ON SUCCESSIVE APPROXIMATIONS FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES

by W. A. KIRK

(Received 16 September, 1969; revised 26 December, 1969)

Let X be a Banach space and K a convex subset of X. A mapping T of K into K is called a nonexpansive mapping if $\|T(x) - T(y)\| \leq \|x - y\|$ for all $x, y \in K$.

In general, it is not the case for nonexpansive mappings T that the sequences of Picard iterates $\{T^n(x)\}$ converge to fixed points of T, and thus when such fixed points exist other approximation techniques are needed. One such technique is to form the mapping

$$S_\lambda = \lambda I + (1 - \lambda)T \quad (0 < \lambda < 1),$$

and then show that under certain circumstances the Picard iterates of S_λ converge to a fixed point of T. The first such result was obtained by Krasnoselskii [7], who proved that if K is a closed convex subset of a uniformly convex Banach space and if T is a nonexpansive mapping of K into a compact subset of K, then for any $x \in K$ the sequence of iterates $\{S_\lambda^n(x)\}$, for $\lambda = 1/2$, converges to a fixed point of T. It was noted by Schaefer [8] that this theorem holds for arbitrary $\lambda \in (0, 1)$ and subsequently Edelstein [4] proved the corresponding result in a strictly convex Banach space. Even more recently, Browder and Petryshyn have obtained Krasnoselskii’s theorem as a corollary of their results in [3].

Our purpose in this note is to observe that mappings more general than those of type S_λ yield similar convergence theorems.

Theorem 1. Let K be a convex subset of a Banach space and T a nonexpansive mapping of K into itself. Define the mapping $S: K \to K$ by

$$S = \alpha_0 I + \alpha_1 T + \alpha_2 T^2 + \ldots + \alpha_k T^k,$$

where $\alpha_i \geq 0$, $\alpha_0 > 0$, and $\sum_{i=0}^{k} \alpha_i = 1$. Then $S(x) = x$ if and only if $T(x) = x$.

Proof. Suppose $S(x) = x$. Then

$$x = \sum_{i=1}^{k} \beta_i T^i(x),$$

where $\beta_i = \alpha_i(1 - \alpha_0)$. Thus $x \in \text{conv}\{T(x), T^2(x), \ldots, T^k(x)\}$. Let

$$\delta = \sup \{ \|u - v\| : u, v \in \{x, T(x), T^2(x), \ldots, T^k(x)\} \}.$$

Because T is nonexpansive, for some integer $p \geq 1$,

$$\|x - T^p(x)\| = \delta. \quad (*)$$

† Research supported by the National Science Foundation, grant GP8367.
Assume \(\delta > 0 \), and let \(p \) be the smallest positive integer such that (*) holds. Since \(\alpha_1 > 0 \),
\[
x = \beta_1 T(x) + (1 - \beta_1)z,
\]
where \(z \in \text{conv}\{T^2(x), T^3(x), \ldots, T^k(x)\} \) and \(0 < \beta_1 \leq 1 \); thus
\[
\delta = \|x - T^p(x)\| = \|\beta_1 T(x) + (1 - \beta_1)z - T^p(x)\|
\]
\[
\leq \beta_1 \|T(x) - T^p(x)\| + (1 - \beta_1) \|z - T^p(x)\|
\]
\[
\leq \beta_1 \delta + (1 - \beta_1) \delta = \delta.
\]
This implies \(\|T(x) - T^p(x)\| = \delta \), yielding \(\|x - T^{p-1}(x)\| \geq \delta \). This gives a contradiction if \(p > 1 \). However, if \(p = 1 \) the preceding argument yields \(\|T(x) - T(x)\| \geq \delta > 0 \), which is absurd. Thus, \(\delta = 0 \) and \(x = T(x) \). Since the converse is obvious, the theorem is proved. (We should remark that the stipulation \(x_0 > 0 \) in Theorem 1 is necessary to rule out the possibility that a fixed point of \(S \) is merely a point at which \(T \) is periodic.)

Next we prove that in uniformly convex spaces the mapping \(S \) is asymptotically regular; that is,
\[
\lim_{n \to \infty} \|S^{n+1}(x) - S^n(x)\| = 0 \quad (x \in K).
\]
This result is patterned after Theorem 5 in Browder and Petryshyn [3].

THEOREM 2. Let \(X \) be uniformly convex and let \(T \) and \(S \) be as defined in Theorem 1. If \(T \) has at least one fixed point then the mapping \(S \) is asymptotically regular.

Proof. Let \(x \in K \). Define the sequence \(\{x_n\} \) by \(x_n = S^n x, n = 1, 2, \ldots \). Suppose \(u \) is a fixed point of \(T \) in \(K \). Then the sequence \(\{\|x_n - u\|\} \) is nonincreasing (since \(S \) is nonexpansive and \(S(u) = u \)), and we may suppose\(\lim_{n \to \infty} \|x_n - u\| = d \geq 0 \). Assume \(d > 0 \). (If \(d = 0 \) there is clearly nothing to prove.) Then (adopting the notation \(T^0 = I \)) we have
\[
x_{n+1} - u = S(x_n) - u
\]
\[
= \sum_{i=0}^{k} \alpha_i T^i(x_n) - u
\]
\[
= \alpha_0(x_n - u) + (1 - \alpha_0)z_n,
\]
where
\[
z_n = \frac{1}{1 - \alpha_0} \sum_{i=1}^{k} \alpha_i (T^i(x_n) - u).
\]
Since
\[
\|T^i(x_n) - u\| = \|T^i(x_n) - T^i(u)\| \leq \|x_n - u\|
\]
and \(\sum_{i=0}^{k} \alpha_i = 1 \) it follows that \(\limsup_{n \to \infty} \|z_n\| \leq d \). Also \(\lim_{n \to \infty} \|x_n - u\| = d \), \(\lim_{n \to \infty} \|x_{n+1} - u\| = d \).
Because X is uniformly convex it must be the case that

$$\lim_{n \to \infty} ||x_n - u - z_n|| = 0.$$

However, $x_{n+1} - x_n = (1 - \alpha_0)(x_n - u - z_n)$ and so $\lim_{n \to \infty} (x_{n+1} - x_n) = 0$, completing the proof.

