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Abstract

Many gravity driven flows can be modelled as homogeneous layers of inviscid fluid with
a hydrostatic pressure distribution. There are examples throughout oceanography, met-
eorology, and many engineering applications, yet there are areas which require further
investigation. Analytical and numerical results for two-layer shallow-water formulations
of time dependent gravity currents travelling in one spatial dimension are presented. Model
equations for three physical limits are developed from the hydraulic equations, and nu-
merical solutions are produced using a relaxation scheme for conservation laws developed
recently by S. Jin and X. Zin [6]. Hyperbolicity of the model equations is examined in
conjunction with the stability Froude number, and shock formation at the interface of the
two layers is investigated using the theory of weakly nonlinear hyperbolic waves.

1. Introduction

A gravity current consists of one fluid flowing within another when this flow is driven
by relatively small density differences between the fluids. Gravity currents are primar-
ily horizontal occurring as either top or bottom boundary currents or as intrusions at
some intermediate level, although there are important examples in oceanography, met-
eorology and elsewhere in which these currents have distinct vertical components. A
thorough description of the numerous and various manifestations of gravity currents
has been completed by Simpson [14].

The vast majority of the theoretical work on gravity currents from the time of von
K&rm&n [9] up to Benjamin [1] and right on through the 1980s, treated the gravity
current as steady, existing in either an inertia-buoyancy balance or, at later stages
in the flow when the bottom gravity current had thinned out, in a viscous-buoyancy
balance. A notable exception was the work by Hoult [7] in which governing equations
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were established and subsequently solved rather than seeking a balance of forces. His
solution was obtained in terms of a similarity variable so that the derived relationships
are valid only once sufficient time has elapsed after the release of a fixed volume of
fluid, for the initial geometry of the volume to be irrelevant. One of the model systems
to be presented here has been subjected to a similarity analysis in an earlier paper [3]
and these similarity solutions will be used as a comparison with computed solutions.

The plan of this paper is as follows. In Section 2 we formulate the system of
equations prescribing both mass and momentum balance in each layer together with
the coupling between layers that results from buoyancy forces acting on a sloping
density interface. We then specialize these equations to describe three distinguished
limits of interest. These are the weak stratification limit [3] and the limits of a thin
lower or upper layer. Section 3 describes the application of a numerical scheme for
conservation laws [8] to both the general equations and the three physical limits.
This numerical scheme is second order, non-oscillatory, converges to the correct
weak solution for conservation laws and is straightforward to implement in this case.
In Section 4 the model systems are examined in light of recent results of Hoff [6]
concerning invariant regions associated with systems of conservation laws. We find
that the region of hyperbolicity for our weak stratification model is invariant, and
that it coincides with the region of subcritical flow depending on the stability Froude
number as defined by Lawrence [10]. Section 5 is devoted to a discussion of shock
formation at the density interface and Section 6 contains a few concluding remarks.

2. The Model Equations

The physical configuration of our two-layer fluid system is depicted in Figure 1. The
fluids are assumed inviscid and of constant density, and we neglect the effects of both
the Coriolis force and surface tension at the interface. In Figure 1, r)(x, t) represents
the displacement of the upper surface from its undisturbed state, u = (u, w) is the
fluid velocity for plane flow in Cartesian coordinates with position vector x = (x, z),
H is the mean total depth, h(x, t) is the thickness of the lower fluid, and p\, p^ (with
P\ < Pi) represent the stably stratified densities of the upper and lower fluid layers
respectively.

Employing the standard scaling arguments of shallow water theory based upon the
smallness of the aspect ratio [13] we find the horizontal velocities, U\ in the upper
layer and u2 in the lower layer, to be independent of height so that u]t2 = «i,2(*. O>
the pressure field to be hydrostatic, and the dimensional governing equations to be

du, du, dr,
+ " + * 0 ( 2 I )
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FIGURE 1. The two-layer fluid model.
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du2
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dt ox
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,dh

(2.2)

(2.3)

(2.4)

In deriving these equations we have employed the usual kinematic conditions at the
free surface and the interface, with closure being achieved by invoking continuity of
the hydrostatic pressure field across the interface. The reduced gravity appearing in
(2.3) is defined by g' = (A> - P\)g/p2-

Equations (2.1)-(2.4) are often referred to as the hydraulic equations and are
equivalent to those given in [10]. In addition, these equations may be regarded
as a generalization of those derived in [2] for the two-layer fluid model: our equations
do not make any restrictions on the overall height of the two fluid layers, and as such
the surface deflection term r) is retained.

