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Dense granular flows can spontaneously self-channelise by forming a pair of
parallel-sided static levees on either side of a central flowing channel. This process
prevents lateral spreading and maintains the flow thickness, and hence mobility,
enabling the grains to run out considerably further than a spreading flow on shallow
slopes. Since levees commonly form in hazardous geophysical mass flows, such
as snow avalanches, debris flows, lahars and pyroclastic flows, this has important
implications for risk management in mountainous and volcanic regions. In this paper
an avalanche model that incorporates frictional hysteresis, as well as depth-averaged
viscous terms derived from the µ(I)-rheology, is used to quantitatively model
self-channelisation and levee formation. The viscous terms are crucial for determining
a smoothly varying steady-state velocity profile across the flowing channel, which has
the important property that it does not exert any shear stresses at the levee–channel
interfaces. For a fixed mass flux, the resulting boundary value problem for the
velocity profile also uniquely determines the width and height of the channel, and
the predictions are in very good agreement with existing experimental data for both
spherical and angular particles. It is also shown that in the absence of viscous
(second-order gradient) terms, the problem degenerates, to produce plug flow in the
channel with two frictionless contact discontinuities at the levee–channel margins.
Such solutions are not observed in experiments. Moreover, the steady-state inviscid
problem lacks a thickness or width selection mechanism and consequently there is
no unique solution. The viscous theory is therefore a significant step forward. Fully
time-dependent numerical simulations to the viscous model are able to quantitatively
capture the process in which the flow self-channelises and show how the levees are
initially emplaced behind the flow head. Both experiments and numerical simulations
show that the height and width of the channel are not necessarily fixed by these initial
values, but respond to changes in the supplied mass flux, allowing narrowing and
widening of the channel long after the initial front has passed by. In addition, below
a critical mass flux the steady-state solutions become unstable and time-dependent
numerical simulations are able to capture the transition to periodic erosion–deposition
waves observed in experiments.
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1. Introduction
Self-channelisation and levee formation can occur in a wide range of geophysical

mass flows that take place in volcanic and mountainous regions throughout the world.
These include highly mobile and destructive pyroclastic flows (Rowley, Kuntz &
MacLeod 1981; Wilson & Head 1981; Branney & Kokelaar 1992; Calder, Sparks &
Gardeweg 2000; Jessop et al. 2012), water-saturated lahars (Vallance 2000; Vallance
& Iverson 2015) and debris flows (Sharp & Nobles 1953; Costa & Williams 1984;
Pierson 1986; Iverson 1997; Major 1997) as well as wet snow avalanches (Jomelli &
Bertran 2001; Ancey 2012; Bartelt et al. 2012; Schweizer, Bartelt & van Herwijnen
2014). Although these flows vary greatly in composition, a unifying feature is that,
on shallow slopes, they spontaneously form static parallel-sided levees that bound a
central flowing channel. The static levees prevent lateral spreading, allowing deeper
flows to be sustained for longer than a spreading flow, and thereby increase the flow’s
mobility and its eventual run-out distance.

Although the mobility of grains is important for both industrial and geophysical
applications, modelling the self-channelisation process still presents a significant
theoretical challenge. This is firstly because it is a particularly subtle test of the
granular rheology, since the flow spontaneously selects its own width, rather than
being laterally unconfined or having the width imposed by side walls. Secondly, it
also raises fundamental questions about how static and flowing regions can coexist,
which is a longstanding issue in modelling granular materials. Although this paper
is motivated by complex geophysical granular flows, it is focussed on determining
the simplest possible formulation that will capture the levee formation process in
quasi-monodisperse dry granular flows (Félix & Thomas 2004; Deboeuf et al. 2006;
Takagi, McElwaine & Huppert 2011).

In order to narrow down the physical mechanisms required for levee formation,
Félix & Thomas (2004) performed small-scale experiments with 300–400 µm
spherical dry glass beads that were steadily released from a point source onto
an inclined plane roughened with a glued layer of 425–600 µm glass beads, to
ensure that there was no slip at the base. For illustration, a similar experiment
using 160–200 µm red sand on a bed of turquoise ballotini (750–1000 µm) is
shown in figures 1 and 2 as well as supplementary movie 1 (online) available at
https://doi.org/10.1017/jfm.2019.518. Both of these sets of experiments are dry and
have a very narrow range of particle sizes, but, as Félix & Thomas (2004) showed,
static levees still form. This suggests that neither interstitial fluid nor particle-size
segregation are essential to the self-channelisation process, although they may strongly
enhance its effects (Pouliquen, Delour & Savage 1997; Pouliquen & Vallance 1999;
Félix & Thomas 2004; Goujon, Dalloz-Dubrujeaud & Thomas 2007; Iverson et al.
2010; Woodhouse et al. 2012; Kokelaar et al. 2014; Baker, Johnson & Gray 2016b).

A self-channelised leveed flow has three distinct phases of motion (Félix & Thomas
2004) as illustrated in figure 2(a–c) respectively and supplementary movie 1. As grains
flow down the incline they form a fully mobilised head at the front of the flow,
which propagates at a constant speed and lies downslope of the levees. The downslope
velocity is greatest in the surface layers in the centre of the channel (Jop, Forterre
& Pouliquen 2005; Kokelaar et al. 2014; Baker, Barker & Gray 2016a). This region
therefore transports grains towards the flow head, but when the grains reach the front
they lose their confinement and spread out. Some of the grains are overrun by the
flow itself, while others are advected to the sides and come to rest, extending the
static levees (Johnson et al. 2012), which advance downslope at the back of the head
(figures 1 and 2a).
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Levees

Flow head

Channel

FIGURE 1. An oblique view of a self-channelised leveed flow of 160–200 µm red sand on
a plane roughened with a layer of 750–1000 µm turquoise spherical ballotini and inclined
at ζ = 34◦± 0.1◦. The granular material is released from a funnel at the top of the chute,
and a self-channelised flow rapidly develops, which moves down the plane at constant
speed. The grains spontaneously select a flowing channel width W = 3.60± 0.05 cm and
the total width of the levees and the channel is Wtotal = 5.00 ± 0.05 cm. A long shutter
time is used to blur the moving grains and thus highlight the parallel-sided static levees
where the grains are in sharp focus. The steady-state mass flux QM = 8.6± 0.1 g s−1 is
measured as the grains flow off the end of the chute. A movie showing the time-dependent
evolution is available in the online supplementary material (movie 1).
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(a) (b) (c)

FIGURE 2. Photographs of a self-channelised leveed flow of 160–200 µm red sand on a
rough plane inclined at ζ = 34◦ ± 0.1◦. They show (a) the flow front propagating down
the plane and forming static parallel-sided levees just behind the head, (b) the steady-
state fully developed levee–channel morphology and (c) the static partially drained channel,
which forms when the inflow ceases. Grains are supplied from a funnel near the top of
the plane (a,b) with a mass flux QM = 8.6± 0.1 g s−1. The central flowing channel very
rapidly selects its own width W = 3.60± 0.05 cm and the total width of the channel and
the static levees is Wtotal= 5.00± 0.05 cm. A movie showing the time-dependent evolution
is available in the online supplementary material (movie 1).

The flow within the head is slightly deeper than that in the channel (Félix &
Thomas 2004), so as the head passes by there is a small decrease in flow thickness
and the levees stabilise, selecting a width for the channel (figure 2b). For sufficiently
wide flows the central channel is of almost constant thickness (Félix & Thomas 2004),
but in narrower channels the flow may have a pronounced cross-slope gradient in the
free surface (Félix & Thomas 2004; Takagi et al. 2011), with the deepest flow in the
centre of the channel. This gradient may be an indication that normal stress differences
are an important component of the underlying granular rheology (McElwaine, Takagi
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& Huppert 2012). Once the parallel-sided levee–channel morphology has been
established, it persists until the inflow ceases and the channel then partially drains to
leave pronounced levee walls on either side of a thinner deposit within the channel
(figure 2c). The thickness of these levees is similar to the thickness of the flow that
generated them, especially for wide channels.

The width of the flowing channel is not necessarily set at the point where the
levees are emplaced immediately behind the head. Figure 3(a–c) shows an overhead
view of the flow front advancing from left to right down the slope and depositing
levees behind the flow head. A subsequent internal surge in the flow (figure 3d–f )
then pushes material over the top of one of the levee walls and re-mobilises it. This
allows the central channel to become slightly wider and a new levee is formed, further
out, which maintains the self-channelisation of the flow. This process of levee-bank
overtopping allows the channel to adjust to its final steady-state width after the initial
passage of the flow head. For the angular red sand particles used in this paper,
the final steady-state levee width is achieved within a few tens of seconds. Smaller
fluctuations around the steady state constantly erode and deposit small amounts of
material on the inside of the levee walls (see movie 2) without remobilising the
entire levee. The levees are therefore in active equilibrium with the flow, constantly
undergoing minor readjustments that ensure that the width of the channel reflects its
current inflow mass flux.

Particle shape strongly influences the formation of self-channelised leveed flows. In
flows of spherical glass ballotini, the levees are considerably less stable (resistant to
erosion) than they are for sand, and the levees creep outwards over a time scale that is
much longer than that of their initial emplacement. Deboeuf et al. (2006) found that
for flows of 300–400 µm spherical glass beads on a rough plane made of 200 µm
sandpaper, the channel widened and the flow thickness decreased very slowly until an
asymptotic state was approached after very long times (>1 h). Similar experiments for
even longer times (Takagi et al. 2011) indicated that the flow widened and eventually
became intermittent, with waves further widening the levees, implying that a steady-
state width was never attained.

In contrast, Takagi et al. (2011) showed that flows of 300–600 µm angular sand
particles, on a bed made of the same sand, rapidly established a steady-state leveed
channel for sufficiently high mass fluxes. The flow had a fixed channel width and
thickness, as well as a well-defined downslope surface velocity profile across the
channel. As the mass flux was increased, Takagi et al. (2011) found that the flow
thickness stayed approximately constant, but the width of the channel increased. If
the mass flux was decreased below a critical threshold, however, an unsteady regime
developed in which regular pulses of material flowed down the static channel as a
series of erosion–deposition waves (Daerr 2001; Börzsönyi, Halsey & Ecke 2005;
Clément et al. 2007; Börzsönyi, Halsey & Ecke 2008; Takagi et al. 2011; Edwards
& Gray 2015; Edwards et al. 2017).

A less well studied aspect of self-channelised leveed flow is the changing shape of
the static levees as the inflow mass flux is altered (figure 4). For an inflow mass flux
of QM = 17.0 ± 0.1 g s−1 a stable central channel forms with a width W = 4.40 ±
0.05 cm (figure 4a). When the flux is reduced to QM = 7.7 ± 0.1 g s−1 the channel
narrows to a new steady-state width W = 2.70± 0.05 cm (figure 4b). The old levee is
left in situ and, as the flowing region retreats into the centre of the channel, very small
leveed structures are left on the inside of the old levee walls. For these small-scale
experiments these features are barely one grain-diameter thick, but they can be still
be seen in figure 4(b) due to the oblique lighting. An immediate consequence of this
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5 cm

t = 3 s

t = 5 s

t = 7 s

t = 9 s

t = 10 s

t = 11 s

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 3. (a–f ) A series of overhead images at t = 3, 5, 7, 9, 10 and 11 s showing
(a–c) the initial formation of the static levees and (d–f ) their subsequent reworking by
levee-bank overtopping. The mass flux QM = 8.6± 0.1 g s−1, ζ = 34◦± 0.1◦ and the final
width of the flow (moving channel plus levees) is Wtotal= 5.00± 0.05 cm. Note that at 9 s
a wave begins to propagate down the channel and continuously overtops the levee bank
on one side, forming a new levee that is slightly further out. This allows the flowing
channel width to readjust to its steady-state value W = 3.60 ± 0.05 cm. The downslope
flow direction is from left to right. A movie showing the time-dependent evolution is
available in the online supplementary material (movie 1).
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W = 4.4 cm

W = 2.7 cm

W = 5.7 cm

(a)

(b)

(c)

FIGURE 4. Sequence of overhead images of a self-channelised flow of 160–200 µm red
sand on a rough plane inclined at ζ = 34◦± 0.1◦. The aperture of the funnel supplying the
grains to the top of the chute is changed in order to reduce the mass flux from (a) its
initial value of QM = 17.0 ± 0.1 g s−1 to (b) 7.7 ± 0.1 g s−1 and then (c) back up to
27.0 ± 0.1 g s−1. As the mass flux is reduced, the flowing channel width narrows from
(a) W = 4.40 ± 0.05 cm to (b) W = 2.70 ± 0.05 cm by mass accretion to the inside of
the levee walls. The old levees are left in situ and record the fact that a higher flux
once propagated down the channel. When (c) the mass flux is subsequently increased
again the levee walls are pushed out by levee-bank overtopping and the old levees are
fully remobilised to form a new channel of width W = 5.70 ± 0.05 cm. The downslope
flow direction is from left to right. A movie showing the narrowing and widening of the
channel is available in the online supplementary material (movie 3).
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observation is that the shape of the material outside of the central flowing channel
is not unique and at least partially records the history of the flow. If, on the other
hand, the inflow mass flux is increased to QM = 27.0± 0.1 g s−1 a new stable width
W = 5.70 ± 0.05 cm rapidly develops by levee-bank overtopping (figure 4c) and the
history, preserved in the old stacked levees, is erased. The significance of this process
is that it may allow information about the time history of natural geophysical flows
to be inferred from the deposit, for example from sequences of subtly stacked levees
that occur in pyroclastic deposits (Rowley et al. 1981; Wilson & Head 1981; Branney
& Kokelaar 1992; Calder et al. 2000).

