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Abstract

A technical ingredient in Faltings’ original approach to p-adic comparison theorems
involves the construction of K(π, 1)-neighborhoods for a smooth scheme X over a mixed
characteristic discrete valuation ring with a perfect residue field: every point x ∈ X has
an open neighborhood U whose generic fiber is a K(π, 1) scheme (a notion analogous
to having a contractible universal cover). We show how to extend this result to the
logarithmically smooth case, which might help to simplify some proofs in p-adic Hodge
theory. The main ingredient of the proof is a variant of a trick of Nagata used in his
proof of the Noether normalization lemma.

1. Introduction

This paper contains several results about the étale topology of schemes over discrete valuation
rings, mostly with applications to p-adic Hodge theory in mind. We prove the existence of
K(π, 1)-neighborhoods for a log smooth scheme over a mixed characteristic discrete valuation
ring (Theorem 6.1), and a comparison theorem between étale cohomology and the cohomology
of Faltings’ topos (Corollary 9.6). These could be used to simplify some arguments Faltings’
second paper on p-adic Hodge theory [Fal02] using the approach of the first one [Fal88]. A reader
familiar with the notion of a K(π, 1) in the étale topology and with Faltings’ topos might want
to skip ahead to § 1.2.

1.1 Motivation and background
When studying differentiable manifolds, one benefits from the fact that the underlying topological
space is locally contractible. This is not the case in algebraic geometry: a smooth complex
algebraic variety often does not admit a Zariski open cover by subvarieties which are contractible
in the classical topology (a curve of nonzero genus, for example). On the other hand, as noticed
by Artin in the course of the proof of the comparison theorem [SGA4, Example XI, 4.4], one can
find a Zariski open cover by K(π, 1) spaces (see Theorem 3.3 for the precise statement). Recall
that a path connected topological space is called a K(π, 1) space if its universal cover is weakly
contractible. This is equivalent to the vanishing of all of its higher homotopy groups.

The notion of a K(π, 1) space has a natural counterpart in algebraic geometry, defined in
terms of étale local systems. Let Y be a connected scheme with a geometric point y. If F is
a locally constant constructible abelian sheaf on Yét, the stalk Fy is a representation of the
fundamental group π1(Y, y), and we have natural maps

ρi : H i(π1(Y, y),Fy) −→ H i(Yét,F ).
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We call Y a K(π, 1) if for every n invertible on Y , and every F as above with n ·F = 0, the maps
ρi are isomorphisms for all i > 0. See § 3 for a slightly more general definition and a discussion
of this notion.

In a similar way as in Artin’s comparison theorem, coverings byK(π, 1) play a role in Faltings’
approach to p-adic comparison theorems [Fal88, Fal02, Ols09]. Let K be a finite extension of
Qp and let XK be a smooth scheme over K. Loosely speaking, p-adic Hodge theory seeks to
relate H i(XK ,Qp) to H i

dR(XK/K) and other cohomology groups (see [Fon82]). In [Fal88, Fal02],
as a step towards this comparison, under the assumption that there is a smooth model X/OK ,
Faltings defines an intermediate cohomology theory H •(X) as the cohomology of a certain topos
Ẽ (following Abbes and Gros [AG15], we call it the Faltings’ topos). This is the topos associated
to a site E whose objects are morphisms V −→ U over XK −→ X with U −→ X étale and
V −→ UK finite étale (see Definition 9.1 for the definition). The association (V −→ U) 7→ V
induces a morphism of topoi

Ψ : XK,ét −→ Ẽ.

To compare H i(XK ,Qp) and H •(X), the first step is to investigate the higher direct images
RiΨ∗. In this direction, Faltings shows the following generalization of Artin’s result ([Fal88,
Lemma II 2.1], see Theorem 3.4): every point x ∈ X has an open neighborhood U for which UK
is a K(π, 1). It follows that RiΨ∗F = 0 for i > 0 and every locally constant constructible abelian
sheaf F on XK . It is these two results that we are going to generalize.

1.2 Contents of the paper
Let V be a discrete valuation ring with perfect residue field k and fraction field K of characteristic
zero. Choose an algebraic closure K of K, and let

S = SpecV, s = Spec k, η = SpecK, η = SpecK.

For a scheme X over S and an open subscheme X◦ ⊆ X, we denote by Ẽ the Faltings’ topos
of X◦η −→X (see Definition 9.1), and by Ψ : X◦η,ét −→ Ẽ the morphism of topoi Definition 9.1(c).
For a geometric point x of X, we denote by X(x) the strict localization of X at x. Consider the
following four statements:

(A) X has a basis of the étale topology consisting of U for which U ×X X◦η is a K(π, 1);

(B) for every geometric point x ∈ X, (X(x) ×S(f(x))
η)×X X◦ is a K(π, 1);

(C) RiΨ∗F = 0 (i > 0) for every locally constant constructible abelian sheaf F on X◦η ;

(D) for every locally constant constructible abelian sheaf F on X◦η , the natural maps

H i(Ẽ,Ψ∗(F )) −→ H i(X◦η,ét,F ).

are isomorphisms for all i > 0.

Then (A)⇒ (B)⇒ (C)⇒ (D), and the aforementioned theorem of Faltings (Theorem 3.4) states
that (A) holds if X is smooth over S (and X◦ = X). Faltings has also shown [Fal88, Lemma
II 2.3] that (B) is true if X is smooth over S and X◦ is the complement of a normal crossings
divisor relative to S.

It is natural to ask whether these two results remain true if we do not require that X be
smooth over S (we still want Xη, or at least X◦η , to be smooth over η). In general, the answer
is no, even for X regular (see § 7 for a counterexample). Note that the scheme X(x) ×S(f(x))

η in
(B) is the algebraic analogue of the Milnor fiber.
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The most natural and useful generalization, hinted at in [Fal02, Remark on p. 242], and

brought to our attention by Ahmed Abbes, seems to be the case of X log smooth over S, where

we endow S with the ‘standard’ log structure MS −→ OS , i.e. the compactifying log structure

induced by the open immersion η ↪→ S. Our first main result confirms this expectation.

Theorem (Theorem 6.1). Assume that char k = p > 0. Let (X,MX) be a log smooth log scheme

over (S,MS) such that Xη is smooth over η. Then (A) holds for X◦ = X.

Note that in the applications, in the above situation one usually cares about the case X◦ =

(X,MX)tr (the biggest open on which the log structure is trivial). While the theorem deals with

X◦ = X, we are able to deduce corollaries about the other case as well (see the next section).

The strategy is to reduce to the smooth case (idea due to R. Lodh) by finding an étale

neighborhood U ′ of x in X and a map

f : U ′ −→ W ′

to a smooth S-schemeW ′ such that fη : U ′η −→W ′η is finite étale. In such a situation, by Faltings’s

result (Theorem 3.4), there is an open neighborhood W of f(x) (x being the underlying point

of x) in W ′ such that Wη is a K(π, 1). Then U = f−1(W ) is an étale neighborhood of x, and

since Uη −→ Wη is finite étale, Uη is a K(π, 1) as well.

