A NOTE ON HYPERCONVEXITY IN RIEMANNIAN MANIFOLDS

ALBERT NIJENHUIS

1. Summary. Let M denote a connected Riemannian manifold of class C^{3}, with positive definite C^{2} metric. The curvature tensor then exists, and is continuous.

By a classical theorem of J. H. C. Whitehead (1), every point x of M has the property that all sufficiently small spherical neighbourhoods V of x are convex; that is, (i) to every $y, z \in V$ there is one and only one geodesic segment $y z$ in M which is the shortest path joining them: $f:[0,1] \rightarrow M, f(0)=y$, $f(1)=z$; and (ii) this segment $y z$ lies entirely in $V: f([0,1]) \subset V$; (iii) if f is parametrized proportional to arc length, then $f(t)$ is a C^{2} function of y, t, and z.

Let V be a convex set in M; and let $y_{1}, y_{2}, z_{1}, z_{2} \in V$. Let $f_{1}, f_{2}:[0,1] \rightarrow V$ denote the geodesic segments $y_{1} z_{1}, y_{2} z_{2}$, each parametrized proportional to arc length. Then for each t the points $f_{1}(t), f_{2}(t)$ are called corresponding points of the geodesic segments $y_{1} z_{1}, y_{2} z_{2}$. In particular, y_{1}, y_{2} are corresponding points; and so are z_{1}, z_{2}.

The distance between points x and y, denoted by $\rho(x, y)$, is the greatest lower bound of the lengths of rectifiable paths joining x and y. The diameter $D(A)$ of a set A is, as usual

$$
D(A)=\sup _{x, y \in A} \rho(x, y) .
$$

Let V be a convex open set of M, and γ a positive number. Then V is called γ-hyperconvex if for every positive number ϵ and any geodesic segments $y_{1} z_{1}, y_{2} z_{2}$ in V, the inequalities $\rho\left(y_{1}, y_{2}\right)<\epsilon, \rho\left(z_{1}, z_{2}\right)<\gamma \epsilon$ imply that corresponding points of $y_{1} z_{1}, y_{2} z_{2}$ have distance less than ϵ. Clearly, γ has to satisfy $\gamma \leqslant 1$.

If V is γ-hyperconvex, and W is a convex subset of V, then also W is $\boldsymbol{\gamma}$-hyperconvex. If V is $\boldsymbol{\gamma}$-hyperconvex, and if $0<\boldsymbol{\gamma}^{\prime}<\gamma$, then V is also $\boldsymbol{\gamma}^{\prime}$-hyperconvex.

Theorem I. Every point of a Riemannian manifold has a $\frac{1}{2}$-hyperconvex neighbourhood.

[^0]This theorem* is a corollary of Theorem II, which makes use of the concept of maximal curvature, defined as follows.

If u and v are tangent vectors at some $x \in M$, with components u^{λ}, v^{λ} ($\kappa, \lambda, \mu, \nu, \ldots,=1, \ldots, n$) with respect to some local co-ordinates; and if $K_{\kappa \lambda \mu \nu}$ are the covariant components of the curvature tensor $K_{k<\lambda \mu}{ }^{\nu}$, then $K(u, v)$ is defined as $-K_{\kappa \lambda \mu \nu} u^{\kappa} v^{\lambda} u^{\mu} v^{\nu}$. When u and v are perpendicular unit vectors, $K(u, v)$ is the sectional curvature, which clearly depends only on the 2 -plane at x, spanned by u and v. If A is a subset of M, then $k(A)$, the maximum curvature of A, denotes the least upper bound of all numbers $K(u, v)$, with u, v being perpendicular unit vectors spanning all 2 -planes at all points of A. $k(A)$ may be $+\infty$.

Our main result is the following theorem.
Theorem II. If the maximum curvature $k=k(V)$ of a convex open set V in M is non-positive: $k \leqslant 0$, then V is 1 -hyperconvex. If $k>0$, and if the diameter $D=D(V)$ is such that $k D^{2}<\pi^{2} / 4$, then V is γ-hyperconvex, where $\gamma=\cos D k^{1 / 2}$.