2.1. Weak-Stratification Model We render equations (2.1) to (2.4) nondimensional
by using a scaling that focuses on the nonlinear internal gravity wave processes. To
this end we introduce nondimensional quantities signified by a tilde according to

= Hh, (2.5)
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where L is a horizontal length scale and T a time scale which are chosen so that their
ratio is ^/g'H. Under this advective scaling the nondimensional equations arising
from substituting (2.5) into (2.1) to (2.4), are written in conservation form as

I «

hu2

= 0, (2.6)

where the tildes have been dropped for notational convenience. The nondimensional
equations (2.6) are now in a form similar to those for the three-layer model derived in
[4], once the appropriate reduction to two layers has been made.

To achieve our weak-stratification model we neglect terms O(g'/g) in (2.6) on the
assumption that density differences are small (that is, the system is Boussinesq) to
write the equations

du, du.\ dn

d
— [ui + h(u2 -
dx

du2

= 0 ,

du2 dn dh

and

(2.7)

(2.8)

(2.9)

(2.10)

If we invoke the zero mass flux condition at x = 0, we may integrate (2.8) to produce
the condition of no net mass flux,

(1 -h)ut +hu2 = 0.

The condition of no net flux of linear momentum,

(1 - h)u\ + hu\ + n + \h2

(2.11)

(2.12)

can also be produced via the following manipulation. The sum of (2.7).multiplied by
(1 — h), (2.9) multiplied by h and (2.10) multiplied by u2 — ux gives

d
— [(1 -
dt d

al 1

hu2]

dx

dx

9

dx
dh

(2.13)
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Utilizing (2.11) and integrating the result then produces the desired result of equation
(2.12). It is interesting to note that equations (2.11) and (2.12) show that r) < 0 and
u i = — u2 whenever h = 1/2.

The lower layer dynamics can then be written in terms of the two partial differential
equations (2.9) and (2.10) where (2.9) can be expressed as

du2 ( dri\ du2 ( dn\ dh

with r) given by (2.12). For later reference, we denote the weak stratification equations
as (2.11) and (2.12) with u2 replaced by u and equations (2.10) and (2.14) written in
conservation form as

2.2. Shallow-Layer Models We can use our previous work as a guide in developing
a scaling suitable for thin lower and upper layers. In dimensional variables, the zero
mass and momentum flux conditions (2.11) and (2.12) can be expressed as

(H -h)ut+hu2 = 0 (2.16)

and

HUI £ £ =0. (2.17)
H-h ° ' 2H

We do not necessarily know that these relations hold exactly in the limit of interest
but we will use them as a scaling guide under the assumption that the balances they
represent are reasonable.

Suppose we assume that h(x,t) ~ h0 and take D = O(H — h0). Here, D is not
defined explicitly in terms of known variables, but rather as an equivalence class of
relations to avoid choosing several different scales for the following analysis. Using
this notation, we find that in order for the balances in (2.16) and (2.17) to hold we
must have

'J = ° —77 - u2 = O I J——- , and M, = O —./——- . (2.18)

Then, from the lower-layer continuity equation (2.4), we have that the horizontal
length and time scales must be in the relation

(2.19)
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Quantities that play a role in subsequent developments are the two fractional depth
parameters defined by

S = £ and € = ^ . (2.20)

Based on the above scaling we now nondimensionalize equations (2.1) to (2.4)
according to the new variables

= hoh, r) == (^\^ (2.21)

The equations of motion are then found by substituting (2.21) into (2.1) to (2.4) and
dropping the tildes. These are

^+«,£! +4^0, (2.22)
at ox ox

dt dx dx dx g dx

and

^ + ^-(hu2) = 0. (2.25)
dt dx

System (2.22) to (2.25) has three parameters, S, e, and g'/g. The weakly stratified
model of Subsection 2.1 is recovered by taking S ~ e = 0(1) and
0 < g'/? « !• The leading-order equations for the thin lower layer are obtained
from (2.22) to (2.25), for 0 < 6 <£ 1,8 = 0(1), and are

5 7 (2.26)
dt dx dt dx

and

"37"

3M,

~dT +

du2
hU2~dx~

dr, _
dx

dh
+ d~x

n
u,

= o,

dh
~dt~

dh
Yt

3M,

"37"

a
+ Yx{

= 0,

' I I I .

