LOCAL ANALYSIS OF FRAME MULTIRESOLUTION ANALYSIS WITH A GENERAL DILATION MATRIX

HONG OH KIM, RAE YOUNG KIM AND JAE KUN LIM

A multivariate semi-orthogonal frame multiresolution analysis with a general integer dilation matrix and multiple scaling functions is considered. We first derive the formulas of the lengths of the initial (central) shift-invariant space V_0 and the next dilation space V_1 , and, using these formulas, we then address the problem of the number of the elements of a wavelet set, that is, the length of the shift-invariant space $W_0 := V_1 \ominus V_0$. Finally, we show that there does not exist a 'genuine' frame multiresolution analysis for which V_0 and V_1 are quasi-stable spaces satisfying the usual length condition.

1. INTRODUCTION

The orthonormal dyadic multiresolution analysis of $L^2(\mathbb{R})$ with a single scaling function was introduced by Mallat and Meyer in order to construct an orthonormal wavelet basis of $L^2(\mathbb{R})$ [17, 18]. Benedetto and Li considered the dyadic semi-orthogonal frame multiresolution analysis of $L^2(\mathbb{R})$ with a single scaling function, and successfully applied the theory in the analysis of narrow band signals [1]. We refer to [9] for the basic definitions and properties of frames and Riesz bases of a Hilbert space. Unlike the multiresolution analysis of Mallat and Meyer, where there always exists a wavelet set consisting of a single element whose dyadic dilations of the integer translates form an orthonormal basis of $L^2(\mathbb{R})$, the multiresolution analysis of Benedetto and Li has a wavelet set whose cardinality may be one or two [14]. The exact definition of a wavelet set of a multiresolution analysis is found in Section 3. The characterisation of the dyadic semi-orthogonal frame multiresolution analysis with a single scaling function admitting a single frame wavelet whose dyadic dilations of the integer translates form a frame for $L^2(\mathbb{R})$ was obtained, independently, by Benedetto and Treiber by a direct method [2], and by Kim and Lim by using the theory of shift-invariant spaces [14]. The dyadic multivariate generalisation (with a single scaling function) of the multiresolution analysis of Mallat and Meyer were considered by several authors. See [3], for example. Lim, among other things, addressed the problem of the cardinality of a wavelet set in the setting of

Received 10th September, 2002

The first and the second author were supported by KRF-2002-070-000004.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

[2]

the dyadic multivariate frame multiresolution analysis with a single scaling function [16], and Kim and Lim gave an analysis of dyadic multivariate frame multiresolution analysis with multiple scaling functions [15]. As the theory and applications of wavelets evolve, many authors considered more general dilations other than the dyadic ones (for example, [8]).

In this paper we consider a multivariate frame multiresolution analysis with a general integer dilation matrix and multiple scaling functions by extending the method and results of [15]. We first analyse the local dimension of the initial, that is, central, shift-invariant space V_0 and the next dilation space V_1 of the multiresolution analysis. Using this, we derive the formulas of the lengths of the shift-invariant spaces V_0 and V_1 , and address the problem of the number of the elements of a wavelet set. Finally, we show that there does not exist a 'genuine' frame multiresolution analysis for which V_0 and V_1 are quasi-stable spaces satisfying the usual length condition by applying the local dimension analysis and the ergodicity of the dilation matrix (Theorem 9). This result improves Theorem 3.9 in [15] in the sense that we do not presuppose that the spectrums of V_0 and V_1 coincide.

The organisation of this paper is as follows: Preliminary discussions on the dilation matrix and shift-invariant spaces and the definition of the multiresolution analysis we consider are given in Section 2, and our main results, along with an analysis of the local dimensions of V_0 and V_1 , are given in Section 3.

2. PRELIMINARY DISCUSSION

Suppose that M is a $d \times d$ integer dilation matrix, that is, the entries of M are integers and the moduli of the eigenvalues of M are strictly greater than one. It is known that the order of the quotient group $\mathbb{Z}^d/M\mathbb{Z}^d$ is $|\det M|$ [8, Lemma 2]. Let $\mathbb{T}^d := \mathbb{R}^d/\mathbb{Z}^d$ denote the d-dimensional torus which is identified with $[-1/2, 1/2)^d$. For $x \in \mathbb{R}^d$, let $x \pmod{1}$ denotes the standard representative of $x + \mathbb{Z}^d$ in $[-1/2, 1/2)^d$. Suppose that T is a $d \times d$ invertible matrix with integer entries such that the moduli of the eigenvalues of T are all different from 1. Then the map $\widetilde{T} : \mathbb{T}^d \to \mathbb{T}^d$, defined via $\widetilde{T}x := Tx \pmod{1}$, is ergodic [20, Theorem 0.15, Corollary 1.10.1]. We note that $M^t = M^*$, where t and * denote the transpose and the adjoint of a matrix with complex entries, respectively. For notational convenience we let $Q := \mathbb{Z}^d/M\mathbb{Z}^d$ and let $Q^* := \mathbb{Z}^d/M^*\mathbb{Z}^d$. Let $D := D_M : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ denote the unitary dilation operator defined via $Df(x) := |\det M|^{1/2}f(Mx)$. For $y \in \mathbb{R}^d$, $T_y : L^2(\mathbb{R}^d)$ $\to L^2(\mathbb{R}^d)$ denotes the unitary translation operator such that $T_yf(x) := f(x - y)$. In this paper we adapt the following definition of multiresolution analysis.