The fact that static levees are deposited on an inclined plane alongside flowing
grains led Félix & Thomas (2004) to suggest that levee formation is related to
frictional hysteresis (Daerr & Douady 1999; Pouliquen 1999; Pouliquen & Forterre
2002; Edwards & Gray 2015; Edwards et al. 2017). A simple example of this
hysteresis is when a steady uniform flow is brought to rest on a slope of angle ζ ,
it leaves a deposit of thickness h = hstop(ζ ), but a layer of this thickness will not
start to flow again until the inclination angle is increased to ζ = ζstart(h). Since the
inverse function hstart(ζ ) is greater than hstop(ζ ), there are a range of thicknesses over
which static and flowing layers can coexist. The underlying cause of this behaviour
is a non-monotonic relationship between the flow velocity and the basal friction
coefficient, as expressed by the friction law of Pouliquen & Forterre (2002). This
phenomenological law is applicable to spherical grains and combines a flow rule for
steady uniform flows (Pouliquen 1999) with measurements of ζstart(h) to describe the
friction of both static and flowing layers.

Mangeney et al. (2007) used Pouliquen & Forterre’s (2002) non-monotonic empi-
rical friction law to model the self-channelisation process within the framework
of classical depth-averaged avalanche equations (e.g. Grigorian, Eglit & Iakimov
1967; Savage & Hutter 1989; Gray, Wieland & Hutter 1999; Heinrich, Piatanesi &
Hebert 2001; Gray, Tai & Noelle 2003; Mangeney-Castelnau et al. 2003; Pitman
et al. 2003). Mangeney et al.’s (2007) numerical simulations exhibited both a central
flowing channel and parallel-sided static/very-slowly creeping margins that were
similar to those seen in experiments. The computations explicitly demonstrated how
the material flowing down the central channel spread out laterally at the flow front,
slowed down and then deposited to form static lateral margins behind the head. These
simulations therefore implied that a heterogenous rheology, due to interstitial fluid
and/or size segregation, was not essential for modelling levee formation. Despite
the ground-breaking nature of this work, the computed flow thickness in the fully
developed flowing channel was only very slightly greater than hstop, the minimum
thickness for steady uniform flow in the friction law of Pouliquen & Forterre (2002).
The channel was therefore significantly thinner and wider than those observed
experimentally (Félix & Thomas 2004) as Mangeney et al. (2007) acknowledged
themselves. Moreover, the downslope velocity in Mangeney et al.’s (2007) simulations
was plug-like across the channel, which contradicted the experimental observation that
the downslope velocity decreases smoothly to zero at the levee–channel interfaces
across a shear band (Félix & Thomas 2004; Deboeuf et al. 2006; Takagi et al. 2011).

In this paper a depth-integrated model for self-channelised flows is developed,
taking into account contributions of the in-plane deviatoric stress, which lead to
depth-averaged viscous-like terms (Gray & Edwards 2014; Baker et al. 2016a). This
model is referred to as the viscous depth-averaged model in this paper to distinguish it
from classical inviscid shallow-water-like depth-averaged avalanche models, which do
not have viscous second-order gradient terms in their depth-averaged momentum
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balances. A steady-state equation of motion is derived, which describes the balance
of stresses that cause shear bands (e.g. Pouliquen & Gutfraind 1996; Schall & van
Hecke 2010) to form, and shows that these stresses provides the vital missing physics
that sets the steady-state thickness and width of the whole channel. This stress balance
results from the interaction of two physical mechanisms, namely frictional hysteresis
(Daerr & Douady 1999; Pouliquen & Forterre 2002; Mangeney et al. 2007; Edwards
et al. 2017, 2019) and lateral viscous stresses (Baker et al. 2016a). Steady-state
theoretical predictions of the width, thickness and velocity profile across the channel
(as functions of mass flux and slope angle) are in good quantitative agreement with
laboratory experiments performed with spherical glass beads (Félix & Thomas 2004),
and also sand (Takagi et al. 2011). Importantly, this paper clearly demonstrates that
the inviscid theory is a singular limit of the viscous case, with degenerate non-unique
steady longitudinally uniform states that have a range of channel thicknesses and
widths for the same mass flux. In addition, two-dimensional time-dependent numerical
solutions of this viscous avalanche model are able to explicitly compute how channels
with the correct steady-state thickness and width are established dynamically, as well
as allowing more complex unsteady flows to be investigated.

2. Governing equations

The depth-averaged theory of Edwards et al. (2017) for erosion–deposition waves
is used here to model the formation of self-channelised leveed flows on non-erodible
slopes.

2.1. Depth-averaged model

Granular material is supplied with constant mass flux from a funnel onto a rough
plane inclined at an angle ζ to the horizontal. A rectangular Cartesian coordinate
system Oxyz is defined with the x-axis pointing downslope, the y-axis in the
cross-slope direction and z the upward perpendicular to the plane (figure 5). The
granular material is assumed to be incompressible with constant bulk density ρ

and velocity components u = (u, v, w) in the downslope, cross-slope and normal
directions, respectively. The depth-averaged velocity field ū= (ū, v̄) in the downslope
and cross-slope directions is then defined as

ū=
1
h

∫ h

0
u dz and v̄ =

1
h

∫ h

0
v dz, (2.1a,b)

where h is the avalanche thickness. Depth averaging the incompressibility condition
and applying kinematic boundary conditions (Savage & Hutter 1989) yields the depth-
averaged mass balance

∂h
∂t
+
∂

∂x
(hū)+

∂

∂y
(hv̄)= 0. (2.2)

A similar procedure (Gray & Edwards 2014; Baker et al. 2016a) for the momentum
balance equation implies that the depth-averaged momentum balances in the
downslope and cross-slope directions are
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O

x

y

z

u(y, z)

h(y)

W

FIGURE 5. A schematic diagram of the coordinate system Oxyz inclined at an angle ζ to
the horizontal, where the x-axis points downslope, the y-axis is the cross-slope direction
and the z-axis is the upward normal to the chute. For a steady uniform self-channelised
flow, the cross-slope thickness profile is h(y), whilst the velocity field is given by u(y, z).
The moving central channel has width W and is bounded on either side by parallel static
levees.

∂

∂t
(hū)+

∂

∂x
(hū2)+

∂

∂y
(hūv̄)+

∂

∂x

(
1
2

gh2 cos ζ
)

= ghS1 cos ζ +
∂

∂x

(
νh3/2 ∂ ū

∂x

)
+
∂

∂y

(
1
2
νh3/2

(
∂ ū
∂y
+
∂v̄

∂x

))
, (2.3)

∂

∂t
(hv̄)+

∂

∂x
(hūv̄)+

∂

∂y
(hv̄2)+

∂

∂y

(
1
2

gh2 cos ζ
)

= ghS2 cos ζ +
∂

∂x

(
1
2
νh3/2

(
∂ ū
∂y
+
∂v̄

∂x

))
+
∂

∂y

(
νh3/2 ∂v̄

∂y

)
, (2.4)

where g is the constant of gravitational acceleration and ν is a coefficient in the depth-
averaged kinematic viscosity νh1/2/2, discussed in § 2.3. Implicit in the momentum
transport terms of these equations is the assumption that the shape factor (u2/ū2) is
unity (Pouliquen 1999; Pouliquen & Forterre 2002; Hogg & Pritchard 2004; Gray &
Edwards 2014; Saingier, Deboeuf & Lagrée 2016; Viroulet et al. 2017). The source
term has components

S1 = tan ζ −µbe1 and S2 =−µbe2, (2.5a,b)
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which arise from the gravitational force that pulls the grains downslope and the
effective basal friction. The direction of the frictional force is determined by the
vector

e= (e1, e2)=


ū
|ū|
, |ū|> 0,

tan ζ i−∇h
|tan ζ i−∇h|

, |ū| = 0,
(2.6)

where i is the unit vector in the downslope direction and ∇ is the two-dimensional
gradient operator. This ensures that the friction opposes the motion when ū is non-
zero, and opposes the resultant force due to gravity and the depth-averaged pressure
gradient when the material is stationary.

Equations (2.2)–(2.4) were originally derived by assuming that the flow was shallow
and depth averaging the mass and momentum balance equations, assuming the µ(I)-
rheology (GDR-MiDi 2004; Jop, Forterre & Pouliquen 2006) and a no-slip condition
at the base (Gray & Edwards 2014; Baker et al. 2016a). To leading and first order in
the aspect ratio, this process yielded the classical inviscid depth-averaged avalanche
equations (given by setting ν = 0), with an effective basal friction law corresponding
to that measured empirically by Pouliquen & Forterre (2002) for steady uniform flows
(which is referred to as the dynamic frictional regime in § 2.2). The depth-averaged
viscous terms (i.e. those terms multiplied by ν) emerge at second order, by retaining
the in-plane normal and shear stresses and approximating them using the leading-order
lithostatic pressure distribution and Bagnold velocity profile through the flow depth.
This explicitly determines the coefficient ν in terms of known frictional parameters,
see § 2.3, rather than it being a fitting parameter. The viscous terms are usually very
small, but the fact that they are the highest gradient terms makes their inclusion a
singular perturbation of the equations. As a result there are some problems where they
play a crucial role. These include (i) obtaining the correct cutoff frequency of roll
waves (Forterre 2006; Gray & Edwards 2014), (ii) generating cross-stream velocity
profiles in channels (Baker et al. 2016a) and (iii) producing well-posed models of
segregation-induced fingering (Baker et al. 2016b). It shall be shown in this paper that
they are also play a vital role in the selection of the height, width and velocity profile
across a monodisperse leveed channel.

2.2. The effective basal friction law
The effective coefficient of basal friction µb encodes information about the µ(I)-
rheology (GDR-MiDi 2004; Jop et al. 2006) as well as the hysteretic behaviour of
the granular material (Daerr & Douady 1999; Pouliquen & Forterre 2002; Mangeney
et al. 2007; Edwards et al. 2017, 2019). This hysteretic behaviour is described by a
non-monotonic friction law (Pouliquen & Forterre 2002; Forterre & Pouliquen 2003;
Edwards et al. 2017, 2019)

µb(h, Fr)=

µD, Fr > β∗,

µI, 0< Fr < β∗,
µS, Fr = 0,

(2.7)

which is split into dynamic, µD, intermediate, µI , and static, µS, regimes, depending
on the local Froude number

Fr=
|ū|

√
gh cos ζ

, (2.8)

and the threshold β∗ between the dynamic and intermediate regimes.
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In Pouliquen & Forterre (2002) the dynamic friction µD is based on the empirical
flow rule for glass beads Fr = βh/hstop (Pouliquen 1999), where β is a constant
obtained experimentally. By combining this with measurements of hstop, Pouliquen
(1999) derived a dynamic friction law that was an increasing function of Fr/h and
was valid for Fr > β. Angular sand grains obey a more general flow rule (Forterre &
Pouliquen 2003)

Fr= β
h

hstop
− Γ , (2.9)

where Γ = 0.84, and β= 0.71 is considerably higher than the value β= 0.15 for glass
beads (Forterre & Pouliquen 2003). Note that these values have been corrected from
the previously published values to account for the factor

√
cos ζ in the Froude number

(2.8). The flow rule (2.9) implies that a steady uniform flow at h= hstop has a Froude
number Fr= β −Γ that is negative for the parameters for sand, a contradiction since
Fr > 0 from (2.8). This led Edwards et al. (2017) to suggest that (2.9) is valid only
for Fr > β∗, where β∗ is both strictly positive and greater than β − Γ .

The flow rule (2.9) can be used to eliminate hstop in the reciprocal form of the
empirical hstop curve (Pouliquen & Forterre 2002) to derive the dynamic friction law

µD =µ1 +
µ2 −µ1

1+ hβ/(L (Fr+ Γ ))
, (2.10)

where Fr > β∗ and the parameters µ1 = tan ζ1, µ2 = tan ζ2 and L are fitted to
measurements of the hstop(ζ ) curve (Pouliquen 1999; Pouliquen & Forterre 2002;
Forterre & Pouliquen 2003). The angles ζ1 and ζ2 are the minimum and maximum
angles, respectively, at which steady uniform flow is observed.

The friction force for static material (Fr = 0) is exactly that which is required
to keep the material stationary, up to a maximum static friction coefficient. This
coefficient therefore takes the form

µS =min
(
|tan ζ i−∇h|, µ3 +

µ2 −µ1

1+ h/L

)
, (2.11)

where the first argument to the min function is the friction required to balance the
other forces acting on the static layer and the second argument is the maximum static
friction. The maximum static friction is obtained by fitting measurements of hstart(ζ ),
and introduces a further friction-law parameter µ3 = tan ζ3, where ζ3 is the minimum
angle at which an infinitely deep static layer will start to flow spontaneously (Daerr
& Douady 1999; Pouliquen & Forterre 2002).

