ON A CERTAIN ALGEBRA ASSOCIATED WITH A POLARIZED ALGEBRAIC VARIETY

Dedicated to Professor Minoru Kurita on the occation of his 60th birthday.

HISASI MORIKAWA

In the present note we associate a certain algebra of finite rank over \boldsymbol{Q} to each non-singular polarized algebraic variety defined over \boldsymbol{C}. For a surface the algebra is a Jordan algebra with identity, and for an abelian variety \boldsymbol{A} the algebra is canonically isomorphic to the Jordan algebra of symmetric elements in $\operatorname{End}_{Q}(\boldsymbol{A})^{1}$ with respect to the involution induced by the polarization. This algebra may be important for a polarized algebraic variety as much as $\operatorname{End}_{\boldsymbol{Q}}(\boldsymbol{A})$ for an abelian variety A.

§ 1. Composition

1.1. Let V be a compact nonsingular algebraic variety of dimension n with a Hodge structure ω, a fundamental (1.1)-form on V, and let $H^{(\ell, \ell)}(\boldsymbol{V}, \boldsymbol{C})$ be the space of harmonic ($\left.\ell, \ell\right)$-forms on V with respect to the Hodge structure $\omega,(0 \leq \ell \leq n)$. Regarding $H^{(\ell, \ell)}(\boldsymbol{V}, C)$ as a subgroup of the 2ℓ-th cohomology group $H^{2 e}(\boldsymbol{V}, C)$, we denote

$$
\mathfrak{S}^{(e, \ell)}(\boldsymbol{V}, \boldsymbol{Q})=H^{(\ell, \ell)}(\boldsymbol{V}, \boldsymbol{C}) \cap H^{2 \ell}(\boldsymbol{V}, \boldsymbol{Q})
$$

and

$$
\mathfrak{S}(\boldsymbol{V}, \boldsymbol{Q})=\bigoplus_{\ell=1}^{n} \mathfrak{S}^{(\ell, \ell)}(\boldsymbol{V}, \boldsymbol{Q})
$$

Then $\mathscr{S}_{\mathscr{C}}(\boldsymbol{V}, \boldsymbol{Q})$ is considered as a commutative \boldsymbol{Q}-algebra with the product given by
(1) $\xi \cdot \eta=$ the harmonic form cohomologous to the closed form $\xi \wedge \eta$.

Received August 29, 1973.

1) $\operatorname{End}_{Q}(\boldsymbol{A})=\operatorname{End}(\boldsymbol{A}) \otimes_{Z} Q$, where $\operatorname{End}(\boldsymbol{A})$ means the ring of endomorphisms.

For each φ in $\mathscr{S C}^{(1.1)}(\boldsymbol{V}, \boldsymbol{Q})$ we mean by L_{φ} the operator

$$
\begin{equation*}
L_{\varphi} \xi=\varphi \cdot \xi \tag{2}
\end{equation*}
$$

and denote

$$
\begin{equation*}
L=L_{\omega}, \Lambda=i(\omega) \tag{3}
\end{equation*}
$$

where $i(\omega) \xi$ mean the inner product of the fundamental form ω with ξ with respect to the Hodge structure. These operators may be considered as operators on $\mathscr{S c}(\boldsymbol{V}, \boldsymbol{Q})$ and they satisfy the relations

$$
\begin{equation*}
[L, \Lambda]=H=\sum_{\ell=0}^{n}(2 \ell-n) \pi^{(\ell, \ell)}, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\left[H, L_{\varphi}\right]=2 L_{\varphi},[H, L]=2 L, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
[H, \Lambda]=-2 \Lambda \tag{6}
\end{equation*}
$$

where $\pi^{(\ell, \ell)}$ is the projection $\mathscr{S C}_{\mathcal{C}}(\boldsymbol{V}, \boldsymbol{Q}) \rightarrow \mathfrak{S c}^{(e, \ell)}(\boldsymbol{V}, \boldsymbol{Q})$.
1.2. We define a binary composition \circ in $\mathscr{S}^{(1,1)}(\boldsymbol{V}, \boldsymbol{Q})$ as follows

$$
\begin{equation*}
\varphi \circ \phi=\frac{1}{2}\{\Lambda \varphi \cdot \phi+\Lambda \phi \cdot \varphi-\Lambda(\varphi \cdot \phi)\} \quad\left(\varphi, \phi \in \mathfrak{S}_{\mathcal{C}^{(1,1)}}(\boldsymbol{V}, \boldsymbol{Q})\right) . \tag{7}
\end{equation*}
$$

