to the 2-skeleton of L(n, 1). In other words we seek to
compatibly stably frame the connected sum S3

n(K)#(−L(n, 1)). The obstruction to doing this
is the difference of f∗[S3

n(K)] − Id∗[L(n, 1)] ∈ H3(L(n, 1); Ωfr
0 ), which vanishes because the maps

f and Id are degree one.
Next, for q = 1 and q = 2 homology computations using that n is odd show that both

H2(L(n, 1); Ωfr
1 ) = 0 and H1(L(n, 1); Ωfr

2 ) = 0, so there is no obstruction here. Thus we may
assume we have done surgery on S3

n(K) � (−L(n, 1)) over L(n, 1) to obtain some closed, con-
nected Y together with a degree-one normal map g : Y → L(n, 1), where the map g : Y → L(n, 1)
has codomain the 0-skeleton, and [Y, g] = [S3(K), f)] − [L(n, 1), Id] ∈ Ωfr

3 (L(n, 1)).
Finally, for q = 3, the last E2 page obstruction is given by a class in E1

0,3 = Ωfr
3 (X(0), ∅) which

is equal to [Y ] ∈ Ωfr
3
∼= Z/24. By framed bordism invariance, this is equal to [S3

n(K)] − [L(n, 1)] ∈
H0(L(n, 1); Ωfr

3 ) ∼= Ωfr
3
∼= Z/24. Similarly to the proof of Lemma 4.6, the framing near a point in

S3
n(K) may be modified in a small neighbourhood to force vanishing of this obstruction.

As the various representative elements of [S3
n(K), f ] − [L(n, 1), Id] ∈ Ωfr

3 (L(n, 1)) can be made
to vanish on the E2 page, this class vanishes in Ωfr

3 (L(n, 1)), and we obtain the required bordism.
Similarly to the proof of Lemma 4.6, this bordism over L(n, 1) is seen to be a degree one normal
bordism. �

From this point onwards we require the definition of a degree-one normal map in the topo-
logical category. The necessary definitions are identical to those in Definitions 4.1 and 4.2, except
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now we use the topological stable normal bundle, which is a topological R∞-bundle classified by
a map into the classifying space BTOP; see e.g. [FNOP19, Definition 7.12]. There is a forgetful
map BO → BTOP, under which the stable normal vector bundle of a smooth manifold is sent to
the stable topological normal bundle of the underlying topological manifold. The results derived
so far in this section thus descend to statements in the topological category.

Proposition 4.9. Let K be a knot, and let n be odd. There is a degree-one normal bordism
F : W → L(n, 1) × I from the map f : S3

n(K) → L(n, 1) of Lemma 4.4 to Id : L(n, 1) → L(n, 1),
such that π1(W ) ∼= Z/n and σ(W ) = 0. The same is true for n even when Arf(K) = 0.

Proof. When n is odd, we use Lemma 4.8, and when n is even we use Lemma 4.6, to obtain
a (smooth) degree-one normal bordism W . Now perform (smooth) 1-surgeries on the interior
of W to modify the fundamental group to Z/n while still retaining a degree-one normal map.
We abuse notation and continue to write F : W → L(n, 1) × I for this degree-one map, so that
now π1(W ) ∼= Z/n. Next take connected sums with the degree-one normal map E8 → S4 (or the
oppositely oriented version −E8 → S4), in order to kill the signature of W . Here E8 denotes
the E8 manifold, that is, a closed, simply connected topological 4-manifold with intersection
form given by the E8 matrix. The result may no longer be smooth, but now has all the desired
properties. �

The objective is now to perform 2-surgeries on W , so that after the surgeries the map
W → L(n, 1) × I is a homotopy equivalence. This will imply that W is a Z[Z/n]-coefficient
homology bordism from S3

n(K) to L(n, 1). To analyse whether this is possible, we proceed as in
[Wal99, § 5]. Since H2(L(n, 1) × I; Z[Z/n]) = 0, the surgery kernel module (see [Wal99, § 5]) is
equal to H2(W ; Z[Z/n]) and the middle-dimensional Z[Z/n]-coefficient intersection pairing

λ : H2(W ; Z[Z/n]) × H2(W ; Z[Z/n]) → Z[Z/n]

is equal to the surgery kernel pairing. This intersection form, together with the Wall self-
intersection form μ, determine a quadratic form (H2(W ; Z[Z/n]), λ, μ) over Z[Z/n]. In the next
lemma we confirm this quadratic form gives a well-defined element in a surgery obstruction group.
The obstruction group is analysed in the next section of the article.

Lemma 4.10. Let K ⊂ S3 be a knot satisfying H1(S3
n(K); Z[Z/n]) = 0 and suppose there

is a degree-one normal bordism (W, F ) as in Proposition 4.9. Then the quadratic form
(H2(W ; Z[Z/n]), λ, μ) is non-singular and simple, thus it determines a well-defined surgery
obstruction in the group Ls

4(Z[Z/n]).

Proof. The quadratic form is non-singular because H1(S3
n(K); Z[Z/n]) = 0, by assumption. We

claim this quadratic form is moreover simple (with respect to some stable Z[Z/n] basis). Indeed,
the manifold with boundary (W, S3

n(K) � −L(n, 1)) is a simple Poincaré pair [KS77, Essay III,
Theorem 5.13], so it remains to check that the Z[Z/n]-homology equivalence on the boundary

f � Id: S3
n(K) � −L(n, 1) → L(n, 1) � −L(n, 1)

has vanishing Whitehead torsion. But the identity map has vanishing Whitehead torsion, and
so does f by Lemma 4.5. �

5. The surgery obstruction

For all n, the surgery obstruction group Ls
4(Z[Z/n]) has been computed and is given by a col-

lection of signatures known as the multisignature. In this section we describe the multisignature
and then relate it to Tristram–Levine signatures of a knot in the case of interest to us.
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5.1 The multisignature for a general finite group
We first recall some representation theory. Let π be any finite group and let Cπ be the complex
group ring. The elements of the representation ring RCπ are formal additive differences of finitely
generated Cπ-modules. The product structure is given by tensor product; we note the formal
addition also agrees with the direct sum of modules.

Given a finitely generated Cπ-module V , we obtain the underlying complex vector space,
denoted VC, by forgetting the π action. For example, the rank 1 free module V = Cπ has under-
lying |π|-dimensional complex vector space, which has a natural basis given by the group elements
of π. We are emphasising the distinction between V and VC to avoid confusion between rank
and dimension, and to increase clarity in later proofs. A Cπ-module V determines a Cπ-module
structure on the complex conjugate vector space VC, and this is called the complex conjugate
representation. Those Cπ-modules that are isomorphic to their own complex conjugate represen-
tation form a subring R+

Cπ ⊂ RCπ called the purely real representation ring. Given a Cπ-module
V , the character is χV : π → C, where χV (g) is the trace of the endomorphism of V given by g.

