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ABSTRACT

In this paper we present an algorithm for the approximate calculation of finite
time survival probabilities for the classical risk model. We also show how this
algorithm can be applied to the calculation of infinite time survival probabili-
ties. Numerical examples are given and the stability of the algorithms is
discussed.
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1. INTRODUCTION

The primary aim of this paper is the approximate calculation of the probablity
of survival in continuous and finite time for a general classical risk process. We
assume, without loss of generality, that the expected number of claims per unit
time for this process is 1 and that the expected amount of a single claim is also
1. This process can be characterized as follows:

— the number of claims occurring up to time t, denoted 0Nt, has a
Poisson distribution with parameter t,

— the amount of the z-th claim is 0F,, where {0Yj}%i is a sequence of

(1-1) < i.i.d. non-negative random variables which are also independent of
the claim number process, and whose first two moments exist,

- the premium income per unit time is 1 + 0, where 9 is the premium
loading factor. (We shall assume 6 > 0, but some of our later
results require only that (1 +6) > 0.)

(We use the subscript " 0 " where appropriate to indicate that we are dealing
with our initial process.) For a given initial reserve w(>0) we denote by
o<S(w, /) the probability of survival in continuous time up to time t, so that

U + (\+6)T- Y,oYt ^ 0 for all r, 0 < T < t
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Our approach to the calculation of Qd(u, t) is to show that 0S(u, t) can be
approximated by the probability of survival in discrete and finite time for a
particular risk process, and then to discuss the calculation of this latter
probability. The particular risk process we use is a classical risk process
characterized as follows:

— the number of claims occurring up to time t, denoted Nt, has a
Poisson distribution with parameter It,

— the amount of the i-th claim is Yt where {Yj}JLi is a sequence of
(1.2) ^ i.i.d. random variables which are independent of the claim number

process,

— the Y/s are distributed on the non-negative integers,

— the premium income per unit time is 1.

We introduce the following notation for this particular risk process:

bk = Pi [Y, = k] for ik = 0 ,1 ,2 , . . .

r
5{u, t) = P r M + T - ^ Yt 2s 0 f o r T = 1 , 2 , . . . , t

so that S(u, t) denotes the probability of survival in discrete time up to time t
for this particular risk process, given initial reserve u, which we always assume
to be non-negative. With suitable choices for k and the ftt's we can then argue
that

(1.3) 05{u,t)^d{up,(\+9)pt)

for some positive constant /?.
Formula (1.3) can be justified by using a discretizing and re-scaling argument

as follows:

STEP 1 Discretize the initial process:

Let UY,}fLi be a sequence of i.i.d. random variables distributed on the
discrete points 0, l/fi, 2/ft, . . . , for some /? > 0, in such a way that the
distribution of 1 Yt approximates to that of 0Y,,.

Let bk = Pr [, Yt = k/jff] for k = 0,1,2, ...

Let X8(u, t) = Pr u + (l + <9)T - Y iY' - ° f o r a11 T' ° < r -

L
so that iS(u, t) is the probability of survival in continuous time
before time t, given initial reserve u(> 0), for the initial process but
with 0Yj replaced by the discrete random variable lYi.
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Then, if xYt is a "good" approximation to 0Yi,

id(u, t) ^ Q&(U, t).

STEP 2 Change the monetary unit:

Define 2 Yt to be equal to P Y,;, so that

Pr [2Y,: = k] = bk for k = 0, 1, 2, ...

Denoting by 2<S(w, t) the probability

Pr

it can be seen that

+ {\+0)PT - Yj2^i ^ 0 for all x, 0 < x < t

i8(u, t) = 2(5(wy?, 0

and hence

od(u, t) — 2?>(uP, t).

STEP 3 Change the time unit:

Let 3N, be a Poisson process with parameter X = \/[(l + 9)P\.

Let 3<5(w, r) = Pr W + T - ^ 2y,- > 0 for all x, 0 < x < t .

J( = 1

Then it can be seen that

2(S(w, t) = 3<5(w,

and hence that

Finally in our argument to justify (1.3), note that the risk process emerging
from STEP 3 is the risk process characterized by (1.2) and that S(u, t) is the
discrete time probability of survival corresponding to 3<5(w, t). Intuitively, 5(u, t)
should be a good approximation to ^5{u,t) if, for a given /, the number of
re-scaled time units, (\+6)Pt, is large, so that there are frequent checks for
survival in the discrete case.

For the remainder of this paper our theoretical work will be based on the
risk process characterized by (1.2). We introduce the following notation for this
process:

Xn denotes the aggregate claims from time n — 1 to time n, so that

Xn= X Y, for n = 1, 2, ... (= 0 if #„_ , = Nn)
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gk is the probability that Xn takes the value k, for k = 0, 1, 2...
mk is the fc-th moment about zero of an individual claim amount
Zn is the accumulated surplus up to time n, given initial surplus u > 0, so

that
n

Zn = u + n — 2_j xi f ° r n = 1,2, ...
1=1

Note that since Yt is distributed on the non-negative integers we can evaluate
the gks using the recursive method of PANJER (1981). We shall assume for the
remainder of this paper that the gks are known and that u is a non-negative
integer. Note also that Zn+1 can take only the values

Zn+1

ZH-\ (if Xn+l = 2) etc.

2. THE METHOD OF D E VYLDER AND GOOVAERTS

DE VYLDER and GOOVAERTS (1988) present a very neat recursive algorithm for
the approximate calculation of 03(u, t). Their method involves discretizing the
risk process and then re-scaling it, in almost exactly the same way as we have
described in our Section 1. In terms of the process characterized by (1.2), their
algorithm is as follows:

(if Xn.
(if Xn.
(if Xn.

