
J. Appl. Prob. 47, 301–322 (2010)
Printed in England

© Applied Probability Trust 2010

EFFICIENT IMPORTANCE SAMPLING IN
RUIN PROBLEMS FOR MULTIDIMENSIONAL
REGULARLY VARYING RANDOM WALKS

JOSE BLANCHET ∗ and

JINGCHEN LIU,∗∗ Columbia University

Abstract

We consider the problem of efficient estimation via simulation of first passage time
probabilities for a multidimensional random walk with heavy-tailed increments. In
addition to being a natural generalization to the problem of computing ruin probabilities
in insurance—in which the focus is the maximum of a one-dimensional random walk
with negative drift—this problem captures important features of large deviations for
multidimensional heavy-tailed processes (such as the role played by the mean of the
process in connection to the location of the target set). We develop a state-dependent
importance sampling estimator for this class of multidimensional problems. Then, using
techniques based on Lyapunov inequalities, we argue that our estimator is strongly
efficient in the sense that the relative mean squared error of our estimator can be made
arbitrarily small by increasing the number of replications, uniformly as the probability
of interest approaches 0.
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1. Introduction

We consider a class of efficient rare-event simulation estimators for first passage time
probabilities of multidimensional regularly varying random walks. Our setting is a natural
generalization of the classical problem of estimating the tail distribution of the maximum of a
one-dimensional random walk with negative drift—a quantity that yields the ruin probability
of an insurance company that follows a renewal risk process. The one-dimensional case has
been substantially studied in the literature; see, for instance, the text of Asmussen (2003) and
the references therein for a detailed account of the problem and its connections to insurance
and queueing. Hult and Lindskog (2006) noted that calculating first passage time probabilities
for multidimensional random walks corresponds to computing ruin probabilities for insurance
companies with several lines of business.

Let S = (Sn : n ≥ 1) be a regularly varying random walk in R
d with drift η ∈ R

d so that
E Sn = nη (see Section 3 for the definition of multivariate regular variation). Our focus is on
studying efficient importance sampling methodology for estimating the probability, ub, that S
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eventually hits a target set bA (b > 0 is a scale parameter which eventually we will send to∞).
We consider the case in which η points to the interior of an open cone that does not intersect
the set A, which in turns is assumed to satisfy mild conditions to avoid degenerate situations
(for instance, A does not lie in a lower-dimensional manifold; see Section 3).

In this paper we study a strategy that can be used both in the design of efficient rare-event
simulation algorithms for heavy-tailed systems and also in the development of asymptotic upper
bounds for large deviations. First we consider a parametric family of importance sampling
distributions based on mixtures—the precise form of which is given in Section 4. The mixture
idea has also been used in the rare-event simulation literature for light-tailed systems; see, for
instance, Sadowsky and Bucklew (1990) and, more recently, Glasserman and Juneja (2008).
In the light-tailed environment, mixtures are often used for nonconvex rare events to protect
the behavior of the likelihood ratio due to rogue sample paths that deviate from the most likely
large deviations path.

In the heavy-tailed case, mixtures arise as a natural way to mimic the behavior of the zero
variance change of measure. The use of mixtures for importance sampling in heavy-tailed
problems was introduced in Dupuis et al. (2006) for a geometric sum of one-dimensional
independent and identically distributed (i.i.d.) regularly varying variables. More recently,
Blanchet et al. (2007) and Blanchet and Liu (2008) exploited this idea more systematically
and in environments in which rare events are caused by several heavy-tailed jumps in sequence,
rather than just one. A feature to be emphasized in the current work and also in the cited
work related to the heavy-tailed case is that the mixture parameters are state dependent. As a
consequence, the efficiency analysis of the algorithm is not direct, which takes us to the second
ingredient of our strategy. Recently developed techniques based on Lyapunov inequalities for
Markov processes (see, for instance, Blanchet and Glynn (2008) or Blanchet et al. (2007))
are applied, allowing us to bound the second moment of the estimator and conclude that the
coefficient of variation of the estimator is bounded as the probability of interest decreases to 0.
As we will see, solving a Lyapunov inequality involves finding a function (that we refer to as a
Lyapunov function) which satisfies a system of linear inequalities.

The use of Lyapunov inequalities in the analysis of state-dependent rare-event simulation
algorithms was recently introduced in Blanchet and Glynn (2008) in the context of a one-
dimensional first passage time problem for heavy-tailed random walks (not necessarily regularly
varying, but also including more general tails such as Weibull and lognormal). Blanchet
and Glynn (2008) proposed the use of a well-known approximation for such first passage
time probabilities and developed the algorithm using such approximation directly in order
to construct their importance sampling estimator. An important difference between Blanchet
and Glynn’s approach and our development here is that we do not make direct use of the
approximations for the construction of our estimator, but instead take advantage of a specific
parametric family based on mixtures. In fact, only an asymptotic lower bound for the probability
of interest is required because verifying strong efficiency in our procedure automatically yields
the asymptotic upper bound.

In contrast to the work of Blanchet and Liu (2008) and Blanchet et al. (2007) we concentrate
on multidimensional problems, which give rise to additional complications derived from the
interplay between the location of the target set and the drift of the walk (we discuss these issues
in the statement of assumptions (A) and (B) in Section 3). In addition, contrary to the finite-time
horizon problems treated in Blanchet and Liu (2008), the finite termination of the algorithm
becomes an important issue that requires special attention in our current setting.
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We provide the first rigorous analysis of estimators that can be shown to be strongly efficient
for a class of multidimensional heavy-tailed processes. The estimators that we analyze here
have been empirically explored in Blanchet and Liu (2007). Our contributions are summarized
as follows.

1. Assuming mild conditions on the target set bA (refer to assumptions (A) and (B) in
Section 3), we provide a state-dependent importance sampling estimator for ub whose
second moment can be shown to be of order O(u2

b) as b ↗ ∞ (see Theorem 1). It is
important to mention that the conditions that we impose on the set A are weaker than
those known for the development of exact asymptotics (see Remark 2).

2. We provide new techniques to deal with the problem of finite termination time in first
passage time simulation algorithms of heavy-tailed processes. Thus, we introduce a new
class of simulation estimators whose running time can be controlled at an expense of a
computable relative bias which can be reduced arbitrarily at the expense of a relatively
small computational cost (see Section 6).

3. We introduce new techniques for asymptotic upper bounds of rare-event probabilities
in multivariate heavy-tailed processes based on Lyapunov inequalities, which lie at the
center of our technical arguments. Serving as an upper bound of the second moment of
our importance sampling estimator, the Lyapunov function is also an upper bound of the
rare-event probability squared, by Jensen’s inequality.

