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LOCAL ANALYSIS OF FRAME MULTIRESOLUTION ANALYSIS
WITH A GENERAL DILATION MATRIX

HONG O H KIM, R A E YOUNG KIM AND J A E KUN LIM

A multivariate semi-orthogonal frame multiresolution analysis with a general integer
dilation matrix and multiple scaling functions is considered. We first derive the
formulas of the lengths of the initial (central) shift-invariant space Vo and the next
dilation space Vi, and, using these formulas, we then address the problem of the
number of the elements of a wavelet set, that is, the length of the shift-invariant
space WQ := V\ 0 Vo. Finally, we show that there does not exist a 'genuine' frame
multiresolution analysis for which Vo and V\ are quasi-stable spaces satisfying the
usual length condition.

1. INTRODUCTION

The orthonormal dyadic multiresolution analysis of L2(R) with a single scaling func-
tion was introduced by Mallat and Meyer in order to construct an orthonormal wavelet
basis of L2(R) [17, 18]. Benedetto and Li considered the dyadic semi-orthogonal frame
multiresolution analysis of L2(R) with a single scaling function, and successfully ap-
plied the theory in the analysis of narrow band signals [1]. We refer to [9] for the
basic definitions and properties of frames and Riesz bases of a Hilbert space. Unlike
the multiresolution analysis of Mallat and Meyer, where there always exists a wavelet
set consisting of a single element whose dyadic dilations of the integer translates form
an orthonormal basis of L2(R), the multiresolution analysis of Benedetto and Li has a
wavelet set whose cardinality may be one or two [14]. The exact definition of a wavelet
set of a multiresolution analysis is found in Section 3. The characterisation of the dyadic
semi-orthogonal frame multiresolution analysis with a single scaling function admitting
a single frame wavelet whose dyadic dilations of the integer translates form a frame for
L2(R) was obtained, independently, by Benedetto and Treiber by a direct method [2],
and by Kim and Lim by using the theory of shift-invariant spaces [14]. The dyadic mul-
tivariate generalisation (with a single scaling function) of the multiresolution analysis of
Mallat and Meyer were considered by several authors. See [3], for example. Lim, among
other things, addressed the problem of the cardinality of a wavelet set in the setting of
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the dyadic multivariate frame multiresolution analysis with a single scaling function [16],
and Kim and Lim gave an analysis of dyadic multivariate frame multiresolution analysis
with multiple scaling functions [15]. As the theory and applications of wavelets evolve,
many authors considered more general dilations other than the dyadic ones (for example,
[8])-

In this paper we consider a multivariate frame multiresolution analysis with a general
integer dilation matrix and multiple scaling functions by extending the method and results
of [15]. We first analyse the local dimension of the initial, that is, central, shift-invariant
space Vo and the next dilation space Vj of the multiresolution analysis. Using this, we
derive the formulas of the lengths of the shift-invariant spaces Vo and V\, and address the
problem of the number of the elements of a wavelet set. Finally, we show that there does
not exist a 'genuine' frame multiresolution analysis for which Vo and V\ are quasi-stable
spaces satisfying the usual length condition by applying the local dimension analysis and
the ergodicity of the dilation matrix (Theorem 9). This result improves Theorem 3.9 in
[15] in the sense that we do not presuppose that the spectrums of Vo and V\ coincide.

The organisation of this paper is as follows: Preliminary discussions on the dilation
matrix and shift-invariant spaces and the definition of the multiresolution analysis we
consider are given in Section 2, and our main results, along with an analysis of the local
dimensions of Vo and Vi, are given in Section 3.