Now let λ : V × V → Cπ be a hermitian form on a finitely generated Cπ-module V . The form
(V, λ) determines a π-equivariant hermitian form (VC, λC) over C, where

λC : VC × VC
λ−→ Cπ

trace−−−→ C

and where ‘trace’ denotes taking the coefficient of the neutral element e ∈ π. We may take
V + and V −, the maximal positive definite and negative definite subspaces with respect to λC.
These subspaces are moreover π-invariant and hence are themselves Cπ-modules. We define the
representation-valued multisignature:

mult(V, λ) = V + − V − ∈ RCπ.

Given a non-singular hermitian form (V, λ) representing an element of Ls
4(Z[π]), we may complex-

ify to obtain a hermitian form over Cπ, and then take the representation-valued multisignature.
This determines a group homomorphism

mult : Ls
4(Z[π]) → RCπ.

Taking characters determines an injective ring homomorphism RCπ → Homclass(π, C), where
the latter denotes the ring of Z-linear combinations of complex-valued functions on π that are
constant on conjugacy classes of π. We call the image of mult(V, λ) under this homomorphism
the character-valued multisignature.

5.2 The multisignature for a finite cyclic group
We now restrict our attention to π = Z/n and choose a generator t, obtaining an isomorphism
C[Z/n] ∼= C[t]/(tn − 1). Let χ represent the character of the irreducible C[t]/(tn − 1)-module
C, where t acts by exp(2πi/n). The characters for the irreducible C[Z/n]-modules are then
χ0, χ1, χ2, . . . , χn−1, and the ring of complex class functions for Z/n is well known to be
isomorphic to Z[χ]/(1 + χ + χ2 + · · · + χn−1).

Proposition 5.1. Let (V, λ) be a hermitian form over C[Z/n], with associated π-equivariant
complex hermitian form (VC, λC). The coefficient αk of the character-valued multisignature

mult(V, λ) = α0 · χ0 + α1 · χ1 + · · · + αn−1 · χn−1 ∈ Z[χ]/(1 + χ + χ2 + · · · + χn−1)

is equal to the ordinary signature of the restriction of λC to the exp(2πik/n)-eigenspace of the
action of t on VC.
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Proof. Recall the positive and negative definite C[Z/n]-modules V + and V −. There is then
a decomposition into irreducible components V ± ∼= ⊕n−1

k=0 V ±
k , where V ±

k denotes the com-
ponent that corresponds to the character χk. The representation-valued multisignature then
decomposes as

mult(V, λ) = V + − V − =
n−1∑
k=0

(V +
k − V −

k ) ∈ RC(Z/n).

Taking characters, we see that αk = dimC(V +
k ) − dimC(V −

k ). In other words, αk is the ordinary
signature of the restriction of λC to Vk = V +

k ⊕ V −
k . Note that, viewing Vk as a complex vec-

tor subspace Vk ⊂ VC, it is the exp(2πik/n)-eigenspace of the action of the generator t ∈ Z/n
on VC. �
Example 5.2. Suppose (V, λ) as in Proposition 5.1 and A(t) is a hermitian matrix over C[Z/n] ∼=
C[t]/(tn − 1) representing (V, λ). Then the signature of λC restricted to Vk is given by the
signature of the complex hermitian matrix A(exp(2πik/n)).

Example 5.3. Let W be a compact oriented 4-manifold with a homomorphism φ : π1(W ) →
Z/n. This determines an n-fold cyclic cover W̃ → W with covering transformation τ : W̃ → W̃ .
The complex vector space VC := H2(W̃ ; C) has an action of Z/n generated by τ∗ = t, and the
middle-dimensional intersection pairing λC of W̃ is equivariant with respect to this. Thus (W, φ)
determines a multisignature via (VC, λC). The coefficients of this multisignature may be computed
using Proposition 5.1 and Example 5.2.

For odd n, the next result is due to Wall [Wal99, Theorem 13A.4(ii)] and independently to
Bak [Bak78]. For n a power of 2, it was explicitly derived in [Wal76, Corollary 3.3.3] and the
techniques for the general even n case were outlined. This general even n case is stated in [HT00,
p. 3] and implicitly calculated there.

Theorem 5.4 [HT00, §§ 10, 12]. For n any positive integer, the group homomorphism

mult : Ls
4(Z[Z/n]) → Z[χ]/(1 + χ + χ2 + · · · + χn−1)

determined by the character-valued multisignature factors through the purely real representa-
tions R+

C (Z/n) ⊂ RC(Z/n). There is moreover an isomorphism

Ls
4(Z[Z/n]) ∼=

{
4Z(n−1)/2 ⊕ 8Z n odd,

4Z(n−2)/2 ⊕ 8Z ⊕ 8Z n even,

given by the function

(V, λ) �→
{

(α1, α2 . . . , α(n−1)/2, α0) n odd,

(α1, α2 . . . , α(n−2)/2, αn/2, α0) n even.

where αk is the coefficient of χk in mult(V, λ).

Remark 5.5. The reader may be wondering why only half the character coefficients of mult(V, λ)
appear in the above isomorphism. It is a consequence of the fact that the character-valued
multisignature factors through R+

C (Z/n) that the complex irreducible representations will appear
as conjugate pairs in mult(V, λ):

mult(V, λ) =

{
α0 · χ0 +

∑(n−1)/2
k=0 αk(χk + χ−k) n odd,

α0 · χ0 + αn/2 · χn/2 +
∑(n−2)/2

k=0 αk(χk + χ−k) n even.
In other words, for all k we have that αk = α−k.
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5.3 The multisignature as Tristram–Levine signatures
For this section, let K be a knot and let W be a bordism from S3

n(K) to L(n, 1) over the group
Z/n. Such a bordism in particular has a multisignature as in Example 5.3. Now we relate the
Tristram–Levine signatures of K to the multisignature of W .

Lemma 5.6. Let K be a knot and let W be a cobordism from S3
n(K) to L(n, 1) over the group

Z/n. Assume that σ(W ) = 0. When 0 < k < n, the coefficient αk ∈ Z of the multisignature of
W at χk coincides with the Tristram–Levine signature of K at ξk

n, where ξn = exp(2πi/n).

Proof. Noting that by hypothesis σ(W ) = 0, we have by Proposition 3.7 that

σξk
n
(K) = σk(W̃ ) − σ(W ) = σk(W̃ ).

Proposition 5.1 tells us that σk(W̃ ) is the coefficient of the character χk in the multisignature
as claimed. �

We summarise the results in the previous three sections for our purposes.

Proposition 5.7. Let K be a knot and let f : S3
n(K) → L(n, 1) be a degree-one normal map.

Suppose W is a degree-one normal bordism from (S3
n(K), f) to (L(n, 1), Id) with σ(W ) = 0.

Then the associated surgery obstruction

(H2(W ; Z[Z/n]), λ, μ) ∈ Ls
4(Z[Z/n])

is trivial if and only

σξk
n
(K) = 0 for every

{
k = 1, . . . , (n − 1)/2 n odd,

k = 1, . . . , n/2 n even,

where σξk
n
(K) denotes the Tristram–Levine signature of K at ξk

n, for ξn = exp(2πi/n).

Proof. By Theorem 5.4, a class in Ls
4(Z[Z/n]) vanishes if and only if there is vanishing of the

associated multisignature coefficients:

(α1, α2 . . . , α(n−1)/2, α0) for n odd,
(α1, α2 . . . , α(n−2)/2, αn/2, α0) for n even.