Equations (2.26) determine the motion of the upper layer and are linear whereas
equations (2.27) for the thin lower layer are fully nonlinear. This is to be expected as
linear momentum is to be (at least approximately) conserved so that only comparatively
small velocities will be generated in the "thick" upper layer by the motion of the "thin"
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dense bottom layer. The complete dynamics in this case can then be resolved by first
solving the system (2.27) written in conservation form as

+ f J W (2.28)
dt \h) dx \ hu2 )

and using these results in

u, = -hu2, r) = -\h2 - hu\. (2.29)

For a thin upper layer, the balances (2.22) to (2.25) suggest a rescaling of our
variables according to

h = l-Sh, tj = Sti, («i,«2) = «(«i, «2). (2-30)

As before, when the transformation (2.30) is substituted into (2.22) to (2.25) and the
tilde notation suppressed, the leading order equations for € = 0(1) and 0 < i « 1
become

3M, 9J?

dx dx

and

drL_dh_^d_n_ J_h d_U2_
dx dx gdx~u' dt + dx " a K 5 }

As seen for the case of the thin-lower layer equations, we have a nonlinear system
(2.31) for the layer of interest written in conservation form as

dt\TlJ 8 \ 7?M J

together with the algebraic relations

h = (l - £• j IJ and u2 = - ( l - - J i}«, (2.34)

for determining the lower-layer dynamics.
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3. Numerical Results

Numerical results for the various systems in Section 2 are achieved using a relax-
ation scheme for conservation laws as described in [8]. The scheme approximates a
given system of conservation laws with a nonhomogeneous linear hyperbolic system
containing a small dissipative correction. The main advantage of this method is the
straightforward application to an arbitrary system of conservation laws. The relaxa-
tion schemes are formally valid for flux vectors f which may not be strictly hyperbolic
or of mixed type. Second-order accuracy is achieved along with convergence to the
correct weak solutions and the removal of oscillations at the trailing or leading edge
of a shock [8].

For a one-dimensional general system of conservation laws,

^ + i i ^ = O, (j,/)eRxR+,u€r,f(o)eR", (3.1)
dt dx

the relaxation system to be solved is defined as

5 + ^ = 0, veR", ^ + A ^ = -i(v-f(u)), (3.2)
dt dx dt dx £

where 0 < e is a small constant and A = a\ is a diagonal matrix such that 0 < a e K.
The system is dissipative provided that the condition

k2 < a, X = max |A.,(u)| (3.3)
\<i<n

holds, where A, (u) is an eigenvalue of the Jacobian matrix f (u).
Here the numerical method used is a second-order total variation-diminishing

Runge-Kutta splitting scheme with Van Leer's slope limiter [11] to solve (3.2). This
scheme has the correct zero relaxation limit so that as e —> 0 this discretization
becomes a second-order approximation to the original system (3.1). The largest dif-
ficulty with this numerical scheme can now be seen as the predetermination of the
constant matrix A and its effect on determining the numerical grid sizes to satisfy the
CFL condition

v^<l, • (3.4)
n

where k is the uniform time step and h is the uniform grid width for the spatial variable
x. Ideally, the constant a should be chosen as small as possible while satisfying (3.3)
to minimize computing time. For the calculations, a uniform spatial grid width of
h = 0.01 was used. The parameter a was chosen to satisfy (3.3) and the uniform time
step k then picked according to (3.4) with CFL number approximately 0.5. For all
calculations, s = 10~" or 10~10 and the difference here was inconsequential.
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FIGURE 2A. Comparison of solutions to the full equations (2.6) with solutions to the weak-stratification
equations (2.11) at non-dimensional time 3 for ho = 0.3.
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FIGURE 2B. Comparison of solutions to the full equations (2.6) with solutions to the weak-stratification
equations (2.11) at non-dimensional time 3 for h0 = 0.5.

https://doi.org/10.1017/S0334270000012352 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012352


44 P. J. Montgomery and T. B. Moodie [10]

0.5 1.5
X

g'/g=0.2 —
a7g=0.i . . . . .

g7g=0.05
Weak Stratification

2.5

FIGURE 2C. Comparison of solutions to the full equations (2.6) with solutions to the weak-stratification
equations (2.11) at nondimensional time 3 for h0 = 0.7.