2. PRELIMINARY DISCUSSION

Suppose that M is a d x d integer dilation matrix, that is, the entries of M are
integers and the moduli of the eigenvalues of M are strictly greater than one. It is
known that the order of the quotient group Zd/MZd is | de tM| [8, Lemma 2]. Let
Td := R d /Z d denote the rf-dimensional torus which is identified with [-1/2, l/2)d. For
x e Rd, let x (mod 1) denotes the standard representative of x + Zd in [-1/2, l/2)d.
Suppose that T is a d x d invertible matrix with integer entries such that the mod-
uli of the eigenvalues of T are all different from 1. Then the map f : Td -> Td,
defined via fx := To; (modi), is ergodic [20, Theorem 0.15, Corollary 1.10.1]. We
note that Mi = M', where t and * denote the transpose and the adjoint of a matrix
with complex entries, respectively. For notational convenience we let Q := Zd/MZd

and let Q* := Zd/M*Zd. Let D := DM : L2(Rd) -> L2(Rd) denote the unitary di-
lation operator defined via Df(x) := | det M\l>2f(Mx). For y € Kd, Ty : L2(Rd)
—¥ L2(Rd) denotes the unitary translation operator such that Tyf(x) := f(x — y). In
this paper we adapt the following definition of multiresolution analysis.

DEFINITION 1: {Vfc}t€z is said to be a frame multiresolution analysis if each V* is
a closed subspace of L2(Rd) such that:
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J
Jb€Z fc€Z

(3) D{Vk) = Vk+u k€Z;

(4) There exists a finite set of scaling functions # C Vo such that {Ta(p : a

G Zd, <p G $ } is a frame for Vo.

Various examples and applications of multiresolution analyses are found in the ref-
erences cited in Section 1.

The following form of the Fourier transform is used throughout this paper: for
/ G L1(Rd) n L2(Rd) and t G Rd f(t) := /Rd f(x)e-2nitxdx, where • denotes the d-
dimensional real inner product. It is, of course, extended to be a unitary transform from
L2(Rd) onto L2(Rd) via the Plancherel theorem.

Suppose that {/< : 1 ^ i ^ n} is a finite family of elements of a Hilbert space
W with an inner product (•,•). We frequently use the following simple observation:
dimspan{/i : 1 ^ i ^ n} = r ank ( ( / i , / ; ) ) i ^ , j $ n .

Our analysis uses the theory of (multi-integer) shift-invariant spaces developed in
[4, 5, 6, 10, 11 , 12, 19] and the references therein. We briefly review the theory and
uses the existing results freely. A closed subspace S of Z,2(Rd) is said to be shift-invariant
if Taf G S whenever / G 5 and a G Zd. If $ c L2(Rd), then 5 := S($) := span{TQ<p : a
G Zd} is a shift-invariant space. In this case, $ is called a generator of 5. If $ is finite,
then S is called a finite shift-invariant space. We write 5 = S(<p) instead of <S({<p}) if
$ = {<p} is a singleton. In this case, we call 5 a principal shift-invariant space. It is known
that any shift-invariant space has a countable generator. The length of a shift-invariant
space is defined to be

lenS := i n f { # $ : 5 = <S($),$ C L2{Rd)},

where # denotes the cardinality. Let f\\x be the sequence ( / ( a ; + a ) ) Q e Z d which is in P{ljd)

for almost every x G Td. If A C L2(Rd),x G Td, then we let A\\x := {f]\x G £2(Zd) : /
G A], which is called the fibre of A at x. It is a subspace of £2(Zd) if A is a shift-invariant
space. The following theorem is used frequently in our discussion.

THEOREM 2 . ([4, 6, 10, 11].) Let S be a closed, not necessarily shift-invariant,
subspace of L2{Rd) and $ a countable subset of L2[Rd). Then S = <S($) if and only if
/llz G span^n-,;: <p G $ } for almost every i g T 1 and for each f G S.