It is worth pointing out that the specification of our importance sampling scheme depends
only on the existence of a suitable open cone that does not contain A. Once the sampler is
specified, we can use the same change of measure for any target set which is inside the set A. In
contrast, in the light-tailed setting (see, for instance, Collamore (2002)), the design of efficient
importance sampling schemes requires the evaluation of certain roots that are highly dependent
on the geometry of A.

The mixture family of importance sampling distributions captures, at an intuitive level, the
qualitative behavior induced by the zero-variance importance sampler, which is the conditional
distribution of the walk given that it eventually reaches the target set of interest (see, for instance,
Blanchet and Glynn (2008)). Such changes of measure are parameterized by a few constants.
In particular, at each step, we consider a mixture of a large increment that basically makes the
random walk hit the target set and an increment that follows the nominal (original) distribution.
The mixture probability is chosen depending on the current position of the random walk. In
order to properly choose the mixture probability, we need to make sure that the Lyapunov
inequality is satisfied. Now, such an inequality requires the choice of a convenient Lyapunov
function which is obtained using heuristics based on a fluid-type analysis—a standard technique
in heavy-tailed approximations which we briefly describe in Section 4 (see (5)). The heuristics
are then made rigorous by going through the verification of the Lyapunov inequality, which
involves tuning various parameters such as the mixture probabilities. Once the inequality is
rigorously verified, we are able to find an upper bound that controls the behavior of the second
moment of the estimator. Now, on the side of the asymptotics, the bound on the second moment
of the importance sampling estimator can be translated, by means of Jensen’s inequality, to an
asymptotic upper bound on the first passage time probability of interest.

It is important to emphasize that the implementation of the algorithm, which is discussed
in Section 5, involves a rare-event estimation problem which corresponds to evaluating the
probability that a large jump occurs in the next transition. This issue is not of concern in the
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one-dimensional case given that large jump probabilities for a single increment can be easily
computed. In the multidimensional case this computation is not immediate. Nevertheless, the
evaluation of such large jump probabilities involves a static problem which is simpler than
the original first passage time problem and efficient algorithms can be designed on a case-by-
case basis. In addition, as we discuss in Section 5, we have built our algorithm in a flexible
way so that we can take advantage of the shape of the increment distribution (for instance, by
considering a transformation in polar coordinates) in order to efficiently compute large jump
probabilities within a single transition of the random walk. When the increment distributions
do not have enough structure, however, the issue of path generation leaves room for further
investigation.

The rest of the paper is organized as follows. In Section 2 we discuss basic concepts involving
state-dependent importance sampling and efficiency in rare-event simulation. In Section 3 we
describe the specific problem formulation and basic results on large deviations. The basic ideas
behind our development and algorithm are described in Section 4. We deal with implementation
issues (such as path generation) and related considerations in Section 5. A technique to control
the bias of importance sampling estimators to a prescribed relative accuracy is discussed in
Section 6.

2. State-dependent importance sampling and efficiency

We will design our estimator using state-dependent importance sampling (see, for instance,
Glynn and Iglehart (1989) for more on importance sampling for Markov processes). Let
W = (Wn : n ≥ 0) be a Markov chain, living in a space X endowed with a σ -field FX, and
with transition kernel (K(x, A) : x ∈ X, A ∈ FX). A state-dependent importance sampler is
described by a transition kernel Kq(·) of the form

Kq(x, dy) = r(x, y)−1K(x, dy),

where r(·) is normalized so that Kq(·) is a well-defined Markov transition kernel. In this paper,
W is a random walk with transition kernel,

K(x, dy) = f (y − x) dy, Kq(x, dy) = r(x, y)−1f (y − x) dy,

where f (·) is the density function of the increments and r(·) will be chosen in the next section
involving a mixture. In addition, we use the symbols PQ

w and EQ
w to denote the probability

measure and expectation operator induced by Kq(·) on the path space of W given that W0 = w.
Similarly, for the probability induced by K(·) we use Pw (and Ew for the expectation).

Throughout the rest of the paper, we will write TAb
to denote the first passage time of

the underlying chain to the set Ab. More precisely, TAb
= inf{n > 0 : Wn ∈ Ab}. We use

{Ab : b ≥ 0} as generic notation for a family of rare sets. The subscript b is the so-called rarity
parameter which will eventually be sent to∞. Later on, we will focus on the family of rare
sets Ab = {bx : x ∈ A}. Consider the problem of estimating efficiently via simulation

ub(w) = Pw(TAb
<∞),

where we assume that ub(w)↘ 0 as b ↗∞. An unbiased estimator of ub(w) is given by

Z(b) = 1(TAb
<∞)

TAb
−1∏

i=0

r(Wi, Wi+1),
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where W in the previous expression follows the law PQ
w —which in particular yields EQ

w Z(b) =
ub(w).

Ultimately, we are interested in selecting r(·) in order to achieve good statistical efficiency
properties, which we will measure in terms of the mean squared error. First, we will concentrate
on the variance control. In particular, we will select r(·) in order to achieve strong efficiency,
that is,

sup
b≥1

EQ
w(Z(b)2)

ub(w)2 ≤ λ <∞.

The number of replications required to achieve a good relative precision for a strongly efficient
estimator is insensitive to how small ub(w) is. So, if we generate n i.i.d. copies (Zj (b) : 1 ≤
j ≤ n) of Z(b) and consider

Yn(b) = 1

n

n∑
j=1

Zj (b),

then, using Chebyshev’s inequality, we obtain (for all b ≥ 1)

P(|Yn(b)− ub(w)| ≥ εub(w)) ≤ λ

ε2n
.

This implies, as we indicated, that in order to achieve relative precision ε with probability at least
1−δ, it suffices to generate n = λε−2δ−1 = O(ε−2δ−1) replications uniformly as ub(w)↘ 0.

Now, clearly, strong efficiency is not enough to characterize the complexity of an algorithm,
which involves the expected time to hit Ab under the change of measure and the variate
generation at each step. These issues will be discussed in future sections.

The following proposition provides the means to bound the second moment of state-depend-
ent importance sampling estimators. See Blanchet and Glynn (2008).

Proposition 1. Suppose that there exists a nonnegative function gb(w) : X→ R
+ ∪ {0} such

that
EQ

w r(w, W1)
2gb(W1) = Ew r(w, W1)gb(W1) ≤ gb(w) (1)

for w ∈ Āb and gb(w) ≥ ε for w ∈ Ab. Then

EQ
w(Z(b)2) ≤ ε−1gb(w)

if w ∈ Āb. Throughout the paper, we use Ā to denote the complement of set A.