The proof of the existence of f makes use of the technique of Nagata’s proof of the Noether

normalization lemma, combined with the observation that the exponents used in that proof can

be taken to be divisible by high powers of p (see § 5.1). Therefore our proof applies only in mixed

characteristic. While we expect the result to be true regardless of the characteristic, we point

out an additional difficulty in equal characteristic zero in § 6.3.

We also treat the equicharacteristic zero case and the case with boundary. More precisely,

we use Theorem 6.1 and log absolute cohomological purity to prove the following.

Theorem (Theorem 9.5 and Corollary 9.6). Let (X,MX) be a log smooth log scheme over

(S,MS) such that Xη is smooth over η, and let X◦ = (X,MX)tr be the biggest open subset on

which MX is trivial. If char k = 0, assume moreover that (X,MX) is saturated. Then (B)–(D)

above hold for X and X◦.

1.3 Outline

Sections 2–4 are preliminary. Section 2 contains some abstract nonsense on cohomology groups

of topoi, which is then used in § 3 where we review the notion of a K(π, 1) scheme. Section 4

provides a review of the relevant logarithmic geometry.

Sections 5–7 constitute the heart of the paper. Section 5 deals with a variant of Noether

normalization and proves the key Proposition 5.10. The proof of our main theorem, Theorem 6.1,

is the subsequent § 6. Section 7 gives an example of a regular scheme for which the assertion of

Theorem 6.1 does not hold.

Section 8 deals with the equicharacteristic zero case. The final section, § 9, reviews the

definition of Faltings’ topos and proves our second main result, the comparison Theorem 9.5.

2. Functoriality properties of the cohomology pullback maps

This section checks a certain functoriality property of cohomology of topoi, needed in § 3. The

reader should feel no discomfort in skipping this part. The result we need is that given a

1947
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commutative diagram of topoi

X ′
g′ //

f ′

��

X

f
��

Y ′ g
// Y

(2.0.1)

and a sheaf F on X, there exist certain natural commutative diagrams (2.2.2)

H i(Y, f∗F )

��

// H i(X,F )

��
H i(Y ′, g∗f∗F ) // H i(X ′, g′∗F )

for all i > 0.

2.1 Base change maps
Suppose we are given a commutative diagram of morphisms of topoi as in (2.0.1), that is, a
diagram of morphisms together with a chosen isomorphism

ι : f∗g
′
∗ ' g∗f ′∗. (2.1.1)

By adjunction, this also induces an isomorphism (also denoted ι)

ι : f ′∗g∗ ' g′∗f∗. (2.1.2)

Applying f∗ to the unit η : id −→ g′∗g
′∗ and composing with (2.1.1) yields a map

f∗ −→ f∗g
′
∗g
′∗ ' g∗f ′∗g′∗,

which (using the adjunction between g∗ and g∗) gives us a map

ϕ : g∗f∗ −→ f ′∗g
′∗ (2.1.3)

called the base change map.
Similarly, applying g′∗ to the counit ε : f∗f∗ −→ id, and composing with (2.1.2) yields a map

f ′∗g∗f∗ ' g′∗f∗f∗ −→ g′∗,

which (using the adjunction between f ′∗ and f ′∗) gives us another map g∗f∗ −→ f ′∗g
′∗ that is

equal to (2.1.3) by [SGA4, Example XVII, Proposition 2.1.3].

2.2 Cohomology pullback maps
Recall that if f : X −→ Y is a morphism of topoi, there is a natural map of δ-functors from the
category of abelian sheaves on Y to the category of abelian groups:

f∗ : H i(Y,−) −→ H i(X, f∗(−)).

Indeed, the right-hand side is a δ-functor because f∗ is exact, the transformation is defined for
i = 0, and H i(Y,−) is a universal δ-functor.

1948
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The formation of this map is compatible with composition; that is, if g : Z −→ X is another
map, the diagram (of δ-functors of the above type)

H i(Y,−)
f∗ //

(fg)∗

��

H i(X, f∗(−))

g∗

��
H i(Z, (fg)∗(−)) H i(Z, g∗f∗(−))

commutes.
Applying this to the situation of § 2.1 and composing with the map induced by the counit

ε : f∗f∗ −→ id, we get a system of natural transformations

µ : H i(Y, f∗(−))
f∗−→ H i(X, f∗f∗(−))

ε−→ H i(X,−). (2.2.1)

These coincide with the edge homomorphisms in the Leray spectral sequence for f by [EGAIII,
0III 12.1.7].

Let µ′ be the following composition:

µ′ : H i(Y ′, g∗f∗(−))
ϕ−→ H i(Y ′, f ′∗g

′∗(−))
f ′∗−→ H i(X ′, f ′∗f ′∗g

′∗(−))
ε′−→ H i(X ′, g′∗(−)),

where ε′ : f ′∗f ′∗ −→ id is the counit.
The goal of this section is to show that the diagram

H i(Y, f∗(−))

g∗

��

µ // H i(X, (−))

g′∗

��
H i(Y ′, g∗f∗(−))

µ′
// H i(X ′, g′∗(−))

(2.2.2)

commutes.

2.3 Commutativity of (2.2.2)
The assertion of § 2.1 will follow from the commutativity of the following diagram.

H i(Y, f∗(−))

g∗ (I)

��

f∗ // H i(X, f∗f∗(−))

g′∗ (III)
��

ε // H i(X,−)

g′∗

��
H i(X ′, g′∗f∗f∗(−))

ι
g′∗(ε)

// H i(X ′, g′∗(−))

H i(Y ′, g∗f∗(−))

ϕ (II)
��

f ′∗ // H i(X ′, f ′∗g∗f∗(−))

f ′∗(ϕ)
��

(IV)

H i(Y ′, f ′∗g′∗(−))
f ′∗
// H i(X ′, f ′∗f ′∗g

′∗(−))
ε′

<<

Square (I) commutes by the functoriality of f∗ (see § 2.2). Squares (II) and (III) commute simply
because f∗ is a natural transformation.

1949
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It remains to prove that (IV) commutes. This in turn will follow from the commutativity of
the following diagram.

f ′∗g∗f∗
ι

f ′∗(ϕ)
��

g′∗f∗f∗

g′∗(ε)
��

f ′∗f ′∗g
′∗

ε′
// g′∗

By the discussion of § 2.1, the composition g′∗(ε) ◦ ι above is adjoint (under the adjunction
between f ′∗ and f ′∗) to the base change map ϕ : g∗f∗ −→ f ′∗g

′∗. It suffices to show that ε ◦ f ′∗(ϕ)
is also adjoint to the base change map. This follows precisely from the triangle identities for the
adjunction between f ′∗ and f ′∗.

3. K(π, 1) schemes

This section recalls the definition of a K(π, 1) space in algebraic geometry, establishes some basic
properties that apparently do not appear in the literature, and states the theorems of Artin and
Faltings which assert the existence of coverings of smooth schemes by K(π, 1) schemes.

3.0.1. Basic assumption. We will often consider schemes which are coherent (i.e. quasi-
compact and quasi-separated) and have a finite number of connected components (see [AG15,
9.6] for some criteria).

