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Abstract

We present a representation theory for the maximal ideal space of a real function algebra, endowed
with the Gelfand topology, using the theory of uniform spaces. Application are given to algebras of
differentiable functions in a normed space, improving and generalizing some known results.
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1. Introduction and notation

1.1. Recall that if B is a commutative algebra, A is the set of all real B-homomor-
phisms, and x e B, the formula

x(h)=h(x) (h e A),

defines the Gelfand transform of x. If we set B = [x : x e B), the Gelfand topology
of A is the weak topology induced by B; A equipped with the Gelfand topology is
usually called the maximal ideal space of B.

A has been intensively studied when B = C(X) for a completely regular Haus-
dorff space X (see [4]). Recently different papers have been devoted to study some
subalgebras of C(X) (see, for example [1, 2, 6, 7] and some of the references given
there). Recent research in the theory of homomorphisms of algebras of differentiable
functions have brought out a number of special facts related to algebras of continuous
functions on a completely regular space. Attempts to obtain a suitable representation
for the maximal ideal space, often use the Stone-Cech compactification f}X of X as an
intermediate step. This task is very difficult, as [6] shows, and depends on the actual

© 1997 Australian Mathematical Society 0263-6115/97 SA2.00 + 0.00

78
https://doi.org/10.1017/S144678870000032X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000032X


[2] Maximal ideal space of function algebras 79

space. The idea is to identify a homormorphism with evaluation at some point p of
fiX. This point is not unique; and a quotient topology is needed. Since quotients of
completely regular space fail to be completely regular, each case calls for independent
analysis.

1.2. Let X be a non-empty set. By a function algebra on X we mean a family
of real valued functions on the set X forming a linear algebra with unit under the
operations defined pointwise, which separates points and is closed under bounded
inversion, that is, if / > 1 and / € A, then 1 / / G A. Since these are the only
algebras to be discussed here, no misunderstanding should arise. The subalgebra of
bounded functions in A will be denoted by Ab. It is easy to prove that Ab is a function
algebra on X. We denote by H(A) the family of all A-homomorphism, that is, all
non-null real multiplicative linear functionals on A.

There are, among others, two interesting problems concerning H{A): to obtain a
suitable topological representation of H(A), and to know whether or not H(A) = X,
where the equality means that every homomorphism <p on A is the evaluation at some
point p e X; that is, <p is supported at {p}. This paper is related with the first problem,
while the method presented here will be used to study the second problem in a separate
paper. A general form of obtaining representations for the maximal ideal space of
any prescribed algebra will be given in Theorem 2.2. The rest of the paper is devoted
to showing how this general setting can be used to obtain representations in more
familiar terms. In particular, some open problems, related to algebras of differentiable
functions on a real Banach space, are solved (see Proposition 3.3).

Algebras on X, as defined above, can be considered as algebras of continuous
functions on a completely regular Hausdorff space. There are different forms of
obtaining a uniformity on X using the functions in A. This may be accomplished,
for example, by identifying X with a (dense) subspace of H(A), as in Isbell's paper
[5], considering in X the weak topology induced by the isotone homomorphisms, and
proving that H(A) is the completion of X in the weak uniformity induced by A. That
paper is a basis for our work, but we do not need the hypothesis 'A is closed under
composition' that is heavily used there.

Here we present the following approach. Let UA be the uniformity generated on X
by Ab; that is, UA is defined by the pseudometrics

'l /„' = m a x { | / ( * ) - / ( 3 0 | ; / , , . . . , / „ e A6}, x, y e X.
\<k<n

We denote by rA the topology induced by UA on X; that is, UA is the weak uniformity
in the notation of [5]. Since A separates points in X, (X, TA) is a completely regular
Hausdorff space. In what follows, topological notions on X are relative to the rA-
topology.

If A contains unbounded functions, it is possible to define another uniformity on
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X using A in place of Ah. Under the assumptions that A is closed under bounded
inversion, these two uniformities induce the same topology on X (see [5], Theorem
1.4).

