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1. Summary. Let M denote a connected Riemannian manifold of class 
C3, with positive definite C2 metric. The curvature tensor then exists, and 
is continuous. 

By a classical theorem of J. H. C. Whitehead (1), every point x of M has 
the property that all sufficiently small spherical neighbourhoods V of x are 
convex] that is, (i) to every yy z 6 V there is one and only one geodesic seg
ment yz in i f which is the shortest path joining them:/:[0, 1] —» M,f(Q) = y, 
/ ( l ) = z; and (ii) this segment yz lies entirely in F:/([0, 1]) C V\ (iii) if/ is 
parametrized proportional to arc length, then f(t) is a C2 function of y, t, 
and z. 

Let F be a convex set in M; and let yu y2, Zi, z2 6 V. L e t / i , / 2 : [0, 1] —> V 
denote the geodesic segments y&u y2z2, each parametrized proportional to 
arc length. Then for each t the points fi(t),f2(t) are called corresponding points 
of the geodesic segments y&i, y2z2. In particular, yif y2 are corresponding 
points; and so are zi, z2. 

The distance between points x and y, denoted by p(x, y), is the greatest 
lower bound of the lengths of rectifiable paths joining x and y. The diameter 
D(A) of a set A is, as usual 

D(A) = sup p(x,y). 
x,yeA 

Let F be a convex open set of M, and y a positive number. Then V is 
called y-hyperconvex if for every positive number e and any geodesic segments 
y&u yiZ2 in V, the inequalities p(yi,y2) < e, p(31,22) < 7* imply that corre
sponding points of yiZi, y2z2 have distance less than e. Clearly, 7 has to 
satisfy 7 < 1. 

If F is 7-hyperconvex, and W is a convex subset of V, then also W is 
7-hyperconvex. If V is 7-hyperconvex, and if 0 < y' < 7, then F is also 
7,-hyperconvex. 

THEOREM I. Every point of a Riemannian manifold has a \-hyper convex 
neighbourhood. 
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This theorem* is a corollary of Theorem II, which makes use of the concept 
of maximal curvature, defined as follows. 

If u and v are tangent vectors at some x G M, with components #x, v* 
(K, X, M, v, . . . , = 1, . . . , n) with respect to some local co-ordinates; and if 
KK\vV are the covariant components of the curvature tensor i f a"/, then 
K{u, v) is defined as — K^^ u^WV. When u and v are perpendicular unit 
vectors, K(u, v) is the sectional curvature, which clearly depends only on the 
2-plane at x, spanned by u and v. If A is a subset of M, then k(A), the maximum 
curvature of A, denotes the least upper bound of all numbers K(u,v), with 
u, v being perpendicular unit vectors spanning all 2-planes at all points of 
A. k(A) may be + ° ° . 

Our main result is the following theorem. 

THEOREM II. If the maximum curvature k = k(V) of a convex open set V 
in M is non-positive: k < 0, then V is 1-hy per convex. If k > 0, and if the dia
meter D — D(V) is such that kD2 < 7r2/4, then V is y-hy>pe?'convex, where 
y = cos Dk1/2. 

The case k < 0 is a much weakened formulation of results obtained by 
H. Busemann (3, Theorems (36.4) and (36.17)); the first of which states 
that the distance between corresponding points of geodesies in a G-space is 
a convex function of the linear parameter on the geodesies. Since, however, 
the case k < 0 is naturally included in our line of argument, the reader will 
find a new proof for this result. 

Every sufficiently small spherical neighbourhood F of a point x £ M is 
convex and has compact closure, which implies that k(V) is finite. Since 
k(V) is non-increasing when the radius of V tends to zero, it follows that 
k(V)D(V)2 tends to zero as the radius of V approaches zero. This proves 
Theorem I, assuming Theorem II. 

The proof of Theorem II is based on estimates of the solution of systems 
of linear differential equations whose prototype is y" — f(x)y. 

2. Estimates on certain systems of linear differential equations. 
LEMMA 1. Let K(s) be a continuous family of linear transformations in En, 

with origin 0, defined in the finite closed interval 0 < 5 < /. Let y(s) be a solution 
ofy + K(s)y = 0 in the interval [0, /] , and let S denote the unit sphere around 
0. Then there is a C2 path x(s) on S such that for each s Ç [0, /] , the points 0, 
X M , y(s) are collinear (x(s) is called a spherical image of y(s)). 

