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1 Introduction

Every functional programmer knows the technique of “replacing failure by a list of

successes” (Wadler, 1985), but wise programmers are aware also of the possibility

that the list will be empty or (worse) divergent. In fact, the “lists of successes”

technique is equivalent to the incomplete depth-first search strategy used in Prolog.

At heart, the idea is quite simple: whenever we might want to use a ‘multi-function’

such as ‘f’ :: α →→ β that can return many results or none, we replace it by a genuine

function f :: α → β stream that returns a lazy stream of results, and rely on lazy

evaluation to compute the answers one at a time, and only as they are needed. For

the sake of clarity, I will distinguish between the types of finite lists (α list) and of

potentially infinite, lazy streams (α stream), though both may be implemented in the

same way. Following the conventions used in ML, type constructors follow their

argument types.

Give two such functions, f :: α → β stream and g :: β → γ stream , we can define

their composition g ∧ f :: α → γ stream by

g ∧ f = concat · g∗ · f,

where (using notation introduced by Bird (1987)) g∗ = map g denotes the function

of type

β stream → (β stream) stream

that applies g to each element of its argument stream, and collects the results as

a new stream – a stream of streams, because each result returned by g is itself a

stream. Equivalently, we can define the composition operator by

(g ∧ f) x = [ z | y ← f x; z ← g y ],

using list comprehension in place of explicit functions on lists. We use the symbol ∧
for composition, because as we shall see, composition is closely related to conjunction

in Prolog.

This composition operator is associative, and has as a unit element the function

unit :: α → α stream defined by unit x = [x]. Because we shall want to prove

associativity later for other versions of the composition operator, I give the simple
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proof here. The composition (h ∧ g) ∧ f simplifies as follows, using the functor law,

that (q · p)∗ = q∗ · p∗:

(h ∧ g) ∧ f
= concat · (concat · h∗ · g)∗ · f
= concat · concat∗ · h∗∗ · g∗ · f.

The composition h ∧ (g ∧ f) simplifies as follows:

h ∧ (g ∧ f)

= concat · h∗ · concat · g∗ · f
= concat · concat · h∗∗ · g∗ · f.

Here we use the fact that h∗ · concat = concat · h∗∗, which holds because concat is

a natural transformation. The two expressions we have obtained are equal because

of the law,

concat · concat∗ = concat · concat .

This law is intimately connected with the associativity of ∧, so we pronounce it

“concat is associative”.

For an example of the use of the ∧ combinator, let us consider a simple program for

finding the factors of numbers. Define a function choose :: int list → (int list) stream

by

choose xs = [ xs ++ [x] | x ← [1 . . ] ].

This function takes a list of potential factors already chosen, and extends it in every

possible way with an additional choice of factor, returning the results as a lazy

stream. Now define a function test :: int → int list → (int list) stream by

test n [x, y] = if x × y = n then [[x, y]] else [ ].

The function test n takes a pair of potential factors [x, y] and returns just that pair

if they are factors of n, and nothing otherwise. With these definitions, we can define

a function factorize as follows:

factorize n = (test n ∧ choose ∧ choose) [ ].

This function expresses the idea of choosing a pair of factors in every possible way,

then filtering out the pairs that actually multiply to give the desired product n.

Unfortunately, the behaviour of this function is far from ideal. For example, the

result of factorize 60 is not a list of different factorizations, but just [1, 60]:⊥. That

is, the program returns one answer, then it diverges, computing forever without

either returning another answer or yielding the empty list. The reason for this is

easy enough to see: the right-hand choose produces the stream

[[1], [2], [3], . . .],

the left-hand choose adds a second choice, producing

[[1, 1], [1, 2], [1, 3], . . .].
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[1]

[2]

[3]

[4] ...

Fig. 1. A tree of choices.

Because this invocation of choose produces an infinite stream of results from the

first result returned by the right-hand choose, we never reach any choice that has 2

as its first element. In consequence, the test function examines an infinite stream of

pairs [[1, 61], [1, 62], . . .], without ever finding a second solution.

