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LOCAL ANALYSIS OF FRAME MULTIRESOLUTION ANALYSIS
WITH A GENERAL DILATION MATRIX

HonG OH KM, RAE Young KiM AND JAE KuN LiM

A multivariate semi-orthogonal frame multiresolution analysis with a general integer
dilation matrix and multiple scaling functions is considered. We first derive the
formulas of the lengths of the initial (central) shift-invariant space V; and the next
dilation space Vi, and, using these formulas, we then address the problem of the
number of the elements of a wavelet set, that is, the length of the shift-invariant
space Wy := V) © V,. Finally, we show that there does not exist a ‘genuine’ frame
multiresolution analysis for which Vg and V) are quasi-stable spaces satisfying the
usual length condition.

1. INTRODUCTION

The orthonormal dyadic multiresolution analysis of L?(R) with a single scaling func-
tion was introduced by Mallat and Meyer in order to construct an orthonormal wavelet
basis of L?(R) [17, 18]. Benedetto and Li considered the dyadic semi-orthogonal frame
multiresolution analysis of L?(R) with a single scaling function, and successfully ap-
plied the theory in the analysis of narrow band signals [1]. We refer to [9] for the
basic definitions and properties of frames and Riesz bases of a Hilbert space. Unlike
the multiresolution analysis of Mallat and Meyer, where there always exists a wavelet
set consisting of a single element whose dyadic dilations of the integer translates form
an orthonormal basis of L?(R), the multiresolution analysis of Benedetto and Li has a
wavelet set whose cardinality may be one or two [14]. The exact definition of a wavelet
set of a multiresolution analysis is found in Section 3. The characterisation of the dyadic
semi-orthogonal frame multiresolution analysis with a single scaling function admitting
a single frame wavelet whose dyadic dilations of the integer translates form a frame for
L?(R) was obtained, independently, by Benedetto and Treiber by a direct method [2],
and by Kim and Lim by using the theory of shift-invariant spaces {14]. The dyadic mul-
tivariate generalisation (with a single scaling function) of the multiresolution analysis of
Mallat and Meyer were considered by several authors. See {3], for example. Lim, among
other things, addressed the problem of the cardinality of a wavelet set in the setting of
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the dyadic multivariate frame multiresolution analysis with a single scaling function [16],
and Kim and Lim gave an analysis of dyadic multivariate frame multiresolution analysis
with multiple scaling functions [15]. As the theory and applications of wavelets evolve,
many authors considered more general dilations other than the dyadic ones (for example,
[8]).

In this paper we consider a multivariate frame multiresolution analysis with a general
integer dilation matrix and multiple scaling functions by extending the method and results
of [15]. We first analyse the local dimension of the initial, that is, central, shift-invariant
space Vy and the next dilation space V] of the multiresolution analysis. Using this, we
derive the formulas of the lengths of the shift-invariant spaces V4 and Vi, and address the
problem of the number of the elements of a wavelet set. Finally, we show that there does
not exist a ‘genuine’ frame multiresolution analysis for which V4 and V; are quasi-stable
spaces satisfying the usual length condition by applying the local dimension analysis and
the ergodicity of the dilation matrix (Theorem 9). This result improves Theorem 3.9 in
[15] in the sense that we do not presuppose that the spectrums of V5 and V] coincide.

The organisation of this paper is as follows: Preliminary discussions on the dilation
matrix and shift-invariant spaces and the definition of the multiresolution analysis we
consider are given in Section 2, and our main results, along with an analysis of the local
dimensions of V; and V}, are given in Section 3.