DEFINITION 1: $\{V_k\}_{k \in \mathbb{Z}}$ is said to be a frame multiresolution analysis if each V_k is a closed subspace of $L^2(\mathbb{R}^d)$ such that:

286

(1) $V_k \subset V_{k+1}, \quad k \in \mathbb{Z};$

(2)
$$\overline{\bigcup_{k\in\mathbb{Z}}V_k} = L^2(\mathbb{R}^d), \ \bigcap_{k\in\mathbb{Z}}V_k = \{0\};$$

- (3) $D(V_k) = V_{k+1}, \quad k \in \mathbb{Z};$
- (4) There exists a finite set of scaling functions $\Phi \subset V_0$ such that $\{T_{\alpha}\varphi : \alpha \in \mathbb{Z}^d, \varphi \in \Phi\}$ is a frame for V_0 .

Various examples and applications of multiresolution analyses are found in the references cited in Section 1.

The following form of the Fourier transform is used throughout this paper: for $f \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ and $t \in \mathbb{R}^d$ $\widehat{f}(t) := \int_{\mathbb{R}^d} f(x)e^{-2\pi i t \cdot x} dx$, where \cdot denotes the *d*-dimensional real inner product. It is, of course, extended to be a unitary transform from $L^2(\mathbb{R}^d)$ onto $L^2(\mathbb{R}^d)$ via the Plancherel theorem.

Suppose that $\{f_i : 1 \leq i \leq n\}$ is a finite family of elements of a Hilbert space \mathcal{H} with an inner product $\langle \cdot, \cdot \rangle$. We frequently use the following simple observation: dim span $\{f_i : 1 \leq i \leq n\} = \operatorname{rank}(\langle f_i, f_j \rangle)_{1 \leq i,j \leq n}$.

Our analysis uses the theory of (multi-integer) shift-invariant spaces developed in [4, 5, 6, 10, 11, 12, 19] and the references therein. We briefly review the theory and uses the existing results freely. A closed subspace S of $L^2(\mathbb{R}^d)$ is said to be *shift-invariant* if $T_{\alpha}f \in S$ whenever $f \in S$ and $\alpha \in \mathbb{Z}^d$. If $\Phi \subset L^2(\mathbb{R}^d)$, then $S := S(\Phi) := \overline{\operatorname{span}}\{T_{\alpha}\varphi : \alpha \in \mathbb{Z}^d\}$ is a shift-invariant space. In this case, Φ is called a generator of S. If Φ is finite, then S is called a finite shift-invariant space. We write $S = S(\varphi)$ instead of $S(\{\varphi\})$ if $\Phi = \{\varphi\}$ is a singleton. In this case, we call S a principal shift-invariant space. It is known that any shift-invariant space has a countable generator. The length of a shift-invariant space is defined to be

len
$$S := \inf \{ \# \Phi : S = \mathcal{S}(\Phi), \Phi \subset L^2(\mathbb{R}^d) \},\$$

where # denotes the cardinality. Let $\widehat{f}_{||x}$ be the sequence $(\widehat{f}(x+\alpha))_{\alpha\in\mathbb{Z}^d}$ which is in $\ell^2(\mathbb{Z}^d)$ for almost every $x \in \mathbb{T}^d$. If $A \subset L^2(\mathbb{R}^d), x \in \mathbb{T}^d$, then we let $\widehat{A}_{||x} := \{\widehat{f}_{||x} \in \ell^2(\mathbb{Z}^d) : f \in A\}$, which is called the *fibre* of A at x. It is a subspace of $\ell^2(\mathbb{Z}^d)$ if A is a shift-invariant space. The following theorem is used frequently in our discussion.

THEOREM 2. ([4, 6, 10, 11].) Let S be a closed, not necessarily shift-invariant, subspace of $L^2(\mathbb{R}^d)$ and Φ a countable subset of $L^2(\mathbb{R}^d)$. Then $S = S(\Phi)$ if and only if $\widehat{f}_{\parallel x} \in \overline{\text{span}} \{ \widehat{\varphi}_{\parallel x} : \varphi \in \Phi \}$ for almost every $x \in \mathbb{T}^d$ and for each $f \in S$.

The spectrum of a shift-invariant space is defined to be $\sigma(S) := \{x \in \mathbb{T}^d : \widehat{S}_{||x} \neq \{0\}\}$. A finite subset Φ of $L^2(\mathbb{R}^d)$ is said to be a quasi-stable generator for the shift-invariant space $\mathcal{S}(\Phi)$ if, in addition to the condition that the family of the integer translates of Φ is a frame for $\mathcal{S}(\Phi)$, dim span $\{\widehat{\varphi}_{||x} : \varphi \in \Phi\} = \#\Phi$ or 0 for almost every $x \in \mathbb{T}^d$. If Φ is a quasi-stable generator, then there is a convenient 'local' formula for the orthogonal projection onto $\mathcal{S}(\Phi)$ [4, 19]. The stable generator is a quasi-stable generator such that the spectrum of the shift-invariant space it generates is \mathbb{T}^d . It turns out that if Φ is a stable generator, then the family of the integer translates of Φ is a Riesz basis for $\mathcal{S}(\Phi)$ [4, 19]. We say that a shift-invariant space S is quasi-stable, if dim $\widehat{S}_{||x} = n$ or 0 for some non-negative integer n almost everywhere. It is said to be stable if dim $\widehat{S}_{||x} = n$ almost everywhere. It is known that a quasi-stable/stable shift-invariant space has a quasi-stable/stable generator [4, 19].