The above results and Theorem 6 of [3] yield the following corollary.

Corollary. Let X be a uniformly convex Banach space and T a nonexpansive compact mapping of X into X (i.e., T maps bounded subsets of X into precompact subsets of X) which has at least one fixed point. Then if the mapping S is defined as in Theorem 1, for each $x_0 \in X$ the sequence $\{S^n(x_0)\}$ converges to a fixed point of T.

Proof. Since S is asymptotically regular and has the same fixed points as T, the conclusion is a direct consequence of Theorem 6 of Browder–Petryshyn [3] if it is the case that $I - S$ maps bounded closed subsets of X into closed subsets of X. Let H be a bounded closed subset of X and suppose $\lim (h_n - Sh_n) = z$, $h_n \in H$. We need to show that $z \in (I - S)[H]$. Since T is a compact mapping, some subsequence $\{T(h_{nj})\}$ of $\{T(h_n)\}$ converges; say $T(h_{nj}) \to v$ as $j \to \infty$. Fix i between 1 and k. Continuity of T implies $T^j(h_{nj}) \to T^{j-1}(v)$ as $j \to \infty$. Thus by repeatedly choosing subsequences, we may obtain a subsequence $\{h_{n_j}\}$ of $\{h_n\}$ which has the property:

$$\lim_{n \to \infty} T^i(h_{n_j}) = w_i \in X \quad (i = 1, \ldots, k).$$

Now

$$(I - S)(h_n) = h_n - \sum_{i=0}^{k} \alpha_i T^i(h_n)$$

$$= (1 - \alpha_0)h_n - \sum_{i=1}^{k} \alpha_i T^i(h_n).$$

Since $h_n - S(h_n) \to z$ as $n \to \infty$ it follows that

$$\lim_{n \to \infty} (1 - \alpha_0)h_n = z + \sum_{i=1}^{k} \alpha_i w_i.$$

This implies that $\{h_n\}$ converges, say to $h \in H$ (since H is closed). Hence $h - Sh = z$, which completes the proof.

We conclude by giving an analogue of Theorem 7 of Browder [2].

Theorem 3. Let X be a uniformly convex Banach space, K a closed bounded convex subset of X, and T a nonexpansive mapping of K into K. Let

$$S = \sum_{i=0}^{k} \alpha_i T^i$$

where $\alpha_i \geq 0$, $\alpha_0 > 0$, and $\sum_{i=0}^{k} \alpha_i = 1$. Suppose T has at most one fixed point y in K. Then for each x_0 in K the sequence $\{S^n(x_0)\}$ converges weakly to y in K.

Proof. Since S is nonexpansive, Theorem 3 of [2] implies that $I - S$ is demiclosed. This means that if $\{u_j\}$ converges weakly to u_0 in K and $(I - S)(u_j)$ converges strongly to w, then $(I - S)(u_0) = w$.

W. A. KIRK
ON SUCCESSIVE APPROXIMATIONS FOR NONEXPANSIVE MAPPINGS

Now let \(x_n = S^n(x_0), \ n = 1, 2, \ldots, \) and suppose \(\{x_n\} \) converges weakly to \(u_0. \) By Theorem 2, \(S \) is asymptotically regular so
\[
\lim_{i \to \infty} (I - S)(x_n) = \lim_{i \to \infty} (S^n(x_0) - S^{n+1}(x_0)) = 0
\]
and thus demiclosedness of \(I - S \) implies
\[
(I - S)(u_0) = 0.
\]
Thus \(u_0 \) is a fixed point of \(S. \) However, by Theorem 1 the fixed points of \(S \) and \(T \) coincide. Therefore \(u_0 \) is the unique fixed point of \(T \) and it follows that every weakly convergent subsequence of \(\{x_n\} \) converges weakly to \(u_0. \) If \(\{x_n\} \) does not converge weakly to \(u_0 \) then there exists a weak neighborhood \(W \) of \(u_0 \) and a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) with the property that \(x_{n_k} \notin W, \ k = 1, 2, \ldots. \) However, reflexivity of \(X \) and boundedness of \(\{x_n\} \) imply that some subsequence of \(\{x_{n_k}\} \) converges weakly, and by what we have just shown, \(\text{this weakly convergent subsequence must converge to } u_0. \) This implies that terms of the sequence \(\{x_{n_k}\} \) must lie in \(W \) — a contradiction. Therefore, \(\{S^n(x_0)\} \) converges weakly to \(u_0. \)

We might remark that the existence of at least one fixed point for \(T \) in \(K \) follows from a theorem proved independently by Browder [1], Gohde [5], and Kirk [6]. In general, this fixed point is not unique, but it will be unique for strictly contractive mappings (i.e., mappings \(T \) for which \(\|T(x) - T(y)\| < \|x - y\| \) when \(x \neq y \)).

ADDED IN PROOF. Using Theorem 1, one may also obtain Theorems 2 and 3 as direct consequences of their analogues in [2] and [3] by applying the original theorems to the mapping
\[
R = \left(\frac{1}{1 - \alpha_0} \right) \sum_{i=1}^{k} \alpha_i T^i.
\]

REFERENCES

UNIVERSITY OF IOWA
IOWA CITY
IOWA 52240, U.S.A.