Remark 1. The bound in (1) is called a Lyapunov inequality and gb(·) is the corresponding
Lyapunov function, which may not be unique. Ultimately, the design and performance analysis
of the proposed estimator boils down to finding a solution gb(w) to the Lyapunov inequality.
It is not difficult to see that if we choose the zero-variance importance sampler (r(w0, w1) =
ub(w1)/ub(w0)) then u2

b(w) is one Lyapunov function. Since we expect to select r(·) in order
to mimic the behavior of the zero-variance importance sampler, it is natural to use a guess for
u2

b(·) as a guidance for constructing gb(·). Such an approach is pursued in Section 4.

3. Problem setting and intuition

Let (Xn : n ≥ 1) be a sequence of i.i.d. regularly varying random vectors taking values
in R

d . We define multivariate regularly varying distribution as follows.
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Definition 1. A random vector X is said to have a multivariate regularly varying distribution
if there exists a Radon measure µ(·) such that, for any Borel set A that does not contain the
origin, we have

lim
b→∞

P(X ∈ bA)

P(‖X‖2 > b)
= µ(A)

as b ↗∞.

The Xns have a relatively very small probability of jumping into sets for which µ(A) = 0.
Note that, clearly, we can obtain µ(A) = ∞ by including an appropriate ball containing the
origin inside A. If P(‖Xn‖2 > b) = b−αL(b) for some α > 0 and a slowly varying function
L(·) (i.e. L(tb)/L(b) → 1 as b ↗ ∞ for each t > 0), then we say that µ(·) has (regularly
varying) index α.

An alternative (equivalent) definition of a multivariate regularly varying distribution is that
there exists a random variable � taking values on the surface of the unit sphere in d dimensions
(denoted by S

d−1) so that, for each x > 0,

P(‖X‖2 > bx, X/‖X‖2 ∈ ·)
P(‖X‖2 > b)

→ x−α P(� ∈ ·) (2)

in the sense of vague convergence in S
d−1 (see Kallenberg (1983, p. 32)).

In order to illustrate the previous definition, consider the following simple example.

Example 1. Suppose that X1 follows a d-dimensional t-distribution with υ degrees of freedom.
In particular, X1 has density

fX1(y) = κd

(1+ y�y)(υ+d)/2

for an appropriate constant κd ∈ (0,∞). It follows that P(‖X1‖2 > t) = cd t−υ(1 + o(1)) as
t ↗∞ for some cd > 0 and the associated limiting regularly varying measure for X1 satisfies

µ(A) = lim
t→∞

P(X1 ∈ tA)

P(‖X1‖2 > t)
=

∫
A

κd/cd

(y�y)(υ+d)/2
dy.

The fact that µ(·) has a density with respect to the Lebesgue measure in R
d\{0} implies that

when a coordinate exhibits a large jump, the rest of the coordinates will also tend to be large.
Such a feature is one of the reasons for which t-copulas are often applied when modeling
extreme dependence; see, for instance, Embrechts et al. (2003). In the context of (2), � is
uniformly distributed.

Returning to our discussion on large deviations for multidimensional regularly varying
random walks, let us assume that E X1 = η �= 0 and define Sn = X1+· · ·+Xn. Throughout the
rest of the paper, we will use the notation Ps(·) for the probability measure on the path space of the
process S = (Sn : n ≥ 0) given that S0 = s. Given a set A, we define TA = inf{n ≥ 0 : Sn ∈ A}
and we write bA = {y : y = ba, a ∈ A}. The family of sets bA indexed by b corresponds to
Ab in Section 2. Finally, we define

ub(s) = Ps(TbA <∞).

Our goal is to develop a strongly efficient simulation estimator for ub(0) in a variety of settings
where ub(0)↘ 0 as b ↗∞.
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A
η

v*

Figure 1: Diagram illustrating assumption (A) for a two-dimensional random walk.

Given that the random walk has drift η, it is not difficult to see geometrically that some
conditions must be imposed on A in order to have a meaningful rare-event situation (i.e. ub(0)↘
0 as b ↗∞). One necessary condition is that the set A does not intersect the ray {tη : t > 0}.
Otherwise, the law of large numbers might eventually let the process hit the set bA. This
condition, however, is not strong enough to rule out degenerate situations. For instance, suppose
that A is a polyhedron. Then it could happen that when one of the faces of the polyhedron is
parallel to η, central limit theorem type fluctuations might eventually make the random walk
hit the target set. In order to avoid this situation, we impose two assumptions.

(A) There exists linearly independent vectors v∗1 , . . . , v∗m ∈ R
d , δ∗ > 0 such that ‖v∗j ‖2 = 1

and η�v∗j < −δ∗ and, for all z ∈ A, we have z�v∗j ≥ δ∗ for at least one v∗j .

Figure 1 depicts the situation described by (A).
As indicated in Figure 1, the vectors v∗k point in the ‘direction’ where the set A is located;

this direction cannot be parallel to the drift of the process, otherwise the set A would eventually
be attainable with probability 1.

In order to avoid situations where the target set is ‘too thin’, for instance, when A lives in a
lower-dimensional manifold, we impose the following assumption.

(B) Assume that µ(·) has regularly varying index α > 1 and that A contains an open subset,
A◦, such that µ(A◦) > 0.

Assumptions (A) and (B) guarantee that the large deviations behavior of the system will be
governed by a single large jump that makes the random walk eventually reach the target set.
Moreover, just as in the one-dimensional case, the random walk evolves according to its nominal
(original) dynamics for O(b) steps until a large jump occurs that causes the random walk to
reach a large threshold b.

Now, we are ready to provide some estimates on the rate of convergence to 0 of ub(0). The
following result follows as an easy consequence of Hult et al. (2005, Theorem 3.1).

Proposition 2. Under assumptions (A) and (B), there exists a constant c > 0 such that

ub(0) ≥ cb P(‖X‖2 > b)

for all b ≥ 1.
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Remark 2. Note that we only require an asymptotic lower bound of the form cb P(‖X‖2 > b),
which is guaranteed under our assumptions.

The most interesting portion of the large deviations approximation for ub(0) involves devel-
oping an upper bound. The strategy that we will pursue in the next section allows us to obtain
the desired upper bound by showing that the second moment of a suitable importance sampling
estimator is of order O(b2 P(X1 ∈ bA)2) as b ↗∞. This will imply strong efficiency and also
that ub(0) = O(b P(X1 ∈ bA)) as b ↗∞.