FIGURE 2D. Comparison of solutions to the full equations (2.6) with solutions to the weak-stratification
equations (2.11) at nondimensional time 3 for h0 = 0.9.

https://doi.org/10.1017/S0334270000012352 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012352


[11] Results for two-layer flow 45

For the numerical calculations the problem to be considered in the remainder of this
section is that of the sudden release of a rectangular shaped area of fluid at rest into a
half-space region of less dense undisturbed fluid. The boundary conditions consist of
a rigid wall at the left (x = 0) and undisturbed fluid in the semi-infinite region to the
right.

The initial conditions are implemented for a constant value x0 as

M,(X,0) = 0, H2(JC,0) = 0, r)(x,0)=0, (3.5)

ut AX \ho f o r x x o ,
h(x,0) = \ (3.6)

[0 for* > x0,
and for all calculations, x0 was chosen to be the constant 1.

The boundary conditions at the wall x = 0 can be determined from the governing
equations (2.1) and are written for t > 0 as

«, (0,0 = 0, a2(0,0 = 0,

| ^ ( 0 , 0 = 0 , and °* (0.0 = 0. ^
dx dx

Boundary conditions for v are determined [8] as v(x, 0) = f (u(x, 0)), with the cor-
responding initial conditions given by v(0, 0 = f (u(0, 0) or the gradient conditions
3v 3u
— (0, 0 = f'(u(0, 0) — (0, 0 as applicable.
OX OX

To investigate the region of validity of the weak-stratification model and provide
a check on the numerical scheme, numerical solutions to (2.6) are plotted for various
values of g'/g in Figure 2 along with solutions to (2.15). For convenience, equations
(2.6) are referred to as the full equations and (2.15) as the weak-stratification equations.
The interface height profiles h(x, t) are shown at a single time since these are the most
easy to compare quantities.

Figures 2A to 2D are in good agreement with results produced in [3] by another
numerical method. As expected, solutions of the full equations approach solutions of
the weak stratification equations as g'/g ->• 0. For Figures 2A and 2B, the gravity
current quickly slumps from the initial state (3.6) to a curve which begins to take the
form of the similarity solution. For Figures 2C and 2D, rear shocks have formed. This
difference in the interface height is due to the increased initial values h0 = 0.7,0.9,
and the high backflow velocity u t which may interact with the endwall to produce this
effect [3]. For h0 < 0.5 this shock formation was not observed numerically, and this
matter will be addressed in Section 5.

To investigate the thin lower-layer model, solutions to the thin lower-layer equations
(2.28) are plotted in Figure 3 along with solutions to the full equations for varying
values of h0. The calculations are performed with a = 75 for the full equations and
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FIGURE 3. Comparison of solutions to the full equations (2.6) for g'/g = 0.05 with solutions to the
thin lower-layer equations (2.24) at nondimensional time 3 for /io = 0.1,0.2, 0.3 and 0.4.

a = 4 for the thin lower layer. As expected, the agreement is good for the thin
lower-layer region where h0 < 0.2.

For larger values of h0 the solutions become different in character, as the thin
lower-layer equations do not capture the rear shock, which develops in the same way
as for the weakly stratified case in Figures 2C and 2D. As seen in Figure 4, this
disagreement is more pronounced for h0 > 0.5, which is expected since the upper
layer begins to interact with the lower layer and the endwall, as h0 increases, thus
removing the assumption that the layers are essentially decoupled. The importance of
h0 = 0.5 is investigated further in Section 5.