HI = 0 )

H = 1)
H = 2)

(2.1) d(w,l) = X 8j f o r w = 0 , 1 , 2 , . . .
7 = 0

w+l

(2.2) 8{w,m)= X S(w+l-j,m-l)gj for w = 0 , l , . . .

; = o

and m = 2, 3, ...

The rationale behind this algorithm is as follows:

— S(w, 1) can be calculated directly from (2.1) since the gk's are known,
— for m > 2, 5(w,m) can be calculated by conditioning on the surplus after

1 unit of time; with probability gj this surplus is (w+l—j) and the
probability of survival over a further (m-l) units of time is

In terms of the calculations involved, formula (2.2) can perhaps be most
easily appreciated by considering Figure 1. We suppose that we wish to
calculate 3(u, t) for some given u and (positive integer) t (> 1). We first
calculate S(w, 1) for w = 0, 1, . . . , u + t- 1 using (2.1). We then use (2.2) to
calculate S(w, 2) for w = 0, 1,2,..., u + t —2. In general, we calculate S(w,x)
for w = 0, 1, 2 , . . . , u + t — x having first calculated 5{w, x—\) for
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w = u+t-1

w = u+t-2

W = U+t-T+1

W = U+t-T

w = u+1

w = 0

i

i

1

K

*

ft .

*

I t

IK

*

K

T - l t - 1
FIGURE 1. Combinations of w and r for which values of S(w, T) are required to calculate d(u, t)

using the method of De Vylder and Goovaerts.

w = 0, 1, 2,..., u+t-z+ 1. It can be seen that to calculate S(u, t) we have, at
least in principle, to calculate S(w, r) for all values of (w, T) in the trapezoidal
area given by 1 < z < t - 1 and 0 < w <u + t-r.

There is one respect in which the above description represents a refinement
of the algorithm presented by DE VYLDER and GOOVAERTS (1988). In their
Section 7 they state that, " We can adopt any unit of money and any unit of
time." However, re-scaling of the time unit results in a premium income per
unit time which can be greater than 1; our re-scaling of the time unit, as
described in our Section 1, results in a premium income per unit time which is
equal to 1.

There are two respects in which the above description is a simplification of
De Vylder and Goovaerts's algorithm. These are:

1. Truncation: DE VYLDER and GOOVAERTS (1988, Sections 4 and 5) point
out that the algorithm as described above requires a lot of calculations to
be carried out and hence requires a considerable amount of computer time.
They propose, and use, a method for reducing the number of calculations
required in such a way that the error resulting from this approximation can
be bounded.

2. Averaging: DE VYLDER and GOOVAERTS (1988, formula (1)) point out that,
in the notation of our Section 1,

S(u- 1, t) < 3<5(H, 0 < S(u, t)
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and, in their numerical example, they propose approximating 3<HM, 0
by S(u, t) but by 5{u,t) where

(2.3) S(u, 0 = ±{<5(K-1, t) + 3(u, t)}

with 8{u— 1, t) taken to be zero if u is zero.

A numerical example: Table 1 shows values of 03(u, t) for various combina-
tions of u and t for the risk process with exponentially distributed individual
claims and with two values for the premium loading factor 6, viz. 0.1 and 0.2.
The key to Table 1 is as follows:

(1) denotes the exact value of 0S(u, t) as given by WIKSTAD (1971);
(2) denotes the approximation to 0S(u, t) given by DE VYLDER and Goo-

VAERTS (1988, Table 1);
(3) denotes the approximation to 03(u, t) given by (2.1) and (2.2) above.

TABLE 1 (See Section 2 for details)

(a) Premium loading factor 9 = 0.1

t = 1 t = 10 I = 100

K = 0

u = 1

u = 10

(1)
(2)
(3)

(1)
(2)
(3)

w
w

w

0.5366
0.3401
0.5515

0.7619
0.4159
0.7699

0.9997
0.9996
0.9997

0.2146
0.1562
0.2239

0.3874
0.2322
0.3953

0.9681
0.9663
0.9687

0.1100
0.0814
0.1150

0.2052
0.1252
0.2098

0.7395
0.7366
0.7413

(b) Premium loading factor 6 = 0.2

t = 1 / = 10 t = 100

u = 0

u = 1

u = 10

(1)
(2)
(3)

(1)
(2)
(3)

w
w

w

0.5490
0.3498
0.5636

0.7695
0.4212
0.7772

0.9997
0.9996
0.9997

0.2523
0.1829
0.2624

0.4356
0.2602
0.4437

0.9759
0.9743
0.9764

0.1717
0.1262
0.1789

0.3040
0.1847
0.3094

0.8601
0.8573
0.8615
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The following points should be noted concerning Table 1:

(i) The same discretization has been used to calculate (2) and (3). This is the
discretization given by DE VYLDER and GOOVAERTS (1988, Section 8); in
particular the parameter y? has been taken to be 20.

(ii) Both (2) and (3) have been calculated using the truncation proposed by DE
VYLDER and GOOVAERTS (1988, Sections 4 and 5) with the same trunca-
tion parameter in each case.

(iii) The figures shown for (2) have been calculated using formula (2.3), i.e. by
"averaging". The figures for (3) have not been calculated using (2.3). If
(2.3) had been used to calculate the figures for (3) the effects would have
been an improvement in the approximation to Q5{U, t) for u > 0 (e.g. the
approximation to Q3{\0, 10) with 6 = 0.1 would have been 0.9684) but a
much worse approximation to 0<5(0, t) (e.g. for 6 = 0.2 the approximation
to o(5(O, 10) would have been 0.1312).