The case $k \leqslant 0$ is a much weakened formulation of results obtained by H. Busemann (3, Theorems (36.4) and (36.17)); the first of which states that the distance between corresponding points of geodesics in a G-space is a convex function of the linear parameter on the geodesics. Since, however, the case $k \leqslant 0$ is naturally included in our line of argument, the reader will find a new proof for this result.

Every sufficiently small spherical neighbourhood V of a point $x \in M$ is convex and has compact closure, which implies that $k(V)$ is finite. Since $k(V)$ is non-increasing when the radius of V tends to zero, it follows that $k(V) D(V)^{2}$ tends to zero as the radius of V approaches zero. This proves Theorem I, assuming Theorem II.

The proof of Theorem II is based on estimates of the solution of systems of linear differential equations whose prototype is $y^{\prime \prime}=f(x) y$.

2. Estimates on certain systems of linear differential equations.

Lemma 1. Let $K(s)$ be a continuous family of linear transformations in E^{n}, with origin O, defined in the finite closed interval $0 \leqslant s \leqslant l$. Let $\mathbf{y}(s)$ be a solution of $\mathbf{y}+K(s) \mathbf{y}=0$ in the interval $[0, l]$, and let S denote the unit sphere around O. Then there is a C^{2} path $\mathbf{x}(s)$ on S such that for each $s \in[0, l]$, the points O, $\mathbf{x}(s), \mathbf{y}(s)$ are collinear $(\mathbf{x}(s)$ is called a spherical image of $\mathbf{y}(s))$.

[^1]Proof. If $\mathbf{y} \equiv 0$ the lemma is trivial, because any C^{2} path $\mathbf{x}(s)$ on S is a spherical image. If $\mathbf{y}(s) \neq 0$ for all $s \in[0, l]$ the proof is simple because $\mathbf{x}(s)=\mathbf{y}(s) \cdot|\mathbf{y}(s)|^{-1}$ is a spherical image. Now assume that $\mathbf{y}(s)$ has the zeros s_{1}, s_{2}, \ldots, but $y \neq 0$. The number N of these s_{i} must be finite, because at any accumulation point s^{\prime} one has

$$
\mathbf{y}\left(s^{\prime}\right)=\dot{\mathbf{y}}\left(s^{\prime}\right)=0
$$

hence $\mathbf{y} \equiv 0$. Consider

$$
\mathbf{z}(s)=\mathbf{y}(s)\left(s-s_{1}\right)^{-1}\left(s-s_{2}\right)^{-1} \ldots\left(s-s_{N}\right)^{-1}
$$

for $s \neq s_{1}, \ldots, s_{N}$, and

$$
\mathbf{z}\left(s_{i}\right)=\lim _{s \rightarrow s_{i}} \mathbf{z}(s)=\dot{\mathbf{y}}\left(s_{i}\right) \prod_{j \neq i}\left(s_{i}-s_{j}\right)^{-1}
$$

Then $\mathbf{z}(s) \neq 0$ for all $s \in[0, l]$ because

$$
\dot{\mathbf{y}}\left(s_{i}\right) \neq 0
$$

Every spherical image of $\mathbf{z}(s)$ is a spherical image of $\mathbf{y}(s)$; and thus the problem has been reduced to a previous case provided $\mathbf{z}(s)$ is of class C^{2} for $s=s_{1}, \ldots, s_{N}$. In verifying this, the following simple application of the mean value theorem is helpful: "If a function f is continuous in [a, b], differentiable at all points of $[a, b]$ except some $c \in[a, b]$, and if