The spectrum of a shift-invariant space is defined to be cr{S) := {x G Td : 5||x ^ {0}}.
A finite subset $ of L2(Kd) is said to be a quasi-stable generator for the shift-invariant
space 5 ( $ ) if, in addition to the condition that the family of the integer translates of $
is a frame for <S(<3?), dimspan{^| |x : <p G $} = # $ or 0 for almost every x G Td. If $
is a quasi-stable generator, then there is a convenient 'local' formula for the orthogonal
projection onto <S($) [4, 19]. The stable generator is a quasi-stable generator such that
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the spectrum of the shift-invariant space it generates is Td. It turns out that if $ is a
stable generator, then the family of the integer translates of $ is a Riesz basis for 5($)
[4, 19]. We say that a shift-invariant space S is quasi-stable, if dim5||x = n or 0 for
some non-negative integer n almost everywhere. It is said to be stable if dim S\\x — n
almost everywhere. It is known that a quasi-stable/stable shift-invariant space has a
quasi-stable/stable generator [4, 19].

We need the following results:

THEOREM 3 . ([4].) For a shift-invariant subspace S of L2(Rd)

lenS — ess-sup {dim 5||x : x ET1}.

THEOREM 4 . ([4].) Let Si be a shift-invariant subspace of a shift-invariant space
S and let S2 := S Q Si. Then 52 is also a shift-invariant subspace of S and S\\x

— Si\\x ® S2\\x for almost every x 6 Td.

Suppose that 5 = <5($) for a finite set § :— {<pi,if2,...,</?„}. Then the nxn matrix

G(x) := G*(x) := ({<Pi\\x,<Pj\\x)p(z<'))i&j£n

is the Gramian of $ at x € Td. Let A(x), \+{x) and A(x) denote the smallest eigenvalue,
the smallest non-negative eigenvalue and the largest eigenvalue of G(x), respectively.

THEOREM 5 . ([4, 6, 19].) The family of the integer translates of$ is a frame
for S if and only if there exist positive constants A and B such that A ^ ^+{x) ^ A(a;)
^ B for almost every x € c(5) . It is a Riesz basis for S if and only if A ^ A(i) < A(x)
^ B for almost every x G Td. Moreover, A and B are a pair of frame (Riesz) bounds of
the frame (Riesz basis), respectively.

3. FRAME MULTIRESOLUTION ANALYSIS

Suppose that {Vj}jgZ is a frame multiresolution analysis. Then there exists a set of
scaling functions * := {^ : 1 < i < n} C L?(Rd) such that {Ta<pi : a € Zd, 1 ^ i < n)
is a frame for Vo- We may assume that the length of Vo is n. Then Vo = <S($) and
Vi := D(V0). Let

G(x) := G$(x) := ((<Pi\\x,'<Pj\\x)p[zd))i&J&

be the Gramian of $ at a; € Td.

Since tpi £ Vi for each 1 ^ i ^ n, and since {DTaipi : a € Zd, 1 ^ i ^ n} is a frame

for Vi, there exist atj € P(Zd), 1 ^ i, j ^ n, such that ^ = E E aij(a)DTaipj. Hence
A
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where

my(i) := Yl |detJlfr1/aay(a)e-2»fa-1 G
a£Zd

For Z G Td, let

m(x) := (nHi( i ) ) 1 < y < n

and

Then

(1) $(z) = m ( M -

This TO, called a mask of the multiresolution analysis, may not be unique since {DTaipi :
a G Zd, 1 ^ i ^ n} is only assumed to be a frame, not necessarily a Riesz basis. Note
that DTMy = TyD for y G Rd. Since each 7 G Zd can be written uniquely as 7 = Ma + fi
for some a G Zd and 0 € Q,

pi : 7 € Zd, 1 ^ i ^ n} = {TaDTp<pi : a € Zd, /3 e Q, 1 ^ i ^ n).