T h i s statement was conjectured by E. A. Michael in a slightly weaker form obtained by 
replacing J-hyperconvexity of a convex set V by the following property: to every e > 0 there 
is a Ô > 0 such that if yi, yi, zu zz Ç V, p(yi, y2) < e, p(zh z2) < 5, then the distance between 
corresponding points of yi, Z\, y&i is less than e. This conjecture was submitted by Dr. Michael 
to a number of mathematicians, including H. E. Rauch, who vouched for it, and L. W. Green, 
who obtained a written proof (spring, 1957) of the weaker result which one gets by permitting 
ô to be equal to zero. Theorem I, in its present form, has been applied in (2) to the theory of 
continuous selections. 
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Proof. If y = 0 the lemma is trivial, because any C2 path x(s) on S is a 
spherical image. If y (s) ^ 0 for all 5 Ç [0,/] the proof is simple because 
X M = y(s) . |y(s) | - 1 is a spherical image. Now assume that y (s) has the 
zeros si, 52, . . . , but y & 0. The number N of these st must be finite, because 
at any accumulation point s' one has 

y(s') = y( s ' ) = 0; 

hence y = 0. Consider 

z(s) = y (s) (s - si)'1^ - S2)-1... (5 - s»)-1 

for s 9e Su . . . , sN, and 

z(st) = lim z(s) = y ( ^ ) ] l (st - s,)"1. 

Then z(s) 7̂  0 for ail s £ [0,1] because 

y(st) * 0. 

Every spherical image of z(s) is a spherical image of y (s); and thus the 
problem has been reduced to a previous case provided z(s) is of class C2 for 
s = su • • • » SJV. In verifying this, the following simple application of the 
mean value theorem is helpful: "If a function f is continuous in [a, 6], differ-
entiable at all points of [a, b] except some cG [a, b], and if 

lim/'(s) = L 

exists, then f (c) exists and equals L; whence f is continuous at c"'. To show 
that z(s) is of class C2 at Si it suffices to show this for z*(s) = y (s) (s — s*)-1. 
We use de l'Hopital's Rule: 

i- • / \ r y(s)(s — Si) — y(s) ,. y(5)(5 — 5i) 1 W N / x n 

s->s» U "" si) Z{S — Si) 

Hence, Zi(si) = 0, and z* is continuous in a neighbourhood of st in [0, /] . The 
procedure is repeated for ïu and one thus finds z*(Sf) = — fi£(st)y(Sf); and 
ii(s) is continuous at s*. Hence, z(s) exists and is continuous in [0, l]. 

LEMMA 2. If K(s) is a continuous family of linear transformations in En; 
0 < s < /, and m is an upper bound for the inner product (u, K(s)u) for all 
s £ [0, I] and all unit vectors u; ify(s) is a solution of 

y + K(s)y = 0, 

and if x(s) is a spherical image of y(s); with y(s) = \(s)x(s); then X satisfies 
a differential equation \(s) + <t>(s)\(s) = 0, where <f>(s) is continuous in s; 
0 < s < /; and <j>(s) < m. 

Proof. Since y (s) and x(s) are of class C2, and x(s) 9e 0; X(s) is also of 
class C2. Substituting y = Xx into y + K(s)y = 0 one finds Xx + 2Xx + Xx 
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+ XKx = 0. Take the inner product with x, remembering (x, x) = 0 and 
(x, x) + (x, x) = 0. Thus follows X + {(x, Kx) — (x, x)}X = 0. Hence, 
4>(s) — (x, Kx) — (x, x) satisfies, and is continuous. In case y ^ 0, 0(s) is 
unique. Furthermore, <t> < (x, Kx) < m. 