4. Proposed change of measure and variance analysis

Our strategy involves the use of a parametric family of changes of measure that mimics
the behavior of the zero-variance importance sampler, which corresponds to the conditional
distribution of the random walk given that the rare event occurs. Now, as indicated before,
in the heavy-tailed case the rare event is caused by a single large jump, while all the other
increments prior to the jump evolve approximately according to the nominal dynamics. This
suggests a family of importance sampling distributions for the increments in the form of a
mixture of two components: one that induces a large jump ‘in the direction of the target set’ and
the other one that basically evolves according to the nominal/original dynamics. Let us explain
more precisely in intuitive terms what we mean by ‘a direction to the target set’. Suppose that A
is a simply connected set as shown in Figure 1. Then, the vector v∗ depicted in Figure 1 indicates
a possible direction to the target set. A direction to be chosen is not unique. Any other vector
that has positive inner product with each element of A could also serve as a possible direction.
Moreover, if A has more than one connected component, there may be several directions that
one can take simultaneously.

The vectors v∗1 , . . . , v∗m will be used as possible directions. Our family of changes of measure
is constructed so that, with some probability, which may depend on the current position, the
random walk reaches A in the next step. More precisely, given the current position of the walk
is s and a constant a ∈ (0, 1), we define

Ca
i (s, b) = {x : v∗�i x > a(δ∗b − v∗�i s)}.

The parameter a ∈ (0, 1) helps to over sample those paths that take several jumps to reach A.
We propose sampling the next increment according to a mixture density of the form

qX|s(x) = p(s)
fX(x) 1(x ∈⋃m

i=1 Ca
i (s, b))

P(X ∈⋃m
i=1 Ca

i (s, b))
+ (1− p(s))fX(x), (3)

where the mixture probability p(s) is allowed to depend on the current state. Let us write

P(s) = P

(
X ∈

m⋃
i=1

Ca
i (s, b)

)
.

Note that

qX|s(x) = [p(s)+ (1− p(s)) P(s)]fX(x) 1(x ∈⋃m
i=1 Ca

i (s, b))

P(s)

+ (1− p(s))fX(x) 1
(

x ∈
m⋂

i=1

C̄a
i (s, b)

)
.
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We find that the likelihood ratio corresponding to (3) takes the form (using notation consistent
with the statement of Proposition 1)

r(s, x + s) := fX(x)

qX|s(x)

= P(s)

(p(s)+ (1− p(s)) P(s))
1
(

x ∈
m⋃

i=1

Ca
i (s, b)

)

+ 1

(1− p(s))
1
(

x ∈
m⋂

i=1

C̄a
i (s, b)

)
. (4)

We will use the notation Eq
s (·) for the expectation operator induced by r(·) given that S0 = s.

Similarly, we use Pq
s (·) for the probability measure associated to Eq

s (·). Finally, the correspond-
ing (unbiased) estimator for ub(0) is

Zb =
Tb·A−1∏
k=0

r(Sk, Sk+1) 1(TbA <∞).

Once we have proposed a suitable parametric family of importance sampling distributions, we
need to tune the mixture parameter, p(s), in order to satisfy the Lyapunov inequality. For
this, we also need to propose a parametric expression for the candidate Lyapunov function.
As discussed in Remark 1, if the proposed importance sampler is close enough to the zero-
variance change of measure, we expect the Lyapunov inequality to be satisfied by a function
that behaves like (or is an upper bound for) (P2

s (TbA <∞) : s ∈ R
d). Therefore, a natural

strategy is to obtain a heuristic guess for Ps(TbA <∞) and use this guess to propose an explicit
form for the Lyapunov function which will then be tested rigorously. A rough analysis, known
as ‘fluid analysis’, suggests that

Ps(TbA <∞) ≈
∫ ∞

0
P(X + s + ηt ∈ bA) dt

≤
m∑

i=1

∫ ∞
0

P(v∗�i (X + s + ηt) ≥ bδ∗) dt

=
m∑

i=1

1

−v∗�i η
Gi(bδ∗ − v∗�i s), (5)

where

Gi(bδ∗ − v∗�i s) =
∫ ∞

bδ∗−v∗�i s

P(v∗�i X > u) du.

The idea behind the ‘fluid analysis’is that, prior to the occurrence of the big jump that reaches the
target set, the process behaves according to the law of large numbers (or fluid dynamics). Then,
a jump occurs at given time, t , which takes the process to the target set. The approximation is
constructed by integrating over t , thereby arriving at (5).

So, we propose our Lyapunov function to be

gb(s) = min(cghb(s)
2, 1) for some cg > 0, (6)
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where

hb(s) =
m∑

i=1

Gi(bδ∗ − v∗�i s).

The selection of cg is performed in the verification argument of our Lyapunov function.
Verifying the Lyapunov inequality involves checking, for all s ∈ R

d ,

1 ≥ Eq

(
gb(s +X)

gb(s)
r(s, s +X)2

)
= E

(
gb(s +X)

gb(s)
r(s, s +X)

)
, (7)

where Eq(·) represents the expectation induced by the density qX|s(·).
We will establish bound (7) first on {s : gb(s) < 1}. Note that if gb(s) = 1, inequality (7) is

satisfied by selecting p(s) = 0. If gb(s) < 1,

E

(
gb(s +X)

gb(s)
r(s, s +X)

)

= E

(
gb(s +X)

gb(s)
;X ∈

m⋃
i=1

Ca
i (s, b)

)
P(s)

p(s)+ (1− p(s)) P(s)

+ E

(
gb(s +X)

gb(s)
;X ∈

m⋂
i=1

C̄a
i (s, b)

)
1

1− p(s)
.

Let us define

J1 = E

(
gb(s +X)

gb(s)
;X ∈

m⋃
i=1

Ca
i (s, b)

)
P(s)

p(s)+ (1− p(s)) P(s)
,

J2 = E

(
gb(s +X)

gb(s)
;X ∈

m⋂
i=1

C̄a
i (s, b)

)
1

1− p(s)
. (8)

An immediate upper bound is obtained for J1, namely,

J1 ≤ P(s)2

cghb(s)2p(s)
, (9)

on the set that gb(s) < 1. To handle J2, the idea is to use a Taylor expansion with remainder.
Recall that if f (·) is absolutely continuous then by writing X = (X(1), . . . , X(d)) we have

f (s1 +X(1), . . . , sd +X(d))− f (s1, . . . , sd)

=
∫ 1

0

∂f

∂s1
(s1 +X(1)u, s2, . . . , sd)X(1) du

+
∫ 1

0

∂f

∂s2
(s1 +X(1), s2 +X(2)u, s3, . . . , sd)X(2) du+ · · ·

+
∫ 1

0

∂f

∂sd
(s1 +X(1), . . . , sd−1 +X(d−1), sd +X(d)u)X(d) du
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= X(1) E