The friction in the intermediate regime 0 < Fr < β∗ is a power-law interpolation
between the maximum static friction and the minimum dynamic friction at Fr = β∗
and takes a much more complicated form for angular particles than for spherical
ballotini (Pouliquen & Forterre 2002). The general form that accounts for spherical
and irregular particles is given by Edwards et al. (2017) as

µI =

(
Fr
β∗

)κ(
µ1+

µ2 −µ1

1+ hβ/(L (β∗ + Γ ))
−µ3 −

µ2 −µ1

1+ h/L

)
+µ3 +

µ2 −µ1

1+ h/L
, (2.12)

where κ is a constant interpolation power. In the absence of experimental measure-
ments for slow flows 0 < Fr < β∗, Pouliquen & Forterre (2002) suggested that
κ = 10−3. However, this value produces an extremely rapid decrease in the friction
as the Froude number is increased from zero, so sharp that it cannot be resolved
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numerically using standard double-precision floating-point numbers (Edwards et al.
2019). Edwards et al. (2017) instead suggest that κ needs to be at least 10−1 to create
a robust metastable state, in which a static layer, just slightly thinner than hstart (i.e.
within the hysteretic region), remains stationary unless it is perturbed. In this paper
it is assumed for simplicity, as in Edwards et al. (2017, 2019), that κ = 1, which
is consistent with the experimental results of Russell et al. (2019) on retrogressive
failures.

The parameter β∗ sets the Froude number of the transition between the dynamic and
intermediate regimes. It also defines the thickness h∗ of the minimum steady uniform
flow, which lies between hstop(ζ ) and hstart(ζ ). In Pouliquen & Forterre (2002) β∗ =
β (and thus h∗ = hstop), while Edwards et al. (2017) assumed that h∗ was half-way
between hstop and hstart. This paper follows Edwards et al. (2019) who suggested that
h∗ was a multiple of hstop

h∗ =Λhstop(ζ ), (2.13)

where Λ is a constant for all slope angles. Since steady uniform flows satisfy the
empirical flow rule (2.9) it follows that the transition Froude number is constant

β∗ =Λβ − Γ . (2.14)

In general, Λ must be greater than unity and chosen so that h∗< hstart, to ensure that
there is hysteresis in flows of thickness h ∈ [h∗, hstart]. The new approach (Edwards
et al. 2019) has the advantage that it defines h∗ over the complete range of steady
uniform flow angles ζ ∈ [ζ1, ζ2], rather than just in the range [ζ3, ζ2], as in Edwards
et al. (2017). It also allows the intermediate friction to be accessed even for materials,
such as sand, for which Γ > β.

It is important to note that the extended law proposed by Edwards et al. (2019)
preserves exactly the same structure as that of Edwards et al. (2017), it just changes
the functional dependence of the transition point β∗=β∗(ζ ) on the inclination angle ζ .
Both approaches makes a clear distinction between the thickness of a deposit left by
a steady uniform flow, hstop, and the thickness of the slowest possible steady uniform
flow h∗. In the original formulation of Pouliquen & Forterre (2002) this distinction
was not made and hence h∗ = hstop. Evidence that h∗ and hstop are indeed different is
provided by a wide range of existing experimental measurements (see, for example,
figure 4 Pouliquen 1999; figure 8 Forterre & Pouliquen 2003; figure 3 Deboeuf
et al. 2006; figure 11 Edwards et al. 2017), which all show that the minimum
steady uniform flow thickness is in the range [hstop, 2hstop]. As a result the value of
Λ = 1.34 ∈ [1, 2] is used in this paper to best match experimental results. This is
very close to the value h∗/hstop = 1.33 measured in flows of glass beads by Russell
et al. (2019).

To enable quantitative comparison between theory and experiment, the material
parameters used throughout the paper (table 1) correspond as closely as possible to
the sand used by Takagi et al. (2011) and the glass beads used by Félix & Thomas
(2004). For the experiments with sand, the angles in the friction law, ζ1 and ζ2, are
obtained by fitting hstop(ζ ) to the experimental data of Takagi et al. (2011) using
the functional form proposed by Pouliquen & Forterre (2002) (figure 6a), which
leads to friction coefficients in the form of (2.10)–(2.12). The characteristic length
scale L and the parameters β and Γ are taken from measurements of Forterre &
Pouliquen (2003) for a similar flow of sand on a rough bed of the same material.
The angle ζ3 is determined from measurements of hstart(ζ ), but these measurements
are not reported by Takagi et al. (2011). Instead, ζ3 = ζ1 + 2◦ is chosen, based on
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FIGURE 6. (a) Experimental measurements of hstop(ζ ) for sand (Takagi et al. 2011, blue
markers) and glass beads (Félix & Thomas 2004, red markers), with best-fit hstop curves
using the friction-law parameters calibrated from these experiments (table 1). (b) The two
friction laws for sand (blue curve) and glass beads (red curve) as a function of the Froude
number Fr at fixed thickness and inclination angle. Parameters h = 8 mm and ζ = 32◦
for sand and h= 3.2 mm and ζ = 25◦ for glass beads are chosen to match those in the
respective experiments.

Sand ζ = 32◦ ζ1 = 29◦ ζ2 = 45.5◦ ζ3 = 31◦ β = 0.71
L = 0.9 mm d= 0.45 mm Γ = 0.84 Λ= 1.34 ρ = 1500 kg m−3

Glass beads ζ = 25◦ ζ1 = 22◦ ζ2 = 34◦ ζ3 = 23◦ β = 0.143
L = 0.65 mm d= 0.35 mm Γ = 0 Λ= 1.34 ρ = 1500 kg m−3

TABLE 1. Physical parameters used for all steady-state and time-dependent solutions
obtained throughout the paper. The parameters for sand are obtained, where possible, from
the hstop curve of Takagi et al. (2011). The parameters for glass beads are those used by
Mangeney et al. (2007) to model the experiments of Félix & Thomas (2004), but with
a smaller L to quantitatively fit the hstop measurements of Félix & Thomas (2004). Note
that the values for β and Γ differ from those in Pouliquen & Forterre (2002) and Forterre
& Pouliquen (2003) to account for the factor

√
cos ζ in the definition of the Froude

number (2.8).

measurements of similar flows of sand over a rough bed. For the experiments with
glass beads performed by Félix & Thomas (2004), the parameters are chosen to
be the same as the ones used by Mangeney et al. (2007) to simulate these flows,
although here a value of L smaller than that of Mangeney et al. (2007) is used to
quantitatively match the experimental hstop curve (figure 6a). The resultant friction
laws are plotted in figure 6(b) as a function of the Froude number. The frictional
hysteresis of the angular sand particles (µ(Fr= 0)−µ(Fr= β?)) is much greater than
that of glass beads, which makes the sand levees significantly stronger.

2.3. Depth-averaged kinematic viscosity

The second-order depth-averaged viscous-like terms in the momentum balances (2.3)–
(2.4) contain a parameter ν in the depth-averaged kinematic viscosity νh1/2/2, for
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which Gray & Edwards (2014) derived the formula

ν =
2L
√

g sin ζ
9β
√

cos ζ

(
tan ζ2 − tan ζ
tan ζ − tan ζ1

)
. (2.15)

This is a function of the slope angle ζ and parameters that are already known from
the effective basal friction law, so no new parameters are introduced into the theory. It
is well-defined provided ζ ∈ [ζ1, ζ2], i.e. in the range of angles where steady uniform
flows develop. Outside this range, some form of regularisation is required to ensure
that it does not become negative. In this paper, the two-dimensional viscous terms
derived by Baker et al. (2016a) are used for flows in all three frictional regimes, even
though their original derivation (Gray & Edwards 2014) implicitly assumed the flow
was in the dynamic frictional regime.

3. Fully developed self-channelised flow
This section presents exact steady-state solutions for the height, width and

downslope velocity profile across the central flowing channel. The depth-averaged
granular viscosity provides the vital mechanism for producing a smoothly varying
velocity profile across the channel, allowing appropriate boundary conditions to be
imposed at the levee–channel interfaces. These boundary conditions together with an
integral mass flux constraint are then able to determine a unique equilibrium channel
thickness and width, completely independently of the flow head dynamics. In the
absence of viscosity the equations are not closed, so there is no unique solution and
inviscid theories therefore lack a crucial thickness and width selection mechanism.

Outside of this region, in the levees, there are multiple static states (as demonstrated
experimentally in figure 4) because the static friction encoded in (2.11) can take any
value between zero and its maximum value. While there is not a unique solution
for the width of the levees, the minimum levee width necessary to support a central
flowing channel of a given thickness, can be determined by assuming all the static
grains are at the maximum static friction.

3.1. Steady-state depth-averaged equations in the flowing channel
Consider a fully developed steady-state parallel-sided leveed flow that has a central
flowing channel of width W and is supplied by a mass flux QM. It follows that the
flow is independent of time t and the downstream coordinate x. In the central channel
the depth-averaged mass balance (2.2) then reduces to

∂

∂y
(hv̄)= 0, (3.1)

which is subject to a condition of no flow across the levee–channel interfaces,

v̄ = 0 at y=±W/2. (3.2)

Integrating (3.1) directly, it follows that for non-trivial solutions, in which h 6= 0, the
depth-averaged lateral velocity is zero everywhere, i.e. v̄ = 0 for all y. In flowing
regions (ū 6= 0), the cross-slope component of the momentum balance (2.4) then
implies that the depth-averaged pressure is constant across the channel

d
dy

(
1
2

gh2 cos ζ
)
= 0. (3.3)
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This can be integrated to show that the flow thickness is constant

h(y)=H, (3.4)

where the constant H is, as yet, unknown. The downslope component of the depth-
averaged momentum balance (2.3) then reduces to

d2ū
dy2
=

2g cos ζ

ν
√

H
(µb(H, ū)− tan ζ ), (3.5)

where ū is assumed to be strictly positive. This is a second order autonomous ordinary
differential equation (ODE) for the downslope velocity profile ū(y) across the central
flowing channel. Motivated by experimental observations of Félix & Thomas (2004)
(see their inset image in figure 4), Deboeuf et al. (2006) (see their figure 2) and
Takagi et al. (2011) (see their figure 5), it is assumed that there is no slip

ū= 0 at y=±
W
2
, (3.6)

and no lateral shear stress

dū
dy
= 0 at y=±

W
2
, (3.7)

at both channel–levee interfaces. In the fully developed steady state, the mass flux of
grains entering the chute is equal to the mass flux flowing down the central channel
at any downstream location. Hence, ū(y) is subject to the integral constraint

QM = ρH
∫ W/2

−W/2
ū dy. (3.8)

The thickness H, width W and the depth-averaged downslope velocity ū(y) across
the flowing channel, are direct predictions of the model (3.5)–(3.8). To visualise the
solution for the entire flow including the levees, two additional assumptions can be
made, which are described in appendices A and B. The first assumption is of a
constant velocity profile through the depth of the flow, which allows the downslope
velocity u(y, z) to be reconstructed from the depth averaged downslope velocity ū(y).
The second assumption is that the static levees are everywhere on the brink of yield
(Hulme 1974; Balmforth, Burbidge & Craster 2001), which allows the thickness
profile of the static levee to be computed. These assumptions are not intrinsic to the
model, but extend its predictions to allow comparison with experimental measurements
of the surface velocity and the combined width of the flow and levees, respectively.

3.2. Inviscid solutions
In the inviscid case, the coefficient ν = 0 and the steady-state equation of motion
(3.5) reduces from a second-order ODE to an algebraic balance between friction and
gravity only, µb= tan ζ . This reduction in order is indicative of a singular perturbation
problem in which, as is the case here, the inviscid ν = 0 model differs qualitatively
from the model with any non-zero viscosity ν > 0. Since the thickness H is constant
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across the channel, solving µb(H, ū)= tan ζ with µb in the dynamic regime (3.4) gives
a constant velocity

ūsteady =
√

gH cos ζ
(

Hβ
γL
− Γ

)
, (3.9)

across the channel, where

γ =
µ2 − tan ζ
tan ζ −µ1

, (3.10)

and the thickness H is still a free parameter. The reduction of order in the inviscid
system means that both tangential velocity boundary conditions (3.6) and (3.7) must
be relaxed. Instead, since the material in the central channel moves at constant speed
ūsteady and the grains in the levee are static, there will be contact discontinuities at
the levee–channel boundaries y=±W/2 (i.e. jumps in the downslope velocity parallel
to the margins, see e.g. Chadwick 1976) as shown in figure 7. This is not what is
observed in experiment (Félix & Thomas 2004; Deboeuf et al. 2006; Takagi et al.
2011), where there are smoothly varying velocity profiles across the channel, rather
than frictionless surfaces sliding past one another.

Assuming that there is a single channel, the integral constraint (3.8) together with
the velocity field (3.9) provide one equation expressing the flowing channel width W
as a function of the thickness H,

W =
QM

ρHūsteady(H)
. (3.11)

With no further boundary conditions imposed in the inviscid model, there is no
equation to determine the thickness H. The only additional constraint on the inviscid
solution is that the depth-averaged pressure across the contact discontinuities must be
equal (Chadwick 1976), i.e. the depth-averaged pressure in the levee is just sufficient
to balance the depth-averaged pressure in the central channel at y = ±W/2. This is
equivalent to the condition that the thickness must be continuous across the contact
discontinuities. Since static and moving grains must coexist for the same thickness,
it follows that H must lie in the metastable range h∗ 6 H 6 hstart. These inequalities
are not sufficient, however, to determine H uniquely, and hence (3.9) and (3.11) do
not determine ū(H) and W(H) uniquely either.