2. PRELIMINARY DISCUSSION

Suppose that M is a d x d integer dilation matrix, that is, the entries of M are
integers and the moduli of the eigenvalues of M are strictly greater than one. It is
known that the order of the quotient group Z¢/MZ? is |det M| [8, Lemma 2]. Let
T¢ := R?/Z? denote the d-dimensional torus which is identified with [~1/2,1/2)¢. For
z € RY let z(mod1) denotes the standard representative of z + Z¢ in [—1/2,1/2)%
Suppose that T is a d x d invertible matrix with integer entries such that the mod-
uli of the eigenvalues of T are all different from 1. Then the map T : T¢ — T¢,
defined via Tz := Tz (mod1), is ergodic [20, Theorem 0.15, Corollary 1.10.1]. We
note that M! = M*, where t and * denote the transpose and the adjoint of a matrix
with complex entries, respectively. For notational convenience we let Q := Z¢/MZ¢
and let Q* := Z4/M*Z% Let D := Dy : L*(RY) —» L%(R?) denote the unitary di-
lation operator defined via Df(z) := |det M|"/2f(Mz). For y € RY, T, : L*(R%)
— L?(R?) denotes the unitary translation operator such that T, f(z) := f(z — y). In
this paper we adapt the following definition of multiresolution analysis.

DEFINITION 1: {Vi}xez is said to be a frame multiresolution analysis if each Vj is
a closed subspace of L?(R?) such that:
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(1) ViCVin, keZ;
(2) U Vi =L*RY), N Vi ={0}
K€z kez
(3) D) =Vin, k€Z;
(4) There exists a finite set of scaling functions ® C Vp such that {T,p : o

€ Z% ¢ € ®} is a frame for Vj.

Various examples and applications of multiresolution analyses are found in the ref-
erences cited in Section 1.

The following form of the Fourier transform is used throughout this paper: for
fe LMRY N LA(R?) and t € RE f(t) = Jga f(z)e™?™4% dx, where - denotes the d-
dimensional real inner product. It is, of course, extended to be a unitary transform from
L?*(R?) onto L?(R?) via the Plancherel theorem.

Suppose that {f; : 1 < 7 € n} is a finite family of elements of a Hilbert space
‘H with an inner product (-,-). We frequently use the following simple observation:
dimspan{f; : 1 < ¢ < n} = rank((fi, fj))1<ijcn-

Our analysis uses the theory of (multi-integer) shift-invariant spaces developed in
{4, 5, 6, 10, 11, 12, 19] and the references therein. We briefly review the theory and
uses the existing results freely. A closed subspace S of L?(R?) is said to be shift-invariant
if T, f € S whenever f € S and o € Z%. If & C L%(RY), then S := S(®) :=span{T,¢: o
€ Z%} is a shift-invariant space. In this case, ® is called a generator of S. If ® is finite,
then S is called a finite shift-invariant space. We write S = S(yp) instead of S({¢}) if
® = {¢} is asingleton. In this case, we call S a principal shift-invariant space. It is known
that any shift-invariant space has a countable generator. The length of a shift-invariant
space is defined to be

len S := inf{#®: S = S(),® c L*(R%)},

where # denotes the cardinality. Let fjj; be the sequence (f(z+a))a <z¢ Which is in £2(Z¢)
for almost every z € T%. If A C L2(R¢),z € T¢, then we let A := {fj. € &(Z9): f
€ A}, which is called the fibre of A at z. It is a subspace of ¢2(Z¢) if A is a shift-invariant
space. The following theorem is used frequently in our discussion.

THEOREM 2. ([4, 6, 10, 11]).) Let S be a closed, not necessarily shift-invariant,
subspace of L?>(R?%) and ® a countable subset of L*(R?). Then S = S(®) if and only if
ﬁlz € 5pan{{); : ¢ € @} for almost every z € T9 and for each f € S.

The spectrum of a shift-invariant space is defined to be o(S) := {z € T¢: §j, # {0}}.
A finite subset ® of L?(R?) is said to be a quasi-stable generator for the shift-invariant
space S(®) if, in addition to the condition that the family of the integer translates of ®
is a frame for S(®), dimspan{@j; : ¢ € ®} = #® or 0 for almost every z € T¢ If
is a quasi-stable generator, then there is a convenient ‘local’ formula for the orthogonal
projection onto S(®) [4, 19]. The stable generator is a quasi-stable generator such that
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the spectrum of the shift-invariant space it generates is T¢. It turns out that if ® is a
stable generator, then the family of the integer translates of ® is a Riesz basis for S(®)
[4, 19). We say that a shift-invariant space S is quasi-stable, if dim Sz = n or 0 for
some non-negative integer n almost everywhere. It is said to be stable if dim §||, =n
almost everywhere. It is known that a quasi-stable/stable shift-invariant space has a
quasi-stable/stable generator {4, 19)].