We need the following results:

THEOREM 3. ([4].) For a shift-invariant subspace S of $L^2(\mathbb{R}^d)$

 $\operatorname{len} S = \operatorname{ess-sup} \{ \dim \widehat{S}_{||x} : x \in \mathbb{T}^d \}.$

THEOREM 4. ([4].) Let S_1 be a shift-invariant subspace of a shift-invariant space S and let $S_2 := S \ominus S_1$. Then S_2 is also a shift-invariant subspace of S and $\widehat{S}_{||x} = \widehat{S}_{1||x} \oplus \widehat{S}_{2||x}$ for almost every $x \in \mathbb{T}^d$.

Suppose that $S = S(\Phi)$ for a finite set $\Phi := \{\varphi_1, \varphi_2, \dots, \varphi_n\}$. Then the $n \times n$ matrix

$$G(x) := G_{\Phi}(x) := (\langle \widehat{\varphi_i}_{||x}, \widehat{\varphi_j}_{||x} \rangle_{\ell^2(\mathbb{Z}^d)})_{1 \leq i,j \leq n}$$

is the Gramian of Φ at $x \in \mathbb{T}^d$. Let $\lambda(x), \lambda^+(x)$ and $\Lambda(x)$ denote the smallest eigenvalue, the smallest non-negative eigenvalue and the largest eigenvalue of G(x), respectively.

THEOREM 5. ([4, 6, 19].) The family of the integer translates of Φ is a frame for S if and only if there exist positive constants A and B such that $A \leq \lambda^+(x) \leq \Lambda(x)$ $\leq B$ for almost every $x \in \sigma(S)$. It is a Riesz basis for S if and only if $A \leq \lambda(x) \leq \Lambda(x)$ $\leq B$ for almost every $x \in \mathbb{T}^d$. Moreover, A and B are a pair of frame (Riesz) bounds of the frame (Riesz basis), respectively.

3. FRAME MULTIRESOLUTION ANALYSIS

Suppose that $\{V_j\}_{j\in\mathbb{Z}}$ is a frame multiresolution analysis. Then there exists a set of scaling functions $\Phi := \{\varphi_i : 1 \leq i \leq n\} \subset L^2(\mathbb{R}^d)$ such that $\{T_\alpha \varphi_i : \alpha \in \mathbb{Z}^d, 1 \leq i \leq n\}$ is a frame for V_0 . We may assume that the length of V_0 is n. Then $V_0 = \mathcal{S}(\Phi)$ and $V_1 := D(V_0)$. Let

$$G(x) := G_{\Phi}(x) := (\langle \widehat{\varphi_i}_{||x}, \widehat{\varphi_j}_{||x} \rangle_{\ell^2(\mathbb{Z}^d)})_{1 \leq i,j \leq n}$$

be the Gramian of Φ at $x \in \mathbb{T}^d$.

Since $\varphi_i \in V_1$ for each $1 \leq i \leq n$, and since $\{DT_{\alpha}\varphi_i : \alpha \in \mathbb{Z}^d, 1 \leq i \leq n\}$ is a frame for V_1 , there exist $a_{ij} \in \ell^2(\mathbb{Z}^d), 1 \leq i, j \leq n$, such that $\varphi_i = \sum_{j=1}^n \sum_{\alpha \in \mathbb{Z}^d} a_{ij}(\alpha) DT_{\alpha}\varphi_j$. Hence

$$\begin{split} \widehat{\varphi}_i(x) &= \sum_{j=1}^n \sum_{\alpha \in \mathbb{Z}^d} a_{ij}(\alpha) |\det M|^{-1/2} e^{-2\pi i \alpha \cdot (M^{*-1}x)} \widehat{\varphi}_j(M^{*-1}x) \\ &= \sum_{j=1}^n m_{ij}(M^{*-1}x) \widehat{\varphi}_j(M^{*-1}x), \end{split}$$

where

$$m_{ij}(x) := \sum_{\alpha \in \mathbb{Z}^d} |\det M|^{-1/2} a_{ij}(\alpha) e^{-2\pi i \alpha \cdot x} \in L^2(\mathbb{T}^d).$$

For $x \in \mathbb{T}^d$, let

$$m(x) := \left(m_{ij}(x)\right)_{1 \leq i,j \leq n}$$

and

$$\widehat{\Phi}(x) := \left(\widehat{\varphi}_1(x), \ \widehat{\varphi}_2(x), \ldots, \widehat{\varphi}_n(x)\right)^t.$$