For a given mass flux QM, the inviscid avalanche model has an infinite set of
solutions that are parameterised by the H ∈ [h∗, hstart]. Figure 7 shows three cases
for QM = 12 g s−1 and a slope angle ζ = 25◦ using the parameters for glass beads
from table 1. The widest and slowest moving central channel (W = 9.42 cm, ūsteady=

2.93 cm s−1) occurs when H= h∗ = 2.9 mm, while the narrowest and fastest moving
flow (W = 5.73 cm, ūsteady = 3.94 cm s−1) is obtained when h = hstart = 3.54 mm. It
follows, that even a relatively modest range of thicknesses (H ∈ [2.9, 3.54] mm) can
lead to a substantial range of channel widths. In this case the widest flowing channel
is 1.64 times wider than the narrowest. Interestingly, the total width, including the
minimal static levees on either side of the central flowing channel, is almost the
same for both cases (i.e. Wtotal(h∗) = 12.61 cm, Wtotal(hstart) = 12.14 cm) as shown
in figure 7(a,c). The relative insensitivity of the total channel width arises because
the static levees need to be much wider to support the central flowing channel as
its thickness approaches hstart. This is due to the fact that dh/dy→ 0 in (B 4) as
h→ hstart, i.e. the levee becomes less stable (in the sense that it finds it harder to
support thickness gradients) as the thickness approaches hstart. Note that the total
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FIGURE 7. Steady-state downstream inviscid velocity profile u(y, z) for a self-channelised
flow of glass beads at an angle ζ = 25◦, mass flux QM = 12 g s−1 and the parameters for
glass beads in table 1. The velocity is reconstructed using an exponential velocity profile
defined in (A 2) with λ= 2.05. This is appropriate for thin flows close to h∗, which feel
the non-local effect of the base. There are an infinite number of solutions for H∈[h∗,hstart].
The thinnest and widest flowing channel is obtained when (a) H = h∗, whilst the deepest
and narrowest is recovered for (c) H = hstart. The minimal static levees required to hold
up the central channel are also shown (see appendix B). The narrowest levees occur at
H = h∗, while the widest levees occur at H = hstart. As a result, the total width of the
channel is not a monotonically increasing function of the channel height H, i.e. the total
channel width in panel (b) is narrower than the end members in panels (a,c).

width of the channel is a non-monotonic function of H, since Wtotal= 11.27 cm when
H = 0.5(h∗ + hstart) as shown in figure 7(b).

A prime example of a physical system that has an infinite number of steady states
are the static levees. As shown in figure 4, these can have arbitrary free-surface
shapes that are dependent on the history of the flow that emplaced them. Having
an infinite number of steady states for the inviscid flowing channel is not, however,
physically realistic, because there is strong experimental evidence (Félix & Thomas
2004; Deboeuf et al. 2006; Takagi et al. 2011) that the thickness H and width W
are functions of the imposed mass flux QM. Since the model is not able to uniquely
determine the central channel thickness H, and therefore (3.9) and (3.11) cannot be
used to calculate W(H) and ū(H) uniquely either, the inviscid theory is missing an
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important physical mechanism for selecting the channel thickness, width and velocity
profile.

3.3. Viscous solutions for the central flowing channel
A solution to the steady-state equation of motion (3.5) will now be constructed that
includes the effects of lateral viscous stresses. The system to be solved comprises of
the second-order ODE (3.5) with two unknown parameters H and W. Four boundary
conditions are therefore required to close the system. These are provided by the
boundary conditions at the levee–channel interface (3.6) and (3.7) (which, due to the
symmetry of the solutions as y→−y, provide three independent conditions) and by
the integral mass flux condition (3.8). The boundary value problem, associated
boundary conditions and the flux constraint therefore provide a closed system
of equations, which determines the thickness, width, and velocity profile of a
self-channelised flow.

Much of the solution can be obtained algebraically if the problem is written in
terms of the flow thickness H, and the mass flux QM is obtained as a function of
H using (3.8). This relationship QM(H) can then be inverted to numerically solve for
the thickness at a specified mass flux. The symmetry implies that it is sufficient to
solve the problem in the half-domain y ∈ [−W/2, 0] and it is therefore convenient to
define a new coordinate system that is centred at the levee–channel interface

ŷ= y+
W
2
. (3.12)

Immediately adjacent to the levees there is a slowly moving region that lies in the
intermediate frictional regime. Recalling that κ = 1, the transformed ODE (3.5) with
the intermediate friction law (2.12) takes a particularly simple form,

d2ū
dŷ2
= b− aū, (3.13)

where the coefficients are thickness dependent,

a=
2
√

g cos ζ
νHβ∗

(
µ3 +

µ2 −µ1

1+H/L
−

(
µ1 +

µ2 −µ1

1+Hβ/(L (β∗ + Γ ))

))
, (3.14)

b=
2g cos ζ

ν
√

H

(
µ3 +

(µ2 −µ1)

1+H/L
− tan ζ

)
. (3.15)

Solving (3.13) subject to the boundary conditions (3.6) and (3.7) it follows that

ū=
b
a

(
1− cos(

√
aŷ)
)

(3.16)

in the slowly moving layer adjacent to the levee. If the Froude number Fr < β∗
everywhere in the channel, the solution (3.16) is valid everywhere and the channel
width is equal to one period of the cosine function, i.e. W = 2π/

√
a. These solutions

are, however, not the ones that are observed physically.
Instead, the velocity increases until Fr= β∗ and then the flow transitions across to

the dynamic frictional regime. From the definition of the friction law (2.7) and the
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Froude number (2.8), it follows that this occurs when ū is equal to a transition velocity

ūtransition = β∗
√

gH cos ζ . (3.17)

From (3.16) this transition occurs when

ŷ= ŷtransition =
1
√

a
cos−1

(
1−

a
b

ūtransition

)
, (3.18)

and, from (3.16)–(3.18), the velocity gradient at this point is

dū
dŷ

∣∣∣∣
ŷtransition

=
b
√

a
sin(
√

a ŷtransition)=
√

ūtransition(2b− aūtransition). (3.19)

These transition points are shown with yellow filled circles in the phase plane and
physical space in figure 8 and lie at a local minimum in the friction. Equations (3.17)–
(3.19) determine the interfacial boundary conditions for the dynamic problem in the
centre of the channel for ŷ > ŷtransition. The green circular markers in figure 8 show
where the magnitude of the shear rate is maximum and the curvature of the solutions
in physical space changes sign. This lies in the intermediate friction regime, so the
solution (3.16) is vital to smoothly connect the interior solution with zero velocity
gradient at the levee–channel interfaces.

The ODE for the dynamic regime is determined by substituting (2.10) into (3.5) and
applying the coordinate transformation (3.12) to give

d2ū
dŷ2
=

ū− ūsteady

cū+ d
, (3.20)

where ūsteady is the steady uniform flow velocity defined in (3.9),

c=
ν
√

H
2g(µ2 − tan ζ ) cos ζ

and d=
νH(ΓL +Hβ)

2(µ2 − tan ζ )L
√

g cos ζ
. (3.21a,b)

Since H is constant, ūsteady, c and d are constant, and hence (3.20) is an autonomous
second-order ODE that can be solved by making the substitution p= dū/dŷ and using
the chain rule to give

p
dp
dū
=

ū− ūsteady

cū+ d
. (3.22)

Integrating (3.22) subject to the boundary conditions that ū= ūcentre and p= dū/dŷ= 0
on the symmetry line, and taking the positive root, implies that

dū
dŷ
=

1
c

√
2(cūsteady + d) ln

(
cūcentre + d

cū+ d

)
− 2c(ūcentre − ū). (3.23)

Evaluating (3.23) at the transition ŷ = ŷtransition yields an implicit equation for the
centreline velocity ūcentre,

dū
dŷ

∣∣∣∣
ŷtransition

=
1
c

√
2(cūsteady + d) ln

(
cūcentre + d

cūtransition + d

)
− 2c(ūcentre − ūtransition), (3.24)
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FIGURE 8. Schematic diagram of the velocity solutions in (a) the phase plane, and
(b) physical space using the parameters for sand in table 1. A typical solution is shown
by the blue curve for H = 8.2 mm (QM = 9.6 g s−1) which forms a closed orbit in
phase space. The yellow circular markers on this line indicate the transition between
the intermediate and dynamic frictional regimes. The green markers, which lie in the
intermediate frictional regime, show where the velocity gradient is a maximum/minimum
and the curvature of the velocity profile changes sign. The red marker lies in the dynamic
regime and is where the maximum velocity is reached in the centre of the channel.
Solutions only exist for H ∈ [Hmin, Hmax] and these limiting cases are shown with the
green and black dashed lines, respectively. The light blue point corresponds to where the
velocity in the centre of the flow is equal to the steady uniform value ūsteady and the
channel is infinitely wide, while the yellow marker on the dashed black curve shows the
case when ūcentre = ūtransition. The purple curve shows another solution for H = 7.92 mm
(QM = 28.4 g s−1), which produces a wider flow with higher velocities even though it is
thinner than the blue solution. The blue dotted line shows the maximum attainable steady
uniform velocity ūsteady(Hmin).
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where a, b, c, d, ūtransition, dū/dŷ|ŷtransition and ūsteady are all functions of H, given by
(3.14), (3.15), (3.21), (3.17), (3.19) and (3.9).

Valid solutions are only found for certain values of ūcentre, and since the centreline
velocity is a function of the thickness, there should be a range of possible values
for H. In fact, it is observed that in order to obtain a self-channelised solution the
thickness is limited to a finite interval, i.e. H ∈ [Hmin, Hmax]. The first boundary
can be found by assuming that the central steady flow is at the transition between
dynamic and intermediate friction, i.e. that the centreline velocity ūcentre = ūtransition. In
this case, the right-hand side of (3.24) is zero, so dū/dŷ|ŷtransition = 0. Using (3.19) it
follows that ūtransition(H) = 2b(H)/a(H), which can be solved to determine an upper
bound for H 6 Hmax(ζ ). The second limit, Hmin, is found by noticing that ūcentre is
a decreasing function of H, and that there is a value of the thickness, for which
the self-channelised orbit in the phase space becomes homoclinic. For this value
of H trajectories starting at the origin of the phase plane go directly to the saddle
point given by the equilibrium point between dynamic friction and gravity (dashed
green line in figure 8a). Hence, the lower boundary Hmin(ζ ) is determined by setting
ūcentre = ūsteady in (3.24). For the friction-law parameters and slope angle calibrated to
the experiments of Takagi et al. (2011) (table 1), Hmin≈ 7.9 mm and Hmax≈ 9.2 mm,
which are significantly deeper than both hstop≈ 5 mm and h∗≈ 6.7 mm. On the other
hand, for the glass beads parameters (Félix & Thomas 2004; Mangeney et al. 2007)
(table 1) the range is much narrower, Hmin ≈ 3.152 mm and Hmax ≈ 3.166 mm, but,
nonetheless, is still deeper than hstop ≈ 2.16 mm and h∗ ≈ 2.9 mm.

By choosing H ∈ [Hmin, Hmax] a solution to (3.24) for the centreline velocity ūcentre

is guaranteed to exist and can be found by numerical root finding techniques. Once
this is given, the separable ODE (3.23) can then be solved by quadrature, i.e.

ŷ= ŷtransition +

∫ ū

ūtransition

c√
2(cūsteady + d) ln

(
cūcentre + d

cū′ + d

)
− 2c(ūcentre − ū′)

dū′. (3.25)

By construction the velocity gradient in (3.23) is zero when ū= ūcentre, so it follows
that the integrand in (3.25) is singular as ū→ ūcentre. However, as ūcentre→ ūsteady there
is a large central region of the flow where the downslope velocity profile is flat and
the integral (3.25) is difficult to evaluate. It is therefore useful to linearise the right-
hand side of (3.23) about ū= ūsteady and then solve to obtain the approximate solution

ū= ūsteady − (ūsteady − ūcentre) cosh

(
ŷ−W/2√
cūsteady + d

)
. (3.26)

By integrating (3.25) to ū = ūcentre(1 − ε), where ε� 1, and then using the approx-
imation (3.26) it is possible to accurately determine the solution close to ūsteady and
hence the half-width of the channel ŷcentre=W/2. The solutions for the velocity profile
and channel width W are shown in figure 8(b) for a range of flow thicknesses H. This
relationship is inverted numerically to find the solution corresponding to a given mass
flux QM. For a fixed slope angle, flows with larger mass flux are wider and faster
moving (but, somewhat counter-intuitively, are thinner) than those with a smaller mass
flux.
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3.4. Shear-band structure adjacent to the levees
The physical mechanism that prevents erosion of the levees is the granular viscosity,
since it allows steady-state solutions to be constructed that do not exert any shear
stress on the inside of the levee walls, even though material is flowing down the
central channel. It is therefore of interest to understand the boundary layer structure
that allows this.

For sufficiently large mass flux the thickness H is almost equal to Hmin and hence
the constants a(H), b(H), c(H), d(H) and ūsteady(H) barely change in the ODEs (3.13)
and (3.20). As a result, the position of the centre at ū= b/a and the saddle point at
ū= ūsteady (see e.g. Strogatz 1994) are almost independent of mass flux and the orbits
in the phase plane lie almost on top of each other (figure 9a), with a slight difference
visible only close to the saddle point (figure 9a inset). These small variations in phase
space are more significant in physical space (figure 9b). At QM=50 g s−1 the solution
has a rounded profile with the fastest velocity occurring in the centre of the channel.
As the mass flux is increased, the centreline velocity approaches the steady uniform
flow solution ūsteady and the velocity profile flattens, forming a central region of
material of uniform thickness and approximately uniform depth-averaged velocity.
As H→ Hmin the orbit becomes homoclinic, directly connecting the origin and the
saddle point, and the period of the orbit, channel width W and mass flux QM all
diverge. The centreline velocity ūcentre tends to the steady uniform flow velocity ūsteady,
given by (3.9). Equation (3.9) therefore defines an upper bound for the velocity
in a self-channelised flow, as observed experimentally (Takagi et al. 2011). Close
to this limit, an increase in mass flux primarily increases the channel width, with
little effect on the flow thickness or speed. At constant mass flux, an increase in
slope angle decreases the flow thickness (since Hmin(ζ ) is decreasing in ζ ), which,
counter-intuitively, decreases the flow velocity.