The coefficient α0 corresponds to the trivial character and thus corresponds to the eigenspace
of the t action on (H2(W ; Z[Z/n]) with eigenvalue 1. The signature of the Z[Z/n]-coefficient
intersection form of W restricted to this component is then just the ordinary signature of W ,
whose vanishing is in the hypotheses.

For k �= 0, the coefficient αk is equal to σξk
n
(K), by Lemma 5.6. �

Proposition 5.8. For odd n, suppose that H1(S3
n(K); Z[Z/n]) = {0} and σξk

n
(K) = 0 for all

0 < k < n, and ξn a primitive nth root of unity. Then S3
n(K) is homology cobordant to L(n, 1)

via a cobordism V homotopy equivalent to L(n, 1) × I, via a homotopy equivalence restricting
to the identity map on L(n, 1) and the standard degree one collapse map on S3

n(K). The same
is true for even n when Arf(K) = 0.

In fact, Propositions 3.5 and 3.3 show that this is an ‘if and only if’.

Proof. Lemma 4.4 shows how to construct the degree-one normal collapse map f : S3
n(K) →

L(n, 1). In Proposition 4.9, with the assumption that Arf(K) = 0 when n even, we further
constructed a degree-one normal bordism W over L(n, 1) from (S3

n(K), f) to (L(n, 1), Id), such
that π1(W ) ∼= Z/n, and σ(W ) = 0.
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By the discussion at the end of § 4, using the fact that H1(S3
n(K); Z[Z/n]) = {0}, the obstruc-

tion to performing further surgeries on W to improve it to be homotopy equivalent to L(n, 1)
lies in the group Ls

4(Z[Z/n]).
The vanishing of the surgery obstruction from Proposition 5.7 and the fact that Z/n is a

good group implies that we can perform surgery on the interior of W to obtain a cobordism V
that is homotopy equivalent to L(n, 1) [FQ90, Chapter 11]. In particular, V is a Z[Z/n]-homology
cobordism from S3

n(K) to L(n, 1). �

6. The Arf and τ invariants

6.1 The τ invariant
Recall that a locally flat sphere in a topological 4-manifold M is said to be generically immersed
if all its self-intersections are transverse double points. A locally flat union of discs in M is
said to be generically immersed if its self-intersections are transverse double points and if the
boundaries are mutually disjoint and embedded.

We refer the reader to [FQ90, Chapter 1] for standard notions such as the intersection and
self-intersection numbers λ and μ for generically immersed spheres in an ambient topological
4-manifold. We will use the following lemma.

Lemma 6.1 [FQ90, p. 22]. For a generically immersed sphere S in a topological 4-manifold, we
have that

λ(S, S) = μ(S) + μ(S) + e(νS)

where the last term denotes the euler number of the normal bundle νS of S.

We also use the fact that a locally flat submanifold of a topological 4-manifold has a linear
normal bundle, as well as notions of topological transversality, immersions, and so on, for which
we refer the reader to [FQ90].

The key tool in this section is the τ invariant of a generically immersed sphere with vanishing
self-intersection number in a topological 4-manifold. This was originally defined by [Mat78] and
[FK78], and then significantly generalised by Schneiderman and Teichner [ST01]. We define τ in
our setting, referring the reader to [ST01] for a more general definition.

Definition 6.2. A generically immersed sphere S in a topological 4-manifold M is said to be
s-characteristic, or spherically characteristic, if S · R ≡ R · R mod 2 for every immersed sphere
R in M .

Proposition 6.3 [ST01, Theorem 1, Remark 5]. Let M be a simply connected topological
4-manifold and suppose that S is a generically immersed s-characteristic 2-sphere in M with
μ(S) = 0. Consider the quantity

τ(S, {Wi}) :=
∑

i

S · W̊i mod 2,

where {Wi} is a set of framed, generically immersed Whitney discs in M , pairing the self-
intersection points of S, and such that each Wi intersects S transversely in double points in the
interior of {W̊i}. Such a family of Whitney discs exists since μ(S) = 0.

The value of τ(S, {Wi}) ∈ Z/2 does not depend on choices of pairing of double points,
Whitney arcs, or Whitney discs.
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Consequently we write τ(S) ∈ Z/2, dropping the discs {Wi} from the notation. When we
judge that the manifold M is not immediately clear from the context, we use the notation τM (S)
instead of τ(S).

Indeed, τ(S) is an invariant of the homotopy class [S] ∈ π2(M), as follows. Each class in
π2(M) can be represented by a generic immersion of a sphere S in M by [FQ90, Immersion
lemma, p. 13]. Perform local cusp moves to ensure that μ(S) = 0 and then compute τ(S). Rep-
resentatives of a given homotopy class with vanishing self-intersection number are regularly
homotopic [FQ90, Proposition 1.7], where by definition, a regular homotopy in the topological
category is a concatenation of finger moves and (embedded) Whitney moves. (If M admits a
smooth structure, a generic regular homotopy can be decomposed into a sequence of such moves,
and every regular homotopy can be perturbed to such a homotopy [GG73, § III.3].) It is clear
that either such move preserves τ(S). Consequently, the invariant τ is well defined on homotopy
classes, and we sometimes use the notation τ(x) for an s-characteristic class x ∈ π2(M) for a
simply connected topological 4-manifold M .

In particular, if such an x ∈ π2(M) is represented by a locally flat, embedded sphere, then
τ(x) = 0, and thus τ gives an obstruction for a homotopy class to contain a locally flat embed-
ding. Observe that τ does not see the orientation of a sphere, that is, τ(x) = τ(−x) for an
s-characteristic class x ∈ π2(M) in a simply connected topological 4-manifold M .

Next we recall a well-known formulation of the Arf invariant of a knot.

Proposition 6.4 ([Mat78, FK78] and [CST14, Lemma 10]). Let K be a knot in S3 bounding
a generically immersed disc Δ in D4 with μ(Δ) = 0. Since μ(Δ) = 0, there exists a collection
{Wi} of framed, generically immersed Whitney discs pairing up the self-intersections of Δ and
intersecting Δ in transverse double points in the interior of {W̊i}. Then

Arf(K) =
∑

i

Δ · W̊i mod 2.

For a sketch of a proof, see [CST14, Lemma 10]. We give a brief outline here for the con-
venience of the reader. The Arf invariant of a knot K is equal to

∑
i lk(ai, a

+
i ) lk(bi, b

+
i ) mod 2

where {ai, bi} is a symplectic basis for the first homology of some Seifert surface F of K, rep-
resented by simple closed curves with |ai � bj | = δij [Lic93, § 10, p. 105]. Given such a surface
F and curves {ai, bi}, construct an immersed disc bounded by K by pushing the interior of
F into D4 and surgering along correctly framed immersed discs bounded by the curves {ai}
(correct framing can be arranged by boundary twisting). Construct Whitney discs for the self-
intersections using the immersed discs bounded by the {bi}. Then all intersections are created in
pairs, except for the

∑
lk(ai, a

+
i ) lk(bi, b

+
i ) intersections created when adjusting the framings of

the discs bounded by {ai, bi}. This equals the Arf invariant of K via the Seifert form definition.
That the count in Proposition 6.4 is well defined follows from glueing together two generically

immersed discs bounded by K, producing an s-characteristic generically immersed sphere in S4

with vanishing τ (since π2(S4) = 0).
The next lemma shows, in particular, that knots with Arf invariant 1 are not n-shake slice.