(iv) The important difference in the calculation of the values for (2) and (3) is
the difference in the re-scaling of the time unit, as explained above.

(v) For all combinations of 9, u and t shown in Table 1, the approximation
given by (3) is much closer to the exact value than is the approximatoin
given by (2). We consider this to be a consequence of point (iv) above.

3. A NEW APPROACH TO THE CALCULATION OF 5{u, t)

In this section we present an approach to the calculation of S(u, t) different to
that of Section 2. The starting point for this approach is formula (2.2). For

w
u

u-1
u-2

1
0 t+u

FIGURE 2. Combinations of w and T for which values of d(w, T) are required to apply
formula (3.2).
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u > 1 and t > 0, we can rewrite (2.2) as
u

(3.1) 8(u-l, t+l)= V g,d(u-i, t)

To apply this approach, we do not need a formula corresponding to (2.1), but
we have to consider the situation when u = 1. This is considered in detail in
Section 4. On rearranging (3.1), we see that

(3.2) 8(u, t) = g0 (u-l, t+l)-

Figure 2 illustrates the survival probabilities required in order to calculate
8(u, t) from (3.2). By repeated application of this approach, we see that all
values of 5(w,x) for w = 0, 1, ..., u— 1 and x = t, t + 1, ..., t + u-w are
required to calculate 8{u,t). Note that all values of 3(0, z),
z = t, t+l, ..., t + u, are required, but these cannot be calculated from (3.2).
These values are central to our algorithm and, for the moment, we assume that
these values are known. A method for finding these values is considered in
Section 4.

Figure 3 illustrates the combinations of w and x for which values of 8{w,x)
are required in order to calculate 8(u, t). The algorithm starts by calculating
8(1, t + u— 1) from <S(0, t + u) and <5(0, t + u- 1). Survival probabilities at time
t + u-2 are then calculated, firstly 8(1, t + u-2), then 8(2, t + u-2). We next
calculate survival probabilities at time t + u-3 and continue in this manner
until we finally calculate survival probabilities at time /.

Calculation of 8(u, t) by this method requires that a total of 0.5M(« + 3)
survival probabilities must first be calculated. What is remarkable about this
number is that it is independent of t. This contrasts with the algorithm
discussed in Section 2, where the number of 8 values required to calculate

w

u
u-1
u-2

1

0 -#—*—* » *—
t t+l t+u-1 t+u

FIGURE 3. Combinations of w and r for which values of d(w, z) are required to calculate S(u, t) by
repeated application of formula (3.2).
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8(u, t) is (t — 1) (w + 0.51+ 1), which clearly depends on /. However, as we shall
show in Section 4, the number of calculations required to produce a value for
5(0, t) does depend on t.

A further difference between this algorithm and that of Section 2 is that,
using the approach of De Vylder and Goovaerts, the survival probabilities
required to calculate 5(u, t) are all for time periods less than t. The new
algorithm uses survival probabilities for time periods of at least t. This
difference is not important if we are only interested in calculating the survival
probability for one particular combination of u and /. De Vylder and
Goovaerts' approach to calculting 8(u, t) also produces values of S(u,j), for
/ = 1,2, ...,t— 1. Our new algorithm produces values of 8(j,t), for
/ = 0, 1, ..., u — 1 (and the method of De Vylder and Goovaerts produces all
the figures required to calculate these survival probabilities).

4. A FORMULA FOR 3(0, t)

Let us first consider a survival probability that is slightly different to 8(u, t).
Define

r N'
S*(u, t) = P r M + T - Y, Yi ^ ! f o r T = 1 , 2 , . . . , /

L
so that survival occurs only if the reserve level is strictly positive at each
duration from 1 through to t, but the initial reserve level could be zero. When t
is infinite, we shall write d*(u) rather than 8*(u, oo).

Let us consider 5* (0,^+1), where t > 0. Since the initial reserve level is zero,
survival under the definition of <5* can occur only if there are no claims in the
first unit of time. Hence

t)

N,

g for T = 1,2,...,/

Yi^° f o r

= g0S(P, t)

We can use results given in GERBER (1980, pp. 19-22) for stochastic processes
with exchangeable increments to find a formula for d*(0, t), and hence <5(0, t).
We have that

S*(0, t) = Y, P l " [ z«> 0> f o r n = 1,2, . . . , * -1 and Z, = j]
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where Zn is as in Section 1 (with u = 0). Using the duality principle,

Pr [Zn > 0, for n = 1, 2, . . . , t- 1 and Z, = j]

= Pr [Z«<Z, for n= 1,2, . . . , / - 1 and
Zt = j]

and since the process {Zn} is skipfree upwards, we have that

Pr [Zn<Zt for n= 1,2, . . . , / - 1 and Z, = j] = - ?r[Z, = j]
t

t . ( + i .

Thus, S* (0, 0 = X - Pr [Z, = 7] and <S(0, /) = go~ ' V — Pr [Zt+, = j ] .

r

Define Sr to be aggregate claims up to time t, so that S, = 2_, Wn • Let F(j,

= P r ^ , < ; ] a n d l e t / ( y , /) = Pr [5, =j],forj= 0, 1,2, . . . . Since the initial
surplus is zero, Z,+ 1 = j => St+I = t+ 1 —y, so that

(4.1) ) g0 £
Pi t+\

(4-2) = go"' E —F(j,t+l)
f=i t + \

Note that since S, has a compound Poisson distribution with individual claims
distributed on the non-negative integers, F(j, t) can be calculated using
PANJER'S (1981) recursion formula.