This behaviour is exactly the one produced by a Prolog program that is written

in the same way. The Prolog program,

factorize(N, X, Y) :- choose(X), choose(Y), X * Y =:= N.

will solve a goal such as ?- factorize(60, X, Y) by first fixing on a choice of X,

then exploring every choice for Y ; if there are infinitely many choices of Y , then it

will never revise its initial choice of X, and so never reach X = 2. In short, both

programs embody depth-first search: the Prolog program does so implicitly, because

depth-first search is part of the meaning of Prolog, but the functional program does

so explicitly, because depth-first search emerges as a consequence of the way we

have implemented lists of successes.

2 Breadth-first search

A better search strategy for this program relies on viewing the choice of X not as

an atomic action, but as a sequence of finite choices arranged as a tree. It does not

greatly matter what shape the tree has, so long as each node has only finitely many

children; for simplicity, we can choose the tree structure shown in figure 1. To each

leaf of the tree, we assign a cost that is related to the number of choices made in

reaching the leaf. Let us say that the cost of choosing [n] is n − 1.

In a program like choose∧choose, two choices are made, and we can visualize these

choices as a composite tree (figure 2). We begin with the tree structure generated

by the first choice, and at each leaf, we graft in a copy of the tree generated by the

second choice. Each level in this tree corresponds to a different total cost of making

the two choices. A fair search strategy visits each leaf of the composite tree in finite
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[1]

[1, 1]

[1, 2]

[1, 3]

[1, 4] ...

[2]

[2, 1]

[2, 2]

[2, 3] ...

[3]

[3, 1]

[3, 2] ...

. . .

Fig. 2. Nested choices.

time, unlike depth-first search, which can become stuck in one infinite branch of the

tree while leaves remain unvisited in other branches.

In breadth-first search, we visit the pairs [x, y] in order of increasing cost; this

guarantees that we will reach each pair eventually. This means searching the tree

level-by-level. In order to implement this idea, we must replace the type α stream

that we have used to represent the results of a computation by a type in which

the results can be presented in order of increasing cost. For this, we use the type

α matrix = (α list ) stream . A value of this type consists of an infinite stream of finite

lists, each corresponding to successive costs, counting from zero. Each finite list

contains all the solutions of a particular cost. The name “matrix” was suggested by

Silvija Seres, and refers to the idea that we present the results row-by-row. Unlike

conventional matrices, ours have infinitely many rows, and the rows, though finite,

differ in length.

To use these types in our factorization example, we should redefine choose so that

it returns a stream of finite lists, in which each list contains one choice:

choose xs = [ [xs ++ [x]] | x ← [1 . . ] ].

We also need to redefine test so that it returns its answers as a stream of lists:

test n [x, y] = if x × y = n then [[[x, y]]] else [ ].

Here, the result [[[x, y]]] denotes the pair [x, y] as a single answer with cost zero.

With these auxiliary definitions, we ought to be able to define

factorize n = (test n ∧′ choose ∧′ choose) [ ],

and compute all factorizations of n as answers, not just the single answer [1, n].

The program will still diverge, in the sense that after all factorizations have been

found, the stream of lists will continue, showing the empty list of answers for each
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subsequent level; since the search space is infinite, this is unavoidable, except by

changing the algorithm and thus making the search space finite.

3 Composition

The piece of the puzzle still missing is a definition of the new composition operator

∧′ that works with our new result type. The rest of this article is devoted to finding a

suitable definition for this operator, and verifying that it is associative, as it must be

if we are to write expressions like test n∧′ choose ∧′ choose without fear of ambiguity.

If f :: α → β matrix and g :: β → γ matrix , an analogy with depth-first search

suggests defining g ∧′ f as

g ∧′ f = join · g∗∗ · f,

where join is an (as yet unknown) function of type (γ matrix ) matrix → γ matrix .