This was shown by Robertello [Rob65] using a different proof.

Proposition 6.5 [Rob65]. Let n be an integer. Let S be an immersed sphere representing a
generator of π2(Xn(K)) ∼= Z for a knot K with μ(S) = 0. Then τ(S) = Arf(K).

Proof. Given any null homotopy of K in D4, the union with the core of the 2-handle of Xn(K) is
a sphere S generating π2(Xn(K)) but it might not have vanishing self-intersection number. How-
ever, n = λ(S, S) = 2μ(S) + e(νS), since Xn(K) is simply connected (see Lemma 6.1). Adding a
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local cusp to S changes μ(S) by ±1 and the euler number e(νS) by ∓2, but does not change
the homotopy class of S. Add local cusps as necessary to produce a sphere SK , also generating
π2(Xn(K)), with μ(SK) = 0 and e(SK) = λ(SK , SK) = n. Perform the local cusps inside D4, so
SK still intersects the 2-handle of Xn(K) only in the core.

Next, we claim that SK is s-characteristic. To see this, let R be an immersed sphere in
Xn(K). Then since SK generates π2(Xn(K)) ∼= Z there is some a ∈ Z such that R has homotopy
class a[SK ]. Then SK · R = an and R · R = a2n, which have the same parity. So SK is indeed
s-characteristic.

By definition, τ(SK) is computed as

τ(SK) =
∑

i

SK · W̊i mod 2,

where {Wi} is some collection of framed, generically immersed Whitney discs pairing up all the
self-intersections of SK and intersecting SK in transverse double points in the interior of the
{Wi}. Since the self-intersections of SK lie in the 0-handle D4 of Xn(K), we may and shall
assume that the discs {Wi} also lie in D4. In that case, the value of τ(SK) is computed purely
in D4 and equals Arf(K) by Proposition 6.4. �

Recall that by Freedman’s classification [Fre82] of closed, simply connected 4-manifolds,
there exists a closed topological 4-manifold homotopy equivalent but not homeomorphic to CP2,
known as the Chern manifold, and denoted ∗CP2. To build ∗CP2, attach a 2-handle to D4 along
a +1-framed knot J in S3 = ∂D4 with Arf(J) = 1, such as the figure eight knot, and cap off the
boundary, which is a homology 3-sphere, with a contractible 4-manifold C, which can be found
by [Fre82, Theorem 1.4′], [FQ90, 9.3C].

The next lemma shows how to use the τ invariant to distinguish between the manifolds
CP2#CP2 and ∗CP2#CP2.

Lemma 6.6. Let x, ∗x, and x̄ denote generators of, respectively, π2(CP2) ∼= π2(∗CP2) ∼=
π2(CP2) ∼= Z. Then x + x̄ and ∗x + x̄ are s-characteristic classes in π2(CP2#CP2) and

π2(∗CP2#CP2) respectively. Moreover, τ(x + x̄) = 0 while τ(∗x + x̄) = 1.

Proof. Let S denote the sphere CP1 ⊂ CP2 ⊂ CP2#CP2 and let S̄ denote the sphere CP1 ⊂
CP2 ⊂ CP2#CP2. Then without loss of generality, x = [S] and x̄ = [S̄].

First we consider CP2#CP2. The pair {x, x̄} generates π2(CP2#CP2). Then

(x + x̄) · (ax + bx̄) ≡ a + b ≡ a2 + b2 ≡ (ax + bx̄) · (ax + bx̄) mod 2.

Thus, x + x̄ is s-characteristic in π2(CP2#CP2). Then τ(x + x̄) = 0 since the class x + x̄ can be
represented by an embedded sphere in CP2#CP2 produced by tubing S and S̄ together.

As described above, ∗CP2 is built by capping off the surgery trace X1(J) of some knot J
with Arf(J) = 1 by a contractible 4-manifold. Inclusion induces an isomorphism π2(X1(J)) ∼=
π2(∗CP2), and, as before, the generator is s-characteristic. By Proposition 6.5, the image of ∗x in
X1(J) can be represented by a sphere ∗S ⊂ X1(J) with trivial self-intersection number and self-
intersections paired by a family of Whitney discs {Wi} so that

∑ ∗S · W̊i mod 2 = Arf(J) = 1.
Since X1(J) ⊂ ∗CP2, both ∗S and the same Whitney discs are contained within ∗CP2.

The pair {∗x, x̄} generates π2(∗CP2#CP2) and the corresponding intersection form is [+1] ⊕
[−1]. The same calculation as above shows that ∗x + x̄ is s-characteristic in π2(∗CP2#CP2).

Now, to compute τ(∗x + x̄), we tube together ∗S and S̄ in ∗CP2#CP2. Call the result ∗S + S̄.
Since S̄ is embedded and S and ∗S are disjoint, the discs {Wi} from above form a complete set

2266

https://doi.org/10.1112/S0010437X21007508 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007508


Embedding spheres in knot traces

of Whitney discs for the self-intersections of ∗S + S̄. Moreover, the discs {Wi} do not intersect
S̄. It follows that τ(∗x + x̄) = Arf(J) = 1. �

6.2 Equating the Arf and Kirby–Siebenmann invariants
Now we bring in the ingredients from the previous two sections. Our aim is to apply the
τ invariant to prove that Arf(K) computes the Kirby–Siebenmann invariant of a certain
4-manifold.

Recall that we built a homology cobordism V between S3
n(K) and the lens space L(n, 1) in

Proposition 5.8. The following technical lemma will be used below to show that the union of V

and Dn, the D2-bundle over S2 with euler number n is homeomorphic to CP2#CP2 when n is
odd and Arf(K) = 0.

Lemma 6.7. Let n be an odd integer. Let Dn denote the D2-bundle over S2 with euler number
n. Suppose that S3

n(K) is homology cobordant to L(n, 1) via a cobordism V which is homotopy
equivalent to L(n, 1) × I via a homotopy equivalence h restricting to the identity on L(n, 1) and
the map f on S3

n(K) from Lemma 4.4. Let Z denote the space −Xn(K) ∪S3
n(K) V ∪L(n,1) Dn.

If Arf(K) = 0 then Z is homeomorphic to CP2#CP2. If Arf(K) = 1 then Z is homeomorphic

to ∗CP2#CP2.

Proof. Recall from Lemma 4.4 that the map f : S3
n(K) → L(n, 1) extends to a homotopy equiv-

alence f̄ : Xn(K) → Dn (this is merely the collapse map). Observe that Dn ∪L(n,1) L(n, 1) ×
I ∪L(n,1) Dn is an alternate decomposition of the double of Dn, which is homeomorphic to S2×̃S2

since n is odd.
Now we define a function G : Z → S2×̃S2.