$$
\lim _{s \rightarrow c} f^{\prime}(s)=L
$$

exists, then $f^{\prime}(c)$ exists and equals L; whence f^{\prime} is continuous at $c^{\prime \prime}$. To show that $\mathbf{z}(s)$ is of class C^{2} at s_{i} it suffices to show this for $\mathbf{z}_{i}(s)=\mathbf{y}(s)\left(s-s_{i}\right)^{-1}$. We use de l'Hopital's Rule:
$\lim _{s \rightarrow s_{i}} \dot{\mathbf{z}}_{i}(s)=\lim \frac{\dot{\mathbf{y}}(s)\left(s-s_{i}\right)-\mathbf{y}(s)}{\left(s-s_{i}\right)^{2}}=\lim \frac{\ddot{\mathbf{y}}(s)\left(s-s_{i}\right)}{2\left(s-s_{i}\right)}=-\frac{1}{2} K\left(s_{i}\right) \mathbf{y}\left(s_{i}\right)=0$.
Hence, $\dot{\mathbf{z}}_{i}\left(s_{i}\right)=0$, and $\dot{\mathbf{z}}_{i}$ is continuous in a neighbourhood of s_{i} in $[0, l]$. The procedure is repeated for $\ddot{\mathbf{z}}_{i}$, and one thus finds $\ddot{\mathbf{z}}_{i}\left(s_{i}\right)=-\frac{1}{3} K\left(s_{i}\right) \dot{\mathbf{y}}\left(s_{i}\right)$; and $\ddot{\mathbf{z}}_{i}(s)$ is continuous at s_{i}. Hence, $\ddot{\mathbf{z}}(s)$ exists and is continuous in $[0, l]$.

Lemma 2. If $K(s)$ is a continuous family of linear transformations in E^{n}; $0 \leqslant s \leqslant l$, and m is an upper bound for the inner product $(\mathbf{u}, K(s) \mathbf{u})$ for all $s \in[0, l]$ and all unit vectors \mathbf{u}; if $\mathbf{y}(s)$ is a solution of

$$
\ddot{\mathbf{y}}+K(s) \mathbf{y}=0
$$

and if $\mathbf{x}(s)$ is a spherical image of $\mathbf{y}(s)$; with $\mathbf{y}(s)=\lambda(s) \mathbf{x}(s)$; then λ satisfies a differential equation $\ddot{\lambda}(s)+\phi(s) \lambda(s)=0$, where $\phi(s)$ is continuous in s; $0 \leqslant s \leqslant l ;$ and $\phi(s) \leqslant m$.

Proof. Since $\mathbf{y}(s)$ and $\mathbf{x}(s)$ are of class C^{2}, and $\mathbf{x}(s) \neq 0 ; \lambda(s)$ is also of class C^{2}. Substituting $\mathbf{y}=\lambda \mathbf{x}$ into $\mathbf{y}+K(s) \mathbf{y}=0$ one finds $\lambda \ddot{\mathbf{x}}+2 \dot{\lambda} \dot{\mathbf{x}}+\ddot{\lambda} \mathbf{x}$
$+\lambda K \mathbf{x}=0$. Take the inner product with \mathbf{x}, remembering ($\mathbf{x}, \dot{\mathbf{x}})=0$ and $(\dot{\mathbf{x}}, \dot{\mathbf{x}})+(\mathbf{x}, \ddot{\mathbf{x}})=0$. Thus follows $\ddot{\lambda}+\{(\mathbf{x}, K \mathbf{x})-(\dot{\mathbf{x}}, \dot{\mathbf{x}})\} \lambda=0$. Hence, $\phi(s)=(\mathbf{x}, K \mathbf{x})-(\dot{\mathbf{x}}, \dot{\mathbf{x}})$ satisfies, and is continuous. In case $\mathbf{y} \not \equiv 0, \phi(s)$ is unique. Furthermore, $\phi \leqslant(\mathbf{x}, K \mathbf{x}) \leqslant m$.

Lemma 3. If $K(s)$ is as before; m as in Lemma 2, then $m l^{2}<\pi^{2}$ implies that no non-trivial solution of $\ddot{\mathbf{y}}+K(s) \mathbf{y}=0$, with $\mathbf{y}(0)=0$ has a zero in the interval $0<s \leqslant l$. Furthermore, for all $s \in[0, l]$, every solution with $\mathbf{y}(0)=0$ satisfies

$$
|\mathbf{y}(s)| \leqslant \frac{\sin m^{\frac{1}{2}} s}{\sin m^{\frac{3}{3}} l}|\mathbf{y}(l)|, \quad m>0
$$