(
∂f

∂s1
(s1 +X(1)U, s2, . . . , sd)

∣∣∣∣ X

)

+X(2) E

(
∂f

∂s2
(s1 +X(1), s2 +X(2)U, s3, . . . , sd)

∣∣∣∣ X

)
+ · · ·

+X(d) E

(
∂f

∂s2
(s1 +X(1), s2 +X(2), . . . , sd +X(d)U)

∣∣∣∣ X

)
,

where U is a uniformly distributed random variable over [0, 1], independent of X. Applying
this representation one at a time for each of the d components of gb(·) we obtain (in probabilistic
terms)

gb(s +X) = gb(s)+ E

( d∑
j=1

∂gb

∂sj
(s +DjX)X(j)

∣∣∣∣ X

)
, (10)

where Dj denotes an appropriate diagonal matrix, in particular the j − 1 first components
in its main diagonal are 1s, the j th component in the main diagonal is U , and the remaining
components of the matrix are 0s. The strategy then consists in using a bound of the form

E

( d∑
j=1

∂gb

∂sj
(s +DjX)X(j);X ∈

m⋂
i=1

C̄a
i (s, b)

)
≤ γ1∇gb(s) · η (11)

for some γ1 > 0, where the dot denotes the inner product, and noting that

∇gb(s) · η
gb(s)

≤ −2δ∗
∑m

i=1 P(v∗�i X > bδ∗ − v∗�i s)

hb(s)
.

A key observation is that the right-hand side of the previous inequality is a negative quantity
which, combined with (10), can be used to develop inequality (7) via (8).

Before providing the necessary details behind our strategy, we first provide a useful lemma
involving (11).

Lemma 1. There exist cg > 0 and γ1 > 0 such that, if gb(s) < 1,

E

( d∑
j=1

∂jgb(s +DjX)X(j);X ∈
m⋂

i=1

C̄a
i (s, b)

)
≤ γ1∇gb(s) · η,

where ∂jgb = ∂gb/∂sj .

Proof. First, observe that if gb(s) < 1 then

∂jgb(s) = 2hb(s)

m∑
i=1

P(v∗�i X > bδ∗ − v∗�i s)v
∗(j)
i .

Furthermore, if X ∈⋂m
i=1 C̄a

i (s, b),

P(v∗�i X > bδ∗ − v∗�i s − v∗�i DjX) ≤ P(v∗�i X > (bδ∗ − v∗�i s)(1− a)) (12)

for 1 ≤ i ≤ m; likewise

hb(s +DjX) ≤
m∑

i=1

Gi((bδ∗ − v∗�i s)(1− a)). (13)
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The condition gb(s) < 1 implies that, for all 1 ≤ i ≤ m, bδ∗ − v∗�i s > G−1
i (1/c

1/2
g )↗∞

as cg ↗∞. As a consequence, if cg is sufficiently large and X ∈⋂m
i=1 C̄a

i (s, b), then gb(s +
DjX) < 1 for all 1 ≤ j ≤ m and, therefore,

∂jgb(s +DjX)X(j) = 2hb(s +DjX)

m∑
i=1

P(v∗�i X > bδ∗ − v∗�i s − v∗�i DjX)v
∗(j)
i X(j).

Moreover, because the Gis and the distribution of the random variables v∗�i X are all regularly
varying, then, by Karamata’s theorem, it follows from (12) and (13) that there exists a constant
γ0 ∈ (0,∞) such that

hb(s +DjX)

hb(s)
≤ γ0 and

P(v∗�i X > (bδ∗ − v∗�i s)(1− a))

P(v∗�i X > bδ∗ − v∗�i s)
≤ γ0 (14)

for 1 ≤ i ≤ m. On the other hand, because

∇hb(s) · η ≤ −δ∗
m∑

i=1

P(v∗�i X > bδ∗ − v∗�i s) < 0

and the bounds in (14), we have

∑d
j=1 ∂jgb(s +DjX)X(j) 1(X ∈⋂m

i=1 C̄a
i (s, b))

−∇gb(s) · η ≤ γ 2
0

δ∗
d∑

j=1

m∑
i=1

|v∗(j)
i X(j)|.

Therefore, the left-hand side of the previous display is uniformly integrable as b ↗ ∞.
Moreover, note that

∑d
j=1 ∂jgb(s +DjX)X(j) 1(X ∈⋂m

i=1 C̄a
i (s, b))

∇gb(s) · η →
∑d

j=1
∑m

i=1 v
∗(j)
i X(j)

∑m
i=1 v∗�i η

almost surely as cg ↗ ∞ (as mentioned before, bδ∗ − v∗�i s > G−1
i (1/c

1/2
g )↗∞ as

cg ↗ ∞). Therefore, it follows from the dominated convergence theorem that there is a
γ1 ∈ (0, 1) such that

E

( d∑
j=1

∂jg(s +DjX)X(j);X ∈
m⋂

i=1

C̄a
i (s, b)

)
≤ γ1∇gb(s) · η,

as claimed.

Remark 3. The gray area in Figure 2 shows the form of the region where gb(s) < 1.

It follows from Lemma 1 combined with (9) and the Taylor development applied to (8) that,
if gb(s) < 1,

J1 + J2 ≤ 1

1− p(s)

(
1− 2γ1δ

∗
∑m

i=1 P(v∗�i X > bδ∗ − v∗�i s)

hb(s)

)
+ P(s)2

cghb(s)2p(s)
.

We select

p(s) = min

(
θ

P(s)

hb(s)
,

1

2

)
1(gb(s) < 1) for some θ > 0. (15)
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Aη

b0

A*

Figure 2: Two-dimensional diagram illustrating the region where Lemma 1 is satisfied. Here we define
A∗ = {s : g(s) = 1}, and g(s) < 1 implies that bδ∗ − v∗�1 s > b0.

On the set that gb(s) < 1, we have

J1 + J2 ≤ 1+ 2θ
P(s)

hb(s)
+ P(s)

cgθhb(s)
− 2γ1δ

∗
∑m

i=1 P(v∗�i X > bδ∗ − v∗�i s)

hb(s)
. (16)

Now, our task is to appropriately select θ and cg in order to make the right-hand side of the
previous inequality less than 1. First we collect the following lemma.

Lemma 2. There exists γ2 ∈ (0,∞) such that

P(s) = P

(
X ∈

m⋃
i=1

Ca
i (s, b)

)
≤ γ2

m∑
i=1

P(v∗�i X > bδ∗ − v∗�i s)

for all s ∈ R
d .

Proof. By the union bound we obtain

P

(
X ∈

m⋃
i=1

Ca
i (s, b)

)
≤

m∑
i=1

P(v∗�i X > a(bδ∗ − v∗�i s)).