It is interesting to note that the formula for S* (0, t) can also be expressed in
terms of F(j, t) as

1 ' " '
(4.3) <J*(0,0 = - £ F{j,t)

t y=o

This expression is clearly analogous to the well known formula for o<S(O, 0 for
the general risk process specified by (1.1), as given in, e.g., SEAL (1978,
p. 48).

5. SOME NUMERICAL EXAMPLES AND SOME COMMENTS

ON NUMERICAL STABILITY

5.1. Numerical examples using the algorithm in Sections 3 and 4

Table 2 shows values of, and approximations to, od(u, t) for a risk process
with exponentially distributed individual claims and premium loading factor,
9, equal to 0.1. The key to Table 2 is as follows:

(1) denotes the exact value of 0S(u, t), as given by SEAL (1978, Table 2.4),
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(2) denotes the approximation to 0S(u,t) calculated using the algorithm
discussed in Sections 3 and 4, i.e. using (4.2) and (3.2), with the parameter
P= 20,

(3) denotes the ratio of the value in (2) to the value in (1),
(4) as in (2) but with p = 10,
(5) denotes the ratio of the value in (4) to the value in (1).

The two sets of approximations to od(u, t) shown in Table 2, i.e. (2) and (4),
have been calculated using the method for discretizing the individual claim
amount distribution given by DE VYLDER and GOOVAERTS (1988, Section 8).
In the former case it is exactly the same discretization, in the latter case only
the parameter /? is different.

We make the following comments about Table 2:

(i) The approximations to 0S(u, 0 are always larger than the correct values.
This is not surprising since we are using discrete time survival probabilities
as approximations to continuous time survival probabilities. This is the
problem that DE VYLDER and GOOVAERTS (1988) were trying to alleviate
by "averaging". See Section 2.

(ii) The relative error in the approximation to Qd(u, t) for /? = 10 is consis-
tently about twice the relative error for /? = 20. We would expect the
relative error for /? = 10 to be larger since it involves a "coarser"
discretization of the individual claim amount distribution and also
involves "checking for survival" less frequently.

(iii) Where values of (w, t) are given in both Table 1 and Table 2, the
approximations to 0S(u, 0 given by formulae (2.1) and (2.2) (i.e. values (3)
in Table 1) can be compared with the approximations given by formu-
lae (4.2) and (3.2) with /? = 20, (i.e. values (2) in Table 2). (These values
can reasonably be compared since they use precisely the same discretiza-
tion of the individual claim amount distribution.) It can be seen that the

TABLE 2 (See Section 5 for details)

u = 0

u = 1

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

( = 1

0.5366
0.5515
1.0278
0.5660
1.0548

0.7619
0.7699
1.0105
0.7775
1.0205

t = 5

0.2804
0.2921
1.0417
0.3036
1.0827

0.4881
0.4971
1.0184
0.5059
1.0365

t = 10

0.2146
0.2239
1.0433
0.2332
1.0867

0.3874
0.3953
1.0204
0.4030
1.0403

t = 20

0.1682
0.1757
1.0446
0.1831
1.0886

0.3094
0.3160
1.0213
0.3224
1.0420

t = 40

0.1362
0.1423
1.0455
0.1485
1.0903

0.2529
0.2584
1.0217
0.2638
1.0431
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TABLE 2 (See Section 5 for details)

u = 2

u= 3

u = 4

u = 5

« = 6

« = 7

W = 8

u = 9

u = 10

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)
(4)
(5)