This definition raises the hope that we will be able to prove that ∧′ is associative

by repeating the argument we used earlier, and relying on the associativity of our

function join .

We will now define some auxiliary functions that can be assembled to produce

the desired function join . For simplicity, let us assume from this point on that all

potentially infinite streams are actually infinite, so that we do not need to deal with

the possibility that they terminate. The definitions we give could be augmented with

extra clauses that deal with this case, but it would complicate our presentation to

do so, without adding much of substance to the discussion.

A useful function trans :: (α stream) list → (α list ) stream may be defined as a

fold on lists:

trans [ ] = repeat [ ]

trans (xs:xss) = zipWith (:) xs (trans xss),

in other words, trans = foldr (zipWith (:)) (repeat [ ]). An alternative definition, better

for our purposes, can formulated as an unfold on streams:

trans xss = (head ∗ xss):(trans (tail ∗ xss)).

For example,

trans [[x00, x01, x02, . . .], [x10, x11, x12, . . .], . . . ,

[x(n−1) 0, x(n−1) 1, x(n−1) 2, . . .]]

= [[x00, x10, . . . , x(n−1) 0], [x01, x11, . . . , x(n−1) 1],

[x02, x12, . . . , x(n−1) 2], . . .].

Since join takes arguments of type

(α matrix ) matrix = (((α list ) stream) list ) stream ,

it is tempting to use trans to switch the occurrences of stream and list that are

underlined in this type expression, and define join as the following composition,
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where for compactness, I have written αLSLS , etc., in place of types such as

(((α list) stream) list ) stream:

αLSLS αLLSS αLS
trans∗ concatL ? concatS

where concatL ? concatS = concatL∗ · concatS = concatS · concatL∗∗ is a combina-

tion of the concatenation functions concatL on finite lists and concatS in streams.

Unfortunately, this definition is wrong, because the use of concatS fails to take into

account the requirement that the result should be arranged in order of increasing

total cost.

To reflect this requirement faithfully, we need an additional component: the

function diag :: (α stream) stream → (α list ) stream , defined by

diag ((x:xs):xss) = [x]:(zipWith (:) xs (diag xs)).

For example,

diag [[x00, x01, x02, . . .], [x10, x11, x12, . . .], [x20, . . .], . . .]

= [[x00], [x01, x10], [x02, x11, x20], . . .].

This function takes a stream of streams, which we can think of as a two-dimensional

infinite array, and arranges the elements into a stream of finite lists, each list

corresponding to a diagonal of the two-dimensional array.

It is worth asking why this idea of diagonalization is not sufficient on its own:

why do we not retain the idea that a multi-function returns a simple lazy stream

of results, but define the composition operator so that it uses diagonalization? We

might perhaps put

g ∧ f = concat · diag · g∗ · f.
The answer becomes clear if we consider the effect of taking f = choose and

g = test n ∧ choose, so that f chooses one number, and g chooses a second number

in all ways that complete the factorization of n. If f chooses a number that is

not a factor of n, then g will vainly search forever for a way of completing the

factorization, and the result will be divergence; if f chooses a factor of n, then g

will find the complementary factor before diverging. Thus (g∗ · f) [ ] is the following

stream of streams:

[[1, 6]:⊥, [2, 3]:⊥, [3, 2]:⊥,⊥,⊥, [6, 1]:⊥,⊥,⊥, . . .]

If we now apply diag to this, the result is a stream of lists that diverges after the

first element: [[1, 6]]:⊥. This happens because the model based on streams cannot

deal with infinite failure except by diverging: there is no way to represent the cost

of a computation in the answers it returns.

Returning to the model based on matrices, we can combine trans and diag to

obtain a definition of the function join that does suit our purposes: we define it as

the composition

αLSLS αLLSS αLLLS αLS
trans∗ diag (concat · concat)∗
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x

y

z

Fig. 3. The region x + y + z = const.