Let Y be a scheme satisfying assumption 3.0.1. We denote by Fét(Y ) the full subcategory of
the étale site Ét(Y ) consisting of finite étale maps Y ′ −→ Y , endowed with the induced topology,
and by Yfét the corresponding topos (cf. [AG15, 9.2]). Note that the maps in Fét(Y ) are also
finite étale. The inclusion functor induces a morphism of topoi (cf. [AG15, 9.2.1])

ρ : Yét −→ Yfét.

The pullback ρ∗ identifies Yfét with the category of sheaves on Yét equal to the union of their
locally constant subsheaves (cf. [Ols09, 5.1] and [AG15, 9.17]). If Y is connected and y −→ Y
is a geometric point, we have an equivalence of topoi Yfét ' Bπ1(Y, y) where Bπ1(Y, y) is the
classifying topos of π1(Y, y).

Definition 3.1 (cf. [Ols09, Definition 5.3]). Let ℘ be a set of prime numbers. A scheme Y
satisfying § 3.0.1 is called a K(π, 1) for ℘-adic coefficients if for every integer n with assn ⊆ ℘,
and every sheaf of Z/(n)-modules F on Yfét, the natural map

F −→ Rρ∗ρ
∗F

is an isomorphism. If ℘ is the set of primes invertible on Y , we simply call Y a K(π, 1).

The above condition is equivalent to saying that if F is a locally constant constructible sheaf
of Z/(n)-modules on Yét, then Riρ∗F = 0 for i > 0 (cf. [AG15, 9.17]).

Proposition 3.2. Let ℘ be a set of prime numbers, and let Y be a scheme satisfying § 3.0.1.

(a) The scheme Y is a K(π, 1) for ℘-adic coefficients if and only if for every integer n with
assn ⊆ ℘, every locally constant constructible sheaf of Z/(n)-modules F on Yét, and every class
ζ ∈ H i(Y,F ) with i > 0, there exists a finite étale surjective map f : Y ′ −→ Y such that
f∗(ζ) = 0 ∈ H i(Y ′, f∗F ).

1950
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(b) Let f : X −→ Y be a finite étale surjective map. Then X satisfies § 3.0.1, and Y is a
K(π, 1) for ℘-adic coefficients if and only if X is.

(c) Suppose that Y is of finite type over a field F and that F ′ is a field extension of F .
Denote X = YF ′ . Then X satisfies § 3.0.1, and Y is a K(π, 1) if and only if X is.

Proof. (a) Let F be a locally constant constructible sheaf of Z/(n)-modules on Yét. Then Riρ∗F
is the sheaf of Fét(Y ) associated to the presheaf

(f : X −→ Y ) 7→ H i(X, f∗F ).

It follows that Riρ∗F = 0 if and only if the following condition (a′) holds: for every finite étale
(f : X −→ Y ) ∈ Fét(Y ) and every ζ ∈H i(X, f∗F ), there exists a cover {gi : (fi : Xi −→ Y ) −→
(f : X −→ Y )}i∈I such that f∗i ζ = 0 ∈ H i(Xi, g

∗
i f
∗F ) = H i(Xi, f

∗
i F ). In case Y is connected,

each gi with Xi nonempty is finite étale surjective, and hence in such case (a′) implies (a) by
considering Y ′ = Y . The general case follows by considering the connected components of Y
separately.

We prove that the condition in (a) implies (a′). In the situation of (a′), let F0 = f∗F for
brevity, and consider the sheaf f∗F0. As f is finite étale, f∗F0 is locally constant constructible
and Rjf∗F0 = 0 for j > 0, therefore the natural map, (2.2.1)

µ : H i(Y, f∗F0) −→ H i(X,F0), (3.2.1)

is an isomorphism. Let ζ ′ ∈ H i(Y, f∗F ) map to ζ under (3.2.1). By (a), there exists a finite
étale surjective map g : Y ′ −→ Y with g∗ζ ′ = 0 ∈ H i(Y ′, g∗f∗F0). Form a cartesian diagram as
follows.

X ′
g′ //

f ′

��

X

f
��

Y ′ g
// Y

Then g′ is finite étale and surjective. Moreover, by § 2.1, the diagram

ζ ′ � //

∈

ζ

∈

ζ ′_

��

∈ H i(Y, f∗F0)

g∗

��

µ // H i(X,F0)

g′∗

��
0 ∈ H i(Y ′, g∗f∗F0)

µ′
// H i(X ′, g′∗F0)

commutes, and hence g′∗ζ = 0.
(b) The argument is similar to (a). If X is a K(π, 1), then Y is a K(π, 1) as well by the

characterization of (a). Suppose that Y is a K(π, 1) and let F0 be a locally constant constructible
sheaf of Z/(n)-modules on Xét, ζ ∈ H i(X,F0) (i > 0). Apply the same reasoning as in (a).

(c) If F ′/F is a finite separable extension, this follows from (b) as then X −→ Y is finite étale
and surjective. If F ′ is a separable closure of F , the assertion follows from the characterization
in (a) and usual limit arguments. If F ′/F is finite and purely inseparable, X −→ Y induces
equivalences Xét ' Yét and Xfét ' Yfét, so there is nothing to prove. If F ′ and F are both
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algebraically closed, the assertion follows from [SGA4, Example XVI, 1.6]. If F ′/F is arbitrary,

pick an algebraic closure F
′

and let F be the algebraic closure of F in F
′
. We now have a ‘path’

from F to F ′ of the form

F ⊆ F sep ⊆ F ⊆ F ′ ⊇ (F ′)sep ⊇ F ′

and the assertion follows from the preceding discussion. 2

Finally, we state the two key results about the existence of K(π, 1) neighborhoods mentioned
in the introduction.

Theorem 3.3 (Artin, follows from [SGA4, Example XI, 3.3], cf. [Ols09, Lemma 5.5]). Let Y
be a smooth scheme over a field of characteristic zero, y a point of Y . There exists an open
neighborhood U of y which is a K(π, 1).

Note that the use of Abhyankar’s lemma in the proof of [Ols09, Lemma 5.5] is why we need
the characteristic zero assumption.

Theorem 3.4 (Faltings, [Fal88, Lemma II 2.1], cf. [Ols09, Theorem 5.4]). Let S be as in § 1.2,
let Y be a smooth S-scheme, and let y be a point of Y . There exists an open neighborhood U of
y for which Uη is a K(π, 1).

4. Some logarithmic geometry

In this section, we review the relevant facts from log geometry and investigate the local structure
of a log smooth S-scheme (with the standard log structures on X and S). We also state the
logarithmic version of absolute cohomological purity, used in § 8.

4.1 Conventions about log geometry
If P is a monoid, P denotes the quotient of P by its group P ∗ of invertible elements, and
P −→ P gp is the universal (initial) morphism form P into a group. P is called fine if it is finitely
generated and integral (i.e. P −→ P gp is injective). A face of a monoid P is a submonoid F ⊆ P
satisfying x+y ∈ F ⇒ x, y ∈ F . For an integral monoid P and face F , the localization of P at F
is the submonoid PF of P gp generated by P and −F . It satisfies the obvious universal property.
If Q is a submonoid of an integral monoid P , the quotient P/Q is defined to be the image of P
in P gp/Qgp.

