A PAIR OF CHARACTERISTIC SUBGROUPS FOR PUSHING-UP. II

GEORGE GLAUBERMAN
Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637-1514, USA (gg@math.uchicago.edu)
Dedicated to Ronald Solomon on his sixtieth birthday

Abstract Many problems about local analysis in a finite group G reduce to a special case in which G has a large normal p-subgroup satisfying several restrictions. In 1983, R. Niles and G. Glauberman showed that every finite p-group S of nilpotence class at least 4 must have two characteristic subgroups S_{1} and S_{2} such that, whenever S is a Sylow p-subgroup of a group G as above, S_{1} or S_{2} is normal in G. In this paper, we prove a similar theorem with a more explicit choice of S_{1} and S_{2}.

Keywords: Sylow p-subgroups; characteristic subgroup
2010 Mathematics subject classification: Primary 20D20
Secondary 20E99

1. Introduction and notation

Let p be a prime and let S be a finite p-group. Let $J_{R}(S)$ be the subgroup of S generated by the abelian subgroups of largest rank. In 1964, John G. Thompson introduced the subgroup $J_{R}(G)$ and used it to prove the following result [7, p. 118].

Suppose p is odd and S is a Sylow p-subgroup of a finite group G. Assume that $C_{G}(Z(S))$ and $N_{G}\left(J_{R}(S)\right)$ both have normal p-complements. Then G has a normal p complement.

This theorem led to further work by Thompson and others that used subgroups similar to $J_{R}(S)$ and local information about Sylow subgroups to obtain global information about finite groups, particularly simple groups [14, pp. 225-282]. Much of this work reduced to the following minimal situation:
$\left(E_{0}\right) \quad G$ is a nonidentity finite group;
p is a prime;
S is a Sylow p-subgroup of G;
$C_{G}\left(\mathrm{O}_{p}(G)\right) \leqslant \mathrm{O}_{p}(G) ;$
S is contained in a unique maximal subgroup of G; and for some normal subgroup K of G and some natural number $n, G / K \cong \operatorname{PSL}\left(2, p^{n}\right)$.

Here, one needs to show that some non-identity characteristic subgroup of S is a normal subgroup of G.

There are examples (below) in which no such characteristic subgroup exists, even though S has nilpotence class precisely 2 and is thus almost abelian. Thus, it seems surprising that there must exist such a subgroup if S has nilpotence class precisely 4 or larger (or precisely 3 or larger, if $p \neq 3$), by results of Niles [19] (in 1977) and Baumann [2] (in 1979). In 1983, Niles and the author managed to extend these results as follows [12, Theorem A].

Theorem. Suppose p is a prime and S is a finite p-group. Assume that S has nilpotence class at least 3; if $p=3$, assume that S has nilpotence class at least 4 . Then there exist non-identity characteristic subgroups S_{1}, S_{2} of S satisfying the following condition: whenever a group G satisfies $\left(E_{0}\right), S_{1} \triangleleft G$ or $S_{2} \triangleleft G$.

This result is useful when G ranges over a family of subgroups of a group, such as a simple group [14, pp. 273-279].

In this article we extend this theorem in two ways. First, we find further sufficient conditions under which some pair S_{1}, S_{2} satisfies the conclusion of the theorem (Theorems A, B, D and E). Second, motivated by a question about the results of [12], we focus on a different particular pair and find sufficient conditions for it to satisfy the conclusion of the theorem (Theorem C). These results may shed light on a conjecture of Thompson (below).

Just as the results of [12] used characteristic subgroups similar to $J_{R}(S)$, our new results involve characteristic subgroups arising from a recent article [11] using work of Chermak and Delgado [5].

Some results related to $[\mathbf{1 2}]$ (and to this paper) appear in [1] and [3]. (For these articles, $J(S)$ is defined to be generated by the elementary abelian subgroups of maximal order in S, and so may be different from the subgroup called $J(S)$ in this paper. Similarly, the Baumann subgroup is defined differently in these articles.)

The results of [12] are divided into cases, and this article was inspired by a question about one case. In every case of [12], the subgroup S_{1} is relatively small and is contained in the centre of S, while the subgroup S_{2} is relatively large and contains its centralizer in S, just like the pair $Z(S), J_{R}(S)$ in Thompson's theorem. Moreover, in all except one case, S_{2} has the additional property that no subgroup of S other than S_{2} is isomorphic to S_{2}. (This property is clearly satisfied by $J_{R}(S)$, which is one of the reasons that $J_{R}(S)$ is useful.) Hence, in these cases, whenever $\left(E_{0}\right)$ is satisfied and S_{2} is contained in $\mathrm{O}_{p}(G)$, then S_{2} is normal in G.