and

$$
|\mathbf{y}(s)| \leqslant \frac{s}{l}|\mathbf{y}(l)|, \quad m \leqslant 0
$$

Proof. There is no restriction in assuming $m \geqslant 0$ and $\mathbf{y} \not \equiv 0$. Every zero of $\mathbf{y}(s)$ is a zero of $|\mathbf{y}(s)|= \pm \lambda(s)$. λ satisfies $\ddot{\lambda}+\phi \lambda=0 ; \lambda(0)=0$, with $\phi \leqslant m$. The function $\psi(s)=\alpha \sin m^{\frac{1}{2}} s$ if $m>0$, and $\psi(s)=\beta s$ if $m=0(\alpha$ and β any non-zero numbers) are solutions of $\ddot{\psi}+m \psi=0$, with $\psi(0)=0$. The smallest positive zero of the first function is $\pi m^{-\frac{1}{2}}$, which does not lie in $[0, l]$ because $\pi m^{-\frac{1}{2}}>\left(m l^{2}\right)^{\frac{1}{2}} m^{-\frac{1}{2}}=l$. Thus neither function ψ has a positive zero in the interval $[0, l]$. A well-known Sturmian theorem states that every positive zero of λ is preceded by one of ψ, which means, in this case, that λ has no positive zero in $[0, l]$. In order to prove this, suppose that λ has positive zeros in $[0, l]$; let s^{\prime} be the smallest one. One may assume without loss of generality that $\lambda(s) \geqslant 0$ and $\psi(s) \geqslant 0$ for $s \in\left[0, s^{\prime}\right]$; then $\lambda\left(s^{\prime}\right)=0$, $\dot{\lambda}\left(s^{\prime}\right)<0, \psi\left(s^{\prime}\right)>0$. Further, $m-\phi$ is strictly positive in some sub-interval of $\left[0, s^{\prime}\right]$; otherwise $m=\phi$ in $\left[0, s^{\prime}\right]$; and ψ is a multiple of λ; hence $\psi\left(s^{\prime}\right)=\lambda\left(s^{\prime}\right)=0$, which is false. We have now

$$
\dot{\lambda} \psi-\left.\lambda \dot{\psi}\right|_{0} ^{s^{\prime}}=\int_{0}^{s^{\prime}}(\ddot{\lambda} \psi-\lambda \ddot{\psi}) d s=\int_{0}^{s^{\prime}} \lambda \psi(m-\phi) d s>0
$$

and also

$$
\begin{aligned}
\dot{\lambda} \psi & -\lambda \psi \|_{0}^{s^{\prime}}=\dot{\lambda}\left(s^{\prime}\right) \psi\left(s^{\prime}\right)-\lambda\left(s^{\prime}\right) \psi\left(s^{\prime}\right) \\
& -\dot{\lambda}(0) \psi(0)+\lambda(0) \psi(0)=\dot{\lambda}\left(s^{\prime}\right) \psi\left(s^{\prime}\right)<0 .
\end{aligned}
$$

Thus the assumption that λ has zeros in $[0, l]$ leads to a contradiction. This proves the first statement of the lemma; the second part uses the same formulas. The function λ / ψ is defined and of class C^{1} for all $s \in[0, l]$; for $s=0$ by limit procedure. Take $\lambda \geqslant 0$ in $[0, l]$, and

$$
\psi(s)=\frac{\sin s m^{\frac{1}{3}}}{\sin l m^{\frac{7}{2}}} \lambda(l), \quad \psi(s)=\frac{s}{l} \lambda(l)
$$

respectively; then $\lambda(l)=\psi(l)$. For any s, with $0<s \leqslant l$, we have

$$
\left.\psi^{2}\left(\frac{\lambda}{\psi}\right)^{\prime}\right|_{0} ^{s}=\dot{\lambda} \psi-\left.\lambda \psi\right|_{0} ^{s}=\int_{0}^{s} \lambda \psi(m-\phi) \geqslant 0 .
$$