Then

(1)
$$\widehat{\Phi}(x) = m(M^{*-1}x)\widehat{\Phi}(M^{*-1}x).$$

This *m*, called a *mask* of the multiresolution analysis, may not be unique since $\{DT_{\alpha}\varphi_i : \alpha \in \mathbb{Z}^d, 1 \leq i \leq n\}$ is only assumed to be a frame, not necessarily a Riesz basis. Note that $DT_{My} = T_y D$ for $y \in \mathbb{R}^d$. Since each $\gamma \in \mathbb{Z}^d$ can be written uniquely as $\gamma = M\alpha + \beta$ for some $\alpha \in \mathbb{Z}^d$ and $\beta \in Q$,

$$\{DT_{\gamma}\varphi_{i}: \gamma \in \mathbb{Z}^{d}, 1 \leq i \leq n\} = \{T_{\alpha}DT_{\beta}\varphi_{i}: \alpha \in \mathbb{Z}^{d}, \beta \in Q, 1 \leq i \leq n\}.$$

Hence $V_1 = \mathcal{S}(\Pi)$, where

(2)
$$\Pi := \{ DT_{\beta}\varphi_i : \beta \in Q, 1 \leq i \leq n \}.$$

This implies that the length of the shift-invariant space V_1 is less than or equal to $n |\det M|$. Since V_0 is a shift-invariant subspace of V_1 , $| \ln V_1 \ge |\ln V_0 = n$. There is an example of a frame multiresolution analysis in which the length of V_1 is that of V_0 . See Example 6 below. Let W_0 denote $V_1 \ominus V_0$, and let $W_j := D^j(W_0), j \in \mathbb{Z}$. Then Definition 1 implies that $L^2(\mathbb{R}^d) = \bigoplus_{j \in \mathbb{Z}} W_j$. W_0 is a shift-invariant space by Theorem 4. Since W_0 is a subspace of V_1 , the length of W_0 is also less than or equal to $n |\det M|$. It cannot be zero. If it were zero, then $W_0 = \{0\}$; hence $V_0 = V_1$. Definition 1 implies that $L^2(\mathbb{R}^d) = \bigcup_{j \in \mathbb{Z}} (0)$; hence $V_0 = V_1$. Definition 1 implies that $L^2(\mathbb{R}) = V_0 = S(\Phi)$. This contradicts a result in [7] which states roughly that there are no frames of $L^2(\mathbb{R}^d)$ consisting of the translates of a finite number of functions. Since W_0 is a finite shift-invariant space, there is a finite set Ψ , called a *wavelet set*, such that $W_0 = S(\Psi)$. We may assume that the integer translates of the elements of Ψ form a frame for W_0 [5, 19]. Then, obviously, $\{D^j T_\alpha \psi : j \in \mathbb{Z}, \alpha \in \mathbb{Z}^d, \psi \in \Psi\}$ is a frame for $L^2(\mathbb{R}^d)$. Since the minimal cardinality of such Ψ is len W_0 , the (minimal) number of the elements of a wavelet set is len W_0 .

Note that, for $\beta \in \mathbb{Z}^d$ and $x \in \mathbb{T}^d$,

$$(DT_{\beta}\varphi_{i})^{\wedge}(x) = |\det M|^{-1/2} e^{-2\pi i\beta \cdot (M^{*-1}x)} \widehat{\varphi}_{i}(M^{*-1}x),$$

$$(DT_{\beta}\varphi_{i})^{\wedge}_{||x} = |\det M|^{-1/2} e^{-2\pi i\beta \cdot (M^{*-1}x)} \left(e^{-2\pi i\beta \cdot (M^{*-1}\alpha)} \widehat{\varphi}_{i}(M^{*-1}(x+\alpha)) \right)_{\alpha \in \mathbb{Z}^{d}}.$$

[5]

Hence, for almost every $x \in \mathbb{T}^d$,

$$\widehat{V}_{1||x} = \operatorname{span}\left\{\left(e^{-2\pi i\beta \cdot (M^{*-1}\alpha)}\widehat{\varphi}_{i}\left(M^{*-1}(x+\alpha)\right)\right)_{\alpha\in\mathbb{Z}^{d}} : \beta\in Q, 1\leqslant i\leqslant n\right\},$$

$$(3) \qquad \widehat{V}_{0||x} = \operatorname{span}\left\{\left(\widehat{\varphi}(x+\alpha)\right)_{\alpha\in\mathbb{Z}^{d}} : 1\leqslant i\leqslant n\right\}$$

$$= \operatorname{span}\left\{\sum_{j=1}^{n} \left(m_{ij}\left(M^{*-1}(x+\alpha)\right)\widehat{\varphi}_{j}\left(M^{*-1}(x+\alpha)\right)\right)_{\alpha\in\mathbb{Z}^{d}} : 1\leqslant i\leqslant n\right\}.$$

For $\beta^* \in Q^*$ define $P_{\beta^*} : \ell^2(\mathbb{Z}^d) \to \ell^2(\mathbb{Z}^d)$ via

$$(P_{eta^{\star}}a)(lpha):=egin{cases} a(lpha), & ext{if } lpha\ineta^{\star}+M^{\star}\mathbb{Z}^d, \ 0, & ext{otherwise}. \end{cases}$$

Then $\ell^2(\mathbb{Z}^d) = \bigoplus_{\beta^* \in Q^*} P_{\beta^*}(\ell^2(\mathbb{Z}^d))$. Define, for $x \in \mathbb{T}^d, 1 \leq i \leq n, \beta^* \in Q^*$,

$$a_{x,i,\beta^*} := P_{\beta^*} \left(\left(\widehat{\varphi}_i \big(M^{*-1} (x + \alpha) \big) \right)_{\alpha \in \mathbb{Z}^d} \right).$$