t = 1

0.8803
0.8844
1.0047
0.8883
1.0091

0.9409
0.9429
1.0021
0.9449
1.0043

0.9712
0.9722
1.0010
0.9732
1.0021

0.9862
0.9867
1.0005
0.9871
1.0009

0.9934
0.9937
1.0003
0.9939
1.0005

0.9969
0.9970
1.0001
0.9971
1.0002

0.9986
0.9986
1.0000
0.9987
1.0001

0.9993
0.9994
1.0001
0.9994
1.0001

0.9997
0.9997
1.0000
0.9997
1.0000

t = 5

0.6456
0.6522
1.0102
0.6587
1.0203

0.7605
0.7652
1.0062
0.7698
1.0122

0.8416
0.8449
1.0039
0.8481
1.0077

0.8973
0.8996
1.0026
0.9017
1.0049

0.9346
0.9361
1.0016
0.9375
1.0031

0.9591
0.9600
1.0009
0.9609
1.0019

0.9747
0.9753
1.0006
0.9759
1.0012

0.9846
0.9850
1.0004
0.9854
1.0008

0.9908
0.9910
1.0002
0.9912
1.0004

; = 10

0.5309
0.5373
1.0121
0.5435
1.0237

0.6469
0.6520
1.0079
0.6569
1.0155

0.7386
0.7425
1.0053
0.7464
1.0106

0.8094
0.8125
1.0038
0.8154
1.0074

0.8631
0.8654
1.0027
0.8675
1.0051

0.9031
0.9047
1.0018
0.9063
1.0035

0.9322
0.9334
1.0013
0.9346
1.0026

0.9532
0.9541
1.0009
0.9549
1.0018

0.9681
0.9687
1.0006
0.9693
1.0012

t = 20

0.4327
0.4383
1.0129
0.4439
1.0259

0.5388
0.5436
1.0089
0.5483
1.0176

0.6289
0.6329
1.0064
0.6369
1.0127

0.7044
0.7078
1.0048
0.7110
1.0094

0.7668
0.7696
1.0037
0.7722
1.0070

0.8179
0.8201
1.0027
0.8222
1.0053

0.8590
0.8608
1.0021
0.8625
1.0041

0.8919
0.8933
1.0016
0.8947
1.0031

0.9179
0.9190
1.0012
0.9200
1.0023

I = 40

0.3574
0.3623
1.0137
0.3670
1.0269

0.4503
0.4546
1.0095
0.4588
1.0189

0.5325
0.5363
1.0071
0.5399
1.0139

0.6046
0.6079
1.0055
0.6111
1.0108

0.6674
0.6703
1.0043
0.6730
1.0084

0.7219
0.7243
1.0033
0.7267
1.0066

0.7687
0.7708
1.0027
0.7728
1.0053

0.8087
0.8105
1.0022
0.8122
1.0043

0.8427
0.8442
1.0018
0.8456
1.0034
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two sets of values are identical up to the fourth significant figure and
hence it appears as though the two algorithms are "as accurate as each
other".

5.2. Some comments on numerical stability

The algorithms specified by formulae (2.1) and (2.2) and by formulae (4.2) and
(3.2) involve a considerable number of numerical operations. In such situations
the numerical stability of an algorithm must be of concern. (An algorithm is
numerically unstable if small errors in individual numerical operations, as a
result of machine rounding for example, can combine to give uncontrollably
large errors in the final results. See, for example, CONTE and DE BOOR

(1980)).
DE VYLDER and GOOVAERTS (1988, Section 5) demonstrate that the

algorithm specified by formulae (2.1) and (2.2) is numerically stable; However,
the algorithm specified by formulae (4.2) and (3.2) does not appear to be
stable. The authors have experienced difficulties (e.g. calculated 3 values
outside the range zero to one) when using formulae (4.2) and (3.2) to
approximate Q3(U, t) for values of u greater than about 30 with individual
claim amounts having an exponential distribution (with mean 1). These
difficulties seem to occur:

(i) independently of the value of t, and,
(ii) independently of the value of /?.

This last observation may be a little surprising since reducing the value of /?
reduces the number of numerical operations required to approximate 03(u, t)
for given values of u and /.

We can prove the following result concerning the error in the calculation of
3(u, t) using formulae (4.2) and (3.2). Instead of 3(u, t), let us assume that
3{u, t) has been calculated, due to rounding errors, and that 3(u, t) satisfies
(3.2). We define E{U, /) to be the error in the calculation of 3(u, t), so that

E{U, t) = 5(u, t)-3(u, t)

and, for given u and /, e to be the modulus of the maximum error in the
calculation of 3(0, t) for x = t, t + 1,.. . , t + u, so that

e = max |e(0, T)|

t<z<l+u

Then we can show that

(5.1)
\e(w, T)| < s(2g0y for x = t, t+ 1, ..., t + u,

and w = 0, 1, 2, ..., t + u — x.

https://doi.org/10.2143/AST.21.2.2005364 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.2.2005364


212 DAVID C M . DICKSON AND HOWARD R. WATERS

Proof: The proof is by induction, working back from T = t+u to r = t. Note
first that (5.1) holds for r = t + u since the only possible value for w in this case
is 0 and

\e(0,t + u)\ < £ = £(2g0-1)0

by definition of £. Now assume (5.1) holds for z = T* + 1, for some z*, SO
that

(5.2) \e(w, z* + 1)| <

We have to show that

(5.3) e(w,z*)\ <

for w = 0, 1, ..., t + u-z*~

Y for w = 0, \,...,

to complete the induction. We shall prove (5.3) by induction on w. Note that
(5.3) holds for w = 0 by definition of s. Suppose (5.3) holds for w <w* for
some w*, where 0 < w* < t + u — z*. From (3.2) the basic equation satisfied by
e(w* + 1, T*) is

w*+\

{
E(w*,Z*+\)~ £ gi£(w*+\-i,Z*)

from which we have

e(w* gi\e(w* + l - i , z*)\

using (5.2) and (5.3). Hence, by induction, (5.3) holds for w = w* + l and
hence, also by induction, (5.1) holds for z = T*.

This result is somewhat unsatisfactory since it gives only an upper bound for
\E(U, t)\ rather than more detailed information about how this error behaves,
and also because for large values of u it may very well be greater than 1. Note
that for values of ft used in this paper g0 is close to 1. For example, in Table 2
with P = 20 the value of g0 is 0.95663, but the maximum value of w is 200 so
that e will need to be very small indeed for the upper bound in (5.1) to be less
than 1!

However, the result does have some interesting features:

(a) The upper bound for \e(u,t)\ is explicitly a function of u, not of t
(although £ itself will be a function of t). See remark (i) earlier in this
section.
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(b) Suppose we wish to approximate QS(U, t) for some given u and t using
formulae (4.2) and (3.2). Suppose further that we do this twice using
different values for /?, one twice the value of the other, say /? and y§ = 2jS.
Then, in an obvious notation,

The value of od(u, t) is approximated by d{ufi, (l + 0)/?t) and
S(2uP, 2{\ + 6)f}t) in each case and the upper bounds given by (5.1) for
the errors will be

|e(wy?, {\ + G)Pt)\ < E{2em+0)ll)ufl

= e 2M/J eul(1 + e)

e(2up, 2(1+ 6)Pt)\ <

so that one component of the upper bound is independent- of p. See
remark (ii) earlier in this section.