Since $\psi(0)=0$, we have $\psi^{2}(0)(\lambda / \psi)_{0}^{\prime}=0$; and thus follows $(\lambda / \psi)^{\prime} \geqslant 0$ for all s, and λ / ψ is non-decreasing. Consequently,

$$
\left(\frac{\lambda}{\psi}\right)_{s} \leqslant\left(\frac{\lambda}{\psi}\right)_{l}=1
$$

that is, $\lambda(s) \leqslant \psi(s)$. This completes the second part.
Lemma 4. For every value of t in the interval $0 \leqslant t \leqslant 1$ the function ψ; defined by $\psi(t, \alpha)=\sin t \alpha / \sin \alpha$ when $\alpha \neq 0$, and by $\psi(t, 0)=t$ when $\alpha=0$, is a monotone non-decreasing function of α in the interval $0 \leqslant \alpha<\pi$.

Proof. The cases $t=0$ and $t=1$ are trivial. Take $0<t<1 ; 0<\alpha<\pi$, then

$$
\frac{\partial \psi(t, \alpha)}{\partial \alpha}=\frac{N}{\sin ^{2} \alpha},
$$

where
$N=t \cos t \alpha \sin \alpha-\sin t \alpha \cos \alpha=\sin (1-\mathrm{t}) \alpha-(1-t) \cos t \alpha \sin \alpha$

$$
\geqslant \sin \alpha(1-t)-(1-t) \sin \alpha=\alpha(1-t)\left[\frac{\sin (1-t) \alpha}{(1-t) \alpha}-\frac{\sin \alpha}{\alpha}\right]>0
$$

because $\sin \alpha / \alpha$ is a decreasing function of α in the interval $0 \leqslant \alpha \leqslant \pi$. Hence, $\partial \psi / \partial \alpha>0$ when $0<\alpha<\pi$; since $\psi(t, \alpha)$ is continuous in α at $\alpha=0$, it is monotone non-decreasing in α in the interval $0 \leqslant \alpha<\pi$.
3. Geodesic segments connecting a fixed point with the points of another curve. We return to the geometric situation of § 1 . In this section, the results are true under the assumption $k D^{2}<\pi^{2}$. Not until the proof in $\S 4$ do we need the stronger condition $k D^{2}<\pi^{2} / 4$. When $k=0, D=+\infty$, the expression $k D^{2}$ is interpreted as zero.

Lemma 5. In a convex set V in M, whose diameter and maximum curvature k satisfy $k D^{2}<\pi^{2}$, let x be any point, and $y_{\tau}(0 \leqslant \tau \leqslant 1) a C^{1}$ path. The geodesic segment $x y_{\tau}$ is parametrized by t from 0 to 1 proportional to arc length: $(t, \tau) \rightarrow$ $f(t, \tau) ; f(0, \tau)=x, f(1, \tau)=y_{\tau}$. If

$$
v(t, \tau)=\frac{\partial f(t, \tau)}{\partial \tau}
$$

denotes the tangent vector to the path $\tau \rightarrow f(t, \tau)$, for fixed t; and l_{τ} denotes the length of $x y_{\tau}$, then

$$
|v(t, \tau)| \leqslant \frac{\sin t l_{\tau} k^{1 / 2}}{\sin l_{\tau} k^{1 / 2}}|v(1, \tau)|
$$

if $k>0$; and

$$
|v(t, \tau)| \leqslant t|v(1, \tau)| \quad \text { if } k \leqslant 0
$$

Proof. If s denotes the arc length function on $x y_{\tau}$, measured from x to y_{τ}, and $\delta / \delta s$ denotes covariant differentiation with respect to s, then the components v^{k} of v satisfy the classical Jacobi equation

$$
\frac{\delta^{2}}{\delta s^{2}} v^{\kappa}+v^{\nu} K_{\nu \mu \lambda}^{\ldots} i_{\mu} i_{\lambda}=0
$$

where i is the unit tangent vector to $x y_{\tau}$. Choose along $x y_{\tau}$ a self-parallel orthonormal moving frame (e_{1}, \ldots, e_{n}), with $i=e_{1}$. Denote the components of v with respect to this frame by $\mathbf{y}=\left(v^{1}, \ldots, v^{n}\right)$, and let $K(s)$ be the linear transformation