Hence V"i = 5(11), where

(2) n :

This implies that the length of the shift-invariant space Vi is less than or equal to
n |detM| . Since Vo is a shift-invariant subspace of Vx, lenVi ^ lenVo = n. There is
an example of a frame multiresolution analysis in which the length of V\ is that of Vo.
See Example 6 below. Let Wo denote Vx e Vo, and let Wj := D^(W0),j G Z. Then
Definition 1 implies that L2(Rd) — ® V -̂. Wo is a shift-invariant space by Theorem 4.

iez
Since Wo is a subspace of V\, the length of Wo is also less than or equal to n\ det M\. It
cannot be zero. If it were zero, then Wo = {0}; hence Vo = Vi. Definition 1 implies that
L2(K) = Vo = <S($). This contradicts a result in [7] which states roughly that there are
no frames of L2(Kd) consisting of the translates of a finite number of functions. Since
Wo is a finite shift-invariant space, there is a finite set ^ , called a wavelet set, such that
Wo = <S(^). We may assume that the integer translates of the elements of \£ form a
frame for Wo [5, 19]. Then, obviously, {DjTatp : j € Z ,a G Z d , ^ € * } is a frame for
L2(Kd). Since the minimal cardinality of such ^ is len Wo, the (minimal) number of the
elements of a wavelet set is len Wo.

Note that, for /? e Zd and x G Td,

a

https://doi.org/10.1017/S000497270003375X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003375X


290 H.O. Kim, R.Y. Kim and J.K. Lim [6]

Hence, for almost every x € Td,

Vnx = span{ (e-W'-^ftiM-^x + a ) ) ) ^ : /? € Q, 1 ^ i^ n),

) a € Z d : 1 ̂  i <(3) V0\\x = spanj (<p(x + a))

= span I ̂  (mi;, (M*"1^ + a))0j(M*-1(x + a))) ^ : 1 ^ t < n | .

For /?* G Q' define P0. : ^ (Z" ) -)• ^ ( Z d ) via

(P0.a)(a) :=
I 0, otherwise.

Then P{Zd) = 0 Pp.(P{Zd)). Define, for a: € Td, 1 < i ̂  n,/3* e <9*,

Notice that aXtitp. is the 'up-sampled' version of <Pi\\M.-i(i+^), that is,

(4) a*,i,/J-(/?* + ^*a) = 6||M-i(«+/j.)(a)> a e Zd,
(5) 0^ . (7*) =0 , 7*^/3*+M*Zd.

Therefore

We also have

7'€Q*

Let bXtit0 be the right-hand side of the above equation. Then, for a fixed
we have the following matrix relation:

Recall that, for any /? € Zd, the map 7* -> e-2T^(M-1
7-) i s a character of the discrete

group G*. Hence the sum £ e-^i0iM-'t') j s the order of Q*, which is | det M\, if the
7-6Q<

map is the identity character, and the sum is 0 if the map is not the identity character
since the only discrete multiplicative subgroups of T are the groups of the p-th roots of
unity ([20, Theorem 0.14]). Using this observation, it is easy to see that

(--2iri0(M—1~r')\ (o2lri<M'-l6')-7}\ I A
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In particular, for each 1 ^ i ^ n and x G Td, span{6Iiii^ : /J G Q} = span{aXi,i7< : 7*
G Q*}. This shows that:

(7) Vinx = span{ax,;,r : 1 ^ i ^ n,7* G Q'}.

The 1-periodicity of the mask m and (4) imply that:

Vo||x = span j ^ ^ mij(M'-1{x + a ' ) ) a X J > . : U t < n •

Note that, for almost every x G Td, dimViyj. equals the rank of the following n |de tM|
x n |de tM| matrix

If we order the indices suitably, then (4) and (5) imply that the matrix is the block
diagonal matrix

Recall that rankG(M*- 1 (2 + a*)) = dimVo||M—'(z+a*) f°r e a c n a* € Q*. Hence, for
almost every x € T**,

(8) 7

A direct calculation shows that

G(i)=

Hence, for almost every a; € T' ,

(9) dimV0||x = rank ^ m(M*~1(x + a ' ) ) G ( M - 1 ( x + a ' ) ) m ( M - 1 ( x + a*))*.