Notice that $a_{x,i,\beta}$ is the 'up-sampled' version of $\widehat{\varphi}_{i||M^{*-1}(x+\beta^*)}$, that is,

(4)
$$a_{x,i,\beta^*}(\beta^* + M^*\alpha) = \widehat{\varphi}_{i||M^{*-1}(x+\beta^*)}(\alpha), \quad \alpha \in \mathbb{Z}^d,$$

(5)
$$a_{x,i,\beta^*}(\gamma^*) = 0, \quad \gamma^* \notin \beta^* + M^* \mathbb{Z}^d.$$

Therefore

(6)
$$\|a_{x,i,\beta^*}\|_{\ell^2(\mathbb{Z})} = \|\widehat{\varphi}_i\|_{M^{*-1}(x+\beta^*)}\|_{\ell^2(\mathbb{Z})}$$

We also have

$$\left(e^{-2\pi i\beta \cdot (M^{*-1}\alpha)}\widehat{\varphi}_i(M^{*-1}(x+\alpha))\right)_{\alpha\in\mathbb{Z}}=\sum_{\gamma^*\in Q^*}e^{-2\pi i\beta \cdot (M^{*-1}\gamma^*)}a_{x,i,\gamma^*}.$$

Let $b_{x,i,\beta}$ be the right-hand side of the above equation. Then, for a fixed $x \in \mathbb{T}^d$, $1 \leq i \leq n$, we have the following matrix relation:

$$(b_{x,i,\beta})^t_{\beta \in Q} = (e^{-2\pi i\beta \cdot (M^{*-1}\gamma^*)})_{\beta \in Q, \gamma^* \in Q^*} (a_{x,i,\gamma^*})^t_{\gamma^* \in Q^*}.$$

Recall that, for any $\beta \in \mathbb{Z}^d$, the map $\gamma^* \to e^{-2\pi i\beta \cdot (M^{*-1}\gamma^*)}$ is a character of the discrete group G^* . Hence the sum $\sum_{\gamma^* \in Q^*} e^{-2\pi i\beta \cdot (M^{*-1}\gamma^*)}$ is the order of Q^* , which is $|\det M|$, if the map is the identity character, and the sum is 0 if the map is not the identity character since the only discrete multiplicative subgroups of \mathbb{T} are the groups of the *p*-th roots of unity ([20, Theorem 0.14]). Using this observation, it is easy to see that

$$(e^{-2\pi i \beta \cdot (M^{*-1}\gamma^*)})_{\beta \in Q, \gamma^* \in Q^*} (e^{2\pi i (M^{*-1}\delta^*) \cdot \eta})_{\delta^* \in Q^*, \eta \in Q} = |\det M| I_{|\det M|}$$

In particular, for each $1 \leq i \leq n$ and $x \in \mathbb{T}^d$, span $\{b_{x,i,\beta} : \beta \in Q\} = \text{span}\{a_{x,i,\gamma^*} : \gamma^* \in Q^*\}$. This shows that:

(7)
$$\widehat{V}_{1||x} = \operatorname{span}\{a_{x,i,\gamma^*} : 1 \leq i \leq n, \gamma^* \in Q^*\}.$$

The 1-periodicity of the mask m and (4) imply that:

[7]

$$\widehat{V}_{0||x} = \operatorname{span}\left\{\sum_{j=1}^{n}\sum_{\alpha^{*} \in Q^{*}} m_{ij} \left(M^{*-1}(x+\alpha^{*})\right) a_{x,j,\alpha^{*}} : 1 \leq i \leq n\right\}.$$

Note that, for almost every $x \in \mathbb{T}^d$, dim $\widehat{V}_{1||x}$ equals the rank of the following $n|\det M| \times n |\det M|$ matrix

$$(\langle a_{x,i,\alpha^*}, a_{x,j,\beta^*} \rangle_{\mathbb{C}^{2^d}})_{(i,\alpha^*),(j,\beta^*)}$$

If we order the indices suitably, then (4) and (5) imply that the matrix is the block diagonal matrix

$$\operatorname{diag}\Big(G\big(M^{*-1}(x+\alpha^*)\big)\Big)_{\alpha^*\in Q^*}$$

Recall that rank $G(M^{*-1}(x + \alpha^*)) = \dim \widehat{V}_{0||M^{*-1}(x+\alpha^*)}$ for each $\alpha^* \in Q^*$. Hence, for almost every $x \in \mathbb{T}^d$,

(8)
$$\dim \widehat{V}_{1||x} = \sum_{\alpha^* \in Q^*} \operatorname{rank} G\left(M^{*-1}(x+\alpha^*)\right) = \sum_{\alpha^* \in Q^*} \dim \widehat{V}_{0||M^{*-1}(x+\alpha^*)}$$

A direct calculation shows that

$$G(x) = \sum_{\alpha^* \in Q^*} m (M^{*-1}(x + \alpha^*)) G (M^{*-1}(x + \alpha^*)) m (M^{*-1}(x + \alpha^*))^*.$$

Hence, for almost every $x \in \mathbb{T}^d$,

(9)
$$\dim \widehat{V}_{0||x} = \operatorname{rank} \sum_{\alpha^* \in Q^*} m \big(M^{*-1}(x+\alpha^*) \big) G \big(M^{*-1}(x+\alpha^*) \big) m \big(M^{*-1}(x+\alpha^*) \big)^*.$$

