LOCAL ANALYSIS OF FRAME MULTIRESOLUTION ANALYSIS
WITH A GENERAL DILATION MATRIX
HONG OH KIM, RAE YOUNG KIM AND JAE KUN LIM

A multivariate semi-orthogonal frame multiresolution analysis with a general integer
dilation matrix and multiple scaling functions is considered. We first derive the
formulas of the lengths of the initial (central) shift-invariant space \(V_0 \) and the next
dilation space \(V_1 \), and, using these formulas, we then address the problem of the
number of the elements of a wavelet set, that is, the length of the shift-invariant
space \(W_0 := V_1 \ominus V_0 \). Finally, we show that there does not exist a 'genuine' frame
multiresolution analysis for which \(V_0 \) and \(V_1 \) are quasi-stable spaces satisfying the
usual length condition.

1. INTRODUCTION

The orthonormal dyadic multiresolution analysis of \(L^2(\mathbb{R}) \) with a single scaling
function was introduced by Mallat and Meyer in order to construct an orthonormal wavelet
basis of \(L^2(\mathbb{R}) \) [17, 18]. Benedetto and Li considered the dyadic semi-orthogonal frame
multiresolution analysis of \(L^2(\mathbb{R}) \) with a single scaling function, and successfully ap-
plied the theory in the analysis of narrow band signals [1]. We refer to [9] for the
basic definitions and properties of frames and Riesz bases of a Hilbert space. Unlike
the multiresolution analysis of Mallat and Meyer, where there always exists a wavelet
set consisting of a single element whose dyadic dilations of the integer translates form
an orthonormal basis of \(L^2(\mathbb{R}) \), the multiresolution analysis of Benedetto and Li has a
wavelet set whose cardinality may be one or two [14]. The exact definition of a wavelet
set of a multiresolution analysis is found in Section 3. The characterisation of the dyadic
semi-orthogonal frame multiresolution analysis with a single scaling function admitting
a single frame wavelet whose dyadic dilations of the integer translates form a frame for
\(L^2(\mathbb{R}) \) was obtained, independently, by Benedetto and Treiber by a direct method [2],
and by Kim and Lim by using the theory of shift-invariant spaces [14]. The dyadic mul-
tivariate generalisation (with a single scaling function) of the multiresolution analysis of
Mallat and Meyer were considered by several authors. See [3], for example. Lim, among
other things, addressed the problem of the cardinality of a wavelet set in the setting of

Received 10th September, 2002
The first and the second author were supported by KRF-2002-070-000004.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 $A2.00+0.00.
the dyadic multivariate frame multiresolution analysis with a single scaling function [16], and Kim and Lim gave an analysis of dyadic multivariate frame multiresolution analysis with multiple scaling functions [15]. As the theory and applications of wavelets evolve, many authors considered more general dilations other than the dyadic ones (for example, [8]).

In this paper we consider a multivariate frame multiresolution analysis with a general integer dilation matrix and multiple scaling functions by extending the method and results of [15]. We first analyse the local dimension of the initial, that is, central, shift-invariant space \(V_0 \) and the next dilation space \(V_1 \) of the multiresolution analysis. Using this, we derive the formulas of the lengths of the shift-invariant spaces \(V_0 \) and \(V_1 \), and address the problem of the number of the elements of a wavelet set. Finally, we show that there does not exist a ‘genuine’ frame multiresolution analysis for which \(V_0 \) and \(V_1 \) are quasi-stable spaces satisfying the usual length condition by applying the local dimension analysis and the ergodicity of the dilation matrix (Theorem 9). This result improves Theorem 3.9 in [15] in the sense that we do not presuppose that the spectrums of \(V_0 \) and \(V_1 \) coincide.

The organisation of this paper is as follows: Preliminary discussions on the dilation matrix and shift-invariant spaces and the definition of the multiresolution analysis we consider are given in Section 2, and our main results, along with an analysis of the local dimensions of \(V_0 \) and \(V_1 \), are given in Section 3.