We now show that G is a homotopy equivalence. Note that Z is constructed from V ∪ Dn by
adding a 2-handle and then a 4-handle, namely, the handles constituting Xn(K) turned upside
down. It is then easy to compute using the Seifert-van Kampen theorem and the Mayer–Vietoris
sequence that π1(Z) = 1, H2(Z) ∼= Z ⊕ Z, H4(Z) = Z. All other reduced homology groups vanish.
Thus, Z has the same homology groups as S2×̃S2. Note further that H2(Z) is generated by [S]
and [Δ], where S is the base sphere of Dn and Δ is represented by the union of the cocore of the
2-handle of Xn(K) and some null-homology for the meridian μK of K in the surgery diagram
for S3

n(K) in V ∪ Dn. We will choose a specific Δ presently.
We know that H2(S2×̃S2) ∼= Z ⊕ Z. Consider again the decomposition

S2×̃S2 = −Dn ∪L(n,1) L(n, 1) × I ∪L(n,1) Dn.

Let C denote the cocore of the 2-handle of Dn. The boundary is the meridian μU of the unknot U
in the surgery diagram for L(n, 1) as the boundary of Dn. We see that H2(S2×̃S2) is generated
by S, the base sphere of Dn, and Δ0 := −C ∪ μU × I ∪ C. Note that Δ0 · Δ0 = 0. Now define
Δ := G−1(Δ0). By construction, f−1(μU ) = μK . Moreover, f

−1(C) is a cocore of the 2-handle
of Xn(K) by Lemma 4.4. Thus G−1(μU × I ∪ C) is a null-homology for μK ⊂ S3

n(K) in V ∪ Dn

and Δ has the form promised in the previous paragraph. Consequently, H2(Z) ∼= Z ⊕ Z is gener-
ated by {S, Δ} and H2(S2×̃S2) ∼= Z ⊕ Z is generated by {S, Δ0}. By construction, G(S) = S and
G(Δ) = Δ0. The map G also induces an isomorphism H4(Z) → H4(S2×̃S2), which follows from a
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calculation using naturality of the Mayer–Vietoris sequences corresponding to the decompositions
of Z and S2×̃S2 in the definition of G above. Thus we have shown that G induces isomorphisms
on the homology groups of Z and S2×̃S2. Since Z and S2×̃S2 are simply connected, this com-
pletes the proof that G is a homotopy equivalence by Whitehead’s theorem and the fact that any
4-manifold is homotopy equivalent to a cell complex. Moreover, since G is a homotopy
equivalence, Δ · Δ = Δ0 · Δ0 = 0.

From now on we work only within the space Z. Note that Z is a closed, simply con-
nected, topological 4-manifold with intersection form [+1] ⊕ [−1]. By the classification of such
4-manifolds [Fre82], Z is homeomorphic to either CP2#CP2 or ∗CP2#CP2. The remainder of
the proof will use Lemma 6.6 to determine the homeomorphism type of Z. To do this we need
to find elements of π2(Z) with self-intersection ±1.

Let S′ denote an immersed sphere within −Xn(K) ⊂ Z representing a generator of
π2(−Xn(K)). We know that S′ · S′ = −n within Z. Here the sign has changed since Z contains
the oriented manifold −Xn(K) rather than Xn(K). The pair {[S], [Δ]} is a basis for H2(Z) and
we calculate that [S′] = [S] − n[Δ]. Here we have also used the facts that S′ · Δ = 1, S · Δ = 1,
and S · S = n. Add local cusps to arrange that μ(S′) = 0 and thus S′ · S′ = e(S′) = −n.

Next we seek the classes in H2(Z) ∼= π2(Z) with self-intersection ±1. Since n is odd, it can be
represented as n = 2k + 1 for some integer k. Straightforward algebra implies that [S] − k[Δ] =
[S′] + (k + 1)[Δ] is the unique class, up to sign, with self-intersection +1 and that [S′] + k[Δ] =
[S] − (k + 1)[Δ] is the unique class, up to sign, that has self-intersection −1. That is,

(a[S] + b[Δ])2 = ±1 ⇒ a2n + 2ab = ±1 ⇒ b =
±1
2a

− an

2

and so b ∈ Z only if a = ±1.
Our goal is to compute the τ invariant of the sum of these classes, since this deter-

mines the homeomorphism type of Z by Lemma 6.6. We must first check that the sum
is s-characteristic. This is virtually the same computation as in Lemma 6.6. We com-
pute the sum ([S] − k[Δ]) + ([S′] + k[Δ]) = [S] + [S′]. Let a[S] + b[Δ] be any class in π2(Z).
Then ([S] + [S′]) · (a[S] + b[Δ]) ≡ a mod 2 and (a[S] + b[Δ]) · (a[S] + b[Δ]) ≡ a2 mod 2. Since
a ≡ a2 mod 2, this shows that [S] + [S′] is s-characteristic.

Finally, we compute τ(([S] − k[Δ]) + ([S′] + k[Δ])) = τ([S] + [S′]). Represent the class [S] +
[S′] by a sphere Σ obtained by tubing together S and S′. Observe that μ(Σ) = 0 since μ(S′) =
μ(S) = λ(S, S′) = 0.

In order to compute τ(Σ), pair up the self-intersections of Σ by framed, generically immersed
Whitney discs with pairwise disjoint and embedded boundaries. All the self-intersections of Σ
arise from self-intersections of S′ since S is embedded and S and S′ are disjoint. We have Whitney
discs {Wi} for the self-intersections of S′ within D4 ⊂ −Xn(K) and by Proposition 6.5, we know
that Arf(K) =

∑
i S′ · W̊i mod 2. Then τ(Σ) = Arf(K) and by Lemma 6.6, Z is homeomorphic

to CP2#CP2 if Arf(K) = 0 and to ∗CP2#CP2 if Arf(K) = 1. This completes the proof. �
Proposition 6.8. Let n be odd. Let Dn denote the D2-bundle over S2 with euler number n.
Suppose that S3

n(K) is homology cobordant to L(n, 1) via a cobordism V which is homotopy
equivalent to L(n, 1) × I via a homotopy equivalence h that restricts to the identity on L(n, 1)
and to the degree-one normal map j on S3

n(K) from Lemma 4.4. Let X be the union of V and
Dn. Then Arf(K) = ks(X).

Proof. Consider the union Z := −Xn(K) ∪ X. Since ks(Xn(K)) = 0, we have that ks(Z) =
ks(X) by additivity of the Kirby–Siebenmann invariant [FNOP19, Theorem 8.2].
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From Lemma 6.7, we know that if Arf(K) = 0, then Z is homeomorphic to CP2#CP2, which is
smooth and thus ks(Z) = 0. If Arf(K) = 1, we saw that Z is homeomorphic to ∗CP2#CP2 and
we have that ks(∗CP2#CP2) = ks(∗CP2) + ks(CP2) = 1 since the Kirby–Siebenmann invariant
is additive under connected sum. This completes the proof. �

7. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following result of Boyer.