We hoped to find that the composition operator ∧′ defined in terms of this join

is associative, but unfortunately, this turns out not to be true. Each finite list in the

result returned by h ∧ g ∧ f contains all solutions with a given total cost x + y + z,

where x, y and z are the costs devoted to computing f, g and h respectively. We

can picture this set of solutions as a triangle { (x, y, z) | x + y + z = const } in

positive 3-space (see figure 3). Both h ∧ (g ∧ f) and (h ∧ g) ∧ f contain an element

that lists all the solutions in this triangular region, but they present these solutions

in different orders, corresponding to two different ways of cutting the region into

strips; the figure shows the strips used in h ∧ (g ∧ f).

4 Replacing lists by bags

The solution to this small difficulty is simple: we must agree not to care in what order

solutions of equal cost are presented, and we can do this by replacing finite lists with

finite bags of type α bag . If f :: α → β, we use the notation f� for the corresponding

function α bag → β bag , and we write union for the function (α bag) bag → α bag

that is analogous to concat on lists. One acceptable implementation of bags would

be to represent them by finite lists, ignoring the order of elements in the list. In

this case, f� would become f∗ again, and union would be implemented by concat;

two lists that represented bags would, however, be considered equal if one was a

permutation of the other.

If we make the change from lists to bags, then join does become associative, in

the sense that join · join = join · join�∗. To prove this, we need three lemmas about

the interaction between the auxiliary functions trans and diag that we used to define

join .

Lemma A concerns the interaction between trans and union . If we have a value

of type ((α stream) bag) bag , we can use take the union of the bag of bags to obtain

a single bag of streams, then we can use trans to turn this into a stream of bags.
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Alternatively, we can use trans twice on the original value, then use union on the

result; and the final answer is the same either way:

trans · union = union∗ · trans · trans�.

This equation can also be represented by the following commutative diagram:

αSBB

αBSB

αBBS

αSB

αBS

union

trans�

trans

trans

union∗

The truth of this lemma can be seen by trying a small example, and it is easily

proved by induction.

Lemma B governs the interaction between two instances of diag , and can be seen

as a highly modified assertion that diag is associative:

union∗ · diag · trans∗ · diag = union∗ · diag · diag∗.

The basic pattern diag · diag = diag · diag∗ is modified first by the need for an

intervening trans to make the types come out right, then by the need to compose

union∗ to both sides; this is needed to avoid the problem illustrated in figure 3. This

lemma is represented by the following commutative diagram:

αSSS αSBS αBSS

αBBS

αBSS αBBS αBS

diag trans∗

diag∗

diag

union∗
diag union∗

Lemma C concerns a different interaction between trans and diag:

union∗ · diag · trans∗ · trans = union∗ · trans · diag�.
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This is shown by the following commutative diagram:

αSSB αSBS αBSS

αBBS

αBSB αBBS αBS

trans trans∗

diag�

diag

union∗
trans union∗

Like Lemma A, these lemmas can be proved by simple inductions.

The three lemmas, together with some standard laws, suffice to prove the associa-

tivity of join . The laws in question are that ∗ and � are functors, in the sense that

(g · f)∗ = g∗ · f∗ and (g · f)� = g� · f�, and that truly polymorphic functions like

diag are natural transformations, in the sense that for any function f,

diag · f∗∗ = f�∗ · diag ,

as represented in the following commutative diagram:

(α stream) stream (β stream) stream

(α bag) stream (β bag) stream

f∗∗

diagα diagβ

f�∗

The functors ∗∗ and �∗ that appear in this equation are determined by the type of

diag . If a polymorphic function t : α T → α T ′ is a natural transformation, then

it is easy to show that t∗ : (α T ) list → (α T ′) list is also a natural transformation;

this fact is used several times in the proof. Finally, the proof requires us to make six

applications of the associative law for union , that union · union = union · union�. By

applying the functor ∗ to both sides of this equation, we obtain

union∗ · union∗ = union∗ · union∗∗,

which we refer to as (1) below.