EXAMPLE 6. Let us first consider a dyadic univariate frame multiresolution analysis with a single scaling function, that is, d = n = 1 and $Q = \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$. Therefore $Df(x) = 2^{1/2}f(2x)$. Let V_0 be a Paley-Wiener space such that $\{f \in L^2(\mathbb{R}) : \operatorname{supp}(f) \subset [-a, a]\}$ with 0 < a < 1/4, and let $V_j := D^j(V_0)$, $j \in \mathbb{Z}$. Then it is easy to see that $\{V_j\}_{j\in\mathbb{Z}}$ is a frame multiresolution analysis ([14]). Obviously, $V_0 = S(\check{\chi}_{[-a,a]})$, where \vee denotes the inverse Fourier transform. Hence, $V_1 = S(\check{\chi}_{[-2a,2a]})$ is a shift-invariant space of length 1. This can be proved by using (8). Note that $G(x) = \chi_{[-a,a]+\mathbb{Z}}(x)$ for $x \in \mathbb{T}$. Hence, $\widehat{V}_{1||x} = \chi_{[-a,a]+\mathbb{Z}}(x/2) + \chi_{[-a,a]+\mathbb{Z}}(x/2 + 1/2)$ for $x \in \mathbb{T}$. Hence dim $\widehat{V}_{1||x} = 1$ for $x \in [-2a, 2a]$, and dim $\widehat{V}_{1||x} = 0$ for $x \in \mathbb{T} \setminus [-2a, 2a]$. Therefore len $V_1 = 1$ by Theorem 3. Recall that len V_1 is less than or equal to $n2^d = 2$. In this example, the length of V_1 is that of V_0 . Notice, however, that V_0 is a strict subspace of V_1 . It is now easy to see that len $V_2 = 2$.

The above example can be directly extended to the case where d > 1, n = 1 and $M = 2I_d$. Then $Q = Q^* = \{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_d) : \varepsilon_i = 0 \text{ or } 1\}$. For the sake of simplicity, define $\widehat{\varphi} := \chi_{(-1/4, 1/4)^d}, V_0^d := S(\varphi)$ and $V_j^d := D^j(V_0^d)$. Then $\{V_j^d\}_{j \in \mathbb{Z}}$ is a frame multiresolution analysis. We show that len $V_1^d = 1$. (8) implies that, for almost every $x \in \mathbb{T}^d = [-1/2, 1/2)^d$, dim $\widehat{V_1^d}_{||x}$ is the number of the sets $2\sigma(V_0^d) - \beta^* + 2\mathbb{Z}^d, \beta^* \in Q^*$, to which x belongs. A direct calculation shows that x belongs only to $2\sigma(V_0^d) + 2\mathbb{Z}^d$ since $\sigma(V_0^d) = (-1/4, 1/4)^d$. Therefore len $V_1^d = 1$ by Theorem 3. Since V_0^d is a strict subset of V_1^d , len $W_0 = 1$.

Suppose, temporarily, that $\{T_{\alpha}\varphi_i : \alpha \in \mathbb{Z}, 1 \leq i \leq n\}$ is a Riesz basis of V_0 . Then rank G(x) = n for almost every $x \in \mathbb{T}^d$ [4]. Hence dim $\widehat{V}_{1||x} = n|\det M|$ for almost every $x \in \mathbb{T}^d$. Since $\widehat{V}_{1||x} = \widehat{V}_{0||x} \oplus \widehat{W}_{0||x}$ almost everywhere by Theorem 4, dim $\widehat{W}_{0||x}$ $= n(|\det M| - 1)$ almost everywhere. Therefore len $W_0 = n(|\det M| - 1)$ by Theorem 3. Benedetto and Li [1] introduced the following concept: a frame multiresolution analysis admit a standard (frame) wavelet set if len $W_0 \leq n(|\det M| - 1)$. The characterisations of dyadic frame multiresolution analyses admitting standard wavelet sets were given in [2, 14], independently, for d = n = 1, and in [16] for d > 1 and n = 1. Combining (8) and (9) with Theorems 3 and 4 yield the following general result on the admittance of a standard wavelet set.

THEOREM 7. The frame multiresolution analysis $\{V_j\}_{j \in \mathbb{Z}}$ admits a standard wavelet set if and only if, for almost every $x \in \mathbb{T}^d$,

$$\sum_{\alpha^* \in Q^*} \operatorname{rank} G(M^{*-1}(x+\alpha^*)) - \operatorname{rank} \sum_{\alpha^* \in Q^*} m(M^{*-1}(x+\alpha^*)) G(M^{*-1}(x+\alpha^*)) m(M^{*-1}(x+\alpha^*))^*$$
(10) $\leq n(|\det M|-1).$