The conclusion of the lemma then follows directly using the definition of regular variation.

Applying the previous result to (16) we can construct the solution to a Lyapunov inequality
that will allow us to control the variance of our estimator. We summarize this construction in
the following proposition.

Proposition 3. Given the family of importance samplers defined via (4), with p(s) defined
according to (15) and gb(s) satisfying (6), we can compute θ and cg such that the Lyapunov
inequality (7) is satisfied for all s ∈ R

d . In particular, any pair (θ, cg) such that θ ≤ γ1δ
∗/(2γ2)

and cg ≥ γ2/(θγ1δ
∗) are valid choices.
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Proof. First, for s such that gb(s) < 1, we have, combining the bound in (16) and Lemma 2,

E

(
gb(s +X)

gb(s)
r(s, s +X)

)
≤ 1+

(
2θγ2 + γ2

cgθ
− 2γ1δ

∗
) m∑

i=1

P(v∗�i X > bδ∗ − v∗�i s)

hb(s)
.

Select θ ≤ γ1δ
∗/(2γ2) and cg ≥ γ2/(θγ1δ

∗). Then the previous expression is guaranteed to
be less than 1. On the other hand, if gb(s) = 1, we clearly find (since gb ≤ 1) that selecting
p(s) = 0 implies that

E(gb(s +X)r(s, s +X)) = E gb(s +X) ≤ gb(s) = 1,

and the inequality then holds throughout R
d .

We conclude with a summary of the proposed algorithm (for the generation of a single
replication of Zb). An issue that remains pending is the termination of the algorithm. We will
address this problem in a later section.

Algorithm 1. (Basic algorithm.) Set b > 0 and fix a ∈ (0, 1). Initialize s = 0, REACH = 0,
and Z = 1. Assume that cg and θ have been selected in order to satisfy (1) and set gb(w)

according to (6).

Step 1. While REACH = 0.

(a) If gb(s) = 1 then sample X according to the nominal distribution.
Else set

p←− min

(
θ

P(s)

hb(s)
,

1

2

)
1(s : gb(s) < 1)

and sample X as follows. With probability p, generate X with law L(X | X ∈⋃m
i=1 Ca

i (s, b)); with probability 1− p, sample X from the nominal distribution.
Then, update

Zb ←− Zb

{
P(s) 1(X ∈⋃m

i=1 Ca
i (s, b))

p + (1− p) P(s)
+ 1(X ∈⋂m

i=1 C̄a
i (s, b))

1− p

}
.

End if

(b) Update
s ←− s +X.

(c) If s ∈ bA then
REACH←− 1.

End if

Loop

Step 2. Return Zb.

The next result summarizes the variance properties of the estimator.

Theorem 1. If assumptions (A) and (B) are in force, then the estimator Zb given by Algorithm 1
has bounded relative error.
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Proof. The result follows by a straightforward application of the Lyapunov inequality. In
particular, we obtain

Eq
s Z2

b = Es Zb ≤ gb(s).

The conclusion of the result follows directly from Proposition 2 and simple properties of
regularly varying functions.

5. Path generation, normalizing constants, and alternative parameterizations

A couple of problems involving the implementation of the algorithm are the path generation
under EQ

s (·) and the evaluation of r(·). These two issues are related.
It is usually possible to design an acceptance–rejection procedure to simulate increments

without explicit knowledge of the normalizing constants, such as P(X ∈⋃m
i=1 Ca

i (s, b))

involved in computing r(·). Moreover, such a procedure can often be designed, parametrically
in s and b, so that the acceptance probability remains bounded away from 0 uniformly over s and
b > 0. This is explained in Blanchet and Glynn (2008) in the one-dimensional case, but the ideas
can be adapted to higher dimensions. The most interesting problem arises when calculating
P(X ∈⋃m

i=1 Ca
i (s, b)), which is required to output the corresponding estimator. This is also a

rare-event estimation, but it is of finite dimension. The design of efficient estimation procedures
for computing these finite-dimensional probabilities are more standard and can be handcrafted
in a case-by-case basis.

An alternative approach is to note that there is a fair amount of flexibility in the selection of
the mixture sampler in order to take advantage of the particular problem structure to compute
P(X ∈⋃m

i=1 Ca
i (s, b)). Consider any parametric family of sets {B(s, b) : s ∈ R

d , b > 0} such
that

⋃m
i=1 Ca

i (s, b) ⊆ B(s, b) and with the property that there exists a constant δ̃ > 0 such that

δ̃ P(X ∈ B(s, b)) ≤ P

(
X ∈

m⋃
i=1

Ca
i (s, b)

)
, (17)

a property that is often easy to verify in the regularly varying setting. Define P̃ (s) =P(X ∈
B(s, b)), and, given a mixture probability p̃(s), let

fX(x)

q̃X|s(x)
:= r̃(s, s + x)

= P̃ (s)

p̃(s)+ (1− p̃(s))P̃ (s)
1(x ∈ B(s, b))+ 1

1− p̃(s)
1(x ∈ B(s, b)c). (18)

We will use Ẽs0(·) to denote the expectation operator corresponding to the path measure (denoted
by P̃s0(·)) generated by the state-dependent increment distribution q̃X|s(·), given that the initial
position of the process is S0 = s0.

We can follow the same steps described in Section 4 in order to verify the Lyapunov
inequality. We claim that a parametric family of functions defined via (6) can be used to
construct a Lyapunov function with a suitable selection of the parameter cg . Indeed, we can
define

E

(
gb(s +X)

gb(s)
r̃(s, s +X)

)
= J̃1 + J̃2,
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where

J̃1 = E

(
gb(s +X)

gb(s)
;X ∈ B(s, b)

)
P(X ∈ B(s, b))

p̃(s)+ (1− p̃(s))P̃ (s)

≤ E

(
gb(s +X)

gb(s)
;X ∈ B(s, b)

)
P(X ∈ B(s, b))

p̃(s)
,

J̃2 = E

(
gb(s +X)

gb(s)
;X /∈ B(s, b)

)
P(X /∈ B(s, b))

1− p̃(s)
,

and

p̃(s) = min

(
θ

P(X ∈ B(s, b))

hb(s)
,

1

2

)
1(s : gb(s) < 1). (19)

Assuming that gb(s) < 1 we have

J̃1 ≤ P(X ∈ B(s, b))2

cghb(s)2p̃(s)
,

which corresponds to (9). Similarly, the analysis of J̃2 follows exactly the same steps as that
of J2 in Section 4, thereby obtaining the inequality

J̃1 + J̃2 ≤ 1+ 2θ
P(X ∈ B(s, b))

hb(s)
+ P(X ∈ B(s, b))

cgθhb(s)

− 2γ1δ
∗
∑m

i=1 P(v∗�i X > bδ∗ − v∗�i s)

hb(s)
. (20)

We can conclude the following result entirely analogous to Proposition 3.