We need the following results:

THEOREM 3. ([4].) For a shift-invariant subspace S of L*(R?)
len S = ess-sup{dim §]|z :z € T¢}.
THEOREM 4. ([4].) LetS, be a shift-invariant subspace of a shift-invariant space

S and let S, := S© S;. Then S, is also a shift-invariant subspace of S and :S\'”x
= §1||,_. @ Sy, for almost every z € T¢.

Suppose that S = S(®) for a finite set ® := {1, 2, ...,¢n}. Then the n xn matrix
G(x) := Go(z) := ((@'“z,¢7||1>l2(zd))1gi,jgn

is the Gramian of ® at £ € T9. Let A(z), A\*(z) and A(z) denote the smallest eigenvalue,
the smallest non-negative eigenvalue and the largest eigenvalue of G(z), respectively.

THEOREM 5. ([4, 6, 19].) The family of the integer translates of ® is a frame
for S if and only if there exist positive constants A and B such that A < A*(z) < A(z)
< B for almost every z € o(S). It is a Riesz basis for S if and only if A < A(z) € A(z)
< B for almost every = € T. Moreover, A and B are a pair of frame (Riesz) bounds of
the frame (Riesz basis), respectively.

3. FRAME MULTIRESOLUTION ANALYSIS

Suppose that.{V;},ez is a frame multiresolution analysis. Then there exists a set of
scaling functions ® := {¢; : 1 < i < n} C L¥*(RY) such that {Top; : @ € Z%,1 < i < n}
is a frame for V;. We may assume that the length of V; is n. Then Vj = S(®) and
Vi := D(V,). Let

G(2) := Ga(z) = ((Piyjer Pije) e2(29)) 1000
be the Gramian of ® at z € T¢.

Since ; € V; for each 1 < ¢ £ n, and since {DT,; : ane Z¢,1 < i < n} is a frame

<

for Vi, there exist a;; € £2(Z%),1 < i,j < n,such that p; = 3~ Y aij(a)DTap;. Hence
j=1 a€Zd

n

Plz) =D > ai(a)| det M| 2e=2mie M In g, (p+=1g)

j=1 a€2d

= zmij(M'_lm)@(M'_lI),

=1
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where
my;(z) = Z | det M|™2a,5(a)e™?"* ¢ L*(T9).
A
For z € T9, let
m(z) := (m,-,-(:z:))lsi.ﬁ.sﬂ
and
3(z) := ($1(z), Pa(2),- -, Palz))".
Then
1) &(z) = m(M*'2)d(M*'z).

This m, called a mask of the multiresolution analysis, may not be unique since { DT,y; :
a € Z%1 < i < n} is only assumed to be a frame, not necessarily a Riesz basis. Note
that DTy, = T, D for y € R?. Since each v € Z? can be written uniquely as vy = Ma+ S
for some o € Z4 and B € Q,

{DT,pi:v€2%1<i<n}={TuDTsp; € 2%, € Q,1 < i < n}.
Hence Vi = S(IT), where
(2 I:={DTppi: f€Q,1<i<n}.

This implies that the length of the shift-invariant space V; is less than or equal to
n|det M|. Since Vp is a shift-invariant subspace of V}, lenV;, > len V3 = n. There is
an example of a frame multiresolution analysis in which the length of V) is that of V.
See Example 6 below. Let W, denote V; © V;, and let W; := D¥(W,),j € Z. Then
Definition 1 implies that L*(R?) = @ W;. W, is a shift-invariant space by Theorem 4.
jeZ
Since W is a subspace of V;, the lerjlegth of W) is also less than or equal to n|det M|. It
cannot be zero. If it were zero, then Wy = {0}; hence V4 = V;. Definition 1 implies that
L*(R) = Vp = S(®). This contradicts a result in [7] which states roughly that there are
no frames of L?(R?) consisting of the translates of a finite number of functions. Since
W, is a finite shift-invariant space, there is a finite set ¥, called a wavelet set, such that
Wy = S(¥). We may assume that the integer translates of the elements of ¥ form a
frame for W, [5, 19]. Then, obviously, {D'Toy : j € Z,a € Z%,9 € ¥} is a frame for
L?(R?). Since the minimal cardinality of such ¥ is len Wy, the (minimal) number of the
elements of a wavelet set is len Wj,.
Note that, for 8 € Z¢ and z € T¢,