We now recover the previous results on the admittance of a standard wavelet set [2, 14, 16]. Suppose that n = 1 and $M = 2I_d$. Then $Q = Q^* = \mathbb{Z}^d/2\mathbb{Z}^d = \{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_d) : \varepsilon_i = 0 \text{ or } 1\}$, $|\det M| = 2^d$, $\Phi = \{\varphi\} \subset L^2(\mathbb{R}^d)$, $G(x) = ||\widehat{\varphi}_{||x}||^2_{\ell^2(\mathbb{Z}^d)}$, and m(x) is also a scalar. (10) becomes

$$\sum_{\alpha \in Q} \operatorname{rank} \left\| \widehat{\varphi}_{||(x+\alpha)/2} \right\|_{\ell^{2}(\mathbb{Z}^{d})}^{2} - \operatorname{rank} \sum_{\alpha \in Q} \left\| m\left(\frac{x+\alpha}{2}\right) \right\|^{2} \left\| \widehat{\varphi}_{||(x+\alpha)/2} \right\|_{\ell^{2}(\mathbb{Z}^{d})}^{2} \leqslant 2^{d} - 1,$$

where the rank of a scalar is the rank of the 1×1 matrix with the scalar entry. Notice that the left-hand side of the above inequality is less than or equal to 2^d . Hence the frame multiresolution analysis admits a standard wavelet set if and only if the left-hand side is

not 2^d almost everywhere. The condition, now, is equivalent to the condition that E is of zero Lebesgue measure with

$$E := \left\{ x \in \mathbb{T}^d : \widehat{\varphi}_{||(x+\alpha)/2} \neq 0 \text{ for each } \alpha \in Q, \sum_{\alpha \in Q} \left| m\left(\frac{x+\alpha}{2}\right) \right|^2 = 0 \right\}.$$

This recovers Theorem 5 of [16] (see also [2, 14] for the univariate case).

We now observe a simple relationship between the spectrums of V_0 and V_1 .

LEMMA 8. $\sigma(V_1) = M^* \sigma(V_0) \pmod{1}$.

PROOF: Suppose that $x \in \sigma(V_0)$. Then $\widehat{\varphi}_{i||x} \neq 0$ for some *i* by (3). There exist $y \in \mathbb{T}^d, \alpha^* \in \mathbb{Z}^d$ such that $M^*x = y + \alpha^*$. Now $\alpha^* = \beta^* + M^*\gamma^*$ for some $\beta^* \in Q^*$ and $\gamma^* \in \mathbb{Z}^d$. (6) implies that

$$\|a_{y,i,\beta^*}\|_{\ell^2(\mathbb{Z}^d)} = \|\widehat{\varphi}_{i\||M^{*-1}(M^*x-\beta^*-M^*\gamma^*+\beta^*)}\|_{\ell^2(\mathbb{Z})} = \|\widehat{\varphi}_{i\||x-\gamma^*}\|_{\ell^2} \neq 0$$

Therefore, $y = M^*x - \alpha^* \in \sigma(V_1)$ by (7). This shows that $M^*\sigma(V_0) \subset \sigma(V_1)$. Suppose, on the other hand, that $x \in \sigma(V_1)$. Then $a_{x,i,\beta^*} \neq 0$ for some $1 \leq i \leq n$ and $\beta^* \in Q^*$ by (7). Then $\widehat{\varphi}_{i||M^{*-1}(x+\beta^*)} \neq 0$ by (6). Hence $M^{*-1}(x+\beta^*) \pmod{1} \in \sigma(V_0)$ by (3). This shows that $\sigma(V_1) \subset M^*\sigma(V_0) \pmod{1}$.

Recall that a frame is a Riesz basis if it is, in a certain sense, 'globally' irredundant, that is, irredundant in the norm topology [9, 13]. Suppose that Φ is a quasi-stable generating set for V_0 . Then the family of the integer translates of Φ , which is a frame for V_0 , is 'locally', that is, fibre-wise, irredundant. We now show that: if Φ and Π are quasi-stable generating sets for V_0 and V_1 , respectively, then the integer translates are 'globally' redundant. This result improves Theorem 3.9 [15] in the sense that we do not presuppose that $\sigma(V_0) = \sigma(V_1)$. More precisely, we show:

THEOREM 9. Suppose that $\{V_j\}_{j \in \mathbb{Z}}$ is a frame multiresolution analysis. If V_0 and V_1 are both quasi-stable, and if len $V_1 = |\det M| \ln V_0$, then they are actually stable. In particular, $\sigma(V_0) = \sigma(V_1) = \mathbb{T}^d$.

PROOF: We may assume that $V_0 = S(\Phi)$ with $\Phi := \{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ a quasi-stable generator for V_0 . Then $V_1 = S(\Pi)$ with Π as in (2). Since $\#\Pi = \operatorname{len} V_1$, Π is a generator for V_1 with minimal length. Hence Π is actually a quasi-stable generator for V_1 [5, Theorem 3.12]. The length condition on V_1 and (8) show the following fact: If $x \in \sigma(V_1)$, then, for each $\alpha^* \in Q^*$, there exists $\delta_{x,\alpha^*} \in \mathbb{Z}^d$ such that $M^{*-1}(x+\alpha^*) + \delta_{x,\alpha^*} \in \sigma(V_0)$. It is obvious that for a fixed set of coset representatives Q^* the set of 'folding' multi-integers $\{\delta_{x,\alpha^*} : x \in \sigma(V_1), \alpha^* \in Q\}$ is a finite set. This implies that $\sigma(V_0)$ contains a measurable subset of Lebesgue measure $\left| M^{*-1}(\sigma(V_1) + \alpha^*) \right| = \left| M^{*-1}(\sigma(V_1)) \right|$. We show that these for $x, y \in \sigma(V_1), \alpha^*, \beta^* \in Q^*, \gamma, \delta \in \mathbb{Z}^d$. Then $x - y = \beta^* - \alpha^* + M^*(\delta - \gamma)$. Since the right-hand side is an integer and since $x, y \in \mathbb{T}^d = [-1/2, 1/2)^d, x - y = 0$. Hence $\alpha^* = \beta^*$ and