The composition is obviously commutative, i.e.,

$$
\begin{equation*}
\varphi \circ \phi=\phi \circ \varphi . \tag{8}
\end{equation*}
$$

Lemma 1.

$$
\begin{equation*}
\Lambda L \varphi=(n-2) \varphi+\Lambda \varphi \cdot \omega \quad\left(\varphi \in \mathscr{S}_{\mathcal{C}^{(1,1)}}(\boldsymbol{V}, \boldsymbol{Q})\right) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\Lambda \omega=n=\operatorname{dim} V \tag{10}
\end{equation*}
$$

Proof. From (4) we have

$$
\Lambda L \varphi=(-H+L \Lambda) \varphi=(n-2) \varphi+\Lambda \varphi \cdot \omega
$$

and

$$
\Lambda \omega=\Lambda L 1=(-H+L \Lambda) 1=-H 1=n
$$

PRoposition 1.
(11)

$$
\varphi \circ \omega=\varphi,
$$

Proof. From (8) we have

$$
\begin{aligned}
\varphi \circ \omega & =\frac{1}{2}\{\Lambda \omega \cdot \varphi+\Lambda \varphi \cdot \omega-\Lambda(\omega \cdot \varphi)\} \\
& =\frac{1}{2}\{n \varphi+\Lambda \varphi \cdot \omega-\Lambda L \varphi\} \\
& =\frac{1}{2}\{n \varphi+\Lambda \varphi \cdot \omega-(n-2) \varphi-\Lambda \varphi \cdot \omega\} \\
& =\varphi .
\end{aligned}
$$

Let us give another expression of the composition \circ :

Proposition 2.

$$
\begin{equation*}
\varphi \circ \phi=\frac{1}{2}\left[\left[L_{\varphi}, \Lambda\right], L_{\phi}\right] 1 \tag{12}
\end{equation*}
$$

Proof. From (9), (10), (11) it follows that

$$
\begin{aligned}
\frac{1}{2}\left[\left[L_{\varphi}, \Lambda\right], L_{\phi}\right] 1 & =\frac{1}{2}\left\{L_{\varphi} \Lambda L_{\phi}+L_{\phi} \Lambda L_{\varphi}-\Lambda L_{\varphi} L_{\phi}-L_{\varphi} L_{\phi} \Lambda\right\} 1 \\
& =\frac{1}{2}\left\{L_{\varphi} \Lambda \phi+L_{\phi} \Lambda \varphi-\Lambda(\varphi \cdot \phi)\right\} \\
& =\frac{1}{2}\{\Lambda \phi \cdot \varphi+\Lambda \varphi \cdot \phi-\Lambda(\varphi \cdot \phi)\}=\varphi \circ \phi .
\end{aligned}
$$

Proposition 3. Let ρ_{φ} be the linear endomorphism of $\mathfrak{S}^{(1,1)}(\boldsymbol{V}, \boldsymbol{Q})$ given by

$$
\begin{equation*}
\rho_{\varphi} \phi=\varphi \circ \phi . \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\rho_{\varphi}=\frac{1}{2}\left[L_{\varphi}, \Lambda\right]+\frac{1}{2} \Lambda \varphi \cdot \mathrm{id}, \tag{14}
\end{equation*}
$$

as linear endomorphism on $\mathfrak{S}^{(1,1)}(\boldsymbol{V}, \boldsymbol{Q})$.
Proof. From the definitions it follows that