Denote by XA the completion of (X, UA); then XA is a compact Hausdorff space.
X can be considered as a dense subspace of XA. It is clear that (X, rA) is a compact
space if and only if it is complete. If A contains unbounded functions, then (X, rA) is
not complete. It is known that each / e Ab has a unique continuous extension to XA;
this extension will be denoted by / and A = {/ : / e Ab}. In Proposition 2.1 it will
be proved that A separates points in XA; then, by the Stone-Weierstrass theorem, A is
a dense subspace of C{XA) in the uniform norm.

In order to show the advantage of using the topology rA, even when A is an algebra
of continuous functions on X with respect to some topology r in X, let us present the
following example.

EXAMPLE. Let B be the algebra of 2n -periodic functions in IR and A the restriction
of functions in B to (0, In]. It can be proved that (0, 2n] with the xA topology is a
compact space.

If (X, r) is a completely regular Hausdorff topological space and A is an algebra
of r-continuous functions in X, then zA = r if and only A weakly separates points
and T-closed set; that is, if P C X is closed and x <£ P, there exists / e A such
that f(x) <£ cl f(P). Let P be a subset of XA, such that X c P and every function
/ e A has a continuous (in the induced topology) extension to each point q e P: this
extension will be denoted by f(q). Since continuous extensions are unique, there is
no confusion in using this notation without reference to P.

If (X, T) is a topological space and P C X, c\x P denotes the closure of P in X and
Pc = X\P. I f / : X -* K , l e tZ ( / ) = {x € X : f(x) = 0}andCoz(/) = X\Z(f).

The notation tpp for a homomorphism means that it is supported at {/?}.

An algebra A on X will be called inverse-closed if for every / e A such that

Z(f) = 0, 1// e A.

Finally, topological structures of algebras are, in general, not considered here: this
matter requires another paper.

2. The maximal ideal space and pairs of subordinated algebras

PROPOSITION 2.1. Let A be a function algebra on X. Then A separates point
XA. Moreover A weakly separates points and closed sets in XA.

in

PROOF. Let us consider the spaces (X, UA), (XA, T), (XA, V) and (Y, W), where
(X, UA) and XA are denned as in Section 1, T is the uniformity of XA as a completion
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of X (X, UA), V is the uniformity generated on XA by the algebra of functions A as in
Section 1, and (Y, W) is the uniform completion of (XA, V).

In XA, the (XA, V)-induced topology is weaker than the (XA, T)-induced topology.
We know that X is dense in XA in the second topology above. Thus X is dense in
(Y, W). Taking into account that V\x = UA, (Y, W) is a uniform completion of
(X, UA), and thus is a Hausdorff uniformity. But this is possible if and only if A
separates points on XA.

That A separates points for closed sets follows from the fact that A separates points
and XA is compact.

REMARK. A is an algebra on XA, because A weakly separates points in XA. If we
apply the method of Section 1 to (XA, A) we again obtain XA; that is (XA)A = XA.
In fact A weakly separates points and closed sets in XA, thus the topology induced
by UA on XA agrees with the original topology on XA, and so XA is a completion of
(XA, UA).

All of our results are based in the following Theorem.

THEOREM 2.2. Let A be a function algebra on X, then
(a) tp e H(Ab) if and only if there exists a {unique) p e XA such that cp(f) =

f(p)for every f e A. Moreover XA is (homeomorphic to) the maximal ideal space
of Ab;

(b) (p € H(A) if and only if there exists a point p € XA such that, every f € A
has a finite continuous extension f(p) to p and <p(f) — /(/?)• The set I (A) of all
such p, with the topology induced by XA, is (homeomorphic to) the maximal ideal
space of A.