Theorem 7.1 [Boy86, Theorems 0.1 and 0.7; Proposition 0.8(i)]. For i = 1, 2, let Vi be a com-
pact, simply connected, oriented, topological 4-manifold with boundary a rational homology
3-sphere.

An orientation preserving homeomorphism f : ∂V1 → ∂V2 extends to an orientation preserv-
ing homeomorphism F : V1 → V2 if and only if the following two conditions hold.

(1) There exists an isomorphism Λ: H2(V1) → H2(V2), inducing an isometry of intersection
forms such that the following diagram commutes:

where Λ∗ indicates the Hom-dual of Λ, together with the implicit use of the identifications
H2(Vi, ∂Vi) ∼= H2(Vi) ∼= Hom(H2(Vi), Z), coming from Poincaré–Lefschetz duality, and the
universal coefficient theorem respectively.

(2) Either the intersection form on H2(V1) is even or ks(V1) = ks(V2).

In our applications, the homeomorphism f we propose to extend will be the identity map.
We remark that when using this theorem, the specific homeomorphism f , or more precisely the
induced map f∗, is highly significant. We illustrate this with an example.

Example 7.2. A construction of Brakes gives examples of knots K, J ⊂ S3 with homeomorphic
n-surgeries but with non-homeomorphic n-traces, as follows. By [Bra80, Example 3], for any
two distinct integers a and b with |a|, |b| > 1, the knots Ka,b := Ca,ab2+1(Tb,b+1) and Kb,a :=
Cb,a2b+1(Ta,a+1) have homeomorphic (a2b2 − 1)-surgeries. Brakes’ homeomorphism induces a
map on the first homology groups of the boundary, which are isomorphic to Z/(a2b2 − 1) that
is given by [μ(Ka,b)] �→ ab[μ(Kb,a)]. Theorem 7.1 immediately implies that this homeomorphism
of the boundaries does not extend to the traces. We now argue that no homeomorphism of the
boundaries can extend to the traces by computing certain Tristram–Levine signatures of the
knots.

It is straightforward to verify that Theorem 7.1 implies that if f : S3
n(K) → S3

n(J) is a
homeomorphism which extends to a homeomorphism of the n-traces, then f∗([μK ]) = ±[μJ ] ∈
H1(S3

n(J)). An argument as in Proposition 3.7 then shows that if K and J have homeomorphic
n-traces then σξ(K) = σξ(J) for every nth root of unity ξ. However, a straightforward computa-
tion using Litherland’s formula for the signatures of a satellite knot and the well-known formula
for the signatures of a torus knot [Lit79] shows that

σξ35
224

(K3,5) = −64 �= −60 = σξ35
224

(K5,3),
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and hence K3,5 = C3,76(T5,6) and K5,3 = C5,46(T3,4) do not have homeomorphic 224-traces
despite having homeomorphic 224-surgeries. We remark to those interested in shake concor-
dance that this example shows that even homeomorphism of the n-surgery is not enough to
imply n-shake concordance for general n ∈ Z.

After this brief interlude, we prove the main theorem.

Proof of Theorem 1.1. Suppose that the generator of π2(Xn(K)) can be represented by a locally
flat embedded sphere S such that π1(Xn(K)�S) ∼= Z/n. Then Propositions 3.3 and 3.5 estab-
lish conditions (i) and (iii) respectively, using Lemma 3.1. Condition (ii) is established in
Proposition 6.5 for all n, and another proof is outlined in Remark 4.7 for even n.

Now consider the converse. Using conditions (i) and (iii), Proposition 5.8 constructs a homol-
ogy cobordism V between S3

n(K) and L(n, 1) along with a homotopy equivalence to L(n, 1) × I
restricting to the identity map on L(n, 1) and the standard degree-one collapse map on S3

n(K).
Let X denote the union of V and the disc bundle Dn over S2 with Euler number n. Note that
π1(X) = {1}, π2(X) = Z, and the intersection form is [n], which presents the linking form [1/n]
on S3

n(K).
Suppose n is even. Then Boyer’s classification (Theorem 7.1) implies that X ∼= Xn(K),

extending the identity map on the boundary. Suppose n is odd. By Proposition 6.8, Arf(K) = 0
implies that ks(X) = 0, which implies by Boyer’s classification (Theorem 7.1) that X ∼= Xn(K),
extending the identity map on the boundary. In either case, the image of the zero section of
Dn in Xn(K) gives rise to a locally flat embedded sphere in Xn(K) representing a generator of
π2(Xn(K)). �

8. ±1-shake sliceness

Recall that when n = ±1, the three conditions of Theorem 1.1 reduce to Arf(K) = 0. As noted
in the introduction, there is a quick proof that if Arf(K) = 0 then K is 1-shake slice.

Example 8.1 (The ‘if’ direction when n = 1). Let K be a knot with Arf(K) = 0. Since S3
1(K) is a

homology sphere, it bounds a contractible 4-manifold C, by [Fre82, Theorem 1.4′] (see also [FQ90,
9.3C]). By removing a small ball from C we obtain a simply connected homology cobordism V
from S3

1(K) to S3 = S3
1(U). Define X := V ∪S3 X1(U) ∼= C#CP2, and observe that X is a simply

connected 4-manifold with boundary S3±1(K) and intersection form [1]. By Boyer’s classification
(Theorem 7.1), the manifold X is homeomorphic to X1(K) if and only if the Kirby–Siebenmann
invariant ks(X) = ks(X1(K)) = 0.

Since the Kirby–Siebenmann invariant is additive under connected sum [FNOP19, Theorem
8.2] and CP2 is smooth, we have ks(X) = ks(C) + ks(CP2) = ks(C). Moreover C is contractible
and hence is a topological spin manifold. By [FQ90, p. 165] and [Gon70], ks(C) = μ(S3

1(K)) =
Arf(K) = 0, where μ(S3

1(K)) is the Rochlin invariant of the homology sphere S3
1(K). Thus we

have a homeomorphism X → X1(K) and the image of CP1 ⊂ CP2 is an embedded sphere with
simply connected complement representing the generator of π2(X1(K)).

8.1 A Seifert surface approach
Now we describe yet another proof that, if Arf(K) = 0, then K is 1-shake slice. This proof is
Seifert surface based and has the advantage that we control the number of intersections of the
resulting 2-sphere with the cocore of the 2-handle, yielding an upper bound on the 1-shaking
number of knots. A similar proof for Theorem 1.1 when |n| ≥ 2, including similar control on the
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. . .. . .

Figure 1. The pattern S3,1.

n-shaking number of Z/n-shake slice knots, seems possible in principle, but we have not managed
to find it yet.

Definition 8.2. A (2k + 1)-component n-shaking of a knot K is a link S2k+1,n(K) obtained
by taking 2k + 1 push-offs with respect to the n-framing, oriented so that k + 1 push-offs are
oriented the same as K, and k push-offs are oriented in the opposite direction.

The link S2k+1,n(K) is the (untwisted) satellite link with companion K and pattern S2k+1,n

as in Figure 1. It is determined up to isotopy by K, n, and k.
Now we explain the well-known relationship between the existence of an embedded sphere

in the n-trace Xn(K) and shakings S2k+1,n(K). Recall that a link L is weakly slice if L bounds
a locally flat planar surface in D4.