For a monoid P , AP = Spec(P −→ Z[P ]) is the log scheme associated to P ; for a
homomorphism θ : P −→ Q, Aθ : AQ −→ AP is the induced morphism of log schemes. A
morphism (X,MX) −→ (Y,MY ) of log schemes is strict if the induced map f [ : f∗MY −→ MX

is an isomorphism. A strict map to some AP is called a chart. A log scheme is fine if étale locally
it admits a chart with target AP for a fine monoid P . If j : U −→ X is an open immersion, the
compactifying log structure on X associated to U is the preimage of j∗O∗U under the restriction
map OX −→ j∗OU . For a log scheme (X,MX), we denote by (X,MX)tr the complement of the
support of MX . It is an open subset of X if (X,MX) is fine, the biggest open subset on which
MX is trivial. See [Kat89, ACG+13].

We recall Kato’s structure theorem for log smooth morphisms (which for our purposes might
as well serve as a definition).

Theorem 4.2 [Kat89, Theorem 3.5]. Let f : (X,MX) −→ (S,MS) be a morphism of fine log
schemes. Assume that we are given a chart π : (S,MS) −→ AQ with Q a fine monoid. Then f
is log smooth if and only if, étale locally on X, there exists a fine monoid P , a map ρ : Q −→ P

1952
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such that the kernel and the torsion part of the cokernel of ρgp : Qgp −→ P gp are finite groups

of order invertible on S, and a commutative diagram

(X,MX) //

f &&

AP,ρ,π //

��

AP
Aρ
��

(S,MS) π
// AQ,

where the square is cartesian and (X,MX) −→ AP,ρ,π is strict and étale (as a morphism of

schemes).

4.3 Charts

Suppose that f : (X,MX) −→ AP is a chart with P a fine monoid, and x −→ X is a geometric

point. Let F ⊆ P be the preimage of zero under the induced homomorphism P −→ MX,x.

Then F is a face of P , and P injects into the localization PF . Moreover, the induced map

P/F −→ MX,x is an isomorphism.

As P is finitely generated, F is finitely generated as a face, and hence the natural map

APF −→ AP is an open immersion: if F is generated as a face by an element a ∈ P , then

APF = D(a). Let us form a cartesian diagram.

(U,MX |U )

��

// APF

��
(X,MX)

f
// AP

Then U = D(f∗a) and x lies in U because f∗a is an invertible element of OX,x by the construction

of F .

It follows that any chart f : (X,MX) −→ AP as above can be locally replaced by one for

which the homomorphism P −→ MX,x is an isomorphism, without changing the local properties

of f (e.g. without sacrificing étaleness if f is étale).

4.4 Charts in our setting

In the situation of § 1.2, let f : (X,MX) −→ (S,MS) be a log smooth morphism. Applying

Theorem 4.2 to a chart π : (S,MS) −→ AN given by a uniformizer π of V , we conclude that,

étale locally on X, there exists a strict étale g : (X,MX) −→ AP,ρ,π where

AP,ρ,π = Spec

(
P −→ V [P ]

(π − ρ)

)
(4.4.1)

for a fine monoid P and a non-invertible element ρ ∈ P with the property that (P/ρ)gp is p-torsion

free.

Assume that Xη is smooth over η. Localizing P , we can assume that the scheme underlying

(AP,ρ,π)η is smooth over η as well. But (AP,ρ,π)η is isomorphic to Spec(P/ρ −→ K[P/ρ]). Note

that for a fine monoid M , SpecK[M ] is smooth over K if and only if M is a free monoid.

It follows that P/ρ is free, and therefore the stalks of MX/S := MX/f
[MS are free monoids.

Moreover, every geometric point x of X has an étale neighborhood U such that (Uη,MX |Uη)tr

is the complement of a divisor with strict normal crossings on Uη.
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4.5 Absolute cohomological purity
We will need the following result (cf. [Nak98, Proposition 2.0.2]). Let (X,MX) be a regular
[Kat94, Definition 2.1] (in particular, fine and saturated) log scheme such that X is locally
noetherian. Let X◦ = (X,MX)tr be the biggest open subset on which MX is trivial, and let
j : X◦ −→ X be the inclusion. Let n be an integer invertible on X. Then for any q > 0, we have
a natural isomorphism

Rqj∗(Z/nZ) '
∧q

M
gp
X ⊗ Z/nZ(−1). (4.5.1)

5. η-étale maps and Noether normalization

This section contains the key technical point used in the proof of Theorem 6.1. First, we prove a
(slightly spiced-up) relative version of the Noether normalization lemma (Proposition 5.4). Then
we study η-étale maps f : X −→ Y over S, that is, maps which are étale in an open neighborhood
of the closed fiber Xs of X. The main result is Proposition 5.10, which asserts that in mixed
characteristic we can often replace an η-étale map f ′ : X −→ AdS by a quasi-finite η-étale map
f : X −→ AdS .

5.1 Relative Noether normalization
Lemma 5.2. Let F be a field, and let a ∈ F [x1, . . . , xn] be a nonzero polynomial. For large
enough m, the polynomial

a(x1 − xmn , x2 − xm
2

n , . . . , xn−1 − xm
n−1

n , xn),

treated as a polynomial in xn over F [x1, . . . , xn−1], has a constant leading coefficient.

Proof. The proof is standard (cf. e.g. [Mum99, § 1] or [Sta14, Tag 051N]). 2

Definition 5.3. Let f : X −→ Y be a map of schemes over some base scheme S. We call f
fiberwise finite relatively to S if for every point s ∈ S, the induced map Xs −→ Ys is finite.

Let V, S, . . . be as in § 1.2 (the assumptions on K and k are unnecessary here). The following
is a relative variant of Noether normalization. In the applications we will take N to be a high
power of p.

Proposition 5.4. Let X = SpecR be a flat affine S-scheme of finite type, let d > 0 be an
integer such that dim(X/S) 6 d, and let x1, . . . , xd ∈ R. For any integer N > 1, there exist
y1, . . . , yd ∈ R such that the following hold.

(i) The map f = (f1, . . . , fd) : X −→ AdS , fi = xi + yi, is fiberwise finite relatively to S.

(ii) The yi belong to the subring generated by Nth powers of elements of R.

Proof. Write R = V [x1, . . . , xd, xd+1, . . . , xn]/I. The proof is by induction on n − d. If n = d,
then the map (x1, . . . , xd) : X −→ AdS is a closed immersion, and we can take yi = 0. Suppose
that n > d.

Let a ∈ V [x1, . . . , xn] be an element of I with nonzero image in k[x1, . . . , xn]. Such an element
exists, for otherwise Xs is equal to Ans , and hence cannot be of dimension 6 d as n > d.

For an integer m > 1, consider the elements

zi = xi + x(Nm)i

n , i = 1, . . . , n− 1,
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and let R′ ⊂ R be the V -subalgebra generated by z1, . . . , zn−1. By Lemma 5.2 applied to the
image of a in K[x1, . . . , xn] (with F = K) respectively k[x1, . . . , xn] (with F = k), there exists
an m such that the images of xn in R ⊗ K, respectively R ⊗ k will be integral over R′ ⊗ K,

respectively R′ ⊗ k. As xi = zi − x(Nm)i

n , the other xi will have the same property, which is to
say, SpecR −→ SpecR′ is fiberwise finite over S.