PROOF, (a) Since each function / € Ab admits a continuous extension to XA, it is
clear that evaluations at points of XA are in H(Ab). Now suppose that cp e H(Ab).
Set M = ker<p. Since XA is compact, for every / e M there exists p e XA such
that f(p) = 0; in fact if Z ( / ) = 0, there exists a > 0 such that f2 > a. Since A is
closed under bounded inversion, f~2 e A; but

and we have a contradiction. Set H = (Z ( / )} . The above argument says that H has
the finite intersection property (any finite family f\,... , /„ in M has a common zero).
Because XA is a compact set, then there exists p e XA such that p e (~]feM Z(f).
A standard argument says that <p(f) = f{p) for every f e A. The kernel of each
homomorphism is a maximal ideal in A and A separates points in XA; thus for each
<p € H(Ab) there exists only one support point in XA.
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Let us prove the last assertion in (a). Denote by f̂  the topology of XA. Since every
function / is rj-continuous and (XA, xj) is compact, in order to prove that T^ is the
Gelfand topology it is enough to see that the Gelfand topology on XA is Hausdorff.
Taking into account that A separates points, we have the proof.

(b) Let cp € H(A), then there exists p e XA such that for / e Ab, <p{f) = f(p).
If g € A,^ setting hg(x) = (g(x) - <p(g))2/(l + (g(x) - (pig))2), we have that
<p(hg) = hg(p) = 0. Take an arbitrary net [xx} in X such that xk —> p. Since
hg e C(XA), hg(xk) —> 0, but this is possible if and only if g(xx) —> <p(g)- Thus g
has a finite continuous extension g(p) to p and <p(g) = g(p).

If p G XA and every function / e A has a finite continuous extension f(p) to p,
by defining (p(f) = f(p) we obtain a homomorphism on A.

For every function f e A, f e C(I(A)). Therefore the restriction of the r j
topology to I (A) is finer than the Gelfand topology. In order to prove the assertion it
is enough to show that if C is a closed subset of I (A) for the induced topology and
p e I (A) \ C, then there exists f e A such that f(p) <£ clR f(C). Take a closed set
D c XA such that D f] I (A) = C. Since p <£ D, for every q e D, there exists fq €
Ab such that fq(p) = 0 and fq{q) - 1. Set Vq = [x e XA : fq(x) > 1/2}. Since D
is compact we can take q\,... ,qn € D such that D C U!t=i ix ^ %A '• fqk(x) > 1/4}.
Defining f(x) = J X i ftS*)* w e h a v e tha t /(?) = ° a n d /(*) ^ ]/4 for all s e C;
then f(q) £ clK /(C).

REMARKS, (a) Notice that if A is an algebra of bounded function on X and f e A,
then / is just the Gelfand transform of / . Since the Gelfand topology is initial, I (A)
has the initial topology generated by the extension of functions in A to I (A). Thus
the extension of functions in A to I (A) weakly separates points and closed set.

(b) If A is inverse-closed and closed under uniform convergence, then every func-
tion in A has a definite limit (finite or not) at each point of XA; moreover Ab may be
(algebraically) identified with C(XA). If (X, rA) is locally compact and a -compact,
XA is the Stone-Cech compactification of (X, rA).

(c) If A = Ab, then X = I (A) if and only if (X, xA) is compact.

In order to give some applications of the above results, let us study relations between
two algebras on the same set. Given a non-empty set X, (A, B) is called a pair of
subordinated algebras on X if:

(i) A and B are function algebras on X;
(ii) Be A;

(iii) Every homomorphism on B has an extension to a homomorphism on A.

If (A, B) is a pair of subordinated algebras on X, different homomorphisms on A
may induce the same homomorphism on B. Then XB can be obtained as a quotient
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set of XA. In order to prove Theorem 2.12, let us consider the following notation.
If / e Bb, we denote by /„ its extension to XA and by /;, its extension to XB; fa

(respectively fb) denotes the extension of / to XA and to I (A) (respectively to XB

and to I(B)).