2. PRELIMINARY DISCUSSION

Suppose that \(M \) is a \(d \times d \) integer dilation matrix, that is, the entries of \(M \) are integers and the moduli of the eigenvalues of \(M \) are strictly greater than one. It is known that the order of the quotient group \(\mathbb{Z}^d/M\mathbb{Z}^d \) is \(|\det M| \) [8, Lemma 2]. Let \(T^d := \mathbb{R}^d/\mathbb{Z}^d \) denote the \(d \)-dimensional torus which is identified with \([-1/2, 1/2)^d\). For \(x \in \mathbb{R}^d \), let \(x \pmod{1} \) denotes the standard representative of \(x + \mathbb{Z}^d \) in \([-1/2, 1/2)^d\). Suppose that \(T \) is a \(d \times d \) invertible matrix with integer entries such that the moduli of the eigenvalues of \(T \) are all different from 1. Then the map \(\tilde{T} : T^d \to T^d \), defined via \(\tilde{T}x := T x \pmod{1} \), is ergodic [20, Theorem 0.15, Corollary 1.10.1]. We note that \(M^t = M^\ast \), where \(t \) and \(* \) denote the transpose and the adjoint of a matrix with complex entries, respectively. For notational convenience we let \(Q := \mathbb{Z}^d/M\mathbb{Z}^d \) and let \(Q^* := \mathbb{Z}^d/M^\ast \mathbb{Z}^d \). Let \(D := D_M : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d) \) denote the unitary dilation operator defined via \(Df(x) := |\det M|^{1/2} f(Mx) \). For \(y \in \mathbb{R}^d \), \(T_y : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d) \) denotes the unitary translation operator such that \(T_y f(x) := f(x - y) \). In this paper we adapt the following definition of multiresolution analysis.

Definition 1: \(\{V_k\}_{k \in \mathbb{Z}} \) is said to be a frame multiresolution analysis if each \(V_k \) is a closed subspace of \(L^2(\mathbb{R}^d) \) such that:
Constructions of multivariate wavelet frames

(1) \(V_k \subset V_{k+1}, \quad k \in \mathbb{Z} \);

(2) \(\bigcup_{k \in \mathbb{Z}} V_k = L^2(\mathbb{R}^d), \quad \bigcap_{k \in \mathbb{Z}} V_k = \{0\} \);

(3) \(D(V_k) = V_{k+1}, \quad k \in \mathbb{Z} \);

(4) There exists a finite set of scaling functions \(\Phi \subset V_0 \) such that \(\{ T_\alpha \varphi : \alpha \in \mathbb{Z}^d, \varphi \in \Phi \} \) is a frame for \(V_0 \).

Various examples and applications of multiresolution analyses are found in the references cited in Section 1.

The following form of the Fourier transform is used throughout this paper: for \(f \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d) \) and \(t \in \mathbb{R}^d \),

\[
T(t) := \int_{\mathbb{R}^d} f(x) e^{-2\pi i t \cdot x} \, dx,
\]

where \(\cdot \) denotes the \(d \)-dimensional real inner product. It is, of course, extended to be a unitary transform from \(L^2(\mathbb{R}^d) \) onto \(L^2(\mathbb{R}^d) \) via the Plancherel theorem.

Suppose that \(\{ f_i : 1 \leq i \leq n \} \) is a finite family of elements of a Hilbert space \(\mathcal{H} \) with an inner product \(\langle \cdot, \cdot \rangle \). We frequently use the following simple observation:

\[
\dim \text{span}\{ f_i : 1 \leq i \leq n \} = \text{rank}((f_i, f_j))_{1 \leq i, j \leq n}.
\]

Our analysis uses the theory of (multi-integer) shift-invariant spaces developed in [4, 5, 6, 10, 11, 12, 19] and the references therein. We briefly review the theory and uses the existing results freely. A closed subspace \(S \) of \(L^2(\mathbb{R}^d) \) is said to be shift-invariant if \(T_\alpha f \in S \) whenever \(f \in S \) and \(\alpha \in \mathbb{Z}^d \). If \(\Phi \subset L^2(\mathbb{R}^d) \), then \(S := S(\Phi) := \text{span}\{ T_\alpha \varphi : \alpha \in \mathbb{Z}^d \} \) is a shift-invariant space. In this case, \(\Phi \) is called a generator of \(S \). If \(\Phi \) is finite, then \(S \) is called a finite shift-invariant space. We write \(S = S(\varphi) \) instead of \(S(\{ \varphi \}) \) if \(\Phi = \{ \varphi \} \) is a singleton. In this case, we call \(S \) a principal shift-invariant space. It is known that any shift-invariant space has a countable generator. The length of a shift-invariant space is defined to be

\[
\text{len} S := \inf\{ \# \Phi : S = S(\Phi), \Phi \subset L^2(\mathbb{R}^d) \},
\]

where \(\# \) denotes the cardinality. Let \(\widehat{f}_{||x||} \) be the sequence \((\widehat{f}(x+\alpha))_{\alpha \in \mathbb{Z}^d} \) which is in \(\ell^2(\mathbb{Z}^d) \) for almost every \(x \in \mathbb{T}^d \). If \(A \subset L^2(\mathbb{R}^d), x \in \mathbb{T}^d \), then we let \(\widehat{A}_{||x||} := \{ \widehat{f}_{||x||} \in \ell^2(\mathbb{Z}^d) : f \in A \} \), which is called the fibre of \(A \) at \(x \). It is a subspace of \(\ell^2(\mathbb{Z}^d) \) if \(A \) is a shift-invariant space. The following theorem is used frequently in our discussion.