5.3. A pragmatic solution to the problem of instability

We can deal with the problem of numerical instability resulting from the use
of formulae (4.2) and (3.2), at least superficially, by constraining the results to
behave properly. Consider formula (4.2) first. We know that

0<6(0, t+\)<S(O, t)< 1

for any / > 0. Let 8(0, /) be the value calculated using (4.2). Rather than use
this value in formula (3.2) we can use 8'(0, t) where

(5.4) <5'(0, 0 = min {1, max (0, min (8(0, t), 8'(0, t- 1)))} for t > 1

In our numerical examples, we did not experience stability problems in the
calculation of 8(0, t).

We can adjust (3.2) in a similar fashion. For u > 1 the constraints on d(u,t)
are

0 < max{<5(M, /+1), d(u-\, t)}<S(u, t) < 1

Let S' (,) denote the (constrained) value of S (,) actually used and, for given u
and t, let S(u, t) be the "value" of 8(u, t) calculated using (3.2) with
d'(u- 1, t+ 1) and 8' (u— 1, t) appearing on the right hand side. Then

(5.5) S'(u,t) = min{l,max(<5(w, 0, S'(u,t+l), S'(u-l,t))}

(At this stage the reader could be forgiven for thinking that we are treating the
symptoms of instability rather than the disease itself!)

Table 3 shows values of, and approximations to, Q8(U, t) for larger values of
u and t than those in Table 2. The premium loading factor 9 is 0.1 and, as in
our previous Tables, individual claim amounts are exponentially distributed.
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TABLE 3 (See Section 5 for details)

H = 0

u= 11

u = 22

u = 33

« = 44

u = 55

(1)
(2)
(3)

(1)
(2)
(3)

(1)
(2)
(3)

(1)
(2)
(3)

(1)
(2)
(3)

(1)
(2)
(3)

; = 50

0.1284
0.1399
1.0896

0.8467
0.8493
1.0031

0.9844
0.9847
1.0003

0.9990
0.9993
1.0003

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

/ = 100

0.1100
0.1200
1.0909

0.7724
0.7753
1.0038

0.9562
0.9568
1.0006

0.9937
0.9940
1.0003

0.9993
1.0000
1.0007

0.9999
1.0000
1.0001

/ = 150

0.1028
0.1121
1.0905

0.7361
0.7390
1.0039

0.9352
0.9359
1.0007

0.9870
0.9875
1.0005

0.9979
1.0000
1.0021

0.9997
1.0000
1.0003

The key to Table 3 is as follows:

(1) denotes the exact value of od(u, t) given by SEAL (1978, Table 2.4),
(2) denotes the approximation 0S(u, t) calculated using formulae (4.2) and

(3.2) together with the adjustments given by (5.4) and (5.5),
(3) denotes the ratio (2)/(l).

The values in (2) have been calculated using fl = 10 and the same discreti-
zation of the individual claim amount distribution as in our previous exam-
ples.

We make the following comments about Table 3:

(i) The relative errors follow the same general pattern as those in Table 2, i.e.
increasing with / and decreasing with u, although the pattern is somewhat
less regular than it was in Table 2.

(ii) The magnitudes of the relative errors are consistent with those for /? = 10
in Table 2; in particular, introducing the constraints given by (5.4) and
(5.5) has not made our approximations to 0S(u, t) noticeably less accu-
rate.

6. A TRUNCATION PROCEDURE

In their paper DE VYLDER and GOOVAERTS (1988, Section 5) show how the
number of calculations, and hence the amount of computer time, involved in
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the calculation of S(u, t) using formulae (2.1) and (2.2) can be reduced in such
a way that the resulting error is bounded. This truncation procedure requires
the specification of a parameter which, in their numerical example, De Vylder
and Goovaerts take to be ^x 10~6. (We have used this truncation procedure
with the same parameter value for the calculation of the values of S(u, t) in
Table 1.) Even with the help of this truncation procedure, we have found that,
typically for very small values of w, the algorithm specified by formulae (2.1)
and (2.2) can sometimes take more computer time to calculate d(u, t) than the
algorithm specified by (4.2) and (3.2). Even so, the calculation of <5(w, t) using
(4.2) and (3.2), and in particular the calculation of values of 3(0, t) using (4.2),
can require a considerable amount of computer time. However, it is possible to
limit the number of calculations involved in the calculation of <S(0, t) in such a
way that the resulting error is bounded, as we show below.

Recall that Yt denotes the amount of the z-th individual claim and that bk
denotes P[Yt = k] for k = 0, 1,2, We introduce the following notation:

B(k) = P[Yi<k] for A: = 0 ,1 , . . .
B*"(k) = P[Y{+Y2+ ... +Yn<k] for k = 0, ] , . . .

Suppose e, 0 < £ < 1, is given. We define k0 to be the smallest integer such
that

> l - e

The random variables {Yic}%{ are defined as follows:

Yi<e = Yi if Yt < k0

= 00 if Yi > k0

We define

bAk) = P[YUe = k] = bk for 0 < k < k0

= 0 for k0 < k < oo
OO

= 2_j bj for k = oo

BAk) =

It is an elementary exercise to show that

(6.1) B*n(k)-nE<B*n(k)<B*n(k) for A: = 0,1,2,.. .
and n = 0, 1, 2, . . .