PROPOSITION 2.3. Let A and B be function algebras on X with B c A. Then for
every homomorphism <p e H(Bb), there exists \js e H(Ab) such that \jr \Bh= (p.

PROOF. Fix <p e H{Bb) and p e l , such that for every / e Bb, q>(f) = fb(p). If
p e X, evaluation at p is an extension of <p to Ab. If p e XB \ X there exists a net {xx}
in X such that xk ->• p in XB and for every / e fife, ft,(xx) —> #>(/) = fb(p)- Since
XA is compact we can suppose, without loss of generality, that there exists q e XA

such that ;cA -> q. Evaluation at q is a homomorphism on Afc which extends <p.

If A and B are function algebras on X, B c A, given a homomorphism cp on Bb,
there exists (a unique) p € XB such that <p{f) = fb(p), for every / e Bfe. Fix any
qp e X,4 such that the evaluation at qp is an extension of <p to Ab. So there is defined
a function 0 : Xfi -> X4, for z e Xfi, /ifc(z) = Afl(G(z)).

Let RB be the equivalence relation on XA defined by

xRBy if and only if for all / € Bb, fa(x) = fa(y).

Define * : XB - • XA//?B by * ( p ) = TT(@(/7)), where ?r : XA -> X ^ / ^ B is the
quotient map. Notice that *I> is one-to-one and onto. In XA/RB we consider the
quotient topology.

PROPOSITION 2.4. Let (A, B) be a pair of subordinated algebras on X. For x, y e
I (A) set

xR*By if and only if for all f e B, fa(x) = fa(y).

Then RB and R*B determine the same equivalence relation on I (A).

PROOF. Fix*, v e I (A).
If* and y are not /?B-related, there exists f e Bb such that fa(x) ^ / f l(y); then x

and y are not R*B -related.
If x and y are not /?B-related, there exists / e B such that fa(x) ^ / o (y) . Defining

= (f(z) - fa(y))2/(l + (f(z) - My))2), g e Bb and ga(x) ^ &(JC).

Let us present some notation: let 7r* : I (A) -> I(A)/RB be the quotient map,
where in /(A) we consider the restriction of the equivalence relation RB on XA to
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I (A); I (A) is endowed with the topology induced by XA and I(A)/RB with the
quotient topology. Let Q. : I (A)/RB —> n(I(A)) be defined by

= n(x), for x€l(A).

nl(A)) is endowed with the topology induced by XA/RB.
Let (A, B) be a pair of subordinated algebras on X. Then B can be realised as

an algebra of functions on each one of the spaces defined above as follows: For
/ e B, denote by L{f) the extension of / to I(B); that is, L(f) - fb\ denote
by M(f) the extension /„ of / to I(A); N(f)(n*(x)) = L(f)(x) for x e I(A)
and P(f)(n(x)) = M(f)(x) for x e I(A). It is clear that all these functions are
continuous in the corresponding topologies defined above. Set

fi, = {L(f) :feB}, B2 = [M(f) : f e B],

Bi = {N(f) :feB], B4 = {/>(/) : / e B).

The mappings L, M, N and P are one-to-one and onto considered from B into B\,
B2, S3 and B4 respectively.

PROPOSITION 2.5. Let (A, B) be a pair of subordinated algebras on X. The max-
imal ideal space XB of Bb is (homeomorphic to) XA/RB.

PROOF. It is sufficient to prove that * is a continuous open mapping.
Let P c XA/RBbe closed in the quotient topology. Fix x e XB \ ty~](P). Set

y — @(x) and z = n(y). It is clear that z £ P'• Since n~x(P) is /?s-saturated, for
each v e n-\P), there exists / " G Bb such that fi(y) = 0 and 0 i cl/a"(Vv) for
some open neighbourhood Vv of v. Taking into account that n~x (P) is compact, there
exists h e Bb such that ha(y) = 0 and ha{n~\P)) C [e, oo) for some e > 0. Now
ha(y) = hb(x) = 0 and for z € W~l(P), ha(@(z)) = hh(z) > €. Thus there exists in
XB an open neighborhood of x which does not meet V~l(P). This says that ^ is a
continuous map.