Theorem 2. ([4, 6, 10, 11]). Let \(S \) be a closed, not necessarily shift-invariant, subspace of \(L^2(\mathbb{R}^d) \) and \(\Phi \) a countable subset of \(L^2(\mathbb{R}^d) \). Then \(S = S(\Phi) \) if and only if

\[\widehat{f}_{||x||} \in \text{span}\{ \widehat{\varphi}_{||x||} : \varphi \in \Phi \} \quad \text{for almost every } x \in \mathbb{T}^d \text{ and for each } f \in S. \]

The spectrum of a shift-invariant space is defined to be \(\sigma(S) := \{ x \in \mathbb{T}^d : \widehat{S}_{||x||} \neq \{0\} \} \). A finite subset \(\Phi \) of \(L^2(\mathbb{R}^d) \) is said to be a quasi-stable generator for the shift-invariant space \(S(\Phi) \) if, in addition to the condition that the family of the integer translates of \(\Phi \) is a frame for \(S(\Phi) \), \(\dim \text{span}\{ \widehat{\varphi}_{||x||} : \varphi \in \Phi \} = \# \Phi \) or 0 for almost every \(x \in \mathbb{T}^d \). If \(\Phi \) is a quasi-stable generator, then there is a convenient 'local' formula for the orthogonal projection onto \(S(\Phi) \) [4, 19]. The stable generator is a quasi-stable generator such that
the spectrum of the shift-invariant space it generates is T^d. It turns out that if Φ is a stable generator, then the family of the integer translates of Φ is a Riesz basis for $S(\Phi)$ [4, 19]. We say that a shift-invariant space S is quasi-stable, if $\dim \hat{S}_{||x||} = n$ or 0 for some non-negative integer n almost everywhere. It is said to be stable if $\dim \hat{S}_{||x||} = n$ almost everywhere. It is known that a quasi-stable/stable shift-invariant space has a quasi-stable/stable generator [4, 19].

We need the following results:

Theorem 3. ([4].) For a shift-invariant subspace S of $L^2(\mathbb{R}^d)$

$$\text{len } S = \text{ess-sup}\{\dim \hat{S}_{||x||} : x \in T^d\}.$$

Theorem 4. ([4].) Let S_1 be a shift-invariant subspace of a shift-invariant space S and let $S_2 := S \ominus S_1$. Then S_2 is also a shift-invariant subspace of S and $\hat{S}_{||x||} = \hat{S}_1_{||x||} \ominus \hat{S}_2_{||x||}$ for almost every $x \in T^d$.

Suppose that $S = S(\Phi)$ for a finite set $\Phi := \{\varphi_1, \varphi_2, \ldots, \varphi_n\}$. Then the $n \times n$ matrix

$$G(x) := G_{\Phi}(x) := ((\hat{\varphi}_{i||x||}, \hat{\varphi}_{j||x||})_p(z^d))_{1 \leq i, j \leq n}$$

is the Gramian of Φ at $x \in T^d$. Let $\lambda(x)$, $\lambda^+(x)$ and $\Lambda(x)$ denote the smallest eigenvalue, the smallest non-negative eigenvalue and the largest eigenvalue of $G(x)$, respectively.

Theorem 5. ([4, 6, 19].) The family of the integer translates of Φ is a frame for S if and only if there exist positive constants A and B such that $A \leq \lambda^+(x) \leq \Lambda(x) \leq B$ for almost every $x \in \sigma(S)$. It is a Riesz basis for S if and only if $A \leq \lambda(x) \leq \Lambda(x) \leq B$ for almost every $x \in T^d$. Moreover, A and B are a pair of frame (Riesz) bounds of the frame (Riesz basis), respectively.

3. Frame Multiresolution Analysis

Suppose that $\{V_j\}_{j \in \mathbb{Z}}$ is a frame multiresolution analysis. Then there exists a set of scaling functions $\Phi := \{\varphi_i : 1 \leq i \leq n\} \subset L^2(\mathbb{R}^d)$ such that $\{T_{\alpha} \varphi_i : \alpha \in \mathbb{Z}^d, 1 \leq i \leq n\}$ is a frame for V_0. We may assume that the length of V_0 is n. Then $V_0 = S(\Phi)$ and $V_1 := D(V_0)$. Let

$$G(x) := G_{\Phi}(x) := ((\hat{\varphi}_{i||x||}, \hat{\varphi}_{j||x||})_p(z^d))_{1 \leq i, j \leq n}$$

be the Gramian of Φ at $x \in T^d$.