We now turn to the associativity of join , i.e., to the equation

join · join = join · join�∗,

or equivalently,

union∗ · union∗ · diag · trans∗ · union∗ · union∗ · diag · trans∗
= union∗ · union∗ · diag · trans∗

· union∗�∗ · union∗�∗ · diag�∗ · trans∗�∗.

The complete proof is shown as a diagram in figure 4. Each cell of the diagram

is labelled with the reason why it commutes: the notation A∗ denotes a copy of
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α(BS)3 αBSB2S2 αBSB3S αBSB2S α(BS)2

αB2S2BS αB2SBS2 αB2SB2S αB2SBS

αB3S3 αB3SBS

αB4S2 αB3S2 αB2S2

αB5S αB4S αB3S

αB4S

αB4S2 αB5S

αB3S2 αB4S αB3S

αB3SBS αB4S2 αB5S αB4S

αB2SBS αB3S2 αB4S αB3S αB2S

α(BS)2 αB2S2 αB3S αB2S αBS

trans∗ diag union∗ union∗

trans∗�∗ trans�∗∗ trans��∗ trans�∗

trans∗

trans∗ union∗

diag�∗

trans∗∗ trans�∗

trans∗
diag

trans∗

diag∗

union∗∗ union∗∗

diag diag

union�∗ union�∗

union∗

union∗

union∗

union∗diag

union∗

union∗∗ union�∗

union∗

diag union∗

trans∗ diag union∗
union∗∗ union�∗ union∗

union∗�∗ union�∗∗ union��∗ union�∗
union∗

union∗�∗ union�∗∗ union��∗ union�∗ union∗
trans∗ diag union∗ union∗

[trans∗]

[diag ]

[union∗]

A∗

A∗

C

B

[diag ]

(1)

(1)

[diag ]

[diag ]

(1)

(1)

(1)

[trans∗] [diag ] [union∗]

(1)

Fig. 4. Associativity of join .

lemma A in which ∗ has been applied to both sides, and a notation like [union∗]
refers to the fact that union∗ is a natural transformation. It is instructive to try this

proof as a benchmark for automatic or interactive theorem proving software. The

frequent “changes of direction” in the argument pose a problem for programs based

on algebraic simplification, whilst the author’s implementation of the Knuth–Bendix

completion procedure enters an infinite computation, but with the right guidance

quickly produces a set of rewrite rules sufficient to prove the desired result.
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5 In conclusion

This definition of an associative composition operator for breadth-first search fits

into a broader algebraic theory of search strategies for logic programming, which

the author and Silvija Seres have begun to investigate in Spivey and Seres (2000).

In addition to the operator ∧′, which behaves like the ‘and’ of logic programming,

there is an ‘or’ operator defined by

(f ∨′ g) x = zipWith (++) (f x) (g x),

and together they enjoy a number of algebraic properties, including a distributive

law. There is a function true :: α → α matrix and a function false :: α → β matrix ,

defined by

true x = [[x]]:repeat [[ ]]

false x = repeat [[ ]],

where [[ ]] denotes the empty bag, and [[x]] denotes a bag containing just x. The

function true is a unit element for ∧′, and false is a unit element for ∨′ and a zero

for ∧′.
The families of operators that satisfy these properties form a category, in which

the model of search that produces the search tree for a logic program is an initial

object. Morphisms in this category give various searching functions on these trees,

showing how the same results can be obtained in a compositional fashion without

forming the search tree explicitly.

The benefits of this theory include a compositional semantics for logic program-

ming, in which the meaning of a predicate p ∧ q is defined in terms of the meanings

of p and q, rather than in terms of executions in which the effects of p and q

are mingled (Seres et al., 1999; Spivey and Seres, 1999). This semantics is able to

support transformation of logic programs by algebraic rewriting. Its chief attrac-

tion is that it provides a uniform framework within which ordinary unification and

constraint-based programming can be treated alike.
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