Away from the saddle point the orbits are almost identical, so the boundary layers
at the sides of the flow collapse on top of one another when plotted in the levee-
centred coordinate ŷ (figure 9c). These boundary layers have a shear-band structure
(Pouliquen & Gutfraind 1996; Fenistein & van Hecke 2003; Schall & van Hecke 2010)
that seamlessly connects the static material in the levee with the central region. The
boundary layer has two length scales associated with it: an inner boundary layer where
the intermediate friction is active, and an outer layer that is in the dynamic friction
regime. The exact intermediate solution (3.16) implies that the inner boundary layer
is of width

Winner = ŷtransition, (3.27)

while the approximate solution (3.26) suggests that the outer boundary layer has a
typical width

Wouter =
√

cūsteady + d. (3.28)

For the parameters given in table 1 for sand, the inner boundary layer width
Winner ≈ ytransition(Hmin) = 7.16 mm, whilst the outer dynamic boundary layer is
approximately 8.52 mm wide. These are shown by the pink and light green shaded
regions in figure 9(c) and provide a good order of magnitude estimate for the
boundary layer width.

The governing ODE (3.5) describes a balance between its three terms, the forces
due to the slope-tangential component of gravity, basal friction and lateral viscous
stress. Hysteresis in the basal friction results in two distinct force balances, depending
on the local flow velocity. In figure 9(d) forces are plotted as a function of the
levee-centred cross slope direction ŷ. The magenta solid line represents the resultant
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FIGURE 9. (a) Phase space (b) downslope velocity profiles across the central flowing
channel, and (c) downslope velocity profiles centred on the levee–channel interface for
mass fluxes QM = 50, 100, 150, 200 and 250 g s−1. In (a) the filled blue circle is
the position of the centre and the open blue circle is the saddle point for the case of
QM = 250 g s−1, although these points are almost the same for all the fluxes. The inset
graph shows a close up of the solutions close to the saddle. The pink shaded region in
panel (c) is the width of the inner boundary layer Winner and the green shaded region is
the width of the outer boundary layer Wouter. (d) Non-dimensional forces are plotted as a
function of the levee-centred cross-slope direction for QM = 150 g s−1. All the forces are
rescaled by the downslope component of the gravitational force ρgH sin ζ . The magenta
solid line represents the net force due to gravity and friction, whilst the blue line is the
non-dimensional viscous force. Dot-dashed lines represent the maximum static friction.
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force of gravity and friction, whilst the blue curve shows how viscous forces vary
across the channel for QM = 150 g s−1. All the forces are non-dimensionalised. Right
next to the levees, where the flow is slow, the basal friction is greater than the
downslope component of gravity, leading to an upslope resistive force. In this region,
viscous stresses act in the downslope direction, balancing the friction and sustaining
motion. As the velocity increases towards the centre, friction decreases and eventually
is balanced by gravity at the intermediate equilibrium (the green circle in figure 9c,d).
Since this is an inflection point d2ū/dy2

= 0 and viscous forces also vanish. In the
faster flow away from the levee wall, d2ū/dy2 < 0 and the viscous stress instead acts
in the upslope direction, slowing the flow. In the absence of viscous stresses the flow
in this region would accelerate to the steady uniform flow velocity ūsteady (3.9). In
the central region, where the profile flattens (ŷ > 5 cm), viscous contributions are
extremely small and the flow is basically governed by the balance between gravity
and friction explaining why the velocity approaches ūsteady. Therefore, lateral viscous
stresses provide the mechanism that connects the flow in these two regions and allow
the interface between static and flowing granular layers to be modelled.

3.5. Comparison with experiments
The steady-state viscous theory is now compared with the experimental results of
Takagi et al. (2011), for sand, and Félix & Thomas (2004) for glass beads. The
width W and thickness H of the central flowing channel are direct results from the
depth-averaged theory and provide the strongest comparisons with the experiments.
The theory also solves for the depth-averaged velocity profile across the channel
ū(y), but this is not directly comparable with the surface velocities us(y) measured
in Takagi et al.’s (2011) experiments, because there is shear through the depth
of the avalanche. The additional assumptions necessary to make a comparison are
summarised in appendix A. Similarly Félix & Thomas (2004) report the total width
of the flow Wtotal, rather than the width of the flowing channel W, so a comparison
requires additional assumptions about the minimal width of the levees as detailed in
appendix B.

3.5.1. Takagi et al.’s (2011) experiments with sand
The predicted flow thickness H is plotted in figure 10(a) as a function of

the mass flux QM for the slope angle 32◦ used by Takagi et al. (2011). The
solution consists of two regimes. At low mass fluxes, only the intermediate friction
is active and the solution is given by (3.16), while above a critical threshold
(Qmin = 5.045 g s−1) the solutions also have a region of dynamic friction. These
will be referred to as the intermediate and dynamic regimes. In the intermediate
regime, the thickness H ∈ [Hmax, hstart] is a rapidly decreasing function of the
mass flux QM and is not physically realised. In the dynamic regime, the thickness
H ∈ [Hmin, Hmax] ≈ [7.9, 9.2] mm is almost constant and asymptotes to Hmin as
QM → ∞. This is significantly above hstop = 5 mm and h∗ = 6.7 mm. These
observations are consistent with the experiments of Takagi et al. (2011) with
300–600 µm angular sand particles on a 32◦ slope who found that maximum flow
thickness stayed approximately constant at a value of H = 8.3 ± 0.4 mm as the
mass flux was increased as shown in figure 10(a). Notably, if κ = 10−3 is chosen,
as in Pouliquen & Forterre (2002), instead of κ = 1, both Hmin and Hmax are only
slightly (∼0.1 %) greater than h∗ = 6.7 mm, in contradiction with the experimental
measurements.
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FIGURE 10. The solutions for (a) the thickness H and (b) the channel width W as a
function of the mass flux QM. The markers and error bars correspond to the data of Takagi
et al. (2011). Blue solid lines correspond to solutions that have active zones of dynamic
and intermediate friction, while the red dashed lines are purely in the intermediate regime.
The magenta dashed line in (b) shows an approximate solution for the width.

For κ = 1, the intermediate and dynamic regimes for the flowing channel width W,
as a function of QM, are compared to the experimental data of Takagi et al. (2011)
in figure 10(b). The width in the dynamic regime rises approximately linearly as a
function of the mass flux. This is in very good agreement with the Takagi et al.’s
(2011) experimental data. An approximate solution for the width can be found by
substituting ū= 0 at ŷ= 0 in (3.26) to show that

W ≈ 2
√

cūsteady + d cosh−1

(
ūsteady

ūsteady − ūcentre

)
, (3.29)
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FIGURE 11. (a) Solutions for the maximum surface velocity as a function of the mass
flux QM. The solid blue line is the maximum depth-averaged downslope velocity, whilst
the green line is the best fit to the data, which suggests that the surface velocity us=2.35ū.
(b) A comparison between surface velocity profile across the channel (assuming that us=

2.35ū) with Takagi et al.’s (2011) data for QM = 50 g s−1 on a 32◦ slope.

where the velocities ūsteady and ūcentre are given by (3.9) and by solving (3.24),
respectively. The approximate solution is shown by the magenta line in figure 10(b)
and lies very close to the experimental data, as well as the physical solution. The
approximation (3.29) therefore provides a useful formula for the channel width.

The maximum depth-averaged velocity increases initially with the mass flux and
then saturates above QM = 50 g s−1. This trend is broadly in line with what Takagi
et al. (2011) observed for the maximal surface velocity (figure 11a). The near-constant
ratio of the surface velocity to the depth-averaged velocity provides information about
shear through the depth of the avalanche. The best fit for the data implies us/ū =
2.35, which lies significantly above the ratio us/ū = 1.67 for Bagnold flow. This is
consistent with the discrete element method (DEM) simulations of Silbert, Landry
& Grest (2003) and non-local theory of Kamrin & Henann (2015), which predict a
transition from Bagnold flow to exponential-like velocity profiles with depth, as the
flow gets close to h∗, even in the complete absence of side walls. The ratio of the
surface velocity to depth-averaged velocity in figure 11 strongly motivates the use of
a concave exponential velocity profile with us/ū= 2.35 to reconstruct the non-depth-
averaged velocity in this paper, which is discussed in more detail in appendix A.
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Figure 11(b) shows a comparison between the predicted surface velocity across the
channel, assuming us= 2.35ū, and that derived from particle image velocimetry (PIV)
measurements of Takagi et al. (2011) for a flow of sand on a 32◦ slope 2 m down
from the source. The steady-state theory predicts a slightly narrower channel with a
slightly faster maximum surface velocity than that observed in the experiments. This
may be an indication that the depth-averaged viscosity νh1/2 is slightly larger than that
assumed in the theory, which is derived for thicker flows that have well-developed
Bagnold profiles.

Takagi et al. (2011) observed that there was a minimum mass flux below which the
steadily flowing leveed channel was replaced by an unsteady sequence of avalanches
triggered at equal time intervals as the grains piled up near the source and failed
periodically. An illustrative movie showing the equivalent experiment with the red
sand used in this paper is available online (movie 4). This will be investigated further
in § 4.4.

3.5.2. Félix & Thomas’s (2004) experiments with glass beads
The solution for glass beads has the same structure as that for sand, consisting

of an unphysical intermediate regime for low fluxes and a physically realised
dynamic regime above Qmin = 3.6 g s−1. The small range of H ∈ [Hmin, Hmax] ≈

[3.152, 3.166] mm implies that the predicted channel thickness is almost independent
of the mass flux QM and is also significantly larger than both hstop ≈ 2.16 mm and
h∗ ≈ 2.9 mm. The agreement between H and the experimental thickness data of
Félix & Thomas (2004) is very good, as shown in figure 12(a). As with sand, the
channel thickness H is in agreement with experiments when κ = 1, but if κ = 10−3

is chosen the thickness is under-predicted, with both Hmin and Hmax extremely close
to h∗ ≈ 2.9 mm.

Félix & Thomas (2004) also reported the total width of the flow as a function
of the mass flux. This makes direct comparison with experiments more difficult,
not least because frictional hysteresis implies that the levee widths are not unique.
However, by assuming that all points in the levee are on the brink of yield (Hulme
1974; Balmforth et al. 2001) a unique solution for the minimal levee width can be
obtained, as described in detail in appendix B. Adding two minimal levees widths to
the flowing channel width W then gives a good approximation for the minimum total
width Wtotal of the channel.

Figure 12(b) shows a comparison of both Wtotal and W to the total width measured
by Félix & Thomas (2004) as a function of the mass flux QM. For relatively low
mass fluxes most of the experimental data lie close to the minimum total width Wtotal

predicted by the solutions in which the dynamic friction is active. However, for larger
values of QM the width appears to be over predicted by the steady-state theory. Félix &
Thomas (2004) do not report the time or position at which their steady-state data were
collected, but their chute was relatively short (2 m) and they only collected data for
80 s. The most likely explanation for the apparent discrepancy at high mass fluxes is
therefore not that the steady-state predictions are wrong, but that the experimental data
were not collected far enough downstream or after long enough times. For instance,
Deboeuf et al. (2006) performed experiments at QM = 25 g s−1 on a 3 m chute and
found that although the thickness was close to steady state within 100 s the width of
the channel adjusted on a much longer time scale and was still slowly widening at
3500 s (see their figure 2). Even longer experiments by Takagi et al. (2011) found
that the levee margins for glass beads eventually became unstable after 70–90 min.
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FIGURE 12. The solutions for (a) the channel thickness H and (b) the width W for glass
beads as a function of the mass flux QM. The blue solid lines correspond to solutions
that have active zones of dynamic friction, while the red dashed lines are purely in the
intermediate regime. In addition the dot-dash line in (b) shows an approximation for the
total width of the channel (see appendix B). The solutions are compared to Félix &
Thomas’s (2004) experimental data for (a) the thickness and (b) the total width (markers).
Solid lines in (c) represent exact steady-state solutions for the thickness profile of the
whole flow, including the minimal levees, when QM = 3.7, 8.0, 17.5, 38 g s−1, whereas
the dots are experimental laser profiles from Félix & Thomas (2004). The theoretical levee
profiles assume a perfect balance between gravity, pressure gradient and maximum static
friction as described in appendix B.
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Deboeuf et al.’s (2006) and Takagi et al.’s (2011) observations suggests that for
weakly hysteretic materials, such as glass beads, it can take a long time and/or
distance for the width of the flow to reach steady state and that steady state may
itself be unstable. This is borne out by a comparison between the experiments of
Félix & Thomas (2004) and the full steady-state thickness profiles (including the
levees and the central channel) in figure 12(c). All of the experimental flows have
thicknesses that are close to their steady-state value and the widths also agree for
low mass fluxes QM = 3.7 and 8.0 g s−1. However, as the mass flux is increased to
QM = 17.5 and 38 g s−1 the width of the channel is seen to be far from steady state.
As stated above, this apparent lack of agreement at high mass fluxes is most likely
due to the experiments having not been run for long enough and/or the measurement
position not being far enough downstream.