Recall that F(j, t) is the probability that the aggregate claims up to time t do
not exceed/ Define FAJ, 0 to be the corresponding distribution function with
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individual claim sizes given by Yie rather than Yh and 3r(0, t) to be the
appropriate survival probability for this process. Then

(6.2) F(j,t)-ltE<Fe(j,t)<F(j,t)

(6.3) 3(0, t)-X(t+l)ego
]<3E(O, t)<3(0, t)

for t = 1,2,..., andy = 0, 1, 2, Formula (6.2) follows from (6.1) and from
noting that

«=o n\

with a corresponding formula for Fe(j, t). Formula (6.3) follows from (6.2)
and (4.2).

The calculation of 3(0, t) and 3P(0, t) require the calculation of F(j, t+ 1)
and Fs(j, t+ 1) respectively, for j = 0, 1, 2 , . . . , t, and these latter calculations
are carried out using PANJER'S (1981) recursion formula. There can be a
considerable saving of computer time in using 3E(0, t) as an approximation to
<5(0, t) since Fe(j, / + 1) may be based on a risk process with considerably fewer
possible values for an individual claim.

7. CALCULATION OF INFINITE TIME SURVIVAL PROBABILITIES

7.1. A recursive formula for the infinite time survival probability

In this section we shall assume that the mean of an individual claim amount,
denoted m, , is equal to /?, i.e. that the discretisation of the initial individual
claim amount in Section 1 has been done in such a way as to preserve the value
of the mean claim amount. This condition is satisfied by the discretisation used
in all the numerical examples in this paper. See D E VYLDER and GOOVAERTS

(1988, Section 7).
The rationale underlying (2.2) can also be applied to infinite time giving

(7.1) 3(u-l)= > gid(u-i), where 3(u) = lim 3(u,t)
i^O t->ao

This is simply the infinite time version of (3.1), which can be rearranged to
give

(7.2) 3(u) = go1 I 8(u-\) - V 8i3(u-i)

We could apply formula (3.2) if we could calculate values of 3(0, t). We can
apply (7.2) if we can calculate the value of 3(0). To do this, we consider the
limit as t -> oo of formula (4.2), using ideas given in GERBER (1979, p. 113).
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We have that

1
god(O,t) = - _

t+l p

1
t+l p

(7.3)
t+\ p

[l-F(j,t+l)] [l-F(j,t+\)]

The summation in the second term on the right hand side of (7.3) is just the
mean of the distribution of S,+1. As St+1 has a compound Poisson distribution
with Poisson parameter (t+ 1)/[(1 +8)ml], this term reduces to 1/(1

Hence,

(7.4) goS(O, t) = +
l + d ;+l7=Tfi

Finally, consider l—F(j, t+l) = Pr [S,+l > j+1]. Now St+i has mean
(t+l)/(l+6) and variance (t+l)m2/[(l + 9)ml]. We can apply Chebychev's
inequality as follows:

Pr(S,,+ 1

< Pr

t+l

1 + 9

t+l

i+e

t+i
1 + 8

1+6

t+l

T+9

Then, J ] [\-F(j,t+l)]<V(St+l) £ f / + 1 -
y=r+l 7 = 1+1 \

t+l
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Consider the sum

S = +

f
<

(t + 2-af (t + 3-a)2 (/ + 4-a)

+

+ + ... where a = (t + 1)/(1 + 9)
2

+ ... provided that 9 > 0

1 1

t+l-a t+2-a

1 1+0

t + 2-tx t + 3-a

t+l-a 9(t+l)

1 ^ 1 1+9
Hence, £ U~F(j, t+l)]< V(Sl+l) —

l ^Ti l 9(
t+l j t+l

1 m2

t+\ 8mx

9 1 m2so that god(O, t) < +
1+9 t+l 8mx

Finally, as god(O, t) >
1+9

by (7.4), we see that by letting t -> oo we have

(7.5) 5(0) =

Again it is interesting to compare results for our discrete time process with
those for the general risk process as specified by (1.1). We note that
<S*(0) = 9/(1+9), which is the same as the ultimate survival probability in
continuous time from initial reserve 0 in the general risk process.

Formulae (7.1) and (7.5) correspond to equations (33) and (37) in a paper by
DUFRESNE (1988), but he does not consider their numerical application. An
earlier reference, also given by Dufresne, is GIEZENDANNER, STRAUB and
WETTENSCHWILER (1972). An alternative method of finding 3(0) which does
not require equation (4.2) is given in his paper.

We can now apply (7.1) in a recursive manner to calculate survival
probabilities starting from

S(l) = go](l-gl)8(O)

We can use calculated values of S(J3u) to approximate to

od(u) = lim 0S(u, t).
t—ao
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7.2. A numerical illustration

Table 4 shows values of, and approximations to, QS(U). AS in Tables 2 and 3,
individual claims are exponentially distributed and the loading factor, 6, equals
0.1. The discretization of the exponential distribution is as before. The key to
Table 4 is as follows:

(1) denotes the exact value of od(u) (see, e.g., SEAL (1978, p. 60)),
(2) denotes the approximation to 0S(u) calculated using formulae (7.2) and

(7.5), with p = 20,
(3) denotes the ratio of the value in (2) to the value in (1),
(4) is as (2), but with P = 40,
(5) denotes the ratio of the value in (4) to the value in (1),
(6) is as (2), but with /? = 100,
(7) denotes the ratio of the value in (6) to the value in (1).

We make the following comments about Table 4:

(i) The pattern of results is similar to that in Table 2. The approximate values
are always greater than the exact values, and as the value of P increases,
the relative error in the approximation decreases.