[10]

 $\gamma = \delta$. Therefore $\sigma(V_0)$ contains $\#Q^* = |\det M|$ number of subsets of Lebesgue measure $|M^{*-1}(\sigma(V_1))|$. This shows that $|\sigma(V_0)| \ge |\sigma(V_1)|$. Since $V_0 \subset V_1$, $\sigma(V_0) \subset \sigma(V_1)$. Consequently, $\sigma(V_0) = \sigma(V_1)$. Lemma 8 implies that $\sigma(V_0) = M^*\sigma(V_0) \pmod{1}$. The ergodicity of the map $x \in \mathbb{T}^d \to M^*x \pmod{1}$ in \mathbb{T}^d implies that $\sigma(V_0)$ is either \mathbb{T}^d or empty. Since it is not empty, it is \mathbb{T}^d .

The length condition in Theorem 9 is indispensable by Example 6.

References

- [1] J.J. Benedetto and S. Li, 'The theory of multiresolution analysis frames and applications to filter banks', Appl. Comput. Harm. Anal. 5 (1998), 398-427.
- J.J. Benedetto and O.M. Treiber, 'Wavelet frames: multiresolution analysis and extension principle', in Wavelet transforms and time-frequency signal analysis, (L. Debnath, Editor) (Birkhaüser, Boston, 2000), pp. 3-36.
- C. de Boor, R. DeVore and A. Ron, 'On the construction of multivariate (pre)wavelets', Constr. Approx. 9 (1993), 123-166.
- [4] C. de Boor, R. DeVore and A. Ron, 'Approximations from shift-invariant subspaces of L²(R^d)', Trans. Amer. Math. Soc. 341 (1994), 787-806.
- [5] C. de Boor, R. DeVore and A. Ron, 'The structure of finitely generated shift-invariant spaces in $L_2(\mathbb{R}^d)$ ', J. Funct. Anal. 119 (1994), 37-78.
- [6] M. Bownik, 'The structure of shift-invariant subspaces of $L^2(\mathbb{R}^n)$ ', J. Funct. Anal. 177 (2000), 282-309.
- [7] O. Christensen, B. Deng and C. Heil, 'Density of Gabor frames', Appl. Comput. Harmon. Anal. 7 (1999), 292-304.
- [8] K. Gröchenig and W. R. Madych, 'Multiresolution analysis, Haar bases, and self-similar tilings of Rⁿ', IEEE Trans. Inform. Theory 38 (1992), 556-568.
- [9] C. Heil and D. Walnut, 'Continuous and discrete wavelet transforms', SIAM Rev. 31 (1989), 628-666.
- [10] H. Helson, Lectures on invariant subspaces (Academic Press, New York, 1964).
- [11] R.-Q. Jia, 'Shift-invariant spaces and linear operator equations', Israel J. Math. 103 (1998), 258-288.
- [12] R.-Q. Jia and C.A. Micchelli, 'Using the refinement equation for the construction of pre-wavelets, II: powers of two', in *Curves and Surfaces*, (P.J. Laurent, A. Le Méhauté and L. Schumaker, Editors) (Academic Press, New York), pp. 209-246.
- [13] H.O. Kim and J.K. Lim, 'New characterizations of Riesz bases', Appl. Comput. Harmon. Anal. 4 (1997), 222-229.
- [14] H.O. Kim and J.K. Lim, 'On frame wavelets associated with frame multi-resolution analysis', Appl. Comput. Harmon. Anal. 10 (2001), 61-70.
- [15] H.O. Kim and J.K. Lim, 'Applications of shift-invariant space theory to some problems of multi-resolution analysis of L²(R^d)', in Wavelet Analysis and Applications, (D. Deng, D. Huang, R.-Q Jia, W. Lin and J. Wang, Editors) (American Mathematical Society/International Press, Boston, 2001), pp. 183-191.
- [16] J.K Lim, 'Gramian analysis of multivariate frame multiresolution analyses', Bull. Austral. Math. Soc. 66 (2002), 291-300.

[11] Constructions of multivariate wavelet frames

- [17] S. Mallat, 'Multiresolution approximations and wavelets', Trans. Amer. Math. Soc. 315 (1989), 69–88.
- [18] Y. Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics 37 (Cambridge University Press, Cambridge, 1992).
- [19] A. Ron and Z. Shen,, 'Frames and stable bases for shift-invariant subspaces of $L_2(\mathbb{R}^d)$ ', Canad. J. Math. 47 (1995), 1051–1094.
- [20] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics 79 (Springer-Verlag, New-York, Berlin, 1981).

Division of Applied Mathematics KAIST 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Korea e-mail: hkim@amath.kaist.ac.kr rykim@amath.kaist.ac.kr CHiPS KAIST 373-1, Guseong-dong, Yuseong-gu Daejeon, 305-701 Republic of Korea e-mail: jaekun@ftn.kaist.ac.kr