3.6. Reconstruction of the smoothly varying velocity field
Figure 13 shows a reconstruction of the steady-state downslope velocity for glass
beads in a cross-section through the channel for QM = 3.7, 8.0, 17.5, 38 g s−1. These
solutions assume an exponential velocity profile through the avalanche depth, which is
appropriate for thin flows close to h∗ (see appendix A). It is striking that the velocity
varies smoothly across the whole channel, with a maximum at the surface and centre
of the flow, as well as boundary layers adjacent to the levee–channel interfaces
providing a seamless connection to the static levees. This is in stark contrast to the
inviscid model, which has a uniform velocity profile across the channel with contact
discontinuities (velocity jumps) at the levee–channel margins as shown in figure 7.
These plots also highlight that for a given mass flux QM and inclination angle ζ , the
viscous model has a unique solution for the height, width and velocity, rather than
an infinite number of steady states, parameterised by H ∈ [h∗, hstart], in the inviscid
case. Moreover the height of the flows is approximately the same and the minimal
levees are therefore closely similar. It should be noted that in the bottom left and
right corners of the central channel the flow is moving very slowly. This is consistent
with Deboeuf et al.’s (2006) and Kokelaar et al.’s (2014) colour change observations,
which demonstrated that the material in these regions was either static or very slowly
moving. Such linings of the channel do not occur in the inviscid model as shown in
figure 7.

4. Time-dependent numerical simulations
To investigate the evolution towards the steady state, fully time and spatially

dependent numerical solutions to the system of conservation laws (2.2)–(2.4) are now
computed.

4.1. Numerical method
Numerical solutions are calculated using a high-resolution semi-discrete non-
oscillatory central (NOC) scheme for convection–diffusion equations (Kurganov
& Tadmor 2000). This method has proved its ability to solve similar systems of
conservation laws for erosion–deposition waves (Edwards & Gray 2015; Edwards
et al. 2017), segregation-induced finger formation (Baker et al. 2016b) and bi-disperse
roll waves (Viroulet et al. 2018). The equations are solved in conservative form,

∂U
∂t
+
∂c1(U)
∂x

+
∂c2(U)
∂y

= S(U)+
∂D1(U,Ux,Uy)

∂x
+
∂D2(U,Ux,Uy)

∂y
, (4.1)
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FIGURE 13. Steady-state downstream velocity profile u(y, z) for a self-channelised flow
of glass beads at an angle ζ = 25◦, and mass fluxes QM = 3.7, 8.0, 17.5, 38 g s−1.
The velocity is reconstructed using an exponential profile with λ = 2.05 as discussed in
appendix A. The viscous formulation predicts a unique solution for each mass flux and
slope angle. This contrasts with the inviscid case, where there is an infinite set of solutions
parameterised by H ∈ [h∗, hstart] as shown in figure 7. In the viscous case, the thickness
of the central channel is almost independent of the mass flux and hence the shape of the
minimum levees required to support the flowing central channel are almost the same for
all fluxes.

where U = (h, hū, hv̄)T is the vector of conserved fields, with Ux and Uy being

the derivatives of U with respect to x and y, respectively. Comparing the governing
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equations (2.2)–(2.4) with (4.1) yields convective fluxes

c1 =


m

m2

h
+

h2

2
g cos ζ

mn
h

 , c2 =


n

mn
h

n2

h
+

h2

2
g cos ζ

 , (4.2a,b)

and diffusive fluxes

D1 = νh1/2


0

∂m
∂x
−

m
h
∂h
∂x

1
2

(
∂m
∂y
−

m
h
∂h
∂y
+
∂n
∂x
−

n
h
∂h
∂x

)
 , (4.3)

D2 = νh1/2


0

1
2

(
∂n
∂x
−

n
h
∂h
∂x
+
∂m
∂y
−

m
h
∂h
∂y

)
∂n
∂y
−

n
h
∂h
∂y

 , (4.4)

where m= (m, n)T = (hū, hv̄)T. The source term vector is

S=

 Sinflow(x, y)

hg sin ζ −µbe1hg cos ζ

−µbe2hg cos ζ

 , (4.5)

where an additional volume source term Sinflow(x, y) has been added to the right-hand
side of the depth-averaged mass balance equation (2.2). This provides a simple way
of modelling the experimental supply of grains onto the chute from a funnel (see § 1).
Grains are added to the domain in a small circular region, described by

Sinflow =

{
S̃(R2
− ((x− x0)

2
+ y2))2, if (x− x0)

2
+ y2 6 R2,

0, otherwise,
(4.6)

where S̃ is a normalisation constant, R = 2.5 cm is the radius of the circular inflow
and x0 = 15 cm is the downstream position of its centre. Defining polar coordinates
with an origin at the centre of the circle by x= x0 + r cos θ and y= r sin θ , the total
volume flux of material entering the chute is

Q=
∫ 2π

θ=0

∫ R

r=0
Sinflowr dr dθ. (4.7)

Since the total mass flux is
QM = ρQ, (4.8)

the normalisation factor in (4.6) is

S̃=
3QM

πρR6
. (4.9)
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The numerical solutions start with initial conditions of an empty chute, h= 0, m= 0
at t= 0. An outflow boundary condition is implemented at the bottom of the chute by
extrapolating the solution to a row of ghost cells beyond the computational domain
(LeVeque 2002). The flow does not reach the top (x= 0) or sides (y=±Ly/2) of the
domain and so a boundary condition h= 0 is trivially satisfied here.

The two-dimensional numerical domain (Lx, Ly) = (2.5, 0.3) m is discretised into
a rectangular grid with (nx, ny) = (1000, 300) grid points, respectively. Numerical
fluxes are computed by a generalised minmod limiter with θ = 2 (Kurganov & Tadmor
2000) and the spatially discretised equations are integrated in time using a second-
order Runge–Kutta method, with time steps determined by a CFL (Courant–Friedrichs–
Lewy) number of 0.225, and a maximum step size 1t=10−4 s (LeVeque 2002), which
is required to minimise creep of the levees. Numerical errors caused by the degeneracy
in the conservative form of the equations when h= 0 are mitigated by introducing a
minimum thickness threshold (set to 10−5 m or approximately one tenth of a grain
diameter), below which the thickness and momentum are set to zero.

4.2. Formation and partial drainage of a self-channelised flow
The downslope velocity ū and thickness h of a typical numerical solution are shown
in figures 14(a) and 15(a) respectively (supplementary movies 5 and 6). For the
parameters of sand at a slope angle ζ = 32◦, the mass flux QM = 85 g s−1 is large
enough for a self-channelised avalanche to form. After an initial adjustment from
the source condition in the uppermost ∼1 m, the simulated flow spontaneously
selects its own steady-state channel thickness, width and cross-slope velocity profile.
A flow head is rapidly established and propagates down the plane at constant speed
(figure 14a), laying down a steady-state levee–channel morphology behind it once
some initial transients have dissipated. Figure 14(d) shows the downslope velocity at
x= 1.75 m. At t= 32 s the whole width of the flow is mobile at x= 1.75 m, but, as
the front passes by, the sides of the flow rapidly solidify and by t > 60 s the velocity
profile across the channel is rapidly tending to the steady-state solution computed
directly from (3.5). The velocity therefore is almost constant in the centre of the
channel and smoothly connects to the levee–channel interfaces on either side across
two boundary layers. The thickness in this flowing section is constant, as shown in
figure 15(b) and by the thickness profile lines across the channel at x = 0.5, 1, 1.5
and 2 m in figures 14 and 15.

By t = 60 s (figures 14b and 15b) the velocity profile and constant channel thick-
ness H = 7.9 mm are in good agreement with the steady-state predictions in § 3.3
(figures 14d and 15d). Once established the width of the flowing channel remains
constant in the numerical simulations. The outer edges of the levees have some
residual creep, which is less than 1 % of the flow velocity in the channel, for the
time step of 10−4 s used here. Importantly this creep velocity scales with the time
step and so the levees converge to a static state under time step refinement.

The time scale for establishment of the steady state is comparable to that in the
experiments with 160–200 µm red sand (see supplementary movie 1), but is much
quicker than Takagi et al.’s (2011) experiments which took up to 20 min. This
discrepancy may be due to a difference in bed roughness: whereas Takagi et al.
(2011) used a base roughened by grains of the same size as the grains in the flow,
the experiments in this paper use larger particles in the bed than in the flow, which
reduces slip between the levee and base.

The steady fully developed state is maintained until t = 100 s when the inflow is
shut off (supplementary movies 5 and 6). The flow then thins near the top of the chute
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FIGURE 14. Fully time and spatially dependent numerical solutions for the downslope
velocity of sand at (a) t = 20 s, (b) t = 80 s and (c) t = 105 s for an inflow mass flux
QM = 85 g s−1 and inclination ζ = 32◦. (a) Shows the flow front propagating steadily
down the plane and forming the levee–channel morphology behind it, (b) shows the
steady-state fully developed self-channelised flow and (c) the channel in the process of
draining out to leave behind a static deposit with parallel-sided levees and a partially
drained central channel. The final panel (d) shows the downslope velocity profile across
the channel ū(y) at x=1.75 m at t=31 to 91 s in intervals of 10 s. Markers indicate fully
time-dependent simulations, whereas the solid black line represents the exact steady-state
solution. A movie showing the time and spatially evolving flow is available in the online
supplementary material (movie 5).
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FIGURE 15. Fully time and spatially dependent numerical solutions for the thickness of
sand at (a) t= 20 s, (b) t= 80 s and (c) t= 105 s for an inflow mass flux QM = 85 g s−1

and inclination ζ =32◦ as in figure 14. (a) Shows the flow front propagating steadily down
the plane and forming the levee–channel morphology behind it, (b) shows the steady-state
fully developed self-channelised flow and (c) the channel in the process of draining out
to leave behind a static deposit with parallel-sided levees and a partially drained central
channel. The final panel (d) shows numerical solutions for the thickness profile at x =
1.75 m at three different times. A movie showing the time and spatially evolving flow is
available in the online supplementary material (movie 6).
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and a deposition wave moves rapidly downslope, thinning and then depositing material
that was previously flowing in the central channel (figures 14c and 15c). This process
is illustrated by cross-slope thickness profiles at x = 1.75 for t = 100, 105.3, 110 s
in figure 15(d). At t = 100 s the channel thickness is still equal to the theoretically
predicted steady-state value H= 7.9 mm and the surface gradient of the levee walls is
below the maximum static friction, so they are stable and support the central channel.
At t=105.3 s, in the middle of the deposition wave, the flow wanes and only a region
near the centre of the channel remains flowing. This deposition wave leaves behind
a static deposit with super-elevated levee walls that have a maximum thickness close
to the original flow thickness H and a deposit in the central channel that lies just
above hstop (figure 15d, t=110 s). As noted by Félix & Thomas (2004) and Mangeney
et al. (2007), the flow thickness H and channel width W are preserved in the deposit,
allowing field observations to be used to estimate the inflow mass flux required to
sustain the channel during flow. This provides an important constraint on the time
evolution of the geophysical processes that created the levees, even when the flow
event was not observed directly.

4.3. Narrowing and widening of the central flowing channel
The response of the steady fully developed solution to changes in the inflow mass
flux is now investigated. The initial state is chosen to be the same as in figures 14(b)
and 15(b) for an inflow mass flux QM = 85 g s−1 and slope angle ζ = 32◦. The mass
flux is then reduced to QM = 70 g s−1 at t= 100 s as shown in movies 7 and 8. The
channel does not narrow uniformly as shown in figure 16(a,b). An expanding wave
travels rapidly downslope, which separates a downstream region, where the channel
is still at the steady state for QM = 85 g s−1, and an upstream region where the
flow attains the new steady state for QM = 70 g s−1. The front section of this wave
travels slightly faster than the rear, so the flowing regions pinch off and separate
from one another. As a result there is a brief period where the grains come to rest
in the channel, before they are remobilised by the second half of the wave as shown
in figure 16(a,b). This behaviour is also observed in the experiments with red sand
as shown in movie 3. The wave eventually propagates out of the domain to leave
a parallel-sided leveed channel with a width W = 10.3 cm that is narrower than
the original width W = 12.1 cm for QM = 85 g s−1. The thickness of the channel
before and after the change in flux are Hbefore = 7.9145 mm and Hafter = 7.904 mm,
respectively, which are virtually the same as shown in figure 16(e). Once the channel
has established itself the computed downslope velocities at x = 1.75 m are almost
identical to the steady-state theory in § 3.3 as shown in figure 16( f ). During the
process of channel narrowing, grains are deposited on the inside of the pre-existing
levee walls, but there is no change to the existing levees, so the total width of the
channel does not change, as shown in figure 16(b).