LEMMA 3. / / K(s) is as before; m as in Lemma 2, then ml2 < w2 implies 
that no non-trivial solution of y + K(s)y = 0, with y(0) = 0 has a zero in the 
interval 0 < s < /. Furthermore, for all s Ç [0, /] , every solution with y(0) = 0 
satisfies 

|yWI<-s^y|y(0l, m>o, 
1 1 sin ml 

and 

|y(*)l<f|y(J)l, ™<o. 
Proof. There is no restriction in assuming m > 0 and y ^ 0. Every zero 

of y (s) is a zero of \y(s)\ = ±\{s). X satisfies X + <p\ = 0; X(0) = 0, with 
(j> < m. The function \j/{s) = a sin rn?s if m > 0, and \f/(s) = (3s if m — 0 (a 
and 0 any non-zero numbers) are solutions of $ + m^ = 0, with ^(0) = 0. 
The smallest positive zero of the first function is 7rm~% which does not lie 
in [0,1] because irm~* > (mP^mr* = /. Thus neither function xf/ has a positive 
zero in the interval [0, /] . A well-known Sturmian theorem states that every 
positive zero of X is preceded by one of \p, which means, in this case, that X 
has no positive zero in [0, I]. In order to prove this, suppose that X has positive 
zeros in [0, /] ; let sf be the smallest one. One may assume without loss of 
generality that X(s) > 0 and $(s) > 0 for 5É [0,5']; then X(s') = 0, 
X(s') < 0, ip(s') > 0- Further, m — 0 is strictly positive in some sub-interval 
of [ 0 , / ] ; otherwise m = </> in [ 0 , / ] ; and \p is a multiple of X; hence 
\p(sf) = \(s') = 0, which is false. We have now 

s' mt ## /»s' 

(X^ - xiÔ ds = \\[/(m - 4>)ds> 0, 

and also 

ty-xW = Hs')Hsf) -Hs')i(s') 
- x(0)̂ (0) + x(0)iK0) = UsW) < o. 

Thus the assumption that X has zeros in [0, /] leads to a contradiction. This 
proves the first statement of the lemma ; the second part uses the same formu
las. The function \/\p is defined and of class C1 for all 5 6 [0, / ] ; for 5 = 0 by 
limit procedure. Take X > 0 in [0, / ] , and 

respectively; then \(l) = \p(l). For any s, with 0 < s < /, we have 

XtA - x*|i f = jo 
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I \ S Is pS 

= \f - XiH = W(m - <t>) >0. 
10 I 0 */0 

Since ^(0) = 0, we have ^2(0)(A/ty)'o = 0; and thus follows (X/ty)' > 0 for 
all 5, and X/^ is non-decreasing. Consequently, 

that is, X(s) < ^(s). This completes the second part. 

LEMMA 4. For every value of t in the interval 0 < t < 1 the function 1/7 defined 
by \ft(t,a) — smta/sina wftew a 7̂  0, awd by ^(J, 0) = J w&ew a = 0, w a 
monotone non-decreasing function of a in the interval 0 < a < w. 

Proof. The cases t — 0 and t = 1 are trivial. Take 0 < ^ < l ; 0 < « < 7 r , 
then 

diKt,a) _ N 
— -7—2 , 

aa sin a 

where 

N = t cos fo sin a — sin fo cos a = sin (1 — i)a — (1 — /) cos fo sin a 

. . ,1 A / 1 A . /1 *\ s m (1 ~~ 0« sin a:H ^ A 

> sin a ( l — t) — (1 — /) sm a = a ( l — /) —7^ -r-̂  > 0, 
L ( l - f ) a a J 

because sin a/a is a decreasing function of a in the interval 0 < a < ir. Hence, 
dx/z/da > 0 when 0 < a < T\ since \f/(t, a) is continuous in a at a = 0, it is 
monotone non-decreasing in a in the interval 0 < a < w. 

3. Geodesic segments connecting a fixed point with the points of 
another curve. We return to the geometric situation of § 1. In this section, 
the results are true under the assumption kD2 < IT2. Not until the proof in 
§ 4 do we need the stronger condition kD2 < 7r2/4. When k = 0, D = + 00 t 

the expression kD2 is interpreted as zero. 

LEMMA 5. In a convex set V in M> whose diameter and maximum curvature k 
satisfy kD2 < T2, let x be any point, and yT ( 0 < r < 1) a C1 path. The geodesic 
segment xyT is parametrized by t from 0 to 1 proportional to arc length: (t, r) —> 
/ ( * , T ) ; / ( 0 , T ) = *, / ( l f r ) = yT. If 

or 

denotes the tangent vector to the path r —>/(£, r), for fixed t; and lT denotes the 
length of xyT, then 

1̂ 1 < w ^ 1 

4 
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if k > 0; and 
\v(t,r)\ < t\v(l,r)\ if k < 0. 