Let us prove that 4* is open. Fix a proper open subset D of XB and x e D. If ^ (x)
is not an inner point of *(£>), there exits a net {xA} in 4'(D)C such that xx —> ^(x).
Take {jx} in %B such that *(>>A) = xA. Without loss of generality, since XB is compact,
we may suppose that yk —*• s for some s e XB.
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For every / e Bb, L(f)(yx) -+ L(f)(s) and

Uf)(yx) = Myx) = fa(&(yx)

= N(f)(7T(®(x)) =

= N(f)(xk)

= N(f)(n(@(x)) = M®

Then for every / e Bb, fb(x) — fb(s); since Bb separates points in XB, x = s;
that is, yk —> x.

Now taking into account that D is XB-open there exists A.o such that for k > Xo,
yx € D. Thus, for such X, ^(yk) = xx e *(£>), a contradiction.

PROPOSITION 2.6. Let (A, B) be a pair of subordinated algebras on X. Then
quotient topology on I (A)/RB and the B3-initial topology agree.

PROOF. Denote by r, the quotient topology, and by r2 the B3-initial topology. Since
for every f e B, N(f) is r2-continuous (n* is a quotient map), r2 C T\. Let us prove
the other inclusion.

Let Q be a closed set in R and fix / € B. M ( / ) ~ ' ( ( 2 ) i s a saturated closed
set in / (A); thus x*(M(f)~l(Q) is closed in I(A)/RB in the quotient topology and
(N(fy\Q) = n*(M(f)-x(Q)). Since the family of set N(f)~l(Q), f € B and Q
a closed set on K, is a base for the closed sets in the B3-initial topology, the proof is
complete.

Let (X, r) be a topological space, Y c X and R an equivalence relation on X.
Denote by T the restriction of R to Y and let n and n* be the respective quotient maps
n : X -+ X//? and 7r* : K ->• y/71. It is well known that, in general, K/T and n(Y)
are not homeomorphic when Y/T is endowed with the quotient topology and n(Y)
with the topology induced by the quotient topology of X/R (see [3, Examples 2.4.16
and 2.4.17]). Let us prove that, in the case of a pair of subordinated algebras (A, B),
I(A)/RB and n(I(A)) are homeomorphic.

We were not able to find a reference for the following result. However, since it
seems to be known, it is presented without proof.

PROPOSITION 2.7. Let Y, Z be non-empty sets, C c K y and D C l z Let 8 : Y -»
Z and A : C —>• D be one-to-one onto mappings such that for every x e Y and each
f e C, f(x) = A(/)(<5(x)). IfY and Z are endowed with the initial topology for C
and D respectively, then S is a homeomorphism.
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As a consequence of the above proposition, we have:

PROPOSITION 2.8. Let (A, B) be a pair of subordinated algebras on X. Then I(B)
and I (A)/RB are homeomorphic.

PROOF. Let (A, B) be a pair of subordinated algebras on X. Fix y e I(B).
Since evaluation at y is a homomorphism on B it has a continuous extension to A,
therefore it can be seen as the evaluation at some point zy £ / (A). Thus the function
8 : I(B) —>• I(A)/RB given by S(y) = n*(y,) is well defined. Since B\ separates
points in I(B) and (A, B) is a subordinated pair 8 is one-to-one and onto.

Define A : Bx -> B3 as A ( / ) = fo8l. If y € X, f(y) = A(f)(8(x)); then

setting Y = I(B), Z = I{A)/RB, C = 5, and D = B2, by the above Proposition,
I(B) and I(A)/RB are homeomorphic.

PROPOSITION 2.9. Let (A, B) be a pair of subordinated algebras on X. Then
I(A)/RB and n{I(A)) are homeomorphic, considering in I(A)/RB the quotient
topology and in n{I (A)) the topology induced by the quotient topology of XA/RB.