To examine solutions to the thin upper-layer equations (2.33) the scaling (2.30)
must be taken into account in the initial conditions (3.5) and (3.6). Here, the initial
condition used is the sudden release of a rectangular block of light fluid into an
undisturbed region of heavier fluid. This is given by equations (3.5) with the initial
interface height given by

h(x, 0) = (3.8)

The boundary conditions (3.7) are unchanged.
If the parameter S is fixed, the scaling (2.30) suggests that the initial condition for
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g/g=0.05 —
thin lower layer

FIGURE 4. Comparison of solutions to the full equations (2.6) for g'/g = 0.05 with solutions to the
thin lower-layer equations (2.24) at nondimensional time 3 for h0 = 0.5,0.6 and 0.7.

the thin upper-layer variable h is given by

h(x,0) =
h0 for x < x0,

0 for x > x0.
(3.9)

In (3.9) h0 = (1 - ho)/S. Using (2.34) in (2.33) gives the thin upper-layer equations
written without the tildes as

dt \h) ^ dx
+ P\h/fh\ _ Q
hui )

(3.10)

Solutions to these equations are plotted in Figures 5A to 5C for various values of
%'Ig and pre-scaled initial height h0. The interface height 1 — 8h0 is shown and the
calculations were done with a = 25. The upper-layer gravity current slows down with
increasing values of g'/g as more momentum is transferred to the lower layer. As
well, the solutions with the lowest value of g'/g in Figure 5 A approach the similarity
solution profile in the shortest time.

As a check on the numerical solutions of the thin-layer equations, the numerical
solutions are compared to the similarity solutions described in [3] and [7]. For the
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thin lower layer the similarity solution is given by

[14]

" 2 =

(3.11)

where xf is the front position. The thin upper-layer equations also have a similar-
ity solution for the initial condition (3.9) which is given using the thin upper-layer
variables by
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FIGURE 5A. Solutions to the thin upper-layer equations (3.10) at nondimensional time 3 for h0

0.8,0.9, 0.95 with g'/g = 0.05.
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FIGURE 5B. Solutions to the thin upper-layer equations (3.10) at nondimensional time 3 for h0

0.8,0.9,0.95 with g'/g = 0.2.
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FIGURE 5C. Solutions to the thin upper-layer equations (3.10) at nondimensional time 3 for ha

0.8,0.9, 0.95 with g'/g = 0.5.
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u2 = •

(3.12)

Some similarity solutions for the interface height h are plotted using the thin-layer
variables (2.21), in Figures 6A and 6B with x0 = 1. Although at first glance these
seem to indicate a large variation between the solutions, the graphing scale used is
such that the actual disagreement is less than 0.3% of the total scaled height of the
two layers.

Another check on the numerics is given by the speed of the leading discontinuity or
shock which can be calculated via the Rankine-Hugoniot jump conditions [15]. For a
discontinuity propagating with speed d, these jump conditions for a conservation law
of the form (3.1) are given by

+) - f(u") = d(u+ - iT) (3.13)

where u+, u are the constant values on the right and left sides respectively of the
discontinuity. For the full equations (2.6) the initial conditions (3.5) and (3.6) give
these constants as

u + = u = (3.14)

Condition (3.13) is then a system of 4 equations in the5unknowns d, ux ,r) ,u2, and
h~. However, the fourth equation is simply h~u^ = dh~ so that for nonzero h~ the
shock speed is given by d = MJ. This condition is easily verifiable numerically, and
was found to be in good agreement with the computed values of MJ.

For the three-model systems in conservation form, the condition (3.13) can give a
relation for the shock speed and the interface height. For example, equation (2.28)
for the thin lower layer gives d = V2/i~ while for the weak-stratification equations
(2.15), we have

1 -hr
2hr (3.15)

which concurs with the difference in shock speeds seen in Figures 3 and 4.
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6 8 10 12 14

FIGURE 6A. Numerical and similarity solutions to the thin lower-layer equations (2.24) at nondimen-
sional time 30 for h0 = 0.2.
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FIGURE 6B. Numerical and similarity solutions to the thin upper-layer equations (3.10) at nondimen-
sional time 30 for h0 = 0.9 and g'/g = 0.2.
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4. Hyperbolicity

[18]