Proof. If 5 denotes the arc length function on xyTl measured from x to yT, and 
8/ôs denotes covariant differentiation with respect to s, then the components 
vK of v satisfy the classical Jacobi equation 

a2 
0 K I v TS~->>< ' ' n 

T-2 V + V KVfiX VX = 0, 

where i is the unit tangent vector to xyT. Choose along xyT a self-parallel 
orthonormal moving frame (eh . . . , en), with i = e\. Denote the components 
of v with respect to this frame by y = (v1, . . . , vn), and let K(s) be the 
linear transformation 

y ->K(s)y = (vvK'-il vvK'-il... , » ï ; i î ) , 

where now all components of iT^x* are taken with respect to (ei,..., en). Then 
y + K(s)y = 0; with, of course, y(0) = 0. We claim that m = max {k, 0} is 
an upper bound for the inner product (u, K(s)u), with |u| = 1. Decompose u 
into il ' along i, and u " perpendicular to i. Then 

(u, K(s)u) = KKXfiVuK ix i» uv = - KKXfiVuK ix u» iv = K(u, i) 

= K(u", i) < |u" | . k < |u" | .m<m. 

Since lT < D, we have mlT
2 < 7r2, and thus, by Lemma 3, we have 

1̂ )1 < £ 5 ^ 1 - \y(s)\<fr\y(ir)\ 
respectively for k = m > 0 and m = 0 (k < 0). In terms of the parameter 
t — s/lT this is precisely the statement of the lemma. 

LEMMA 6. Let V, k, D, x, yT,f(t, r) be as in Lemma 5, but let y^y\\ r—>/(l, r) =;yT 

fo a geodesic segment of length L, parametrized by r proportional to arc length. 
Then 

P(f(t, 0)J(t, 1)) < S-^~~-i L, P(f(t, 0),/(t, 1)) < tL 

respectively in the cases k > 0 and k < 0. 

Proof. We have p(y0, yi) = L} \v(l, t)\ = L; and p(/(J, 0),f(t, 1)) is majorized 
by the length of the path r —>/(£, r), r G [0, 1]. The latter equals JY|fl(*» T ) | ^ -
In case & = m > 0, we have lTk* < Z)&* < 7r. Lemmas 4 and 5 (with a = /T&* 
and a = D$) are now applied: 

m, o),/(*. D) < J>, OI* < L JfiffU < ïffU 
p(i« ,0) , / ( ( , l ) )<i f ft*T = *L 

(cases k > 0 and & < 0 respectively). 
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4. Proof of Theorem II. Choose a positive number e. Let yu y2, Zi, z2 3 V; 
and p(yi, y2) < e, p(zh z2) < ye, where y = cos Z)M if k > 0, and 7 = 1 if 
k < 0. If </>, x» ̂ ' [0, 1] —» F are parametrizations proportional to arc length 
of the geodesic segments yiZi, y2z\, y2z2 respectively, then by Lemma 6 we 
have, for k > 0, D$ < \-K\ 

p(*(0, iKO) < P (*(0 . x(0) + p(*(0. x(0) 
. , N sin (1 - t)Dkh , , N sin tDkh 

< p{yi> y2) smDk* + P(Z1' Z2) "shTW 
. e sin (1 - t)Dkh + € COS Dkh sin /Z?fe* 

sin Dkh 

sin Jfe* cos *£>fe* - cos Dfc* sin /£>fe* + cos Dkh sin Ufe* 
- € sin £>&* 

= ecos tDk* < e; 

and for k < 0: p (<£(*)> ̂ (0) < (1 — /)e + 2e = e. This completes the proof. 

innaZ Remark. The lemmas derived in §§ 2 and 3, can be used to deduce 
more results on upper bounds for the distance between corresponding points 
of geodesic segments in convex sets with either kD2 < TT2 or kD2 < \ir2. The 
approach to take seems so obvious that there is no need here to amplify this 
point with a number of examples. 

REFERENCES 

1. J. H. C. Whitehead, Convex regions in the geometry of paths, Quart. J. Math., Oxford, Ser. 
8 (1932), 33-42. 

2. E. A. Michael, Convex structures and continuous selections. Can. J. Math., 11 (1959), 556-575. 
3. H. Busemann, The geometry of geodesies (New York), 1955. 

University of Washington 

https://doi.org/10.4153/CJM-1959-052-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-052-6

