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If f(x) is a polynomial with integral coefficients then
the integer r is said to be a residue of f(x) modulo an integer
m if the congruence

f(x) = r (mod m)

is soluble for x; otherwise r is termed a non-residue. When
m is a prime p, Mordell [4] has shown that the least non-
negative residue f of f(x) (mod p) satisfies

£<d pi/2 logp ,

where d is the degree of f(x) . When f(x) is a cubic he has
also shown that the least non-negative non-residue k of f(x)

(mod p) is=’<0(p1/2 log p) . It is the purpose of this note to dis-
cuss the distribution of the residues of the cubic f(x) (mod p) in
greater detail. To keep the notation simple we take £f(x) in the

form x3 + ax; no real loss of generality is involved, everything
3

we do for x3 + ax can be done for Ax + sz + Cx + D but at

the cost of complicating the notation. When a =z 0 (mod p),

f(x) = x3 and our results are well-known in this case. Henceforth
we assume that a # 0 (mod p) . Let

' p
(1) ' n, = z 1, (i=0,1,2,3)

Unless otherwise stated all constants implied by 0-symbols are
absolute.
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where N denotes the number of solutions x of
bo

(2) i x3 +ax = r (modp) .

It is well-known that for p > 3

-3 -3
(3) no=y (prEH -1y
(4) n2=(:‘3“a"')+1
and
Y -3 32,
(5) ny =g - (5)- 3638 - 3)

3 X .
Hence the number of residues of x + ax {(mod p), which is just
n, +n_+n is

1 2 37

p +0{1}, as p= .

il
w i

i . -3
(6) 3 (2p+ )
This tells us that, for large p , approximately two-thirds of the
integers

(7) 1,2,3,...,p

3
are residues of x + ax . We show that this is also true for
(8) 1,2,3,...,h

provided h is sufficiently large. More precisely we show that

the number of residues of x3 +ax in (8) is

(9) i— h+o(pt/? 10 p) .

A consequence of this is Mordell's estimate for k . In addition,

2

1 . . : s
as ‘g > PR it shows that the least pair of consecutive positive
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1/2
/ log p) .

residues is also O(p
In the proof of (9) (and later) we use Vinogradov's

method for incomplete character and exponential sums. This

requires the familiar Polya-Vinogradov inequality, namely,

p-1 h
(10) Z | Z elyx) |< p logp,
y=1 x=1

for p> 61, where e(t) denotes exp (ZTritp-1) . For the com-
plete sums involved we appeal to the general estimates of
Perel'muter [5]. These include the estimate of Carlitz and
Uchiyama [2], used by Mordell in [4], namely

P
(11) | = elix) |< (a-1)p1/%,

x=1

where d denotes the degree of the polynomial f, and Weil's
estimate [6] for the Kloosterman sum, i.e.,

p-1
(12) | e(ax + bx
x=1

1 1/2

) |<2p 7,

where x-1 denotes the inverse of x (mod p) and a, b #0
(mod p) . All these estimates are consequences of Weil's proof
of the Riemann hypothesis for algebraic function fields over a
finite field.

Analogous to (1) we set

h
(13) m, = z 1 (i=0,1,2,3) ,

r=
N_=i
r
so that we require m, + m2 + m3 . From [4] we have

(14) m, = 0(1)

and from Mordell's paper [4]
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(15) m, + Zmb2 + 3rn3 =h + O(pi/2 log p) ,

so that it suffices to determine rn1 . Now (2) has one solution

if and only if
- 4a3 - 27r

SO

h 3 2
_ 1 -4a” - 27r
my= g T (4= (T o)

Applying Vinogradov's method and appealing to Perel'muter's
results [5] (or to Weil's estimate (12) for the Kloosterman sum)

we have
h 3 2
-4a - 27r 1/2
zZ () =0 4 log p)
r=1 P
so that
(16) m, =-;-h +0p2% 10g p) .

We now consider pairs of consecutive residues of
3
x + ax (mod p) . Define nij (0<i, j<3) by
p
(17) n,. = z
N r=1
r: Nr+1=‘]

so that the number of such pairs is just

(18) = n,.
.. 1)
1<i, j<3

From (4) B, 1'12‘j = 0(1) for 0<i,j<3. Also it is easy to
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>
so it suffices to evaluate n, ., , n and

h =
show that n13 1'13'1 11 13

Nag - We begin by showing that
P 1/2
(19) n11—4+0(p ) -
We have
P
n = Z 1
11 r=1
2 3 2
- - 2 - 27(r+
(Aalo2ir ., (2d4a 2i(r#t) oy
P p
o) 3 2 3 2
1 -4a - 27r -4a - 27(r+1
=Z = {1- (——)}{1-( ( ))}+0(1)
r=1 P P
P P 3 2
_ B _ 1 > (-4a - 27r ) - 1 > (-4a - 27(xr+1) )
4 4 r=1 p 4 r=1 P
P 3 2 3 ' 2
+ 1 = ((—4a - 27r )-4a - 27(r+1)") ) +0(1) .
4 r=1 P

The first two character sums are 0(1) and the last one by

Perel'muter's results is < 3p1/2 in absolute value, since
3 3

(-4a - 27r2)(—4a - 27(r+1)2) is not identically (mod p) a

square in r .