Lemma 8.3. Let K be an oriented knot. There exists a surface of genus g that represents the
generator of H2(Xn(K); Z) if and only if, for some k ≥ 0, the shaking S2k+1,n(K) ⊂ S3 bounds
a surface of genus g in D4. Consequently, K is n-shake slice if and only if K admits a weakly
slice n-shaking S2k+1,n(K) for some k ∈ Z.

Proof. The if direction follows from the observation that any filling surface in D4 for the shaking
S2k+1,n(K) can be capped of with 2k + 1 parallel copies of the two-handle to produce a surface
that represents the generator of H2(Xn(K); Z).

For the only if direction, let F be a surface of genus g that represents the generator of
H2(Xn(K); Z). Isotope F so that it is transverse to the cocore of the 2–handle. Cut Xn(K)
along the cocore C to obtain back D4. This punctures F to a surface F ′. The surface F ′ has
the same genus as F and is bounded by the shaking S2k+1,n(K), where 2k + 1 is the geometric
intersection number of F with the cocore C. �

For 1-shakings, we provide the following explicit variant of our main result Theorem 1.1.
Recall that the (topological) Z–slice genus gZ

4 (L) of a link L is the smallest genus among Z-
slice surfaces for L. Here, a Z–slice surface for L is a properly, locally flatly embedded, compact,
connected, and orientable surface in D4 with boundary L and infinite cyclic fundamental group of
the complement. For knots, the topological Z-slice genus equals the algebraic genus galg [FL19],
which is a quantity depending only on the S-equivalence class of the Seifert form of knots
and that in particular satisfies gZ

4 (K) = galg(K) ≤ deg(ΔK)/2 ≤ g3(K). Here g3 denotes the
3-genus.

For our purposes, it will suffice to define galg(K) to be the minimal g such that there exists
a Seifert surface S for K and a basis for H1(S) with respect to which the Seifert form is given
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by
[

A B
BT C

]
, where C is a 2g × 2g matrix and A is Alexander trivial, i.e. det(tA − AT ) is some

power of t. From this definition, one can see that galg(K) gives a lower bound on the topological
Z-slice genus of K: A corresponds to a subsurface SA of S with boundary ∂SA = JA, where JA

has trivial Alexander polynomial, and so surgering S along JA gives a Z-slice surface for K of
genus g. See [FL18] for details on galg.

Proposition 8.4. Let K be a knot with algebraic genus galg(K). Suppose galg(K) ≥ h > 0.
Then there exists a Z-slice surface with genus h for the 1-shaking of K with 2(galg(K) − h) + 1-
components. If K has trivial Arf invariant, then the statement also holds for h = 0, i.e. there
exists a Z-slice genus 0 surface for a 2galg(K) + 1-component 1-shaking of K.

Let K be a knot satisfying the assumptions of Proposition 8.4. Thus, we obtain a Z-slice
surface S with boundary a 1–shaking of K and genus h. Now cap off S with parallel copies of
the core of the 2-handle of X1(K) to obtain a closed Z-slice surface of genus h in X1(K), which
represents a generator of H2(X1(K); Z). We have shown the following corollary.

Corollary 8.5. For a knot K with galg(K) ≥ h > 0, the generator of H2(X1(K); Z) can be
represented by a locally flat genus h surface whose complement is simply connected and that
has geometric intersection number 2(galg(K) − h) + 1 with the cocore of the 2-handle. If K has
trivial Arf invariant, then the statement also holds for h = 0.

Proposition 8.4 and Corollary 8.5 give an explicit bound on the genus and the number of
points of intersection with the cocore of the 2-handle in terms of galg(K), a quantity accessible in
terms of Seifert matrices, and which is bounded above by the 3-genus. In particular, this together
with the next remark yield Propositions 8.7 and 8.8 from the introduction.

Remark 8.6. For a locally flat genus g surface F that represents a generator of H2(Xn(K); Z)
and that intersects the cocore of the 2-handle transversely 2k + 1 times, one has gtop

4 (K) ≤ g + k.
Here gtop

4 (K) denotes the (topological) slice genus of a knot K.
Indeed, as in the proof of Lemma 8.3, we find a locally flat connected surface in D4 with

genus g and boundary the shaking L = S2k+1,n(K). Since 2k saddle/band moves turn L into K,
we find a genus g + k locally flat surface in D4 with boundary K. Hence gtop

4 (K) ≤ g + k.

Proposition 8.7. For every knot K there exists a locally flat embedded torus in X1(K) that
generates H2(X1(K)) and has simply connected complement. In particular,

g1
sh(K) = Arf(K) ∈ {0, 1}.

Proof. For knots with Arf invariant 1, setting h = 1 in Corollary 8.5 provides a locally flat torus
with simply connected complement representing a generator of H2(X1(K); Z). For knots with
Arf invariant 0, we even find a locally flat sphere whose complement is simply connected by
setting h = 0 in Corollary 8.5. �
Proposition 8.8. For a knot K with Arf(K) = 0 we have

2gtop
4 (K) + 1 ≤ 1-shaking number of K ≤ 2gZ

4 (K) + 1 = 2galg(K) + 1 ≤ 2g3(K) + 1.

In particular, for each integer k ≥ 0 there exists a 1-shake slice knot Kk such that the 1-shaking
number of Kk is exactly 2k + 1.

Proof. Corollary 8.5 gives a sphere that has geometric intersection number 2(galg(K)) + 1 with
the cocore of the 2-handle. Hence the 1-shake slice number of knots with Arf invariant 0 is less
than or equal to 2galg(K) + 1. We already know that gZ

4 (K) = galg(K) ≤ g3(K) from [FL19].
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Figure 2. The portion of the Seifert surface F2k+1,n contained in ν(K), drawn for n = 2 and
k = 3. Each +1-box denotes a positive full twist on 2k strands. The left and right edges of the
figure are identified. The figure also shows curves, αi

j and βi
j , on the Seifert surface forming part

of a generating set for H1(F2k+1,n; Z). The dashed line on the top is glued to a Seifert surface
for K.

To obtain the first inequality, note that for any 2-sphere that realises the 1-shake slice number
2k + 1, we have gtop

4 (K) ≤ 0 + k = k by Remark 8.6.
For the second sentence, take Kk to be an Arf invariant 0 knot with gtop

4 (K) = g3(K) = k.
For example, let Kk be the k-fold connected sum of 52, the twist knot with 5 crossings. This sat-
isfies |σ(K)| = 2g3(K) = 2, and thus gtop

4 (K) = g3(K) = 1 by the Murasugi–Tristram inequality
relating the signature and the slice genus. �

Next we describe a Seifert surface (and the corresponding Seifert matrix) for S2k+1,n(K). For
this, one could iterate a construction of Tristram [Tri69, Definition 3.1] and extract the Seifert
form from his proof of signature invariance [Tri69, Theorem 3.2], but, for the convenience of the
reader, we give an argument in Lemma 8.9 below. Although, we will only need the case n = 1
here, we give the general statement for future reference.