Since $\varphi_i \in V_1$ for each $1 \leq i \leq n$, and since $\{DT_{\alpha} \varphi_i : \alpha \in \mathbb{Z}^d, 1 \leq i \leq n\}$ is a frame for V_1, there exist $a_{ij} \in c^2(\mathbb{Z}^d), 1 \leq i, j \leq n$, such that $\varphi_i = \sum_{j=1}^{n} \sum_{\alpha \in \mathbb{Z}^d} a_{ij}(\alpha) DT_{\alpha} \varphi_j$. Hence

$$\hat{\varphi}_i(x) = \sum_{j=1}^{n} \sum_{\alpha \in \mathbb{Z}^d} a_{ij}(\alpha) |\det M|^{-1/2} e^{-2\pi i \alpha \cdot (M^{*-1} x)} \hat{\varphi}_j(M^{*-1} x)$$

$$= \sum_{j=1}^{n} m_{ij}(M^{*-1} x) \hat{\varphi}_j(M^{*-1} x),$$
where
\[m_{ij}(x) := \sum_{\alpha \in \mathbb{Z}^d} |\det M|^{-1/2} a_{ij}(-\alpha) e^{-2\pi i \alpha \cdot x} \in L^2(\mathbb{T}^d). \]

For \(x \in \mathbb{T}^d \), let
\[m(x) := (m_{ij}(x))_{1 \leq i,j \leq n} \]
and
\[\vec{\varphi}(x) := (\varphi_1(x), \varphi_2(x), \ldots, \varphi_n(x))^t. \]

Then
\[(1) \quad \vec{\varphi}(x) = m(M^{-1}x) \vec{\varphi}(M^{-1}x). \]

This \(m \), called a mask of the multiresolution analysis, may not be unique since \(\{DT_\alpha \varphi_i : \alpha \in \mathbb{Z}^d, 1 \leq i \leq n\} \) is only assumed to be a frame, not necessarily a Riesz basis. Note that \(DT_y = T_y D \) for \(y \in \mathbb{R}^d \). Since each \(\gamma \in \mathbb{Z}^d \) can be written uniquely as \(\gamma = M\alpha + \beta \) for some \(\alpha \in \mathbb{Z}^d \) and \(\beta \in \mathbb{Q} \),
\[\{DT_\gamma \varphi_i : \gamma \in \mathbb{Z}^d, 1 \leq i \leq n\} = \{T_\alpha DT_\beta \varphi_i : \alpha \in \mathbb{Z}^d, \beta \in \mathbb{Q}, 1 \leq i \leq n\}. \]

Hence \(V_i = \mathcal{S}(\Pi) \), where
\[(2) \quad \Pi := \{DT_\beta \varphi_i : \beta \in \mathbb{Q}, 1 \leq i \leq n\}. \]

This implies that the length of the shift-invariant space \(V_i \) is less than or equal to \(n|\det M| \). Since \(V_0 \) is a shift-invariant subspace of \(V_1 \), \(\text{len} V_1 \geq \text{len} V_0 = n \). There is an example of a frame multiresolution analysis in which the length of \(V_1 \) is that of \(V_0 \). See Example 6 below. Let \(W_0 \) denote \(V_1 \cap V_0 \), and let \(W_j := D^j(W_0), j \in \mathbb{Z} \). Then Definition 1 implies that \(L^2(\mathbb{R}^d) = \bigoplus_{j \in \mathbb{Z}} W_j \). \(W_0 \) is a shift-invariant space by Theorem 4.

Since \(W_0 \) is a subspace of \(V_1 \), the length of \(W_0 \) is also less than or equal to \(n|\det M| \). It cannot be zero. If it were zero, then \(W_0 = \{0\} \); hence \(V_0 = V_1 \). Definition 1 implies that \(L^2(\mathbb{R}) = V_0 = \mathcal{S}(\psi) \). This contradicts a result in [7] which states roughly that there are no frames of \(L^2(\mathbb{R}^d) \) consisting of the translates of a finite number of functions. Since \(W_0 \) is a finite shift-invariant space, there is a finite set \(\Psi \), called a wavelet set, such that \(W_0 = \mathcal{S}(\Psi) \). We may assume that the integer translates of the elements of \(\Psi \) form a frame for \(W_0 \) [5, 19]. Then, obviously, \(\{D^jT_\alpha \psi : j \in \mathbb{Z}, \alpha \in \mathbb{Z}^d, \psi \in \Psi\} \) is a frame for \(L^2(\mathbb{R}^d) \). Since the minimal cardinality of such \(\Psi \) is \(\text{len} W_0 \), the (minimal) number of the elements of a wavelet set is \(\text{len} W_0 \).