$$
\mathbf{y} \rightarrow K(s) \mathbf{y}=\left(v^{\nu} K_{v 11}^{\cdots}, v^{\nu} K_{\nu 11}^{{ }^{2}}, \ldots, v^{\nu} K_{v 11}^{\cdots}\right),
$$

where now all components of $K_{\nu \mu \lambda}{ }^{\kappa}$ are taken with respect to $\left(e_{1}, \ldots, e_{n}\right)$. Then $\mathbf{y}+K(s) \mathbf{y}=0$; with, of course, $\mathbf{y}(0)=0$. We claim that $m=\max \{k, 0\}$ is an upper bound for the inner product $(\mathbf{u}, K(s) \mathbf{u})$, with $|\mathbf{u}|=1$. Decompose \mathbf{u} into \mathbf{u}^{\prime} along i, and $\mathbf{u}^{\prime \prime}$ perpendicular to i. Then

$$
\begin{aligned}
(\mathbf{u}, K(s) \mathbf{u})=K_{\kappa \lambda \mu \nu} u^{\kappa} i^{\lambda} i^{\mu} u^{\nu}=-K_{\kappa \lambda \mu \nu} u^{\kappa} i^{\lambda} u^{\mu} i^{\nu} & =K(\mathbf{u}, \mathbf{i}) \\
& =K\left(\mathbf{u}^{\prime \prime}, \mathbf{i}\right) \leqslant\left|\mathbf{u}^{\prime \prime}\right| \cdot k \leqslant\left|\mathbf{u}^{\prime \prime}\right| \cdot m \leqslant m .
\end{aligned}
$$

Since $l_{\tau}<D$, we have $m l_{\tau}{ }^{2}<\pi^{2}$, and thus, by Lemma 3, we have

$$
|\mathbf{y}(s)| \leqslant \frac{\sin s m^{\frac{1}{2}}}{\sin l_{\tau} m^{\frac{1}{2}}}\left|\mathbf{y}\left(l_{\tau}\right)\right|, \quad|\mathbf{y}(s)| \leqslant \frac{s}{l_{\tau}}\left|\mathbf{y}\left(l_{\tau}\right)\right|
$$

respectively for $k=m>0$ and $m=0(k \leqslant 0)$. In terms of the parameter $t=s / l_{\tau}$ this is precisely the statement of the lemma.

Lemma 6. Let $V, k, D, x, y_{\tau}, f(t, \tau)$ be as in Lemma 5, but let $y_{0} y_{1}: \tau \rightarrow f(1, \tau)=y_{\tau}$ be a geodesic segment of length L, parametrized by τ proportional to arc length. Then

$$
\rho(f(t, 0), f(t, 1)) \leqslant \frac{\sin t D k^{\frac{1}{2}}}{\sin D k^{\frac{3}{3}}} L, \quad \quad \rho(f(t, 0), f(t, 1)) \leqslant t L
$$

respectively in the cases $k>0$ and $k \leqslant 0$.
Proof. We have $\rho\left(y_{0}, y_{1}\right)=L,|v(1, t)|=L$; and $\rho(f(t, 0), f(t, 1))$ is majorized by the length of the path $\tau \rightarrow f(t, \tau), \tau \in[0,1]$. The latter equals $\int_{0}^{1}|v(t, \tau)| d \tau$. In case $k=m>0$, we have $l_{\tau} k^{\frac{1}{2}}<D k^{\frac{1}{2}}<\pi$. Lemmas 4 and 5 (with $\alpha=l_{\tau} k^{\frac{1}{2}}$ and $\alpha=D k^{\frac{1}{2}}$) are now applied:

$$
\begin{gathered}
\rho(f(t, 0), f(t, 1)) \leqslant \int_{0}^{1}|v(t, \tau)| d \tau \leqslant L \int_{0}^{1} \frac{\sin t l_{\tau} k^{\frac{1}{2}}}{\sin l_{\tau} k^{\frac{1}{2}}} d \tau \leqslant \frac{\sin t D k^{\frac{1}{2}}}{\sin D k^{\frac{1}{3}}} L, \\
\rho(f(t, 0), f(t, 1)) \leqslant L \int_{0}^{1} t d \tau=t L
\end{gathered}
$$