$$
\begin{aligned}
\left(\frac{1}{2}\left[L_{\varphi}, \Lambda\right]+\frac{1}{2} \Lambda \varphi \cdot \mathrm{id}\right) \phi & =\frac{1}{2}\left\{\left[\left[L_{\varphi}, \Lambda\right], L_{\phi}\right] 1+L_{\phi}\left[L_{\varphi}, \Lambda\right] 1+\Lambda \varphi \cdot \phi\right\} \\
& =\varphi \circ \phi-\frac{1}{2} \Lambda \varphi \cdot \phi+\frac{1}{2} \Lambda \varphi \cdot \phi=\varphi \circ \phi=\rho_{\varphi} \phi .
\end{aligned}
$$

Proposition 4. The following two equalities are equivalent:

$$
\begin{equation*}
\left[\left[L_{\varphi}, \Lambda\right],\left[L_{\Lambda \varphi^{2}}, \Lambda\right]\right] \phi=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi \circ((\varphi \circ \varphi) \circ \phi)=(\varphi \circ \varphi) \circ(\varphi \circ \phi) \quad\left(\varphi, \phi \in \mathscr{S}^{(1,1)}(\boldsymbol{V}, \boldsymbol{Q})\right) . \tag{16}
\end{equation*}
$$

Proof. (16) is equivalent to

$$
\left[\rho_{\varphi}, \rho_{\varphi \varphi \varphi}\right] \phi=0
$$

On the other hand

$$
\rho_{\varphi} \phi=\left\{\frac{1}{2}\left[L_{\varphi}, \Lambda\right]+\frac{1}{2} \Lambda \varphi \cdot \mathrm{id}\right\} \phi,
$$

and thus (16) is equivalent to

$$
\left[\left[L_{\varphi}, \Lambda\right],\left[L_{\varphi \varphi \varphi}, \Lambda\right]\right] \phi=0 .
$$

Since $\varphi \circ \varphi=\frac{1}{2}\left\{2 \Lambda \varphi \cdot \varphi-\Lambda \varphi^{2}\right\}$, this equality is equivalent to (15).
1.3. A Jordan algebra is a commutative algebra satisfying (16), hence Proposition 4 may be stated as follows:

Proposition 5. The algebra $\left(\mathfrak{S}^{(1,1)}(\boldsymbol{V}, \boldsymbol{Q}), \circ\right.$) is a Jordan algebra with identity ω, if and only if

$$
\left.\left[\left[L_{\varphi}, \Lambda\right],\left[L_{\Lambda \varphi^{2}}, \Lambda\right]\right] \phi=0 \quad(\varphi, \phi) \in \mathscr{S}_{\mathscr{S}^{(1,1)}}(\boldsymbol{V}, \boldsymbol{Q})\right) .
$$

Proposition 6. If $\operatorname{dim} \boldsymbol{V}=2$, then $\left(\mathfrak{S}^{(1,1)}(\boldsymbol{V}, \boldsymbol{Q}), \circ\right)$ is a Jordan algebra with identity ω.

Proof. Since $\operatorname{dim} V=2$, there exists a rational valued bilinear form $\beta_{\varphi, \phi}$ on $\mathfrak{S}^{(1,1)}(\boldsymbol{V}, \boldsymbol{Q})$ such that $\varphi \cdot \phi=\beta_{\varphi, \phi} \omega^{2}$, and thus

$$
L_{\Lambda \varphi^{2}}=\beta_{\varphi, \varphi} L_{A \omega^{2}}=\beta_{\varphi, \varphi} L_{A L \omega}=(2 n-2) \beta_{\varphi, \varphi} L_{\omega} .
$$

Hence

$$
\begin{aligned}
{\left[\left[L_{\varphi}, \Lambda\right],\left[L_{\Lambda \varphi}, \Lambda\right]\right] } & =(2 n-2) \beta_{\varphi, \varphi}\left[\left[L_{\varphi}, \Lambda\right], H\right] \\
& =(2 n-2) \beta_{\varphi, \varphi}\left\{\left[\left[L_{\varphi}, H\right], \Lambda\right]+\left[L_{\varphi},[\Lambda, H]\right]\right\}=0 .
\end{aligned}
$$

§ 2. Abelian variety case.