Note that, for \(\beta \in \mathbb{Z}^d \) and \(x \in \mathbb{T}^d \),
\[
(DT_\beta \varphi_i)^\wedge(x) = |\det M|^{-1/2} e^{-2\pi i \beta \cdot (M^{-1}x)} \hat{\varphi}_i(M^{-1}x),
\]
\[
(DT_\beta \varphi_i)_\parallel^\wedge = |\det M|^{-1/2} e^{-2\pi i \beta \cdot (M^{-1}x)} \left(e^{-2\pi i \beta \cdot (M^{-1}_0) \hat{\varphi}_i(M^{-1}_0(x + \alpha))} \right)_{\alpha \in \mathbb{Z}^d}.
\]
Hence, for almost every $x \in \mathbb{T}^d$,
\[
\hat{V}_{1|z} = \text{span}\left\{ \left(e^{-2\pi i \beta(M^{*-1}\alpha)} \hat{\varphi}_i(M^{*-1}(x + \alpha)) \right)_{\alpha \in \mathbb{Z}^d} : \beta \in Q, 1 \leq i \leq n \right\},
\]
\[
\hat{V}_{0|z} = \text{span}\left\{ \left(\hat{\varphi}(x + \alpha) \right)_{\alpha \in \mathbb{Z}^d} : 1 \leq i \leq n \right\}
= \text{span}\left\{ \sum_{j=1}^{n} \left(m_{ij} \left(M^{*-1}(x + \alpha) \right) \hat{\varphi}_j \left(M^{*-1}(x + \alpha) \right) \right)_{\alpha \in \mathbb{Z}^d} : 1 \leq i \leq n \right\}.
\]

For $\beta^* \in Q^*$ define $P_{\beta^*} : \ell^2(\mathbb{Z}^d) \to \ell^2(\mathbb{Z}^d)$ via
\[
(P_{\beta^*} \alpha)(\alpha) := \begin{cases} a(\alpha), & \text{if } \alpha \in \beta^* + M^* \mathbb{Z}^d, \\ 0, & \text{otherwise}. \end{cases}
\]

Then $\ell^2(\mathbb{Z}^d) = \bigoplus_{\beta^* \in Q^*} P_{\beta^*}(\ell^2(\mathbb{Z}^d))$. Define, for $x \in \mathbb{T}^d, 1 \leq i \leq n, \beta^* \in Q^*$,
\[
a_{x,i,\beta^*} := P_{\beta^*} \left(\left(\hat{\varphi}_i(M^{*-1}(x + \alpha)) \right)_{\alpha \in \mathbb{Z}^d} \right).
\]

Notice that a_{x,i,β^*} is the ‘up-sampled’ version of $\hat{\varphi}_{i|M^{*-1}(x + \beta^*)}$, that is,
\[
a_{x,i,\beta^*}(\beta^* + M^* \alpha) = \hat{\varphi}_{i|M^{*-1}(x + \beta^*)}(\alpha), \quad \alpha \in \mathbb{Z}^d,
\]
\[
a_{x,i,\beta^*}(\gamma^*) = 0, \quad \gamma^* \notin \beta^* + M^* \mathbb{Z}^d.
\]

Therefore
\[
\|a_{x,i,\beta^*}\|_{\ell^2(\mathbb{Z})} = \|\hat{\varphi}_{i|M^{*-1}(x + \beta^*)}\|_{\ell^2(\mathbb{Z})}.
\]

We also have
\[
\left(e^{-2\pi i \beta(M^{*-1}\alpha)} \hat{\varphi}_i(M^{*-1}(x + \alpha)) \right)_{\alpha \in \mathbb{Z}} = \sum_{\gamma^* \in Q^*} e^{-2\pi i \beta(M^{*-1}\gamma^*)} a_{x,i,\gamma^*}.
\]

Let $b_{x,i,\beta}$ be the right-hand side of the above equation. Then, for a fixed $x \in \mathbb{T}^d, 1 \leq i \leq n$, we have the following matrix relation:
\[
(b_{x,i,\beta})_{\beta \in Q} = (e^{-2\pi i \beta(M^{*-1}\gamma^*)})_{\beta \in Q, \gamma^* \in Q^*} (a_{x,i,\gamma^*})_{\gamma^* \in Q^*}^t.
\]

Recall that, for any $\beta \in \mathbb{Z}^d$, the map $\gamma^* \mapsto e^{-2\pi i \beta(M^{*-1}\gamma^*)}$ is a character of the discrete group G^*. Hence the sum $\sum_{\gamma^* \in Q^*} e^{-2\pi i \beta(M^{*-1}\gamma^*)}$ is the order of Q^*, which is $|\det M|$, if the map is the identity character, and the sum is 0 if the map is not the identity character since the only discrete multiplicative subgroups of \mathbb{T} are the groups of the p-th roots of unity ([20, Theorem 0.14]). Using this observation, it is easy to see that
\[
\left(e^{-2\pi i \beta(M^{*-1}\gamma^*)} \right)_{\beta \in Q, \gamma^* \in Q^*} (e^{2\pi i (M^{*-1}\delta^*)})_{\delta^* \in Q^*} = |\det M| \hat{I}_{|\det M|}.
\]
In particular, for each $1 \leq i \leq n$ and $x \in \T^d$, span\{$b_{x,i,\beta} : \beta \in Q \}$ = span\{$a_{x,i,\gamma^*} : \gamma^* \in Q^* \}$. This shows that:

$$\hat{V}_{1||x} = \text{span}\{a_{x,i,\gamma^*} : 1 \leq i \leq n, \gamma^* \in Q^* \}.$$