(DTsp:)"(z) = | det M|~ /2e= 28 (M9, (M),

(DTpp5)(), = |det M|~ Y2e=2mib (M7 2) (e""’"ﬁ'(M'-l")@(M‘_l(x + a)))aszd.
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Hence, for almost every z € T¢,
171”1 = span{( ~2nif(M*~ta) g5 (M‘ Na +a))) fe@,1<ig n},

3) f/:,”: = span{((ﬁ(z+ a))aezd :1<ig n}

= span{i(mij(M'_l(z +a))@;(M* Yz + a))) (11 g n}

= a€Zd
For B* € Q* define Pg- : £2(Z%) — 3(Z%) via

a(a), if o€ B+ M*Z4,

(P-a)(@) i=
g 0, otherwise.

Then 2(Z%) = @ Ps-(£*(2%)). Define, for z € T% 1< i < n, B* € Q*,
B*e€Q*

azip = Pp ((@, (MY + a)))aezd) :

Notice that a;; g is the ‘up-sampled’ version of @” Me-1(z48+), that is,

(4) azi8-(8" + M*a) = @i“M‘ Yz+8" )( @), at€ z¢,
(5) azz,ﬂ‘( )—0 ’)’ ¢ﬁ‘+M*Zd
Therefore

(6) “az,z',ﬂ‘ “¢2(z) = H@||M“1(x+5‘)“tz(z)-

We also have -

(6—21ri/3.(M“’a)¢i(Mt—l(m+a))) _ Z 8—27riﬂ~(M""Y')az,i’7,.

a€Z
,7U eQ‘

Let b, ; g be the right-hand side of the above equation. Then, for afixedz € T4, 1,< i < n,
we have the following matrix relation:

(e~2miB-(M™ =ty

(bzi8)beq = " peareq (Ozin)eqr-

Recall that, for any 8 € Z%, the map v* — e~2"#(M*"'7") j5 a character of the discrete

group G*. Hence the sum 5 e~ 2" (M"7'7) i5 the order of Q*, which is | det M|, if the
T EQ”
map is the identity character, and the sum is 0 if the map is not the identity character

since the only discrete multiplicative subgroups of T are the groups of the p-th roots of
unity ([20, Theorem 0.14]). Using this observation, it is easy to see that

_ aq. e—1, : —1gey
(e IBAMT ))ﬂEQ,'r‘EQ‘ (ezm(M ’ )n)«S‘GQ‘.rIGQ = ldetMIIldet M|-
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In particular, for each 1 € i < n and z € T, span{b,;5 : B € Q} = span{az;, : 7
€ @*}. This shows that:

(7) 171”1 =span{az;, 1 <i<n,y €@}

The 1-periodicity of the mask m and (4) imply that:

‘70le = Span{z Z mi; (M (z + a*))agja 1 <P < n}

i=1 a*€Q"

Note that, for almost every z € T¢, dim \71”1 equals the rank of the following 7| det M|
x n|det M| matrix

((az,i,a‘ ) a:,j,ﬁ‘)cr’ ) (i,a*),G,B8*)"
If we order the indices suitably, then (4) and (5) imply that the matrix is the block

diagonal matrix

diag(G’(M“l(r + a')))

Q'EQ"
Recall that rankG(M"‘l(x + a‘)) = dim %||M.-1(z+a.) for each a* € Q*. Hence, for
almost every z € T¢,

(8) dim ‘71||x = Z rank G(M*"!(z + ")) = Z dim Voyare-1(z4ac)-

a*eQ* areQ*

A direct calculation shows that

G(z) = Z m(M* Yz +a"))G(M*Hz + o"))m(M*(z + o))"
a*eQ”