We check that it is possible to apply the induction assumption to X ′ = SpecR′ and z1, . . . ,
zd ∈ R′. Since R′ is a subring of R and R is torsion-free, R′ is torsion-free as well, and hence
flat over V . As R′ ⊗V K −→ R ⊗V K is finite and injective, we have dimX ′η = dimXη. Since
R′ is flat over V , we have dimX ′s 6 dimX ′η, so dimX ′s 6 d as well. Finally, R′ is generated as a
V -algebra by n− 1 elements with z1, . . . , zd among them.

By the induction assumption applied to X ′ = SpecR′ and z1, . . . , zd ∈ R, there exists a
fiberwise finite map f ′ = (f1, . . . , fd) : SpecR′ −→ AdS with fi = zi + y′i, where the y′i belong to
the subring of R′ generated by Nth powers of elements of R′. As the composition of fiberwise
finite maps is clearly fiberwise finite, the composition f = (f1, . . . , fn) : X = SpecR −→ AdS
is fiberwise finite, proving part (i). We have fi = xi + yi, yi = y′i + (xN

i−1mi
n )N , so part (ii) is

satisfied as well. 2

It would be interesting to have a generalization of this result to a general noetherian local
base ring V .

5.5 η-étale maps
We now assume that char k = p > 0. Let f : X −→ Y be a map of S-schemes of finite type.

Definition 5.6. We call f η-étale at a point x ∈ Xs if there is an open neighborhood U of x
in X such that fη : Uη −→ Yη is étale. We call f η-étale if it is η-étale at all points x ∈ Xs, or
equivalently, if there is an open neighborhood U of Xs in X such that fη : Uη −→ Yη is étale.

We warn the reader not to confuse ‘f is η-étale’ with ‘fη is étale’ (the latter is a stronger
condition).

Lemma 5.7. Consider the following properties.

(i) The map f is η-étale.

(ii) There exists an n > 0 such that (pnΩ1
X/Y )|Xs = 0 (pullback as an abelian sheaf).

(iii) There exists an n > 0 such that (pnΩ1
X/Y )⊗V k = 0.

Then (i) ⇒ (ii) ⇔ (iii), and the three properties are equivalent if Xη and Yη are smooth of the
same relative dimension d over S.

Proof. The equivalence of (ii) and (iii) follows from Nakayama’s lemma.
Suppose that f is η-étale, and let U ⊆ X be an open subset containing Xs such that f |Uη is

étale. In particular, f |Uη is unramified, and hence Ω1
X/Y |Uη = 0.

Recall that if F is a coherent sheaf on a noetherian scheme U and a ∈ Γ(U,OU ), then
F |D(a) = 0 if and only if anF = 0 for some n > 0. Applying this to F = Ω1

X/Y |U and a = p

(noting that Uη = D(p)), we get that (pnΩ1
X/Y )|U = 0, and hence, in particular, (pnΩ1

X/Y )|Xs = 0.

Suppose now that (pnΩ1
X/Y )|Xs = 0 for some n > 0. By Nakayama’s lemma, (pnΩ1

X/Y )x = 0

for every x ∈ Xs, and hence there is an open subset U containing Xs such that (pnΩ1
X/Y )|U = 0.

As p is invertible on Uη, we get that Ω1
X/Y |Uη = 0; that is, f |Uη is unramified. If Xη and Yη are

smooth of the same dimension over S, this is enough to guarantee that f |Uη is étale. 2
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Lemma 5.8. Suppose that f is closed and η-étale. There exists an open neighborhood W of Ys
in Y such that f : f−1(W )η −→ Wη is étale.

Proof. Let Z ⊆ Xη be the locus where fη is not étale. Then Z is closed in X. Since f is a closed,

f(Z) is closed in Y , and of course f(Z) ∩ Ys = ∅. Take W = Y \f(Z). 2

We now consider the case Y = AdS .

Lemma 5.9. Suppose that f ′ : X −→ AdS is such that (pnΩ1
f ′)|Xs = 0 and that y1, . . . , yd ∈ Γ(X,

OX) are polynomials in pn+1-powers of elements of Γ(X,OX). If f = f ′ + (y1, . . . , yd), then

(pnΩ1
f )|Xs = 0 as well.

Proof. Let Sn = SpecV/pn+1V , Xn = X ×S Sn. The presentations

Od
X

df ′i−→ Ω1
X/S −→ Ω1

f ′ −→ 0, Od
X

dfi−→ Ω1
X/S −→ Ω1

f −→ 0

give after base change to Sn the short exact sequences

Od
Xn

df ′i−→ Ω1
Xn/Sn

−→ Ω1
f ′/p

n+1 −→ 0, Od
Xn

dfi−→ Ω1
Xn/Sn

−→ Ω1
f/p

n+1 −→ 0.

By the assumption on the yi, we have dyi ∈ pn+1Ω1
X/S , and therefore the two maps Od

Xn
−→

Ω1
Xn/Sn

above are the same. It follows that Ω1
f/p

n+1 ' Ω1
f ′/p

n+1. The assumption, that

(pnΩ1
f ′)|Xs = 0, means that pnΩ1

f ′/πp
nΩ1

f ′ = 0 for a uniformizer π of V . As p = uπe for a

unit u ∈ V and e > 1 an integer, we have pnΩ1
f ′/p

n+1Ω1
f ′ = 0. Since Ω1

f/p
n+1 ' Ω1

f ′/p
n+1, the

same holds for Ω1
f . We thus have (pnΩ1

f )|Xn = 0, and hence (pnΩ1
f )|Xs = 0. 2

Proposition 5.10. Assume thatX affine and flat over S, thatXη is smooth of relative dimension

d over S, and that f ′ : X −→ AdS is η-étale. There exists an f : X −→ AdS which is η-étale and

fiberwise finite over S.

Proof. By Lemma 5.7, there exists an n such that (pnΩ1
f ′)|Xs = 0. Apply Proposition 5.4 to

xi = f ′i and N = pn+1, obtaining a fiberwise finite f : X −→ AdS which differs from f ′ by some

polynomials in pn+1-powers. Then f is η-étale by Lemmas 5.9 and 5.7. 2

6. Existence of K(π, 1)-neighborhoods

Theorem 6.1. Assume that char k = p > 0. Let (X,MX) be a log smooth log scheme over

(S,MS) such that Xη is smooth over η, and let x −→ X be a geometric point. There exists an

étale neighborhood U of x such that Uη is a K(π, 1).

Proof. The proof is presented in §§ 6.1.1–6.1.7.

6.1.1. If x is contained in Xη, the existence of such a neighborhood follows from Theorem 3.3.

We are therefore going to restrict ourselves to the case where x is a geometric point of the closed

fiber Xs. The question being étale local around x, we are allowed to shrink X around x if needed.
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6.1.2. Let π be a uniformizer of V , inducing a chart (S,MS) −→ AN. By the discussion of
§ 4.4, in an étale neighborhood of x there exists a fine monoid P , an element ρ ∈ P such that
P/ρ is a free monoid, and an étale map

g : X −→ AP,ρ,π = Spec

(
P −→ V [P ]

(π − ρ)

)
over S.