PROOF. It is sufficient to note that: (a) Q is one-to-one and onto; (b) £2 is continuous;
(c) Q is closed.

(a) is easy to prove.
(b)Fix/i: c n{I{A)) closed, take/ c XA/RB closed such that J (~]K(I(A)) = K.

Then n~l(J) is closed in XA and /?B-saturated. Therefore 7r '(7) f] I (A) is closed
in I (A) and /^-saturated (see Proposition 2.4). Thus n*(n~l(J) f^IiA)) is closed
in I(A)/RB. But Q~l(K) = 7i*(n-'(J) f] I (A)).

(c) Let Q be a closed subset of I(A)/RB; then 5 = (n*)~\Q) is closed in 1{A).
There exists D C XA closed such that D (~) I (A) = S.

Set E = n-](clXA/Rg n(D)). We have that Ef)I(A) = Df)I(A). In fact, take
x e E p) I (A) and a net {xk} in D such that7r(xx) ->• n(x). Since P(f) is continuous
/•(/Xjrfo)) = M(f)(xk) - • P(f)(n(x)) = M(f)(x) for every / e fl*. The same
can be proved for every f € B. Then N(f)(n*(xk)) -+ N(f))n*(x) for all / e B .
According to Remark (a) of Proposition 2.2, Bx weakly separates points and closed
sets in / (B). By Proposition 2.9, B3 has the same property in / (A)/RB; thus n*(x) is
an adherent point of Q. Since P is closed, n*{x) € D\ this says that x e D (~) I (A).

E is /?B-saturated and closed; thus n(E) is closed in XA/RB. This implies
n(E) P| n{I(A)) is closed in the induced topology. On the other hand,

Q(Q) =
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PROPOSITION 2.10. Let (A, B) be a pair of subordinated algebras on X; then I(B)
and TT(I(A)) are homeomorphic.

PROOF. This follows from Propositions 2.8 and 2.9.

If (A, B) is a pair of subordinated algebras on X, consider

H(A, B) = {g € R»(/('*» : 3 / e B, fa(x) = (gon)(x) for all x € (/(A))}.

PROPOSITION 2.11. Let (A, B) be a pair of subordinated algebras on X. Then
the H(A, B)-initial topology on 7r(/(A)) agrees with the topology induced by the
quotient topology of XA/RB.

PROOF. It is clear that the topology induced by the quotient one is finer than the
initial. Now take P closed in the topology induced by the quotient topology of
XA/RB'mn{I(A)) and* e 7r( / (A)) \ P. Take z e I (A) such that n(z) = y and set
Q = n~\P) c XA. As in the proof of Proposition 2.3 there exists / e Bb, such that
fa(y) = 0 a n d / a ( ^ - ' ( / ) ) ) C [<?, oo), for some <? > 0. Let g e H(A, B) be such that
/„ = gon, then g(x) £ cl Rg(P).

THEOREM 2.12. Let (A, B) be a pair of subordinated algebras on X. Then the
following spaces are homeomorphic:

(i) H(B) with the Gelfand topology;
(ii) 7r(/(A)) with the topology induced by XA/RB;

(iii) / (A)/RB with the quotient topology.

PROOF. This can be derived from Propositions 2.4, 2.6 and 2.7.

The relations given above are transitive in the following sense:

PROPOSITION 2.13. Let (A, B) and (B, C) be two pairs of subordinated algebras
on X. Then

= I(A)/RC.

3. Applications

Theorem 2.2 gives a method for obtaining the maximal ideal space of A. This
can be used to determinate conditions for the equality X = I (A). This will be
accomplished in another paper by the same authors. Now let us see how Theorem
2.2 and 2.10 can be used to obtain representations of the maximal ideal space of A in
more familiar terms.
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PROPOSITION 3.1. Let (X, d) be a metric space with an unbounded metric and A
an algebra of continuous functions on X such that:

(a) A separates points and d-closed sets;
(b) There exists XQ G A" such that f(x) = d{x, Xo) G A.