We next prove that

. B 1/2
(20) n, . 12 + 0(p ) .
We do this by showing that
P 1/2
== +0 .
(21) n,, +2n,, +3n13 > (p ")
(20) follows since we know nii and n12 . We have
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) 1j . ’
=0 . J j=0 r=1 r=1 r+l
N =1 N =1
r by
Nr+1 J
p p
= = = 1
r=1 x=1
(—4a -2ix )=-1 x 4+ax = r+
p
.1 ! (1 (-4a3--27(x3+ax-1)Z
2 x=1 b
_p_t 1 (—4a3--27g:x3+ax-1)Z
T2 2 p

)} +0(4)

)+ 0(1) .

2.3 2 3
Now 27 (x +ax-1) + 108a 1is not identically (mod p) a square
in x as a #0 {(mod p) . Hence Perel'muter's work tells us

1/2

that the character sum is OC(p ) . This proves (21).

Finally consider

+ 2(1’112 +n21) + 3(n +n31) + 4n

e 13 22

This is just the number of solutions (x,y) of
3 3 _ ,
(x” +ax) - (y +ay)~- 120 {(modp).

By a result of Lang and Weil [3] this number is

1/2
p+O0(p ).
Hence
=2 g 1/2
(22) n33 = 3% + 0(p ).
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Thus the number of pairs of consecutive residues is

(23) 2p+op'?).

We conclude by calculating the number of pairs of residues

3
of x + ax (mod p) in (8). We define mij (0_<_i,j:_<_3) by

P
(24) m.,., = = 1.
r Nr+1=J

From (4) we have m,, , ij = 0(4) (0<i, j<3) and, much

as before, we can show that

_h 1/2
(25) m, =7+ 0p log p)
and
(26) m,,=m,_,, = .3 + O(pi/2 log p) -

13 31 12

The only difficulty is the estimation of m We find it necessary

337
to appeal to a recent deep estimate of Bombieri and Davenport [1]
for an exponential sum of the type

P
= e(f(x))
x, y=1
¢(x, y) = 0(mod p)

where @#(x,y) is absolutely irreducible (mod p) . We have

+ +
m,, + Z(m1 +m21) + 3(m1 +m31) +4m__ + 6(1rn2 m32) 9m3

2 3 22 3 3
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g PoRop
== Z = Z N N H e(t(r-s))
Porst s=1 t=t T
h P y P-1 P h
= ‘; rz-l;i Nr Nr+1 +; tfi { 1.?__1 Nr Nr’+'1 e(tr)} {5.7‘_:,1 e(-st)} .
Hence
h 1/2
myy 2 tmy ) L+ 9my - (e 0T )]
| = |
< max Z NN e(tr) logp .
1<t<p-1 r=1 T
Now
P
= Nr Nr+1 e(tr)
r=1
1 p P P p p
=== Z = 2 e {u(f(x)-r)} = Z e {v(f(y)-r-1)} e(tr)
2
p r=1 x=1 u=1 y=1 wv=1
1 p P
=3 = e {uf(x) + vi(y) - v} £ e {(t-u-v)r}
P x%Vvuv=1l r=1
1 P
== b e {(t-v){(x) + vi(y) - v}
P %y, v=1
1 p P
= = = e {ti(x)} Z e {vif(y)- f(x)- 1)}
P x,y=1 y=1
P
= z e(tf (x))
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As f(y) - f(x) - 1 1is absolutely irreducible (mod p), by the
mentioned result of Davenport and Bombieri, this sum in absolute

value is less than 18pi/Z +9 . Hence
__h 1/2
(27) m,, =3 +0(p7 " logp)

and the number of pairs of consecutive residues in (8) is

(28) % + 0% 10g p) .

This implies that the least triple of consecutive positive residues

of x3 + ax (mod p) is also O(pi/2

log p).

In conclusion we would like to say that a number of
modifications of this work are possible; for example the results
obtained can be extended to arbitrary arithmetic progressions
without difficulty and also to quartic polynomials. Finally we
offer the following

CONJECTURE: For a fixed positive integer k the
number Nk(a) of blocks of k consecutive residues of
x + ax (mod p) satisfies
Nk(a)

lim = (—i—)
p~e P

k

for each k, uniformly in a #0 (mod p) .

This has been verified for k=4 and 2.
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