We can replace X by an étale neighborhood of x for which the above data exist. Shrinking
X further, we can also assume that X is affine.

6.1.3. Let us denote by P [ρ−1] the submonoid of P gp generated by P and ρ−1, and by

P/ρ the quotient of P [ρ−1] by the subgroup generated by ρ. Since P [ρ−1] = P/ρ is free, there
is an isomorphism P [ρ−1] ' P [ρ−1]∗ ⊕ P [ρ−1]. Picking an isomorphism P [ρ−1] ' Nb and a
decomposition of P [ρ−1]∗, we can write P [ρ−1] ' T ⊕Z⊕Za⊕Nb where T is a finite abelian
group and ρ corresponds to an element of the Z summand. Dividing by ρ, we obtain an
isomorphism P/ρ ' T ⊕Za⊕Nb. Let d = a+b, and let χ0 : Nd = Na⊕Nb −→ T ⊕Za⊕Nb ' P/ρ
be the map implied by the notation. As the source of χ0 is free and P −→ P/ρ is surjective, we
can choose a lift χ : Nd −→ P of χ0.

Nd

χ0

��

χ

xx
P // // P/ρ

Then χ induces a map h : AP,ρ,π −→ AdS over S.

6.1.4. I claim that hη is étale. Note first that hη is the pullback under π : η −→ AZ of the
horizontal map in the following diagram.

AP [ρ−1]

##

Aρ⊕χ // AZ × ANd

zz
AZ

We want to check that the horizontal map becomes étale after base change to Q. Since the base
is AZ = Gm and the map is Gm-equivariant, it suffices to check this on one fiber. If we set ρ = 1,
the resulting map is none other than the map induced by

Nd = Na⊕Nb ↪→ Za⊕Nb ↪→ T ⊕Za⊕Nb ' P/ρ = P [ρ−1]/ρ,

which is étale after adjoining 1/#T .

6.1.5. Let f ′ = h◦g :X −→ AdS . This map is η-étale, and therefore, by Proposition 5.10, there
exists a map f : X −→ AdS which is η-étale and fiberwise finite over S (hence quasi-finite). Let
y −→ AdS be the image of x under f . As f is quasi-finite, we can perform an étale localization
at x and y which will make it finite. More precisely, we apply [EGAIV, Théorème 18.12.1]
(or [Sta14, Tag 02LK]) and conclude that there exists a commutative diagram

x

��

// U ′

f
��

// X

f
��

y //W ′ // AdS
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with U ′ −→ X ′ and W ′ −→ AdS étale and f : U ′ −→ W ′ finite. It follows that f : U ′ −→ W ′ is
also η-étale.

6.1.6. By Lemma 5.8 applied to f : U ′ −→ W ′, we can shrink W ′ around y (and shrink U ′

accordingly to be the preimage of the new W ′) so that U ′η −→ W ′η is finite étale.

6.1.7. Since W ′ is smooth over S, by Faltings’ theorem (Theorem 3.4) there is an open
neighborhood W of y in W ′ such that Wη is a K(π, 1). Let U be the preimage of W in U ′ under
f : U ′ −→ W ′. The induced map fη : Uη −→ Wη is finite étale, and hence Uη is a K(π, 1) as well
by Proposition 3.2(b). 2

6.2 Relatively smooth log structures
A reader familiar with the notion of a relatively smooth log structure (cf. [NO10, Definition 3.6],
[Ogu09]) might appreciate the fact that the above proof applies to relatively smooth X/S as
well. Recall that we call (X,F )/(S,MS) relatively log smooth if, étale locally on X, there exists
a log smooth log structure (X,M )/(S,MS) and an inclusion F ⊆ M as a finitely generated
sheaf of faces, for which the stalks of M /F are free monoids. We can then apply Theorem 6.1
to (X,M ) instead of (X,F ).

Important examples of relatively log smooth X/S appear in the Gross–Siebert program in
mirror symmetry [GS06, GS10, GS11] as so-called toric degenerations. Degenerations of Calabi–
Yau hypersurfaces in toric varieties are instances of such. For example, the Dwork families

X = ProjV [x0, . . . , xn]

/(
(n+ 1)x0 · . . . · xn − π ·

n∑
i=0

xn+1
i

)
(with the standard compactifying log structure) are relatively log smooth over S if n + 1 is
invertible on S, but not log smooth for n > 2 [Ogu09, Proposition 2.2].

6.3 Obstacles in characteristic zero
The need for the positive residue characteristic assumption in our proof of Theorem 6.1 can
be traced down to the application of Proposition 5.10: one can perform relative Noether
normalization on an η-étale map f ′ : X −→ AdS without sacrificing η-étaleness. One might think
that this is too crude and that one could replace that part with a Bertini-type argument. After
all, we only need η-étaleness at one point! Unfortunately, this is bound to fail in characteristic
zero even in the simplest example, that of a semistable curve.

Proposition 6.4. Let X be an open subset of SpecV [x, y]/(xy− π) ⊆ A2
S containing the point

P = (0, 0) ∈ A2
k and let f : X −→ A1

S be an S-morphism. If fη : Xη −→ A1
η is étale, then df

is identically zero on one of the components of Xs. In particular, if char k = 0, then f has to
contract one of the components of Xs, and hence is not quasi-finite.

Proof. Let Z be the support of Ω1
X/A1

S
. As fη is étale, Z ⊆ Xs. On the other hand, the short

exact sequence

O2
X

fx y

fy x


−−−−−−→ O2

X

[
dx dy

]
−−−−−−→ Ω1

X/A1
S
−→ 0

shows that Z is the set-theoretic intersection of two divisors in A2
S (given by the equations xy = π

and xfx − yfy = 0), each of them passing through P , for if g · Ω1
X/A1

S
= 0, then[

fx y

fy x

]
· C =

[
g 0

0 g

]
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for some matrix C, and hence g2 = (xfx − yfy) · det(C) ∈ (xfx − yfy). Since A2
S is regular, by

the dimension theorem we know that each irreducible component of Z passing through P has to
be of positive dimension. Therefore Z has to contain one of the components of Xs. 2

7. A counterexample

The following is an example of an X/S where X is regular, but for which K(π, 1) neighborhoods
do not exist.

Proposition 7.1. Let k = C, S0 = A1
k with coordinate π, X0 = Spec k[π, x0, . . . , xn]/(π − f)

where f = x2
0 + · · ·+x2

n for some n > 1. Let S be the henselization of S0 at 0, η its generic point,
and η a geometric point above η. Finally let X = X0 ×S0 S and x = (0, 0, . . . , 0) ∈ X. Then
(X(x))η is not a K(π, 1). In particular, there does not exist a basis of étale neighborhoods of x
in X whose generic fibers are K(π, 1). However, X is regular.

Proof. Note that X(x) = (X0)(x), (X(x))η = (X0)(x)\{π = 0}. It is enough to show that

(1) Hn((X(x))η, Z/`) ' Z/`;
(2) the scheme (X(x))η is simply connected.