(cases $k>0$ and $k \leqslant 0$ respectively).
4. Proof of Theorem II. Choose a positive number ϵ. Let $y_{1}, y_{2}, z_{1}, z_{2} \ni V$; and $\rho\left(y_{1}, y_{2}\right)<\epsilon, \rho\left(z_{1}, z_{2}\right)<\gamma \epsilon$, where $\gamma=\cos D k^{\frac{1}{2}}$ if $k>0$, and $\gamma=1$ if $k \leqslant 0$. If $\phi, \chi, \psi:[0,1] \rightarrow V$ are parametrizations proportional to arc length of the geodesic segments $y_{1} z_{1}, y_{2} z_{1}, y_{2} z_{2}$ respectively, then by Lemma 6 we have, for $k>0, D k^{\frac{1}{2}}<\frac{1}{2} \pi$:

$$
\begin{aligned}
& \rho(\phi(t), \psi(t)) \leqslant \rho(\phi(t), \chi(t))+\rho(\phi(t), \chi(t)) \\
& \leqslant \rho\left(y_{1}, y_{2}\right) \frac{\sin (1-t) D k^{\frac{1}{2}}}{\sin D k^{\frac{3}{3}}}+\rho\left(z_{1}, z_{2}\right) \frac{\sin t D k^{\frac{1}{2}}}{\sin D k^{\frac{1}{3}}} \\
&<\frac{\epsilon \sin (1-t) D k^{\frac{1}{2}}+\epsilon \cos D k^{\frac{1}{2}} \sin t D k^{\frac{1}{3}}}{\sin D k^{\frac{1}{3}}} \\
&=\epsilon \frac{\sin D k^{\frac{1}{2}} \cos t D k^{\frac{1}{2}}-\cos D k^{\frac{1}{2}} \sin t D k^{\frac{1}{2}}+\cos D k^{\frac{1}{3}} \sin t D k^{\frac{1}{2}}}{\sin D k^{\frac{1}{3}}} \\
&=\epsilon \cos t D k^{\frac{1}{2}} \leqslant \epsilon ;
\end{aligned}
$$

and for $k \leqslant 0: \rho(\phi(t), \psi(t))<(1-t) \epsilon+t \epsilon=\epsilon$. This completes the proof.
Final Remark. The lemmas derived in §§ 2 and 3, can be used to deduce more results on upper bounds for the distance between corresponding points of geodesic segments in convex sets with either $k D^{2}<\pi^{2}$ or $k D^{2}<\frac{1}{4} \pi^{2}$. The approach to take seems so obvious that there is no need here to amplify this point with a number of examples.

References

1. J. H. C. Whitehead, Convex regions in the geometry of paths, Quart. J. Math., Oxford, Ser. S (1932), 33-42.
2. E. A. Michael, Convex structures and continuous selections. Can. J. Math., 11 (1959), 556-575.
3. H. Busemann, The geometry of geodesics (New York), 1955.

University of Washington

[^0]: Received June 2, 1958. Research supported by an Office of Naval Research Contract at the University of Washington.

[^1]: *This statement was conjectured by E. A. Michael in a slightly weaker form obtained by replacing $\frac{1}{2}$-hyperconvexity of a convex set V by the following property: to every $\epsilon>0$ there is a $\delta>0$ such that if $y_{1}, y_{2}, z_{1}, z_{2} \in V, \rho\left(y_{1}, y_{2}\right)<\epsilon, \rho\left(z_{1}, z_{2}\right)<\delta$, then the distance between corresponding points of $y_{1}, z_{1}, y_{2} z_{2}$ is less than ϵ. This conjecture was submitted by Dr. Michael to a number of mathematicians, including H. E. Rauch, who vouched for it, and L. W. Green, who obtained a written proof (spring, 1957) of the weaker result which one gets by permitting δ to be equal to zero. Theorem I, in its present form, has been applied in (2) to the theory of continuous selections.