(ii) The authors experienced problems in calculating values of d(u, t) for
values of u greater than about 30. There were no such problems in
calculating values of <S(40) and <5(8O). However, for larger values of u, the
same numerical problems as in Section 5.2 exist.

7.3. Numerical stability

As in Section 5.3, we can adopt a pragmatic approach and constrain the
calculated values of S(u) to behave properly. The calculation of 8(0) does not
pose any problems. For u> 1, we constrain the function 8(u) to be such
that

0<S(u-\)<d(u)< 1

TABLE 4 (See Section 7 for details)

It

0
2
4
6
8
10
20
40
80

(1)

0.0909
0.2420
0.3681
0.4731
0.5607
0.6337
0.8524
0.9760
0.9994

(2)

0.0950
0.2454
0.3709
0.4754
0.5626
0.6353
0.8531
0.9761
0.9994

(3)

.0451

.0140

.0076

.0049

.0034

.0025

.0008

.0001

.0000

(4)

0.0930
0.2438
0.3695
0.4743
0.5617
0.6346
0.8528
0.9761
0.9994

(5)

1.0231
1.0074
1.0038
1.0025
1.0018
1.0014
1.0005
1.0001
1.0000

(6)

0.0917
0.2427
0.3686
0.4736
0.5611
0.6341
0.8526
0.9761
0.9994

(7)

1.0088
1.0029
1.0014
1.0010
1.0007
1.0006
1.0002
1.0001
1.0000
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Let 8' (u) denote the constrained value of 8{u) actually used and, for given u,
let 8{u) be the "value" of 8{u) calculated using (7.2) with 8' appearing on the
right hand side. Then

(7.6) S'(u) = min {1, max (S'(u- 1), S(u))}

We can calculate approximate values of 08(u) using formulae (7.2) and (7.5),
together with the adjustment given by (7.6). We have not produced a table of
results because the exact and approximate values (with /? = 20 and with
P = 40) are both 1 to four decimal places for u > 110.

8. SOME COMMENTS ON THE DEFINITION OF SURVIVAL

Our aim in this paper has been to show how to approximate the continuous
time probability of survival 08(u, t) by the discrete time probability of survival
8(uP,{l + 0)Pt). Formulae (4.2) and (3.2) are exact for 8(up,(\+9)Pt).
However, if we regard the latter as an approximation to 08(u, t) we find that,
being a discrete time approximation to a continuous time probability of
survival, it will tend to overstate 08(u, t), as noted in comment (i) in Section
5.1.

If, in addition, the claim amounts have a continuous distribution, as is the
case in all the numerical examples considered in this paper, there is a further
reason why 8(up, (1 +6)pt) may overstate the value of Q8{U, t). This is that for
survival to occur according to the former, the surplus need only stay above the
value — 1 (but could be zero at any time), whereas for survival to occur
according to the latter, the surplus must never go below zero, no matter by
how little.

For the risk process characterized by (1.2) we defined in Section 4 the
survival probability 8*(u, t) for u > 0 and 1 < / < co as follows:

S*(u, t) = P r I u + z - V Yt > 1 fo r x=l,2,...,t

This differs from 8{u, t) in that for survival it requires the surplus to be strictly
greater than zero after time zero. For finite t, 8*(0, t) can be calculated from
formula (4.3). For t equal to infinity, 8* (0) is equal to 6j{\ +6), as explained in
Section 7. For u greater than zero it is clear that:

8*{u,t) = 8{u-\,t)

It could be argued, for the reason given in the second paragraph in this section,
that 3*(uP, (1 + 6)Pt) is a more logical approximation than 8{up, {\+6)Pt)io
08(u, t), although, depending to some extent on the discretization of the claim
amount distribution, it may tend to understate 08(u, t).

Table 5 shows the results of approximating 08(u, t) by 8*{uP, (\+9)Pt) for
the risk process with exponentially distributed individual claims, premium
loading factor equal to 0.1 and parameter /? equal to 20. The key to Table 5 is
as follows:
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TABLE 5 (See Section 8 for details)

u = 0

u = 5

u = 10

(1)
(2)
(3)

(1)
(2)
(3)

(1)
(2)
(3)

( = 10

0.2146
0.2146
1.0000

0.8094
0.8094
1.0000

0.9681
0.9681
1.0000

t = 20

0.1682
0.1682
1.0000

0.7044
0.7043
0.9999

0.9179
0.9178
0.9999

t = 40

0.1362
0.1362
1.0000

0.6046
0.6045
0.9998

0.8427
0.8426
0.9999

I = OO

0.0909
0.0909
1.0000

0.4230
0.4229
0.9998

0.6337
0.6337
1.0000

(1) denotes the exact value of Qd{u, t) as given by SEAL (1978);
(2) denotes the value of 5* {ufi, (1 + 6)fit) calculated using the methods of

Section 4 (u = 0 and t < oo), of Sections 3 and 4 (u > 0 and t < oo) or of
Section 7 (t = oo) as appropriate;

(3) denotes the ratio (2)/(l).
The approximations to od(u, t) in Table 5 can be compared with the

approximations (for /? = 20) in Tables 2 and 4. It can be seen that the
approximations in Table 5 are very much better than those in Tables 2 and 4.
One explanation for this may be that two "errors" in the approximation of
„<*(«, 0 by <**(«/?, (l+0)/fe),i-e.
(a) understating od(u, t) by redefining survival/ruin, and
(b) overstating 0S(u, t) by using a discrete time approximation to a contin-

uous time survival probablity,
are working in opposite directions and cancelling each other out.
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