Proposition 4. Given the family of importance samplers defined via (18), with p̃(s) defined
according to (19), we can compute θ and cg such that J̃1+ J̃2 ≤ 1 for all s ∈ R

d . In particular,
any pair (θ, cg) such that θ ≤ γ1δ̃δ

∗/(2γ2) and cg ≥ γ2/(θγ1δ̃δ
∗) are valid choices.

Proof. First, for s /∈ R̃b, we have, combined with the development behind (20), Lemma 2,
and the definition of δ̃,

E

(
gb(s +X)

gb(s)
r̃(s, s +X)

)
≤ 1+

(
2θγ2

δ̃
+ γ2

cgθ δ̃
− 2γ1δ

∗
) m∑

i=1

P(v∗�i X > bδ∗ − v∗�i s)

hb(s)
.

The rest of the analysis then follows just as in Proposition 3.

The previous analysis indicates that there is plenty of flexibility when choosing an appropriate
family of importance sampling distributions in order to facilitate the path generation and
calculation of constants such as P(X ∈ B(s, b)) required in the evaluation of the corresponding
importance sampling estimator. For instance, consider the case of t-distributed increments dis-
cussed in Example 1. In such a situation, evaluation of constants such as P(X ∈⋃m

i=1 Ca
i (s, b))

is not entirely straightforward. However, it is not difficult to construct B(s, b), suitably
expressed in polar coordinates, which contains

⋃m
i=1 Ca

i (s, b) and satisfies (17); a diagram
indicating the structure of B(s, b) in a two-dimensional case is given in Figure 3. The evaluation
of P(X ∈ B(s, b)) and the corresponding path generation can then be easily done in polar
coordinates. See Blanchet and Liu (2007) for details on this implementation.
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A

A

η
B( )s b,

C ( )a bs
i

m∪
i 1=

,

v*
2

v1*

S
.

Figure 3: Illustration of a set B(s, b) that can be easily evaluated in polar coordinates for a bivariate t

distribution.

6. Introducing a controlled bias

The analysis of Section 4 allows us to control the variance of the estimator given by
Algorithm 1. However, nothing has been said about the termination time of the algorithm.
In fact, even in the one-dimensional case, the zero-variance change of measure might have a
termination time with infinite mean. This occurs when the increments have infinite variance.
Therefore, we will develop a criterion that allows us to safely stop the path generation by
introducing a controlled bias in our procedure. We will consider biased estimators for which
the relative bias can be controlled in a suitable way. In particular, we will construct a set Bβ,b

depending on b and a suitable parameter β so that TBβ,b
<∞ with probability 1 under the

change of measure. We note that

P0(TbA <∞) = υβ,b(0)+ P0(TbA <∞, TBβ,b
< TbA),

where υβ,b(0) = P0(TbA < TBβ,b
), and we will find a function γ (·) such that

P0(TbA <∞, TBβ,b
< TAb

)

P0(TbA <∞)
≤ γ (β) (21)

with γ (β) = O(β−p) for some p > 0 as β ↗ ∞. It will follow easily that, with the aid of
a strongly efficient estimator for υβ,b(0) and a bound such as (21), we can efficiently estimate
P0(TbA <∞) with a controlled relative error. Then, to carry over our strategy we must:

• find a computable function γ (β) to control the relative bias;

• provide a selection of Bβ,b;

• provide a bound for Eq
s TBβ,b

to control the expected termination time.

Computing the function γ (β). Jensen’s inequality combined with Proposition 1 yields

P0(TbA <∞, TBβ,b
< TbA) = E0(P(TbA <∞ | STBβ,b

); TBβ,b
< TbA)

≤ ε−1/2 E(gb(STBβ,b
)1/2; TBβ,b

< TbA)

≤ ε−1/2 sup
s∈Bβ,b

gb(s)
1/2.
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A

A

B bβ,

η

Figure 4: Illustration of the location of the set Bβ,b.

In the context of regularly varying functions, as we will see, we can appropriately choose a set
Bβ,b such that

P0(TbA <∞, TBβ,b
< TbA)

P0(TbA <∞)
≤ sups∈Bβ,b

gb(s)
1/2

υβ,b(0)
= c0β

−p (22)

for some p, c0 ∈ (0,∞), where υβ,b(0) can be computed efficiently.
Selecting Bβ,b. Our choice of Bβ,b takes advantage of the fact that, prior to the big jump,

the process drifts according to its unconditional mean, η. We then construct a suitable set Bβ,b

that intersects the fluid path, {ηt : t > 0}. The parameter θ is selected so that Eq
s X ≈ η and we

will be able to guarantee that the process hits either Bβ,b or bA in an expected time of order
O(b). The selection of θ might come at a price of potentially increasing the value of cg (as
indicated in the constraints given in Proposition 3), but it does not have an effect in terms of
complexity rates of the algorithm. The set Bβ,b is simply

Bβ,b =
{

tη

‖η‖2 +
m⋂

i=1

C̄1
i (0, b); t ≥ βb

}
.

Figure 4 shows an illustration of the set Bβ,b.
Providing a bound for Eq

s TBβ,b
. The following result, which follows exactly the same steps

as in the first part of the proof in Theorem 11.3.4 of Meyn and Tweedie (1993), establishes the
Lyapunov inequality required to control the behavior of Eq

s TBβ,b
.

Lemma 3. Suppose that we can find a nonnegative function �(s) and a constant ρ > 0 so that

E �(s +X)r(s, s +X)−1 ≤ �(s)− ρ

for s /∈ Bβ,b. Then, Eq
s TBβ,b

≤ �(s)/ρ for s /∈ Bβ,b.

In order to construct the Lyapunov function �(·), we observe that the boundary of the set
Bβ,b is

∂Bβ,b =
{
s : m

max
i=1

(
v∗�i s − v∗�i ηβb

‖η‖2
)
= δ∗b

}
.
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On the other hand, as mentioned before, we will choose θ > 0 sufficiently small so that
Eq

s X ≈ η. Therefore, looking at Figure 4 we expect the time it takes for the process to hit
Bβ,b starting at s ∈ B̄β,b to be roughly maxm

i=1(v
∗�
i s − v∗�i ηβb/‖η‖2)− δ∗b. Our Lyapunov

function �(·) is constructed based on the contour plots of the previous expression as a function
of s. However, since it is convenient to work with a smooth function, �(·), instead of working
with the maximum of affine functions as indicated above, we consider

�(s) = κb log

(
1+

m∑
i=1

exp

(
v∗�i s

κb

))

for κ > 0. The following result summarizes some useful properties of �(·) and its derivatives;
the proof is straightforward and therefore omitted.