All of our model systems can be written in the conservation form

3u 3f(u)
1 — = 0

dt dx
(4.1)

by defining appropriate vectors u of the dependent variables and the vector-valued
flux functions f : R2 —> R2 for each of the systems examined in Section 2. For the
weakly stratified, thin lower-layer, and thin upper-layer models, the corresponding
state vectors are

u = , and u =
I h I

respectively. The associated flux functions for (4.2) are

hu2 -"

(4.2)

f =
hu

, f =
hu2

, and f = • (4.3)

The two conservation equations for the thin-layer models are strictly hyperbolic for
all physical values of the state variables. This is not the case for the weakly-stratified
equations. The eigenvalues associated with (4.1) for the weakly stratified case are A,*,
where

Tli
(4.4)

The system is hyperbolic where A.* are real. This region of hyperbolicity, labeled S,
is shown in Figure 7.

We shall show that this region is invariant [6] in the sense that a vector U(JC, t)
satisfying the Cauchy problem (4.1) with the initial condition u(x, 0) = UoOO has the
property that u(x, t) e 5 for all (x, t) whenever u(x, 0) = Uo 6 5.

Associated with the eigenvalues A* of (4.4) are the left and right eigenvectors 1 and
r given by

1± =
h{\-h)

-h)2-u2Yl\

and

±2(1 - -h)2 -u2u2]

1
h(l-h)

_-uh ± Jh(\-h)[(\-h)2-u2}_

(4.6)

,(4.7)
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where these have been chosen to satisfy the orthonormality conditions

I*-1^ = 0, l ± r t = l. (4.8)

It can be shown that the characteristic fields are genuinely nonlinear [5] in that

grad,,^ • r* / 0 (4.9)

with the exception of a local linear degeneracy [5] about the state u = (0, 1/2).

- 1

FIGURE 7. Region of hyperbolicity for the weakly-stratified model (2.11).

Now, using a result from Hoff [6], for a system of two conservation laws with
genuinely nonlinear characteristic fields, we see that the region 5 in Figure 7 is
invariant if and only if 5 is convex and the normal to 35 is parallel to a left eigenvector
of f'(u) at each point of 35. Here the boundary 35 consists of three straight line
segments labeled with subscripts and defined as

35, = {(H,0) : - 1 <u < 1}, 352 = [(h, 1 - h) : 0 < h < 1}

and

353 = {(*, h - 1) : 0 < h < 1}. (4.10)

The outward normal vectors and left eigenvectors on these segments can be calculated

as

nlas, = [ 0 , - 1 ] ,
n|3S2 = 2-'/2[l, 1],

, = [0, 1],
= [1,1],

= [-1,1].

(4.11)
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In this case, it is clear that n\3Si is parallel to 1*1 as,, for j = 1, 2, 3 so that the region of
hyperbolicity 5 is invariant.

The hyperbolicity of the equations can also be examined via the stability Froude
number of the flow [10]. This is given for the dimensional equations (2.1) to (2.4) as

F2 = % - ^ . (4.12)

The solution to equations (2.1) to (2.4) is said to subcritical if F2 < Fc
2
rit where

Fc
2
rit is a function of the variables g'/g, H,h,r) and takes on values in the interval

1 < F%n < 2. For the weak stratification case F2
tit ~ 1 [10], so that the subcritical

flow here is defined by the condition F2 < 1.
In the nondimensional weak-stratification variables (2.5) with u2 replaced by u,

(4.12) becomes

i + g'n/g

Using the algebraic conditions (2.11) and (2.12) for u\ and r), the condition of sub-
critical flow can be expressed solely in terms of the lower-layer variables u,h as

= {\-h)2 A-^-M M + Lh(\-
- 1

(4.14)

In the weak stratification limit, for g'/g small, this result reduces to u2 < (1 — h)2

which is precisely the region of hyperbolicity depicted in Figure 7.

5. Shock Formation

From Section 3, the numerical solutions to the lower-layer and weak-stratification
equations are not calculated at large enough times so that the similarity solutions are
an accurate representation. For short times such as these, the interface sometimes
contains a characteristic hump for large enough values of h0, which moves to the right
and catches up to the front of the gravity current. The method of weakly-nonlinear
hyperbolic waves is used to examine the possibility that these smooth variations along
the interface may form a shock in sufficient time to be observable numerically.