EXAMPLE 6. Let us first consider a dyadic univariate frame multiresolution analysis
with a single scaling function, that is, d = n = 1 and Q = Z/2Z = {0,1}. Therefore
Df(x) = 2^2f(2x). Let Vo be a Paley-Wiener space such that {/ G L2(R) : supp(/)
C [-a,a]} with 0 < a < 1/4, and let Vj := £>J'(Vo), j € Z. Then it is easy to see that
{Vj}jeZ is a frame multiresolution analysis ([14]). Obviously, Vo = S(x[-a,a)), where V
denotes the inverse Fourier transform. Hence, V\ = <S(x[-2a,2a]) is a shift-invariant space
of length 1. This can be proved by using (8). Note that G(x) - X[-o,a]+z(2;) for x G T.
Hence, V^x = X[-a,a)+z{x/2) + X[-a,a]+z(x/2 + 1/2) for x e T. Hence dim Vi^ = 1 for
x G [-2a, 2a], and dim Vi^ = 0 for x G T \ [ -2o , 2a]. Therefore len Vx = 1 by Theorem 3.
Recall that len V̂  is less than or equal to n2d — 2. In this example, the length of V\ is
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that of Vo. Notice, however, that Vo is a strict subspace of Vj. It is now easy to see that
len V2 = 2.

The above example can be directly extended to the case where d > 1, n = 1 and
M = 2Id. T h e n Q = Q* = {(e\,E2,---,ed) '• £i — 0 or l}. For the sake of simplicity,
define (p := x<-i/4.i/4)*. Vd := S(ip) and Vf := &(Vd). Then {Vf}jeZ is a frame
multiresolution analysis. We show that lenV/ = 1. (8) implies that, for almost every
x € Td = [- l /2 , l /2)d , dimV^i^ is the number of the sets 2a(V0

d)-p*+2Zd,P* € Q*, to
which x belongs. A direct calculation shows that x belongs only to 2a{Vd) + 2Zd since

a(Vo
d) = ( - l /4 , l /4 ) d . Therefore lenl^ = 1 by Theorem 3. Since Vo

d is a strict subset
ofV1

d, lenW0 = l.

Suppose, temporarily, that {Ta(pi : a 6 Z, 1 ^ i ^ n} is a Riesz basis of Vo. Then
rankG(x) = n for almost every x 6 V [4]. Hence dimVi||x = n|detM| for almost
every x € Td. Since Vi||z = Vo||a © W0\\x almost everywhere by Theorem 4, dim W0||i
= n( | det M\ — l) almost everywhere. Therefore len Wo — n(| det M\ - l) by Theorem 3.
Benedetto and Li [1] introduced the following concept: a frame multiresolution analysis
admit a standard (frame) wavelet set if lenW0 ^ n( |detM| — l) . The characterisations
of dyadic frame multiresolution analyses admitting standard wavelet sets were given in
[2, 14], independently, for d = n = 1, and in [16] for d > 1 and n — I. Combining (8)
and (9) with Theorems 3 and 4 yield the following general result on the admittance of a
standard wavelet set.

THEOREM 7 . Tie frame multiresolution analysis {Vj}j€z admits a standard
wavelet set if and only if, for almost every x 6 Td,

rankG(M-1(a; + a*))

-rank J2 m(M'-l(x + a'))G(M"1(x + a'))m(M-1(i + a*))*

(10) ^ n ( | d e t M | - l ) .

We now recover the previous results on the admittance of a standard wavelet set [2, 14,
16]. Suppose that n = 1 and M = 2Id. Then Q = Q* = Zd/2Zd = {(ei,e2,. -. ,ed) : et

= 0 or l } , |detM| = 2d, $ = {<p} C L2(Rd), G(x) = ||£||i||^(Zd), and m(x) is also a
scalar. (10) becomes

ll~ II2 v—* /x + a\
rank v?||(l+Q)/2 - rank ^ ml — — I

II II C ( Z ) \ Ld '

2 ,

where t he rank of a scalar is t he rank of the l x l matr ix with the scalar entry. Notice
t h a t t he left-hand side of the above inequality is less than or equal to 2d . Hence the frame
mult i resolut ion analysis a d m i t s a s tandard wavelet set if and only if the left-hand side is
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not 2d almost everywhere. The condition, now, is equivalent to the condition that E is
of zero Lebesgue measure with

E := L e V : £||(*+a)/a # 0 for each a € Q, ^ L ( ^ ± ^ ) |2 = o | .