Hence, for almost every z € T¢,

(9)  dim Vpy, = rank Y m(M Tz +0))G(M Tz +a”))m(M Tz + o))
a*eQ*

EXAMPLE 6. Let us first consider a dyadic univariate frame multiresolution analysis
with a single scaling function, that is, d = n = 1 and Q = Z/2Z = {0,1}. Therefore
Df(z) = 2Y2f(2z). Let V; be a Paley-Wiener space such that {f € L*(R) : supp(f)
C [~a,a]} with 0 < a < 1/4, and let V; := D7(Vp), j € Z. Then it is easy to see that
{Vi}jez is a frame multiresolution analysis ([14]). Obviously, Vo = §(X(-a,q)), Where V
denotes the inverse Fourier transform. Hence, Vi = S(X[24,24)) is @ shift-invariant space
of length 1. This can be proved by using (8). Note that G(z) = X[-a,q+z(z) for z € T.
Hence, Vl”z = X(=aa+2(2/2) + X(-aa)+2(2/2 + 1/2) for z € T. Hence dim ‘71”,, =1 for
T € {~2a,2d], and dim ‘71”1 = 0 for z € T\[~2a, 2a]. Therefore len ¥} = 1 by Theorem 3.
Recall that lenV; is less than or equal to n2¢ = 2. In this example, the length of V; is
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that of V. Notice, however, that V; is a strict subspace of V]. It is now easy to see that
lenV, = 2.

The above example can be directly extended to the case where d > 1, n = 1 and
M = 2I;. Then Q = Q* = {(e1,62,...,64) : & = Oor 1}. For the sake of simplicity,
define & := Xx( /a1, Vo' = S(p) and V# := Di(V{). Then {V/}jez is a frame
multiresolution analysis. We show that len V{# = 1. (8) implies that, for almost every
z € T¢ = [-1/2,1/2)4, dim V¥, is the number of the sets 20(V{') — 5* 4224, 8 € @*, to
which z belongs. A direct calculation shows that = belongs only to 20(V{§) + 2Z¢ since
a(V§) = (—1/4,1/4)%. Therefore len V{2 = 1 by Theorem 3. Since V{ is a strict subset
of V@, lenW, = 1.

Suppose, temporarily, that {To¢; : @ € Z,1 < i € n} is a Riesz basis of V;. Then
rank G(z) = n for almost every T € T¢ [4]. Hence dim 171”: = n|det M| for almost
every z € T¢. Since Vle = V0||z & 1’/‘70”z almost everywhere by Theorem 4, dim WO”:
= n(|det M| — 1) almost everywhere. Therefore len W, = n(|det M| - 1) by Theorem 3.
Benedetto and Li [1] introduced the following concept: a frame multiresolution analysis
admit a standard (frame) wavelet set if len Wy < n(| det M| — 1). The characterisations
of dyadic frame multiresolution analyses admitting standard wavelet sets were given in
[2, 14], independently, for d = n = 1, and in [16] for d > 1 and n = 1. Combining (8)
and (9) with Theorems 3 and 4 yield the following general result on the admittance of a
standard wavelet set.

THEOREM 7. The frame multiresolution analysis {V;}jcz admits a standard
wavelet set if and only if, for almost every z € T¢,

Z rank G(M*7}(z + a*))
a*€Q*
— rank z (M*7'z+a"))G(M*Hz + a”))m(M* "z + "))’
a"€Q"
(10) < n(|det M| - 1).

We now recover the previous results on the admittance of a standard wavelet set [2, 14,
16]. Suppose that n = 1 and M = 2. Then Q = Q* = Z¢/2Z? = {(e1,¢2,...,€4) : &
=0or 1}, |[det M| = 2%, & = {p} C L*(R?), G(z) = @izl (z4)> and m(z) is also a
scalar. (10) becomes

2

<291,

Z I‘ank”<P||(:+a) /2

2(Zd
a€Q £

21 + a
e T kZ‘ ‘ ”<P||(z+a)/2

where the rank of a scalar is the rank of the 1 x 1 matrix with the scalar entry. Notice
that the left-hand side of the above inequality is less than or equal to 2¢. Hence the frame
multiresolution analysis admits a standard wavelet set if and only if the left-hand side is
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not 2¢ almost everywhere. The condition, now, is equivalent to the condition that E is
of zero Lebesgue measure with

. 2
E:= {x € T: Pija+o)2 # 0 for each a € Q’Z\m(z - 0‘)‘ = 0}'
a€eQ

2

This recovers Theorem 5 of [16] (see also [2, 14] for the univariate case).