Fact (1) follows from the computation of vanishing cycles [SGA7, XV 2.2.5]. For fact (2), it
suffices to prove that (X(x))η → η induces an isomorphism on fundamental groups, or equivalently
on H1(−, G) for every finite group G. By the comparison theorem [SGA4, XVI 4.1] applied to
the inclusion j : X0\{π = 0} ↪→ X0, q = 1 and a finite group G, we have

H1((X(x))η, G) ' (R1jét∗G)x ' (R1jcl∗G)x ' colim
ε→0

H1(B(ε)\f−1(0), G)

where B(ε) = {(x0, . . . , xn) ∈ Cn :
∑
|xi|2 < ε}. But by the Milnor fibration and bouquet

theorems [Mil68], the homotopy fiber of f : B(ε) −→ D(ε) := {z ∈ C : |z| < ε} has type Sn and
hence is simply connected as n > 1. The long exact sequence of homotopy groups of that fibration
shows that π1(B(ε)) ' π1(S1), and hence H1(B(ε)\f−1(0), G) ' H1(S1, G) ' H1(D(ε)\{0}, G).
Because the diagram

H1((X(x))η, G) // colim
ε→0

H1(B(ε)\f−1(0), G)

H1(η,G) //

OO

colim
ε→0

H1(D(ε)\{0}, G)

OO

commutes, we conclude that H1(η,G) −→ H1((X(x))η, G) is an isomorphism as claimed. 2

Remark. Note that, on the other hand, for f : An −→ A1 given by a monomial x1 . . . xr, the
Milnor fiber at 0 is homotopy equivalent to a torus (S1)r, which is a K(π, 1). This explains why
one should expect Theorems 6.1 and 8.1 to be true.

8. The equicharacteristic zero case

Theorem 8.1. Let (X,MX) be a regular (cf. [Kat94, Definition 2.1]) log scheme over Q such
that X is locally noetherian, and let x −→ X be a geometric point. Let F be a locally constant
constructible abelian sheaf on X◦ := (X,MX)tr, the biggest open subset on which MX is trivial,
and let ζ ∈ H i(X◦,F ) for some i > 0. There exists an étale neighborhood U of x and a finite
étale surjective map V −→ U◦ such that ζ maps to zero in H i(V,F ).
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Proof. The proof is presented in §§ 8.1.1–8.1.3. 2

8.1.1. In proving the assertion, I claim that we can assume that F is constant. Let Y −→X◦

be a finite étale surjective map such that the pullback of F to Y is constant. By the logarithmic
version of Abhyankar’s lemma [GR14, Theorem 10.3.43], Y = X ′◦ for a finite and log étale
f : (X ′,MX′) −→ (X,MX). Then (X ′,MX′) is also log regular (by [Kat94, Theorem 8.2]).
Choose a geometric point x′ −→ X ′ mapping to x, and let F ′ = f◦∗F , which is a constant sheaf
on X ′◦.

Suppose that we found an étale neighborhood U ′ of x′ and a finite étale surjective map
V ′ −→ U ′◦ killing ζ ′ := f◦∗(ζ) ∈ H i(X ′◦,F ′). Let X ′′ be the normalization of U ′ in V ′, and
choose a geometric point x′′ mapping to x′. By [EGAIV, Théorème 18.12.1] (or [Sta14, Tag
02LK]); then there exists a diagram

x′′

��

// V

��

// X ′′

��
x // U // X

with U −→ X and V −→ X ′′ étale and V −→ U finite. It follows that V ◦ −→ U◦ is also étale,
and that the pullback of ζ to V ◦ is zero.

In proving the theorem, we can therefore assume that F ' Z/nZ for some integer n, by
considering the direct summands.

8.1.2. The question being étale local around x, we can assume that there exists a chart
g : (X,MX) −→ AP for a fine saturated monoid P , which we use to form a cartesian diagram.

(X ′,MX′)
f //

g′

��

(X,MX)

g

��
AP A·n

// AP

(8.1.1)

Then (X ′,MX′) is log regular, f is finite, and f : X ′◦ −→ X◦ is étale. Choose a geometric point
x′ −→ X ′ mapping to x. We have a commutative diagram

M
gp
X,x

f∗ //M
gp
X′,x′

P

OO

·n
// P

OO

where the vertical maps are surjections induced by the strict morphisms g and g′. We conclude
that the map

f [ ⊗ Z/nZ : M
gp
X,x ⊗ Z/nZ −→ M

gp
X′x′ ⊗ Z/nZ (8.1.2)

is zero.

8.1.3. Denote the inclusion X◦ ↪→ X (respectively X ′◦ ↪→ X ′) by j (respectively j′). By log
absolute cohomological purity (4.5.1), there is a functorial isomorphism

Rij∗(Z/nZ) '
∧i

(M
gp
X ⊗ Z/nZ(−1)).
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In our situation, this means that there is a commutative diagram

H i(X ′◦,Z/nZ)
spx′ // Rij′∗(Z/nZ)x′

∼ //
∧i(M

gp
X′,x′ ⊗ Z/nZ)

H i(X◦,Z/nZ) spx
//

f∗

OO

Rij∗(Z/nZ)x
∼ //

f∗

OO

∧i(M
gp
X,x ⊗ Z/nZ)

∧i(8.1.2)

OO

where the rightmost map is zero for i > 0 because (8.1.2) is zero.
It follows that ζ maps to zero in Rij′∗(Z/nZ)x′ , and hence there exists an étale neighborhood

U ′ of x′ such that ζ maps to zero in H i(U ′◦,Z/nZ). Applying once again the argument of the
second paragraph of § 8.1.1 yields an étale neighborhood U of x and a finite étale map V −→ U
killing ζ, as desired. 2

9. The comparison theorem

In [AG15], Abbes and Gros have developed a theory of generalized co-vanishing topoi, of which
the Faltings’ topos is a special case. This topos has first been introduced in [Fal02], though
the definition of [AG15] is different. For the reader’s convenience, let us recall the definitions,
adapting them to our setup.

Definition 9.1. Let f : Y −→ X be a morphism of schemes.

(a) The Faltings’ site E associated to f is the site with

– objects morphisms V −→ U over f : Y −→X with U −→X étale and V −→ U×XY
finite étale,

– morphisms commutative squares over f : Y −→ X,

– topology generated by coverings of the following form:

* (V, for vertical) {(Vi −→ U) −→ (V −→ U)} with {Vi −→ V } a covering,

* (C, for cartesian) {(V ×U Ui −→ Ui) −→ (V −→ U)} with {Ui −→ U} a covering.

(b) The Faltings’ topos Ẽ is the topos associated to E.

(c) We denote by Ψ : Yét −→ Ẽ the morphism of topoi induced by the continuous map of sites
(V −→ U) 7→ V : E −→ Ét/Y .

Lemma 9.2. If dimH0(Xét,F`) is finite then X has a finite number of connected components.