This recovers Theorem 5 of [16] (see also [2, 14] for the univariate case).

We now observe a simple relationship between the spectrums of Vo and Vi.

LEMMA 8 . CT(VI) = M*CT(V0) (mod 1).

PROOF: Suppose that x e a(V0). Then <pi^x ^ 0 for some i by (3). There exist
y € Td, a* e Zd such that M*x = y + a*. Now a* = 0* + M*>y* for some /?' 6 Q* and
7* € Zd. (6) implies that

\\aV,i,P*\\l?(ld) = \\Vi\\M— l(M'x-P'-M'r+P')\\p(Z) = H^'llx-7'II*2 7* 0.

Therefore, ?/ = M*z - a* € CT(VI) by (7). This shows that M*a(V0) C o(Vx). Suppose,
on the other hand, that x e cr(Vi). Then aXiii^ ^ 0 for some 1 ^ i ^ n and 0* € Q* by
(7). Then vi| |M-'(i+^) ^ 0 by (6). Hence M*~\x + 0*) (modi) e a(Vb) by (3). This
shows that a{V{) c MV(V0) (mod 1). D

Recall that a frame is a Riesz basis if it is, in a certain sense, 'globally' irredundant,
that is, irredundant in the norm topology [9, 13]. Suppose that $ is a quasi-stable
generating set for Vo. Then the family of the integer translates of $, which is a frame
for Vo, is 'locally', that is, fibre-wise, irredundant. We now show that: if $ and II are
quasi-stable generating sets for Vo and Vi, respectively, then the integer translates are
'globally' redundant. This result improves Theorem 3.9 [15] in the sense that we do not
presuppose that a(V0) = o{V\). More precisely, we show:

THEOREM 9 . Suppose that {Vj}j6z is a frame multiresolution analysis. IfVo and
Vi are both quasi-stable, and if lenVi = |detM|lenV0, then they are actually stable. In
particular, a(V0) = o(V{) = Td.

PROOF: We may assume that Vo = <S($) with $ := {ipi, ip2,..., <pn} a quasi-stable
generator for Vo. Then V\ = 5(FI) with II as in (2). Since # n = lenVi, II is a generator
for Vi with minimal length. Hence II is actually a quasi-stable generator for Vi [5,
Theorem 3.12]. The length condition on V\ and (8) show the following fact: If x € o-(Vi),
then, for each a* G Q*, there exists SXiO- € Zd such that M*~J(x + a*) + <51>a. € a(V0). It
is obvious that for a fixed set of coset representatives Q* the set of 'folding' multi-integers
{Sx,a- • ^ € a(Vi),a* € Q} is a finite set. This implies that <J{V0) contains a measurable
subset of Lebesgue measure M*~1(<7(Vi) +<**) = M*~1(o-(Vi)) . We show that these
subsets of cr(V0) do not overlap. Suppose that M*~l(x + a*)+-y = M—l{y + (3') + 6 e V1

forx,y € a(Vi),a*,£* 6 Q\j,S € Zd. Then x-y = P'-a* + M*(6-'r). Since the right-
hand side is an integer and since x,y 6 Td = [-1/2, l/2)d, x-y = 0. Hence a' = /?* and
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7 = 6. Therefore a(V0) contains #Q* = | det M\ number of subsets of Lebesgue measure

^ • " ^ ( V i ) ) ! - T h i s shows that \a(V0)\ > |<r(Vi)|. Since Vo C Vu a{V0) C a(Vi).

Consequently, a(VQ) = cr{Vi). Lemma 8 implies that a(VQ) — M*a(V0) (modi). The

ergodicity of the map x € T* -> M*x (mod 1) in Td implies that a(V0) is either Td or

empty. Since it is not empty, it is Td. D

The length condition in Theorem 9 is indispensable by Example 6.
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