For any k and n, S2k+1,n is a winding number 1 pattern, and so we can construct a Seifert
surface F2k+1,n for S2k+1,n(K) as the union of two pieces. The first is a surface in the solid torus
identified with ν(K), and illustrated in Figure 2. The second is a Seifert surface for K outside a
tubular neighbourhood νK.

2273

https://doi.org/10.1112/S0010437X21007508 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007508


P. Feller et al.

Let Zn ∈ GL(n, Z) be the permutation matrix corresponding to the cyclic permutation σ =
(1 . . . n), with entries are given by (Zn)i,j = δi,σ(j). That is,

Zn =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎠ .

Lemma 8.9. Let V be a Seifert matrix for the knot K. The Seifert surface F2k+1,n for the
(2k + 1)-component n-shaking of K depicted in Figure 2 has Seifert form given by the matrix

V ⊕
k⊕

j=1

(
0 Idn

Zn 0

)
. (8.10)

Proof. The Seifert surface F2k+1,n agrees with a Seifert surface S for K outside a tubular neigh-
bourhood νK. We compute the Seifert form (x, y) �→ lk(x, y+) of F2k+1,n. The generators of
H1(F2k+1,n; Z) are given by the generators vi of S, and the additional generators αj

i and βj
i ,

depicted in Figure 2, where i = 0, . . . , n − 1 and j = 1, . . . , k.
Denote the span 〈v1, . . . , v2g〉 by C, where g is the genus of the Seifert surface of K used to

construct F2k+1,n. Also, for each j = 1, . . . , k denote the span 〈αj
i , β

j
i | i = 0, . . . , n − 1〉 by Dj . We

say that two, possibly non-distinct curves γ1 and γ2 are orthogonal if lk(γ1, γ
+
2 ) = 0 = lk(γ+

1 , γ2).
Examination of F2k+1,n gives us the following vanishing linking numbers.

(1) For any i, j, k the curve vk is orthogonal to αj
i and βj

i since there exists a 3-ball containing
each αj

i or βj
i which is disjoint from the surface S.

(2) For any i, i′, j, j′ we have that βj
i and βj′

i′ are orthogonal.
(3) For i �= i′ and arbitrary j, j′ we have that αj

i and αj′
i′ are orthogonal.

(4) For arbitrary i, j we have that lk(αj
i , (α

j
i )

+) = 0 i.e. αj
i is self-orthogonal.

(5) For arbitrary i, j, j′ we have that αj
i and αj′

i are orthogonal, since αj
i

+
is isotopic to any

αj′
i

+
in S3�αj

i and the self-linking of αj
i vanishes.

(6) For j �= j′ and arbitrary i, i′ we have lk
(
αj

i , β
j′
i′

+)
= lk

(
βj

i , α
j′
i′

+)
= 0.

In particular, we have that the first homology splits as an orthogonal sum

H1(F2k+1,n; Z) = C ⊕
k⊕

j=1

Dj ,

where the Seifert form on C is given by the Seifert matrix V of K with respect to the basis
v1, . . . , v2g.

What remains is to compute the Seifert form on Dj . Fix a j, and from now on suppress the
index j from the notation. Recalling that σ is the cyclic permutation (1 . . . n), we compute

lk(αi, β
+
i′ ) =

{
1 i = i′,
0 otherwise

and lk(βi, α
+
i′ ) =

{
1 i′ = i + 1 = σ(i),
0 otherwise.

This shows that the Seifert form for F2k+1,n is indeed represented by the matrix in the statement
of the lemma. �
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Proof of Proposition 8.4. The case galg(K) = 0 follows from the result of Freedman and Quinn
that ΔK(t) = 1 if and only if K is the boundary of a Z-slice disc [Fre84, Theorem 7], [FQ90,
11.7B], since, by definition, a knot K has algebraic genus 0 if and only if ΔK(t) = 1. So, we
consider the case g := galg(K) > 0.

Let V be a 2m × 2m Seifert matrix of K that realises the algebraic genus of K in the following
way: the top left square block P of V of size 2(m − g) × 2(m − g) is Alexander trivial, that is
det(tP − P T ) = tm−g. Additionally, arrange that the anti-symmetrisation of V is a direct sum
of P − P T and the standard 2g × 2g symplectic form. Denoting the lower right 2g × 2g square
block of V by B, the latter amounts to requiring that

B =
(

S A + Idg

AT ∗
)

,

where A is a g × g matrix and S is a g × g symmetric matrix.
By applying a base change that preserves the intersection form B − BT , we can and do

arrange for the first g − h diagonal entries of S to be even. To see this, note that one easily
arranges for all but at most one diagonal entries of S to be even, and one may further arrange
for the last entry to be even if and only if the Arf invariant is trivial. This can be checked using
the formula for the Arf invariant in terms of a symplectic basis [Lic93, § 10, p. 105] and is only
needed in the case that h = 0.

Let L be the 2(g − h) + 1-component 1-shaking of K. With everything set up as above, we
now look at the 2(m + g − h)-Seifert matrix M of L given by V ⊕⊕g−h

j=1

(
0 1
1 0

)
by (8.10). To

establish that L admits a Z-slice surface of genus h, it suffices to find a 2(m − h) × 2(m − h)
Alexander trivial subblock of M by [FL18, Theorem 1].

For this, perform the base change corresponding to adding the basis element e2m+2l−1 to
the basis element e2(m−g)+l for each l = 1, . . . , g − h. This corresponds to changing both entries
M2(m−g)+l,2(m+l) and M2(m+l),2(m−g)+l from 0 to 1. The result is the following Seifert matrix for
L, which we again denote by M .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(m−g)︷︸︸︷
P

g︷ ︸︸ ︷
C

g︷ ︸︸ ︷
∗

2(g−h)︷ ︸︸ ︷
0

0 1
0 1

CT S A + Idg
. . .

∗ AT ∗ 0

0 0 1
1 1 0

0 0 0 0 1
1 1 0

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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By adding multiples of the (2m + 2l)th basis element appropriately to the first 2m − h basis
elements, for l = 1, . . . , g − h, we can arrange that the first g − h rows and columns of C, A, and
S become 0, while no other entries in the first 2m − h rows and columns of M are modified. This
is possible since S is symmetric and its first g − h diagonal entries are even. We keep referring
to the resulting matrix by M and conclude the proof by noting that the sub-block Msub of M
corresponding to the sub-basis

(e1, . . . , e2(m−g)︸ ︷︷ ︸
2m−2g

, e2(m−g)+1, . . . , e2(m−g)+g−h︸ ︷︷ ︸
g−h

, e2(m−g)+g+1, . . . , e2m−h︸ ︷︷ ︸
g−h

)

is Alexander trivial.
In other words, the block Msub is the 2(m − h) × 2(m − h)–matrix that is obtained from M

by deleting the rows and columns 2(m − g) + g − h + 1 through 2m − g and deleting all rows
and columns with index 2m − h + 1 or larger. This submatrix is of the form

Msub =

⎛⎝P 0 ∗
0 0 Idg−h

∗ 0 ∗

⎞⎠ ,

and so satisfies det(tMsub − MT
sub) = det(tP − P T )tg−h = tm−h. �
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