The 1-periodicity of the mask m and (4) imply that:

$$\hat{V}_{0||x} = \text{span}\left\{ \sum_{j=1}^{n} \sum_{\alpha^* \in Q^*} m_{ij}(M^{*-1}(x + \alpha^*))a_{x,j,\alpha^*} : 1 \leq i \leq n \right\}.$$

Note that, for almost every $x \in \T^d$, dim $\hat{V}_{1||x}$ equals the rank of the following $n|\det M| \times n|\det M|$ matrix

$$\left(a_{x,i,\alpha^*}, a_{x,i,\beta^*} \right)_{\alpha^*, \beta^*}.$$

If we order the indices suitably, then (4) and (5) imply that the matrix is the block diagonal matrix

$$\text{diag}\left(G(M^{*-1}(x + \alpha^*)) \right)_{\alpha^* \in Q^*}.$$

Recall that rank $G(M^{*-1}(x + \alpha^*)) = \text{dim} \hat{V}_{0||M^{*-1}(x+\alpha^*)}$ for each $\alpha^* \in Q^*$. Hence, for almost every $x \in \T^d$,

$$\text{dim} \hat{V}_{1||x} = \sum_{\alpha^* \in Q^*} \text{rank} G(M^{*-1}(x + \alpha^*)) = \sum_{\alpha^* \in Q^*} \text{dim} \hat{V}_{0||M^{*-1}(x+\alpha^*)}.$$

A direct calculation shows that

$$G(x) = \sum_{\alpha^* \in Q^*} m(M^{*-1}(x + \alpha^*))G(M^{*-1}(x + \alpha^*))m(M^{*-1}(x + \alpha^*))^*.$$

Hence, for almost every $x \in \T^d$,

$$\text{dim} \hat{V}_{0||x} = \text{rank} \sum_{\alpha^* \in Q^*} m(M^{*-1}(x + \alpha^*))G(M^{*-1}(x + \alpha^*))m(M^{*-1}(x + \alpha^*))^*.$$

Example 6. Let us first consider a dyadic univariate frame multiresolution analysis with a single scaling function, that is, $d = n = 1$ and $Q = \Z/2\Z = \{0,1\}$. Therefore $Df(x) = 2^{1/2} f(2x)$. Let V_0 be a Paley–Wiener space such that \{f $\in L^2(\R)$: supp(f) $\subset [-a,a]$\} with $0 < a < 1/4$, and let $V_j := D^j(V_0)$, $j \in \Z$. Then it is easy to see that \{V_j\}_j\in\Z is a frame multiresolution analysis ([14]). Obviously, $V_0 = S(\chi_{[-a,a]})$, where χ denotes the inverse Fourier transform. Hence, $V_1 = S(\chi_{[-2a,2a]})$ is a shift-invariant space of length 1. This can be proved by using (8). Note that $G(x) = \chi_{[-a,a]+Z}(x)$ for $x \in \T$. Hence, $\hat{V}_{1||x} = \chi_{[-a,a]+Z}(x/2) + \chi_{[-a,a]+Z}(x/2 + 1/2)$ for $x \in \T$. Hence dim $\hat{V}_{1||x} = 1$ for $x \in [-2a,2a]$, and dim $\hat{V}_{1||x} = 0$ for $x \in \T \setminus [-2a,2a]$. Therefore len $V_1 = 1$ by Theorem 3. Recall that len V_1 is less than or equal to $n2^d = 2$. In this example, the length of V_1 is
that of V_0. Notice, however, that V_0 is a strict subspace of V_1. It is now easy to see that \(\text{len} V_2 = 2 \).

The above example can be directly extended to the case where \(d > 1, \ n = 1 \) and \(M = 2I_d \). Then \(Q = Q^* = \{(\epsilon_1, \epsilon_2, \ldots, \epsilon_d) : \epsilon_i = 0 \text{ or } 1 \} \). For the sake of simplicity, define \(\tilde{\varphi} := \chi_{(-1/4,1/4)^d} \), \(V_0^d := S(\varphi) \) and \(V_j^d := D^j(V_0^d) \). Then \(\{V_j^d\}_{j \in \mathbb{Z}} \) is a frame multiresolution analysis. We show that \(\text{len} V_1^d = 1 \). \((8)\) implies that, for almost every \(x \in \mathbb{T}^d = [-1/2,1/2)^d \), \(\text{dim} \tilde{V}_1^d = n \left(|\text{det} M| - 1 \right) \) almost everywhere. Therefore \(\text{len} W_0 = n \left(|\text{det} M| - 1 \right) \) by Theorem 3.