Lemma 4. Define

wj(s) = exp(v∗�i s/(κb))

1+∑m
i=0 exp(v∗�i s/(κb))

.

Then

(i) maxm
i=1(v

∗�
i s) ≤ �(s) ≤ maxm

i=1(v
∗�
i s)+ κb log(m+ 1);

(ii) (∂�)(s) =∑m
j=0 v∗i wj (s).

The following result shows that κ > 0 can be selected for �(·) to satisfy the Lyapunov
inequality in Lemma 1.

Proposition 5. We can choose θ > 0 small enough in (15) so that the Lyapunov inequality in
Lemma 3 holds for an appropriate selection of ρ > 0. As a consequence, Eq

0 min(TBβ,b,TbA) ≤
κb log(m+ 1)/ρ, where κ = cβ for some sufficiently large c.

Proof. First note the nonnegativity of � is satisfied. Using Taylor’s expansion with remain-
der, as in Section 4 and Lemma 4, we obtain

E �(s +X)r−1(s, s +X)

= �(s)+ p(s) E

( m∑
j=1

wj(s +DX)X�v∗j
∣∣∣∣ X ∈

m⋃
i=1

Ca
i (s, b)

)

+ (1− p(s)) E

( m∑
j=1

wj(s +DX)X�v∗j
)

,

where D is a diagonal matrix so that Di,i ∈ (0, 1). Using basic regularly varying properties, it
follows that there exists θ > 0 so that

p(s) E

( m∑
j=1

wj(s +DX)X�v∗j
∣∣∣∣ X ∈

m⋃
i=1

Ca
i (s, b)

)

≤ p(s) E

(∣∣∣∣ m
max
j=1

X�v∗j
∣∣∣∣
∣∣∣∣ X ∈

m⋃
i=1

Ca
i (s, b)

)
<

δ∗

8
.

Now note that, for any ε0 > 0, there exists ε > 0 such that

|wj(s +DX)− wj(s)| ≤ ε0
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whenever ‖X‖2 ≤ εκb. Furthermore, by choosing κ = cβ with sufficiently large c we can
guarantee that wj(s) > 1/(2m) uniformly over s /∈ Bβ,b. Given that E X�v∗j ≤ −δ∗, we can
then conclude that, for b ≥ 1,

(1− p(s)) E

( m∑
j=1

wj(s +DX)X�v∗j ; ‖X‖2 ≤ εκb

)
≤ −δ∗

3
,

(1− p(s)) E

( m∑
j=1

wj(s +DX)|X�v∗j |; ‖X‖2 > εκb

)
≤ δ∗

8
.

This yields

E �(s +X)r−1(s, s +X) ≤ �(s)− ρ

with ρ = δ∗/12, and the result follows.

We close the paper with a description of the algorithm and a summary of how the overall
relative mean squared error can be reduced to a prescribed relative accuracy with high confidence
at a computational expense that scales graciously as b ↗∞.

Algorithm 2. (Bias controlled algorithm.) Set b > 0 and fix a ∈ (0, 1). Initialize s = 0,
REACH = 0, and Zβ(b) = 1. Let θ be selected according to Proposition 5, and let gb(s) be
defined as in (6) with an appropriate choice of cg as in Proposition 3.

Step 1. While REACH = 0.

(a) If gb(s) = 1 then sample X according to the nominal distribution.
Else set

p←− min

(
θ

P(s)

hb(s)
,

1

2

)
1(s : gb(s) < 1)

and sample X as follows. With probability p, generate X with law L(X | X ∈⋃m
i=1 Ca

i (s, b)); with probability 1− p, sample X from the nominal distribution.
Then, update

Zβ(b)←− Zβ(b)

{
P(s) 1(X ∈⋃m

i=1 Ca
i (s, b))

p + (1− p) P(s)
+ 1(X ∈⋂m

i=1 C̄a
i (s, b))

1− p

}
.

End if

(b) Update

s ←− s +X.

(c) If s ∈ bA ∪ Bβ,b then

REACH←− 1.

End if

Loop

Step 2. Return Zβ(b)←− Zβ(b) 1(s ∈ bA).

https://doi.org/10.1239/jap/1276784893 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784893


Efficient importance sampling in ruin problems 321

Theorem 2. Let Z
(i)
β (b), i = 1, . . . , n, be i.i.d. copies of Zβ(b), generated according to

Algorithm 2,

Yn,β(b) = 1

n

n∑
i=1

Z
(i)
β (b).

Then the following statements hold.

1. There exists c1 such that

sup
b≥1

Eq Zβ(b)2

υβ,b(0)2 ≤ c1.

2. Moreover, for any ε > 0,

P(|Yn,β(b)− ub(0)| ≥ εub(0)) ≤ c1

(ε − c0β−p)2n
.

3. Consequently, given any ε̃ > 0 and δ > 0, we can choose κ0, c0, β > (2c0/ε̃)
1/p and

n = κ0ε̃
−2δ−1 so that

P(|Yn,β(b)− ub(0)| ≥ ε̃ub(0)) ≤ δ.

This implies thatn = O(ε̃−2δ−1) replications suffice to obtain an estimator with ε̃ relative
error and (1 − δ)100% confidence, and the expected number of generated increments
required for each replication is not more than �(0) = O(βb).

Proof. Note thatZβ(b) is stochastically dominated byZb simulated according toAlgorithm 2
(this is because Zb > 0 and Zβ(b) ≥ 0, and we can couple the simulation output so that if
Zβ(b) > 0 then Zb = Zβ(b)). Therefore,

Eq(Z
(i)
β (b)2) ≤ Eq Z2

b ≤ gb(0).

Together with (22), the bound on the coefficient of variation comes immediately. The second
statement is obtained as follows. Given any ε̃ > 0,

P(|Yn,β(b)− ub(0)| ≥ ε̃ub(0))

≤ P(|Yn,β(b)− υβ,b(0)| + |ub(0)− υβ,b(0)| ≥ ε̃ub(0))

≤ P(|Yn,β(b)− υβ,b(0)| ≥ (ε̃ − γ (β))ub(0))

≤ c1

(ε̃ − γ (β))2n

≤ c1

(ε̃ − c0β−p)2n
.

Together with the results in Proposition 5, the last statement is also straightforward by plugging
in β > (2c0/ε̃)

1/p, n = κ0ε̃
−2δ−1, and choosing large enough κ0.
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