Proof. The projection α : Xét → X induces an injection F` → α∗F`, so H0(X,F`) is finite as
well. Since the map sending a clopen subset to its characteristic function is injective, the set of
clopen subsets of X must be finite. If x is a point in X, let Ux be the intersection of all the
clopen sets containing x. Since there are only finitely many such sets, Ux is open and closed.
Furthermore, it is connected, so it must be the connected component of X containing x. Hence
every connected component of X is clopen, and X has finitely many connected components. 2

Proposition 9.3. In the notation of § 1.2, let X be a scheme of finite type over S. Let X◦ ⊆ X
be an open subset such that the inclusion u : X◦ ↪→ X is an affine morphism, and let Y = X◦η .
Finally, let ℘ be a set of prime numbers. The following conditions are equivalent.

(a) For every étale U over X and every ℘-torsion locally constant constructible abelian sheaf
F on U ×X Y , we have RiΨU∗F = 0 for i > 0, where ΨU : U ×X Y −→ ẼU is the morphism of
Definition 9.1(c) for U ×X Y −→ U .
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(b) For every étale U over X, every ℘-torsion locally constant constructible abelian sheaf F
on U ×X Y , every class ζ ∈ H i(U ×X Y,F ) with i > 0, and every geometric point x −→ U , there
exists an étale neighborhood U ′ of x in U and a finite étale surjective map V −→ U ×X Y such
that the image of ζ in H i(V,F ) is zero.

(c) For every geometric point x −→ X, (X(x) ×S(f(x))
η) ×X X◦ is a K(π, 1) for ℘-adic

coefficients.

Proof. The equivalence of (a) and (b) follows from the fact that RiΨ∗F is the sheaf associated
to the presheaf (V −→ U) 7→ H i(V,F ) on E and the argument in Proposition 3.2(b). Note that
(X(x)×S(f(x))

η)×X X◦ is affine, therefore coherent. In case x ∈ Xs, the finiteness of the number
connected components follows from Lemma 9.2 and the finiteness of Γ((X(x)×S(f(x))

η)×XX◦,F`),
which is the stalk at x of the 0th nearby cycle functor of u∗F` [SGA41

2 , Th. finitude 3.2]. If x ∈Xη,

this follows similarly from the constructibility of u∗F`. The equivalence of (b) and (c) is then
clear in the view of Proposition 3.2. 2

Corollary 9.4. Suppose that X has a basis for the étale topology consisting of U for which
U ×X Y is a K(π, 1) for ℘-adic coefficients. Then the conditions of Proposition 9.3 are satisfied.

Theorem 9.5. Let (X,MX) be a log smooth log scheme over (S,MS) such that Xη is smooth
over η, and let X◦ = (X,MX)tr. If char k = 0, assume moreover that (X,MX) is saturated. Then
for every geometric point x of X, (X(x) ×S(f(x))

η)×X X◦ is a K(π, 1).

Proof. We should first note that (X(x)×S(f(x))
η)×XX◦ satisfies condition § 3.0.1 by the argument

used in the proof of Proposition 9.3.
In case char k = 0, as (X,MX) is regular by [Kat94, Theorem 8.2], Theorem 8.1 implies

condition (b) of Proposition 9.3, and hence X(x) ×X X◦η is a K(π, 1) (note that X◦ ⊆ Xη). As
(X(x) ×S(f(x))

η)×X X◦ is a limit of finite étale covers of X(x) ×X X◦η , it is a K(π, 1) as well.
We will now assume that char k = p > 0 and follow [Fal88, Lemma II 2.3] (see also [Ols09,

5.10–5.11]). As before, if x ∈ Xη, this follows from Theorem 8.1 applied to Xη, so let us assume
that x ∈ Xs. For simplicity, we can also replace S by S(f(x)) and X by the suitable base change.
By Theorem 6.1 and Corollary 9.4, we know that Z := (X(x))η is a K(π, 1). Since Xη is smooth,
Z is regular and Z◦ = X(x) ×X X◦η is obtained from Z by removing divisor with strictly normal
crossings D = D1 ∪ · · · ∪Dr. Let F be a locally constant constructible abelian sheaf on Z◦, and
pick a ζ ∈ H i(Z◦, η) (i > 0). We want to construct a finite étale cover of Z◦ killing ζ.

By Abhyankar’s lemma [SGA1, Example XIII, Appendice I, Proposition 5.2], there is an
integer n such that if f : Z ′ −→ Z is a finite cover with ramification indices along the Di nonzero
and divisible by n, then f◦∗F extends to a locally constant constructible sheaf on Z ′. I claim
that we can choose Z ′ which is a K(π, 1). By the previous considerations, it suffices to find Z ′

equal to (X ′(x′))η for some X ′/S′ satisfying the same assumptions as X. We can achieve this by

choosing a chart X −→ AP around x as before and taking a fiber product as in (8.1.1) (and
S′ = SpecV [π′]/(π′n − π)).

Now that we can assume that F = j∗F ′ where F ′ is locally constant constructible on Z
and j : Z◦ ↪→ Z is the inclusion, we choose a finite étale cover g : Y −→ Z, Galois with group
G, for which g∗F ′ is constant.

Let f : Z ′ −→ Z be a finite cover with ramification indices along the Di nonzero and divisible
by some integer n. I claim that for any b > 0, the base change map

f∗Rbj∗F −→ Rbj′∗(f
◦∗F ) (9.5.1)
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is divisible by nb. In case F is constant, this follows once again from logarithmic absolute

cohomological purity (4.5.1), and in general can be checked étale locally, e.g. after pulling back

to Y , where F becomes constant. Consider the Leray spectral sequence for j:

Ea,b2 = Ha(Z,Rbj∗F ) ⇒ Ha+b(Z◦,F ),

inducing an increasing filtration F b on H i(Z◦,F ). Let b(ζ) be the smallest b > 0 for which

ζ ∈ F b. We prove the assertion by induction on b(ζ). If b(ζ) = 0, then ζ is in the image of a

ζ ′ ∈ H i(Z, j∗F ), and since j∗F is locally constant and Z is a K(π, 1), we can kill ζ ′ by a finite

étale cover of Z. For the induction step, let n be an integer annihilating F , and pick a ramified

cover f : Z ′ −→ Z as in the previous paragraph, such that again Z ′ = (X ′(x′))η for some X ′/S′

satisfying the assumptions of the theorem. Note that since (9.5.1) is divisible by n, it induces

the zero map on Ea,b2 for b > 0, hence b(f∗ζ) < b(ζ), and we finish the proof by induction. 2

Corollary 9.6. Let (X,MX) be as in Theorem 9.5, and let X◦ = (X,MX)tr. Consider the

Faltings’ topos Ẽ of X◦η −→ X and the morphism of topoi

Ψ : X◦η,ét −→ Ẽ.

Let F be a locally constant constructible abelian sheaf on X◦η . Then RiΨ∗F = 0 for i > 0, and

the natural maps (2.2.1)

µ : H i(Ẽ,Ψ∗(F )) −→ H i(X◦η,ét,F )

are isomorphisms.
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arXiv:1107.2380v3 [math.AG].
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in Mathematics, vol. 305 (Springer, 1973); MR 0354654 (50 #7132).

SGA4 1
2 P. Deligne, Séminaire de géométrie algébrique du Bois-Marie – Cohomologie étale – (SGA4 1

2),
Lecture Notes in Mathematics, vol. 569 (Springer, Berlin–New York, 1977); MR 0463174
(57 #3132).
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