Suppose, temporarily, that \(\{T_\alpha \varphi_i : \alpha \in \mathbb{Z}, 1 \leq i \leq n \} \) is a Riesz basis of \(V_0 \). Then \(\text{rank} G(x) = n \) for almost every \(x \in \mathbb{T}^d \) \([4]\). Hence \(\text{dim} \tilde{V}_1^d = n |\text{det} M| \) for almost every \(x \in \mathbb{T}^d \). Since \(\tilde{V}_1^d = \tilde{V}_0^d \oplus \tilde{W}_0^d \) almost everywhere by Theorem 4, \(\text{dim} \tilde{W}_0^d = n \left(|\text{det} M| - 1 \right) \) almost everywhere. Therefore \(\text{len} W_0 = n \left(|\text{det} M| - 1 \right) \) by Theorem 3.

Benedetto and Li \([1]\) introduced the following concept: a frame multiresolution analysis admit a standard (frame) wavelet set if \(\text{len} W_0 \leq n \left(|\text{det} M| - 1 \right) \). The characterisations of dyadic frame multiresolution analyses admitting standard wavelet sets were given in \([2, 14]\), independently, for \(d = n = 1 \), and in \([16]\) for \(d > 1 \) and \(n = 1 \). Combining \((8)\) and \((9)\) with Theorems 3 and 4 yield the following general result on the admittance of a standard wavelet set.

Theorem 7. The frame multiresolution analysis \(\{V_j\}_{j \in \mathbb{Z}} \) admits a standard wavelet set if and only if, for almost every \(x \in \mathbb{T}^d \),

\[
\sum_{\alpha^* \in Q^*} \text{rank} G(M^{*-1}(x + \alpha^*)) - \text{rank} \sum_{\alpha^* \in Q^*} m(M^{*-1}(x + \alpha^*)) G(M^{*-1}(x + \alpha^*))^* \leq n \left(|\text{det} M| - 1 \right).
\]

We now recover the previous results on the admittance of a standard wavelet set \([2, 14, 16]\). Suppose that \(n = 1 \) and \(M = 2I_d \). Then \(Q = Q^* = \mathbb{Z}^d/2\mathbb{Z}^d = \{(\epsilon_1, \epsilon_2, \ldots, \epsilon_d) : \epsilon_i = 0 \text{ or } 1 \}, |\text{det} M| = 2^d, \phi = \{\varphi\} \subset L^2(\mathbb{R}^d), G(x) = \|\tilde{\varphi}||x||L^2(\mathbb{R}^d), \) and \(m(x) = \text{a scalar} \). \((10)\) becomes

\[
\sum_{\alpha \in Q} \|\tilde{\varphi}||x+\alpha||L^2(\mathbb{R}^d)\| - \text{rank} \sum_{\alpha \in Q} m\left(\frac{x + \alpha}{2}\right) \left\|\tilde{\varphi}||x+\alpha||L^2(\mathbb{R}^d)\right\|^2 \leq 2^d - 1,
\]

where the rank of a scalar is the rank of the \(1 \times 1 \) matrix with the scalar entry. Notice that the left-hand side of the above inequality is less than or equal to \(2^d \). Hence the frame multiresolution analysis admits a standard wavelet set if and only if the left-hand side is...
not 2^d almost everywhere. The condition, now, is equivalent to the condition that E is of zero Lebesgue measure with

$$E := \left\{ x \in T^d : \varphi_{\|x+\alpha\|/2} \neq 0 \text{ for each } \alpha \in Q, \sum_{\alpha \in Q} \left| m \left(\frac{x + \alpha}{2} \right) \right|^2 = 0 \right\}.$$

This recovers Theorem 5 of [16] (see also [2, 14] for the univariate case).

We now observe a simple relationship between the spectrums of V_0 and V_1.

Lemma 8. $\sigma(V_1) = M^* \sigma(V_0) \pmod{1}$.