We examine the Cauchy problem (4.1) with initial data given by u(x, 0) = Uo +
eu(x) representing a perturbation from the constant hyperbolic solution uo for a small
positive parameter s. For a vector u with two components, we look for a multiple-
scales expansion solution of the form [12]

u(x, t) = Uo + £ [CT+(0+, r)r+ + a~(</T, r)r~] + O(e2), (5.1)
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with the phase variables 0* = x — X^t, the slow time scale r = et, and X± and r*
the eigenvalues and right eigenvectors of f (Uo).

The scalar functions a± satisfy a decomposition of the initial condition given by

= a+(x, 0)r+ + a-(x, 0)r~

The expansion is uniformly valid for time scales 0(e~') if the two nonresonance
conditions

a* + T±a±a±' = 0 (5.3)

hold. In (5.3) the notation introduced is o± = da±/dx and a*' = 3CT±/a0±. The
constant terms F* are the interaction coefficients defined by

r ± = l ± -B(r ± , r ± ) , (5.4)

where, I* are the left eigenvectors of f (iio) and I^r*, r*) is a bilinear form found
from the Taylor expansion of f via

f(u) = f(uo) + f(uo)u + |B(u, u) + O(||u||3). (5.5)

For the case of smooth initial data, (5.3) suggests that shocks will form in a finite
time. The solutions are given implicitly [15] by

a±(4>±, T) = a±(s), <t>±=s + r V ( s ) r , (5.6)

which will be continuous until the breaking times tB which are given explicitly [15]
by

( 5 7 )

Thus the signs of both F* and a^' are important in predicting whether or not shocks
will form. This will be examined for the weakly-stratified equations and both the
thin-layer equations.

For the weakly-stratified equations in the form (2.15), using Uo = (0, h0) for
0 < h0 < 1, a short calculation gives the interaction coefficients as

h0 n-2hp\

o V 1 - *o / '
(5.8)
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CD
Q

FIGURE 8A. Time evolution of solutions to the weak-stratification equations (2.11) <
30
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FIGURE 8B. Breaking time as a function of initial height h0 for the weak-stratification equations (2.11)
with the assumption that min^ a,f'(£) ~ 1.
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Using the initial data decomposition (5.2) and the orthonormality requirement (4.8)

we see that for u(x) = (u(x),h(x)j we have

(5.9)

To interpret these results, we consider a right travelling wave corresponding to
k+ at the interface of the layers and determine the breaking time for a typical height
profile. From (5.7) and (5.8) we see that for 0 < h0 < 5, a shock will form in positive
time only for a0

+' < 0. Conversely, for | < h0 < 1 a shock will form in positive time
only for a0

+' > 0. In this latter case, a necessary condition for shock formation with
initial data decomposition (5.9) is then

(5.10)

Although not shown in Figure 2, the typical small variations in u allow equation
(5.10) to be replaced by the simpler restriction h! > 0. Summarizing, for h0 > \
we expect to see shock formation in a finite time for an increase in interface height
with increasing x. This can be seen in Figure 8A. Also, using a value of ft' = 1, the
relationship between breaking time and initial interface height is plotted in Figure 8B.

For the thin lower and upper-layer systems, a similar expansion procedure can be
carried out about a nonzero constant initial state. Here, the interaction coefficients do
not change sign and are easily found to be F* = 3/4. Shock formation in this case can
be analyzed similarly but is uncommon due to the usually low variation in interface
height.

6. Concluding Remarks

In this paper we have outlined the derivation of model equations for three distin-
guished limits in two-layer gravity current analysis. These are the weakly-stratified
case, and the cases of thin upper or lower layers. All of these cases were examined
numerically using a second-order relaxation scheme for conservation laws. This nu-
merical method is well suited to the hyperbolic calculations completed here, although
strict hyperbolicity is not necessary in theory [8]. For the weakly-stratified case, we
found an invariant region in phase space in which the equations were strictly hyper-
bolic, which coincided with the region given for subcritical flow in terms of a Froude
number. In the case of perturbations about a constant state, shocks may occur at the
interface of the fluids and the breaking times for these shocks have been derived.
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