Once the new fully developed steady state for QM = 70 g s−1 has been established
the inflow flux is increased to QM = 100 g s−1 at t = 150 s as shown in movies 7
and 8. A wave again propagates down the channel, which adjusts its width. This
time the wave remobilises the levees on both sides, broadening the central channel
and then re-solidifying to form levees that are slightly further out as shown in
figure 16(c,d). This process is inherently unsteady and so the outer margins of the
new levees are no longer perfectly parallel. The initial wavefront, associated with the
change in mass flux, grows in size as it erodes the static material in the pre-existing
wide levees and deposits a narrower levee behind it. As a result it moves faster than

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

51
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.518


Self-channelisation and levee formation in monodisperse granular flows 627

-15 -10 -5 0 5 10 15
y (cm)

8(f)

(e)

6

4

2

0

u-
 (c

m
 s-

1 )

9.0

4.5

100 s
150 s
200 s

70 g s-1

85 g s-1

100 g s-1

0

h 
(m

m
)

Hmin

(a) (b) (c) (d)

FIGURE 16. Spatial contours of (a,c) the depth-averaged downslope velocity and (b,d) the
thickness at (a,b) time t = 105.5 s and (c,d) 155 s using the same contour scales as in
figures 14 and 15. Panels (a,b) show the mass flux being reduced from QM = 85 g s−1

to QM = 70 g s−1, while (c,d) show the flux being increased from QM = 70 g s−1 and
QM = 100 g s−1 on a slope inclined at ζ = 32◦. (e) Shows the computed thickness at
x = 1.75 m at t = 100, 150 and 200 s and ( f ) shows the computed downslope velocity
across the channel at the same location and times and a comparison with the steady-state
solution in § 3.1. In ( f ) the steady-state theory is shown with red, blue and black solid
lines and the computed solutions are shown with markers. Two movies showing the
evolving velocity and thickness are available online (movies 7 and 8).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

51
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.518


628 F. M. Rocha, C. G. Johnson and J. M. N. T. Gray

the steady uniform flow behind it and therefore detaches from it, producing a brief
period where the grains come to rest before the new steady-state flow establishes
itself. The computed steady-state thickness and velocity profiles across the channel
are shown in figures 16(e) and 16( f ), respectively. These show that, as the mass
flux is increased, the width increases to W = 13.7 cm, the thickness barely changes
and the velocity profile lies very close to the steady-state value in § 3. All traces of
the previous history of the flow that was recorded in the earlier levees are therefore
destroyed, which is consistent with the experiments in figure 4.

4.4. Unsteady periodic avalanching regime

When the mass flux is reduced to QM = 16 g s−1 grains pile up near the source, fail
periodically and then come to rest again by upslope propagating stopping waves. The
initial phases of this solution are very complicated with a sequence of pile collapses
that produce two avalanches that propagate down either side of a central ridge, as
shown in the online supplementary movies 9 and 10. However, after approximately
95 s the collapses become more structured, producing a single erosion–deposition
wave that propagates downslope over a thin deposit that has been laid down by
previous flows, as shown in figures 17 and 18. Erosion–deposition waves continuously
erode material at their leading edge and deposit material at the rear as they propagate
downslope (Edwards & Gray 2015; Edwards et al. 2017). The waves therefore do not
represent a single body of material that is released from the collapse, but a constantly
changing body of grains. From t = 95–300 s the static deposit has an approximately
elliptical shape that becomes progressively elongated with increasing time, with the
source centred at the upstream focus point. The erosion–deposition waves are able to
propagate easily on top of this deposit and grow in size in the first half of the ellipse
expanding laterally to span its width. However, as the width of the elliptical deposit
narrows, the avalanche overtops the sides and the material on the static bed travels
a short distance before it stops. As a result, as the avalanche continues to propagate
downslope, it is progressively deposited at the sides and decreases in size, before it
eventually overtops the deposit front and then rapidly comes to rest. The front and
sides of the deposit are therefore progressively advanced in a sequence of steps as
each avalanche passes by.

The movies also show that as the erosion–deposition wave propagates downslope
it detaches from the flowing material at the source and a retrogressive (upslope
propagating) stopping wave forms that travels up to the source and brings the
grains to rest. As material then builds up at the source it eventually overcomes the
static friction and collapses to form the next erosion–deposition wave. In this way a
quasi-periodic sequence of avalanches is formed that transport the grains downslope in
a series of steps. This process is visualised in figure 19, which shows the thickness
at a fixed position x = 1.25 m as a function of time. The front first reaches this
position at approximately 90 s. During the passage of the first five or six waves
the deposit thickness builds up to just over 6 mm, which lies between hstop = 5 mm
and h∗ = 6.7 mm. The presence of this erodible layer allows the avalanches to
propagate easily downslope with a total thickness of approximately 8 mm. The
erodible layer reduces the apparent friction experienced by the grains, in the sense
that an avalanche of the same volume released on the same slope, but without the
erodible layer, would rapidly come to rest. Each of the individual waves have the
same shape as the one-dimensional erosion–deposition waves modelled by Edwards
& Gray (2015) and develop into a periodic wave train with a period of approximately
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FIGURE 17. Fully time and spatially dependent numerical solutions for the downslope
velocity of sand at (a) t=125.5 s, (b) t=127.3 s and (c) t=250 s for an inflow mass flux
QM = 16 g s−1 and inclination ζ = 32◦. In the unsteady flow regime a series of erosion–
deposition waves flow over the previously deposited grains until they overrun the front
and rapidly stop. The flow front therefore advances intermittently downslope. A thicker
layer of material forms at the centre line, as well as at the sides of the source. A movie
showing the time and spatially evolving velocity is available in the online supplementary
material (movie 9).

4 s. Qualitatively, the simulated thickness as a function of time (figure 19) is very
similar to that observed experimentally (figure 17 of Takagi et al. 2011); indeed,
the trough thickness and the final amplitude of the waves are in close quantitative
agreement. However, Takagi et al. (2011) observed experimental waves of period
approximately 11.5 s, which is significantly longer than the 4 s period that emerges
from the simulations. This is probably because the depth-averaged theory is not able
to accurately model the complicated failure processes that occur during the build-up
and collapse of the pile near the source. The model can nevertheless predict the onset
of unstable flow at low mass fluxes, which was observed experimentally by Takagi
et al. (2011) as well as for the red sand in movie 4. Periodic waves propagating
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FIGURE 18. Fully time and spatially dependent numerical solutions for the thickness
of sand at (a) t = 125.5 s, (b) t = 127.3 s and (c) t = 250 s for an inflow mass flux
QM=16 g s−1 and inclination ζ =32◦ as in figure 17. In the unsteady flow regime a series
of erosion–deposition waves flow over the previously deposited grains until they overrun
the front and rapidly stop. The flow front therefore advances intermittently downslope.
A thicker layer of material forms at the centreline, as well as at the sides of the source.
A movie showing the time and spatially evolving thickness is available in the online
supplementary material (movie 10).

over previously deposited material have been observed in debris flows at Illgraben,
Switzerland (McArdell 2016) and the Jiangjia Valley, China (Yong et al. 2012).

4.5. Comparison with Mangeney et al.’s (2007) inviscid numerical simulations
Mangeney et al. (2007) developed a depth-averaged inviscid model for levee formation
using the conservation laws (2.2)–(2.4) with ν = 0 (no viscous terms) and the
non-monotonic friction law of Pouliquen & Forterre (2002) for glass beads (obtained
by setting Γ = 0, β∗ = β, κ = 10−3 and introducing δ4, the maximum slope angle at
which a static layer exists). Using a shock-capturing numerical method to solve the
time-dependent equations, Mangeney et al. (2007) qualitatively captured the process
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FIGURE 19. Computed thickness h for sand as a function of time at x = 1.25 m and
y=0 m for a mass flux QM=16 g s−1 and inclination ζ =32◦. The flow front first reaches
this point at t= 78 s, the flow thickness then builds up above hstop, and the waves rapidly
develop a constant period T∞ ≈ 4 s as shown in the inset space–time plot.

of self-channelisation, with grains spreading laterally at the flow front, slowing and
then depositing to form parallel-sided very slowly moving levees behind the head,
that supported the flow in the central channel. The thickness and downslope velocity
were approximately constant in the central moving channel with a rapid decrease
in downstream velocity at the levee–channel boundary as shown in their figures 12
and 15, for a mass flux QM = 12 g s−1 of glass beads on a slope of 25◦. At t= 145 s
(just prior to their inflow being stopped) the width of the shear layer that connected
the central flow to the static levees was Wboundary ≈ 0.0022 m. Since their numerical
experiments were performed on a rectangular domain (Lx, Ly)= (2.2, 0.2) m that was
divided into (nx, ny)= (400, 300) grid points, this implies that the downslope velocity
dropped from the steady uniform value to zero over (ny/Ly)Wboundary ≈ 3.3 grid cells.

Mangeney et al. (2007) used friction parameters corresponding to those in
the experiments of Félix & Thomas’s (2004), but with a thickness length scale
L = 0.8 mm that was larger than the experimental best fit of L = 0.65 mm,
leading to a numerical hstop about 25 % larger than that in experiments. Despite this,
their simulated flow thickness of H ≈ 1.03hstop = 2.754 mm was still considerably
thinner than the 3.12 mm and 3.37 mm measured experimentally by Félix & Thomas
(2004) for QM = 8 g s−1 and QM = 17.5 g s−1, respectively. Mangeney et al. (2007)
acknowledged this discrepancy, and concluded that ‘[in] particular, the absence of
lateral dissipation between the flowing mass and the quasi-static shoulders likely leads
to underestimation of the flowing thickness and the thickness of the deposit in the
central channel’.

As shown in this paper, lateral dissipation (viscosity) is required to produce a unique
steady channel thickness, but a hysteretic friction law with κ = 1 (a gradual transition
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from static to dynamic friction coefficient) is also required, in order for this unique
thickness to be significantly greater than both hstop and h∗, as observed in experiments.

As has been seen in § 3, the depth-averaged viscous terms in (2.3)–(2.4) are a
singular perturbation of the model that produces qualitatively different solutions.
Rather than the unique solution found when the viscous terms are present, in the
inviscid case (ν= 0) there are an infinite family of steady-state solutions with constant
channel thicknesses in the metastable range [hstop, hstart], plug-like downslope velocity
profiles across the slope and contact discontinuities at the channel edge (§ 3.2).
Mangeney et al.’s (2007) numerical simulations are consistent with a flow that is
approaching one of these steady-state inviscid solutions. Indeed, Mangeney et al.
(2007) derived equations for the velocity and width of the flow (their equations (24)
and (25)), which are directly equivalent to the steady-state equations (3.9) and (3.11)
for glass beads (Γ = 0). However, they did not draw out the fact that the steady-state
inviscid system of equations is not uniquely determined, nor why the observed
thickness H ≈ 1.03hstop is so close to the thinnest possible steady-state solution.

In the absence of any numerical viscosity, the initial conditions and time-dependent
evolution of the inviscid equations could, in principle, select the observed channel
width from the many possible steady-state solutions. In reality, this time dependence
does not appear to be the mechanism setting the channel width, since Deboeuf et al.
(2006) found that the width was independent of past changes in flux and Takagi et al.
(2011) showed that an initial layer of erodible particles covering the chute did not
influence the equilibrium flowing channel width.

Based on solutions of Mangeney et al.’s (2007) inviscid equations and quantitative
reproduction of their observations made using the numerical scheme of this paper,
there appear to be two reasons why the numerical solutions of Mangeney et al. (2007)
select a flow thickness very close to hstop. These relate to the Mangeney et al.’s (2007)
use of an extremely rapid transition from static to flowing friction (κ = 10−3) and the
interaction of this with small but unavoidable errors in numerical schemes.

Firstly, as pointed out by Edwards et al. (2019), the initial sharp decrease in the
friction as Fr increases from zero, when κ=10−3, is extremely difficult to represent in
standard floating-point numerical computations. For instance, at the smallest non-zero
value the Froude number (∼10−16, based on IEEE-754 double precision round-off
error of O(1) numerical quantities in the finite-volume scheme) the friction coefficient
drops to a value that is well below the maximum static friction and is insufficient to
bring to rest any flowing material thicker than 1.02hstop = 2.727 mm. This suggests
that when Mangeney et al. (2007) stopped their numerical simulations (when H ∼
1.03hstop) the flow was still slowly spreading, but that it was very close to the range
of thicknesses where inviscid steady-state solutions could exist.

Secondly, the singular nature of the viscous terms in the governing equations
means that even a small amount of numerical viscosity results in the solution of the
viscous equations, with the viscosity coefficient in this case determined artificially by
the grid resolution and details of the numerical scheme. As noted previously, when
κ = 10−3 the unique steady viscous solution for a given flux lies in a very narrow
range of thicknesses [Hmin, Hmax] that is slightly (∼0.1 %) greater than the thinnest
steady uniform flow (i.e. hstop, for the friction law used by Mangeney et al. 2007). It
is therefore possible that Mangeney et al.’s (2007) inviscid solutions are approaching
a steady state of the viscous equations, but this relies entirely on the mesh-size
dependent and numerical scheme dependent viscosity.

In contrast, the combination in this paper of physically derived viscous terms and
the friction law of Edwards et al. (2019) (with κ = 1) provides (i) a unique steady
channel thickness and width in good agreement with experiments, and (ii) a time-
dependent model that unambiguously approaches this unique steady state at late times.
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5. Discussion and conclusions
5.1. Summary of results

This paper shows that two physical processes are needed to quantitatively predict
self-channelisation and levee formation in monodisperse granular flows using
depth-averaged avalanche models. These are (i) a non-monotonic effective basal
friction law (Pouliquen & Forterre 2002; Félix & Thomas 2004; Deboeuf et al.
2006; Mangeney et al. 2007; Edwards & Gray 2015; Edwards et al. 2017, 2019)
and (ii) depth-averaged lateral viscous stresses (Gray & Edwards 2014; Baker et al.
2016a). The non-monotonic friction models the hysteretic behaviour that allows static
and flowing regions to coexist, while the viscous terms are vital to close the system
of equations and produce smooth transitions between the static and flowing regions
that do not exert shear stresses on the levee walls.