Proof: Suppose that $x \in \sigma(V_0)$. Then $\varphi_{\|x\|} \neq 0$ for some i by (3). There exist $y \in T^d, \alpha^* \in Z^d$ such that $M^*x = y + \alpha^*$. Now $\alpha^* = \beta^* + M^* \gamma^*$ for some $\beta^* \in Q^*$ and $\gamma^* \in Z^d$. (6) implies that

$$\|a_{x*,\beta^*}\varphi(x)\|_{L^2} = \|\varphi_{\|M^{-1}(M^*x - \beta^* - M^* \gamma^* + \beta^*)\|} = \|\varphi_{\|x\| - \gamma^*}\|_{L^2} \neq 0.$$

Therefore, $y = M^*x - \alpha^* \in \sigma(V_1)$ by (7). This shows that $M^* \sigma(V_0) \subseteq \sigma(V_1)$. Suppose, on the other hand, that $x \in \sigma(V_1)$. Then $a_{x*,\beta^*} \neq 0$ for some $1 \leq i \leq n$ and $\beta^* \in Q^*$ by (7). Then $\varphi_{\|M^{-1}(x + \beta^*)\|} \neq 0$ by (6). Hence $M^{n-1}(x + \beta^*) \pmod{1} \in \sigma(V_0)$ by (3). This shows that $\sigma(V_1) \subseteq M^* \sigma(V_0) \pmod{1}$.

Recall that a frame is a Riesz basis if it is, in a certain sense, ‘globally’ irredundant, that is, irredundant in the norm topology [9, 13]. Suppose that Φ is a quasi-stable generating set for V_0. Then the family of the integer translates of Φ, which is a frame for V_0, is ‘locally’, that is, fibre-wise, irredundant. We now show that: if Φ and Π are quasi-stable generating sets for V_0 and V_1, respectively, then the integer translates are ‘globally’ redundant. This result improves Theorem 3.9 [15] in the sense that we do not presuppose that $\sigma(V_0) = \sigma(V_1)$. More precisely, we show:

Theorem 9. Suppose that $\{V_j\}_{j \in \mathbb{Z}}$ is a frame multiresolution analysis. If V_0 and V_1 are both quasi-stable, and if $\text{len} V_1 = |\det M| \text{len} V_0$, then they are actually stable. In particular, $\sigma(V_0) = \sigma(V_1) = T^d$.

Proof: We may assume that $V_0 = S(\Phi)$ with $\Phi := \{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ a quasi-stable generator for V_0. Then $V_1 = S(\Pi)$ with Π as in (2). Since $\# \Pi = \text{len} V_1$, Π is a generator for V_1 with minimal length. Hence Π is actually a quasi-stable generator for V_1 [5, Theorem 3.12]. The length condition on V_1 and (8) show the following fact: If $x \in \sigma(V_1)$, then, for each $\alpha^* \in Q^*$, there exists $\delta_{x,\alpha^*} \in Z^d$ such that $M^{n-1}(x + \alpha^*) + \delta_{x,\alpha^*} \in \sigma(V_0)$. It is obvious that for a fixed set of coset representatives Q^* the set of ‘folding’ multi-integers $\{\delta_{x,\alpha^*} : x \in \sigma(V_1), \alpha^* \in Q^*\}$ is a finite set. This implies that $\sigma(V_0)$ contains a measurable subset of Lebesgue measure $M^{n-1}(\sigma(V_1) + \alpha^*) = M^{n-1}(\sigma(V_1))$. We show that these subsets of $\sigma(V_0)$ do not overlap. Suppose that $M^{n-1}(x + \alpha^* + \gamma = M^{n-1}(y + \beta^*) + \delta \in T^d$ for $x, y \in \sigma(V_1), \alpha^*, \beta^* \in Q^*, \gamma, \delta \in Z^d$. Then $x - y = \beta^* - \alpha^* + M^*(\delta - \gamma)$. Since the right-hand side is an integer and since $x, y \in T^d = [-1/2, 1/2]^d$, $x - y = 0$. Hence $\alpha^* = \beta^*$ and
\(\gamma = \delta \). Therefore \(\sigma(V_0) \) contains \(\#Q^* = |\det M| \) number of subsets of Lebesgue measure \(|M^{-1}(\sigma(V_1))| \). This shows that \(|\sigma(V_0)| > |\sigma(V_1)| \). Since \(V_0 \subset V_1 \), \(\sigma(V_0) \subset \sigma(V_1) \). Consequently, \(\sigma(V_0) = \sigma(V_1) \). Lemma 8 implies that \(\sigma(V_0) = M^* \sigma(V_0) \text{ (mod 1)} \). The ergodicity of the map \(x \in \mathbb{T}^d \rightarrow M^* x \text{ (mod 1)} \) in \(\mathbb{T}^d \) implies that \(\sigma(V_0) \) is either \(\mathbb{T}^d \) or empty. Since it is not empty, it is \(\mathbb{T}^d \).

The length condition in Theorem 9 is indispensable by Example 6.

REFERENCES

Division of Applied Mathematics
KAIST
373-1 Guseong-dong, Yuseong-gu
Daejeon 305-701
Korea

e-mail: hkim@amath.kaist.ac.kr
rykim@amath.kaist.ac.kr

CHiPS
KAIST
373-1, Guseong-dong, Yuseong-gu
Daejeon, 305-701
Republic of Korea

e-mail: jaekun@ftn.kaist.ac.kr