2.1. We shall show another important example, an abelian variety, for which ($\mathfrak{S}^{(1,1)}(\boldsymbol{V}, \boldsymbol{Q}), \circ$) is a Jordan algebra.

Let \boldsymbol{A} be an abelian variety of dimension n defined over \boldsymbol{C}, which is expressed as a quotient

$$
\boldsymbol{A}=\boldsymbol{C}^{n} / \sum
$$

with a lattice \sum of rank $2 n$. After a suitable choice of the coordinates z_{1}, \cdots, z_{n} on C^{n}, we may assume that

$$
\omega=\sqrt{-1} d z_{1} d^{t} \bar{z},
$$

where $d z=\left(d z_{1}, \cdots, d z_{n}\right)$.
We denote by $\operatorname{End}_{\boldsymbol{Q}}(\boldsymbol{A})$ the \boldsymbol{Q}-algebra of $n \times n$-matrices A such that

$$
\sum A \subset \Sigma,
$$

and we mean by $\mathbb{S}_{Q}(A, \omega)$ the subspace of $\operatorname{End}_{Q}(\boldsymbol{A})$ consisting of symmetric matrices. Then two vector spaces $\widetilde{S}_{Q}(A, \omega)$ and $\mathfrak{S}_{Q}^{(1,1)}(A, Q)$ are canonically isomorphic in the following correspondence

$$
A \leftrightarrow \sqrt{-1}(d z A)_{A}^{t} d \bar{z} .
$$

The space $\widetilde{S}_{Q}(A)$ is a Jordan algebra with the composition

$$
\alpha \circ \beta=\frac{1}{2}(\alpha \beta+\beta \alpha) .
$$

Proposition 7. If \boldsymbol{A} is an abelian variety, then ($\mathcal{S}^{(1,1)}(\boldsymbol{V}, \boldsymbol{Q})$, o) is a Jordan algebra canonically isomorphic to the Jordan algebra $\left(\mathbb{S}_{Q}(A, \omega), \circ\right)$.

Proof. Since $\Lambda=-\sqrt{-1} \sum_{i=1}^{n} i\left(d z_{i \Lambda} d \bar{z}_{i}\right)$, using the above notations, we have

$$
\begin{aligned}
\Lambda \varphi & =-\sqrt{-1}\left(\sum_{i=1}^{n} i\left(d z_{i \Lambda} d \bar{z}_{i}\right)\right)\left(\sqrt{-1} \sum_{i, j=1}^{n} a_{i j}(\varphi) d z_{i \Lambda} d \bar{z}_{j}\right) \\
& =\operatorname{tr} A_{\varphi}, \\
\Lambda(\varphi \cdot \phi) & =\sqrt{-1}\left(\sum_{i=1}^{n} i\left(d z_{i \Lambda} d \bar{z}_{i}\right)\right)\left(\sum_{i, j, p, q}^{n} a_{i, p}(\varphi) a_{j, q}(\phi) d z_{i \Lambda} d \bar{z}_{p \Lambda} d z_{j \Lambda} d \bar{z}_{q}\right) \\
& =\operatorname{tr} A_{\varphi} \phi+\operatorname{tr} A_{\phi} \varphi-\sqrt{-1}\left(d z\left(A_{\varphi} A_{\phi}+A_{\phi} A_{\varphi}\right)\right)_{\Lambda}^{t} d \bar{z} \\
& \left.=\Lambda \phi \cdot \varphi+\Lambda \varphi \cdot \phi-\sqrt{-1}\left(d z\left(A_{\varphi} A_{\phi}+A_{\phi} A_{\varphi}\right)\right)\right)_{d}^{t} d \bar{z} .
\end{aligned}
$$

This shows that

$$
A_{\varphi \circ \phi}=\frac{1}{2}\left(A_{\varphi} A_{\phi}+A_{\phi} A_{\varphi}\right) .
$$

Nagoya University