The two-dimensional time-dependent simulations in figures 14 and 15 show that
the resultant equations (2.2)–(2.15) model the formation of a central flowing channel
bounded by parallel-sided static levees. When material flowing down the channel
reaches the front, it loses its lateral confinement, spreads out and slows down. The
grains that are still in the centre of the flow are then overrun, while the particles that
migrate to the sides come to rest and build a new section of the levee wall, advancing
it downslope (Félix & Thomas 2004; Johnson et al. 2012). In this way the flow front
is able to propagate downslope as a steadily travelling wave, continuously laying
down a pair of levees at the back of the flow head. The final width of the channel
is not always set immediately behind the head; an equilibrium width of the central
channel is established when the flow thickness and depth-averaged velocity profile are
such that there is no net erosion or deposition at the levee–channel boundaries. Once
the channel has formed, the levees prevent the flow spreading laterally and thereby
maintain the flow’s thickness, and hence mobility, leading to enhanced run-out. The
flow can widen by levee-bank overtopping in response to an increase in mass flux, and
retreat into the centre of the channel if the flux is reduced, as shown experimentally
(figure 4, movie 3) and in the numerical simulations (figure 16, movies 7 and 8).

To understand the force balance leading to the leveed channel, a steady-state
problem is formulated in § 3.1, which shows that across the width W of a
parallel-sided flowing channel, the thickness h is equal to a constant H and the
downslope velocity profile ū(y) satisfies the second-order ODE (3.5). For a given
mass flux QM, this can be solved as a boundary value problem for W, H and ū(y),
subject to zero velocity (3.6) and zero shear stress (3.7) boundary conditions at the
levee–channel interfaces, as well as the integral constraint (3.8) on the mass flux. The
viscous terms allow the static shear-stress-free levees to be connected to the central
flow, where steady uniform flow dominates, across a viscous boundary layer or shear
band (see figure 9c). There is a unique solution to the problem for all values of
the mass flux QM although the character of the solution changes at Q = Qmin. For
QM <Qmin the solutions are purely in the intermediate frictional regime (2.12), whilst
for QM >Qmin, the solutions also have regions of dynamic friction (2.10). It is these
latter solutions that are physically realised.

The solutions to the boundary value problem (see figures 8–9) are in excellent
quantitative agreement with the experimental measurements of the height and width
of the central flowing channel (Takagi et al. 2011) as shown in figure 10 for sand.
These solutions show that, as the mass flux QM is increased, the thickness of the
central flowing channel remains nearly constant and its width increases approximately
linearly. The constant thickness H in the channel is significantly above both hstop
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and h∗. Takagi et al. (2011) also made measurements of the surface velocity profile
across the channel. These are harder to compare, because the velocity shear through
the depth of the avalanche necessarily implies that the surface velocity is not equal
to the depth-averaged velocity calculated by the theory. Figure 11 shows that the
depth-averaged velocity ū and the surface velocity measurements us have the same
functional behaviour with the mass flux QM, and that us/ū ≈ 2.35. This large ratio
of surface velocity to depth-averaged velocity is consistent with the discrete element
method simulations of Silbert et al. (2003) and non-local theory of Kamrin &
Henann (2015), which predict a transition from Bagnold flow to exponential-like
velocity profiles as the flow gets close to h∗.

The model is also in very good agreement with the thickness measurements of Félix
& Thomas (2004) for glass beads as shown in figure 12 for a wide range of mass
fluxes. However, the predictions of the steady-state minimal total width of the channel
(see § 3.5.2 and appendix B) do not agree with those measured by Félix & Thomas
(2004) at high mass fluxes. The most likely explanation for this discrepancy is that
either Félix & Thomas’s (2004) experimental chute was not long enough, or the flow
was not observed for a sufficiently long time, to measure a true steady state. This is
certainly consistent with the observations of Deboeuf et al. (2006) and Takagi et al.
(2011) who found that for weakly hysteretic materials, such as glass beads, the width
of the flow adjusted on very long time scales (∼70–90 min).

Below a critical mass flux the steady-state solutions go unstable in experiments
(Félix & Thomas 2004; Takagi et al. 2011) as shown for red sand in movie 4. This
also occurs in the numerical solutions (figures 17, 18 and 19), which produce a series
of finite pulses of flowing material separated by intervals during which the grains
are completely static. These are another example of erosion–deposition waves, which
have previously been observed on erodible beds (Daerr & Douady 1999; Börzsönyi
et al. 2005; Clément et al. 2007; Edwards & Gray 2015; Edwards et al. 2017) and
have been simulated numerically by Edwards et al. (2017) using the same system
of equations used in this paper. The governing equations (2.2)–(2.15) are therefore
extremely versatile and have the potential to explain many flows with qualitatively
very different behaviour.

The viscous terms play a critical role in setting the velocity profile and hence the
thickness and width of the self-channelised flow. In the absence of viscosity, the
system of equations (2.2)–(2.5) reduce to the classical avalanche equations, which
are hyperbolic in character (see e.g. Grigorian et al. 1967; Savage & Hutter 1989;
Gray et al. 1999, 2003; Mangeney et al. 2007). As shown in § 3.2, in this inviscid
model the constant channel thickness H implies that the velocity is equal to the
steady-uniform value (3.9) across the whole channel, with contact discontinuities
at the levee–channel interfaces where the downslope velocity jumps from the
steady-uniform value ūsteady to zero. The thickness of the flow H is not determined,
and may lie anywhere in the range [h∗, hstart], where h∗ > hstop is the minimum
observable thickness of a steady uniform flow (Edwards et al. 2019). As a result,
even for the same mass flux QM, there are a corresponding range of possible widths
(see figure 7), which implies that inviscid theories lack the physical mechanism to
set the steady-state thickness and width of the flow.

In practical numerical computations there is usually some mesh-size-dependent
numerical diffusion. It follows that numerical computations with Mangeney et al.’s
(2007) inviscid model will appear to behave somewhat like the theory presented in
this paper (see 4.5). The important distinction is that it is the mesh-size-dependent
numerical diffusion that selects the solution, rather than the physically based
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depth-averaged viscosity (Gray & Edwards 2014; Baker et al. 2016a) derived from
the µ(I)-rheology (GDR-MiDi 2004; Jop et al. 2006). The viscous depth-averaged
theory presented in this paper is therefore a significant advance over previous models.

Despite the theory’s clear success in simulating many features of the flow,
one subtle aspect that is not captured correctly is the shape of the free surface.
Experimental measurements of self-channelised flows (Félix & Thomas 2004; Deboeuf
et al. 2006; Takagi et al. 2011) show that, instead of having a constant depth across
the channel, the maximum thickness occurs in the centre, where the material moves
faster. The curvature in the free surface appears to coincide with regions of high
shear, i.e. for narrow channels, with a parabolic-like velocity profile, experiments
suggest that the free surface is curved across the whole channel. For wider channels,
the free surface is almost flat in the central steady uniform region, with curvature
observed only at the boundary layers at the sides (Félix & Thomas 2004). This
observation may be important in the development of new constitutive equations for
granular flows that go beyond the µ(I)-rheology (see e.g. Kamrin & Koval 2012;
Bouzid et al. 2013; Henann & Kamrin 2013; Kamrin & Henann 2015; Lee & Yang
2017). For example, second normal stress differences can result in variations in free
surface height as a function of the downstream velocity (McElwaine et al. 2012).
Another possible explanation is that the low velocity regions, on the inside walls
at the base levees, jam and become quasi-static rather than inertial (Deboeuf et al.
2006; Kokelaar et al. 2014). This would change the height of the effective topography
that the avalanche was flowing over and potentially allow cross-slope variations in
thickness. Understanding how to model this quantitatively would probably require
a compressible granular theory (see e.g. Barker et al. 2017; Heyman et al. 2017;
Schaeffer et al. 2019) that could span the quasi-static and inertial regimes (Chialvo,
Sun & Sundaresan 2012). There is, however, a long way to go before either of these
effects can be included in depth-averaged avalanche models, and the existing theory
appears to be able to make accurate predictions without them.

5.2. Implications for the interpretation of levee–channel deposits
The results of this paper provide a theoretical framework for the interpretation of
leveed deposits from geophysical mass flows such as debris flows and pyroclastic
density currents. Specifically, the predictions of the thickness and width of a
self-channelised leveed flow in § 3.3 may be inverted to infer information about
the mass flux or rheology of the original flow from measurements of the deposit.
A key observation is that the thickness of a levee is similar to the thickness of
the flow that created it, and is nearly independent of the mass flux of that flow
(figures 10a and 12a). A difference in thickness between levees in successive flows
therefore suggests a change in flow composition and rheology, not simply mass flux.
The width of the static channel between the levees is roughly proportional to the
mass flux of the originating flow (figures 10b and 12b). Very wide levees, with a
sequence of nested parallel levees inside the main channel, are strongly indicative of
a decrease in mass flux prior to deposition (figure 4b). However, an increase in flux
with time may not be reflected in the deposit, due to erosion of the existing levees
(figure 4c).

Interpretation of deposits with levee–channel morphology is complicated by the
existence of other levee-forming flows. A disturbance to an erodible layer of grains
on an inclined plane may lead to a localised erosion–deposition wave, in which the
static layer is continuously eroded at the flow front and deposited a short time later
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at the back of the avalanche (Edwards et al. 2017). This flow leaves behind a pair of
static parallel-sided levees that are raised above the surface of the original erodible
layer, located either side of a depression or trough. The leveed deposit resulting from
this erosion–deposition wave therefore looks similar to that produced by a continuous
flux of grains (figure 2c), which might make the two cases difficult to distinguish
in geophysical flow deposits. A key difference between these flows is the origin of
the material that forms the levees. The levees described in this paper are composed
of grains provided by a continuous source upslope, whereas those generated by the
erosion–deposition waves of Edwards et al. (2017) are composed of grains that are
continuously eroded at the front of the avalanche.

Field observations (Wilson & Head 1981; Bartelt et al. 2012) suggest that the
margins of the flow may be differentially fluidised during emplacement of levees,
which implies that the rheology is inhomogeneous (Iverson & Vallance 2001; Iverson
2003). In debris flows, the evolving pore fluid pressure (Iverson 1997; Iverson
& Denlinger 2001) and particle-size distribution due to segregation (Gray 2018)
significantly alter the bulk flow by generating drier bouldery margins that resist the
motion and form pronounced levees (Johnson et al. 2012). Although these effects
present additional modelling challenges, the heterogeneous particle-size distribution of
a deposit also potentially provides considerably more information about the flow that
created it than the deposit geometry alone. The incorporation of such heterogeneity
into the model for levee formation presented here is, therefore, a promising avenue
for future research.
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Appendix A. Velocity reconstruction
The full downslope velocity profile u(y, z) can be reconstructed from the depth-

averaged value ū(y) by assuming a velocity profile f (z) through the avalanche depth

u(y, z)= f (z)ū(y). (A 1)
Steady uniform granular flows usually develop a convex Bagnold velocity profile
(Silbert et al. 2001; GDR-MiDi 2004), but this can become concave when the flow
is confined between lateral side walls (e.g. Komatsu et al. 2001; Jop et al. 2005;
Wiederseiner et al. 2011; Baker et al. 2016a). Even in the absence of side walls,
the DEM simulations of Silbert et al. (2003) and the non-local theory of Kamrin &
Henann (2015) predict a transition from Bagnold to concave velocity profiles as the
flow thickness approaches h∗, which for steady uniform flow lies at the transition
between dynamic and intermediate frictional regimes. The exponential profile of
Wiederseiner et al. (2011)

f (z)=
λ

exp(λ)− 1
exp

(
λz
H

)
, (A 2)
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provides a good fit to the observations in this paper, where λ is an adjustable
parameter. Evaluating this at the free surface implies that the surface velocity us is
related to the depth-averaged velocity ū by the relation

us =
λ exp(λ)

exp(λ)− 1
ū. (A 3)

The surface velocity data for sand (Takagi et al. 2011) shown in figure 11 suggest
that us = 2.35ū, which implies λ = 2.05. This is within 15 % of the value us = 2.7ū
(corresponding to λ=2.45) measured experimentally in a thin unconfined flow of glass
beads (Russell et al. 2019).

Appendix B. Shape of the minimal levees
Outside the flowing channel, the shape of the static levees is constrained, but

not determined uniquely, by the static friction. Assuming that these static levees
are uniform in the x-direction, the cross-slope component of the depth-averaged
momentum balance (2.4) reduces not to (3.3), but to a balance between surface
gradients and friction

dh
dy
=−µbe2, (B 1)

where the second component of the friction direction (2.6) is

e2 =
dh/dy√

(tan ζ )2 + (dh/dy)2
. (B 2)

The static friction law (2.11) implies that µb=µS, which can take any value between
zero and the maximum static friction. This implies that in general there are infinitely
many solutions for the levee shape. It is, however, possible to calculate a unique
minimal solution for the levee by assuming that the granular material is on the brink
of yield (Hulme 1974; Balmforth et al. 2001), i.e. that the basal friction µb is at its
maximum static value everywhere

µb =µstart(h)=µ3 +
µ2 −µ1

1+ h/L
. (B 3)

With the basal friction determined by (B 3), equations (B 1) and (B 2) can be
rearranged to determine a first-order ODE for the minimal levee wall shape

dh
dy
=±

√
(µstart(h))2 − (tan ζ )2. (B 4)

In this equation the ± sign allows decreasing solutions to be calculated on either side
of the central channel starting from where h=H at y=±W/2. Integrating the ODE
(B 4) backwards and forwards, respectively, from y = −W/2 and y =W/2, until the
height is equal to zero at y = ±Wtotal/2, determines the minimum total width Wtotal
that is capable of sustaining a flow of thickness H.
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