We now observe a simple relationship between the spectrums of V; and V;.

LEMMA 8. o(W) = M*o(V,) (mod1).

PROOF: Suppose that z € o(Vp). Then @;, # 0 for some 7 by (3). There exist
y € T, a* € Z% such that M*z = y + a*. Now o* = 8* + M*y* for some * € Q* and
v* € Z4. (6) implies that

e #0.

Therefore, y = M*z — a* € o(V}) by (7). This shows that M*o(Vy) C o(V;). Suppose,
on the other hand, that z € o(V}). Then a,;4- # 0 for some 1 <7 < n and B* € Q* by
(7). Then @ijpre-1(z44+) # 0 by (6). Hence M*~'(z + f*) (mod 1) € (Vo) by (3). This
shows that o(V1) C M*a(V;) (mod 1). 0

Recall that a frame is a Riesz basis if it is, in a certain sense, ‘globally’ irredundant,
that is, irredundant in the norm topology [9, 13]. Suppose that ® is a quasi-stable
generating set for Vy. Then the family of the integer translates of ®, which is a frame
for Vp, is ‘locally’, that is, fibre-wise, irredundant. We now show that: if ¢ and II are

lay.ip: llezczey = || Bippae—1aa-2-e - raeve 489y | 2y = 1 Bigia—re|

quasi-stable generating sets for Vj and Vi, respectively, then the integer translates are
‘globally’ redundant. This result improves Theorem 3.9 [15] in the sense that we do not
presuppose that o(Vy) = o(V}). More precisely, we show:

THEOREM 9. Suppose that {V;};ez is a frame multiresolution analysis. If V and
V, are both quasi-stable, and if len V; = | det M|len Vy, then they are actually stable. In
particular, o(Vp) = o(V;) = T4.

PROOF: We may assume that Vp = §(®) with & := {1, 2,...,¥n} a quasi-stable
generator for V5. Then Vi = S(II) with IT as in (2). Since #I1 = lenV}, Il is a generator
for V; with minimal length. Hence II is actually a quasi-stable generator for V; (5,
Theorem 3.12]. The length condition on V; and (8) show the following fact: If z € o(V}),
then, for each a* € Q*, there exists § o € Z¢ such that M* " (z +a*) + 8, - € o(Vo). It
is obvious that for a fixed set of coset representatives @* the set of ‘folding’ multi-integers
{bz,0- : T € 0(V1),@* € Q} is a finite set. This implies that o(Vp) contains a measurable
subset of Lebesgue measure lM"‘(a(Vl) +a)| = ‘M"‘(U(Vl))l. We show that these
subsets of o(V;) do not overlap. Suppose that M* " (z+o*)+y = M*"}(y+B*)+6 € T¢
forz,y € o(Wi),a*, 8* € Q*,7,6 € Z°. Thenz—y = B*—a*+M*(—1). Since the right-
hand side is an integer and since z,y € T¢ = [-1/2,1/2)¢, z —y = 0. Hence o’ = $* and
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vy = 4. Therefore o(Vp) contains #Q* = | det M| number of subsets of Lebesgue measure
IM"I(U(VI))’. This shows that |o(Vo)| > [o(V1)|. Since Vo C Wi, o(Vo) C o(V1).
Consequently, o(Vp) = o(V1). Lemma 8 implies that o(Vy) = M*o(Vp) (mod1). The
ergodicity of the map z € T¢ — M*z (mod1) in T? implies that o(V;) is either T¢ or
empty. Since it is not empty, it is T¢. 0

The length condition in Theorem 9 is indispensable by Example 6.
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