(c) For every f € A and each bounded set S C X, there exists g G Ab such that

f\s = g\s-

Fix x0 € X and set Bn — {x e X : d(x, x0) < n}. Then the maximal ideal space of
A is Y = U™=1 clX/iBn with the XA induced topology.

PROOF. If p G XA \ Y and {xx} is a net in X with xx —> p, since {xx} is an
unbounded net, from (b) we have that there exists a function / e A which has no
continuous extension to p\ thus p £ I (A).

Now fix z G Y and / € A. There exists g e Ab such that g\Bn = f\Bn. Defining
f(p) = g(p) (this value does not depend on g) we have that / has a continuous finite
extension to p. In fact, if {xx} is a net in X that converges to p, then it is bounded,
that is, there exists a positive integer k such that d{xx, x0) < k. Taking h e A such
that h\Bt+l = / | B , + I , we have that lim/(;cA) = limh(xx) — f(p)- Since X is dense in
Y, f is continuous on Y.

The above arguments say that Y = I (A).

As an application of the above proposition we will extend and generalize some
results of [6].

If £ is a real Banach space, then Cb(E) denotes the space of all continuous real
functions in E which are bounded on bounded subset of E. Set Bn = {x e E :||
x | |< n\ and let Ex — U^Li ̂ «> w n e r e En is the closure of Bn in the Stone-Cech
compactification of E.

C™ is the set of all functions / : E - • R of class C"\ such that / and its differentials
df,...,d«f,

dkf : E -> L(kE, R)

(for this notation see [8]), are bounded on bounded sets of E. We endow C™ with the
topology generated by all seminorms (pn)neM, where

/ G Cm
b{E) -+ pn(f) = sup \f(x)\ + T \\dkf(x)\\ .

M<n [ t^l J

With this topology, Cb(E) is a real Frechet algebra.
In [6] was proved that: (Theorem 3) H(Cb(E)) = Ex, and (Theorem 13) if £ is a

super-reflexive Banach space, then the spectrum of Cl
b(E), endowed with the Gelfand

topology agrees with EX/RC<(E) endowed with the quotient topology, where /?<;„(£) is
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the following equivalence relation on Ex:

xRy if and only if x and y determine the same homomorphism on C\.

As Jaramillo and Llavona quoted in [6], the technique used there cannot be extended
to the case C™(E) for m > 2. Using the techniques of Theorem 2.1 we extend the
above result. It is not necessary for the Banach spaces to be super-reflexives.

PROPOSITION 3.2. Let E be a real Banach space. Then the maximal ideal space
ofCb(E) is Y = \JZ\clf>EBn, where Bn = [x € E : \\x\\ < n} and 0E is the
Stone-Cech compactification of E.

PROOF. If x0 e X and P, Q c E are disjoint closed sets, the functions

f(x) = d(x,x0) and g(x) = d(x, P)/{d{x, P) + d(x, Q))

are in Cb(E). Thus conditions (a), (b) and (c) in Proposition 3.1 hold (we take
x0 = 0). On the other hand, it is clear that Cb{E) is closed under bounded inversion
and contains the constant functions.

Since all metric continuous bounded functions in E are in Cb(E), ECb(X) is the
Stone-Cech compactification of E.

PROPOSITION 3.3. Let E be a real Banach space. The maximal ideal space of
C^(E) is Y/Rc»tE)> where Y is defined as in Proposition 3.2 and Rc^E) is the
following equivalence relation on Ex:

xRcstE) if and only if f(x) = f(y)for all f e Cm
b{E).

PROOF. It is sufficient to prove that (Cb(E), C™(£)) is a pair of subordinated
algebras on E. For this it is enough to prove that each homomorphism in C™ (E) has
an extension to a homomorphism in Cb(E)). This last assertion can be proved as in
[6, Theorem 8].
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