The exceptional case of [12] (which occurs in part (c) of Theorem D of [12] and occupies most of the proof in [12]) is somewhat mysterious. Here, S_{2} is defined as the intersection of some subgroups of S, and the author suspected that some subgroup S^{*} of S_{2} defined more explicitly would satisfy the additional property above. After obtaining the results of $[\mathbf{1 1}]$, our suspicion fell in particular on the subgroup S_{MCL} defined below, which clearly satisfies the additional property.

Example 7.1 below shows that these suspicions were incorrect in general. However, in Theorem C we use $[\mathbf{1 1}]$ to prove them under some restrictions on G. In part of the proof,
we are able to prove that $S_{\mathrm{MCL}} \triangleleft G$ in a situation in which a variation of $J_{R}(S)$ (namely, the subgroup $J(S)$ defined below) may not be normal in G. In Theorems B and D, we apply [11] to obtain new sufficient conditions on S for S_{1} and S_{2} to exist. This yields Theorems A and E, which extend the theorem of $[\mathbf{1 2}]$ above.

To state Theorem A, we use notation from [14, pp. 227, 274] for two subgroups similar to $J_{R}(S)$. As before, S denotes an arbitrary finite p-group. Let $\mathscr{A}(S)$ be the set of all abelian subgroups of S of maximal order and let $J(S)$ be the Thompson subgroup of S, which is generated by $\mathscr{A}(S)$. Let $\tilde{J}(S)$ be the Baumann subgroup of S, given by $C_{S}(Z(J(S)))$. As usual, for any group G, let $\Phi(G)$ denote the Frattini subgroup of G and let $Z_{2}(G)$ denote the subgroup given by $Z_{2}(G) / Z(G)=Z(G / Z(G))$. In this article, we call the elements of $\mathscr{A}(S)$ the large abelian subgroups of S.

Consider the following hypothesis:
$(P) \quad$ (i) S_{1} is a subgroup of $Z(S)$ and S_{2} is a characteristic subgroup of $\tilde{J}(S)$,
(ii) whenever $\left(E_{0}\right)$ is satisfied for some group G, then $S_{1} \triangleleft G$ or $S_{2} \triangleleft G$.

Theorem A. Suppose p is a prime and S is a non-identity finite p-group. Then there exist non-identity characteristic subgroups S_{1} and S_{2} of S satisfying the hypothesis (P), except possibly when S satisfies the following conditions:
(a) S is not abelian;
(b) $J(S)=S$;
(c) $Z(S)$ and $\Phi(S)$ are elementary abelian;
(d) (i) if $p=2$, then $\Phi(S) \leqslant Z(S)$,
(ii) if $p=3$, then $\Phi(S) \leqslant Z_{2}(S)$, and
(iii) if $p>3$, then $\Phi(S) \leqslant Z(S)$ and S has exponent p;
(e) some large abelian subgroup of S is elementary abelian; and
(f) for all large abelian subgroups A, B of S and all subgroups Q of S,

$$
|A|^{2}=|S||Z(S)| \geqslant|Q||Z(Q)| \quad \text { and } \quad\langle A, B\rangle=A B=B A=C_{S}(A \cap B)
$$

Note that conditions (a) and (d) yield that S has nilpotence class precisely 2 if $p \neq 3$ and precisely 2 or 3 if $p=3$. Parts (a)-(d) come mainly from [12], while parts (e) and (f) come from Theorem B below, and thus mainly from [11].

To describe some examples in which S has nilpotence class 2 , consider a group H that is isomorphic to $\mathrm{SL}\left(2, p^{n}\right)$ for some natural number n and acts faithfully on an elementary abelian group V of order $p^{2 n}$. We say that V is a standard module for H if there exists a field F such that V is a two-dimensional vector space over F and $\mathrm{SL}(V, F)$ is the group of all automorphisms of V induced by H.

Now, suppose that S is a Sylow p-subgroup of the semi-direct product $V H$ in the situation above. In the simplest case, when $n=1, S$ is a dihedral group of order 8 if
$p=2$ and a non-abelian group of order p^{3} and exponent p if p is odd. It is well known that, for every n, no non-identity characteristic subgroup of S is normal in G. We show this in Example 7.6 for $n=1$ and give references for $n>1$. Hence, S satisfies conditions (a)-(f) of Theorem A, as one may easily verify.

For $p=3$, we give in Example 7.7 a family of examples in which S has nilpotence class 3 and no non-identity characteristic subgroup of S is normal in G.

We need additional notation from [11] and [12] for our other results:

$$
\begin{aligned}
d(S) & =\max \{|A| \mid A \leqslant S \text { and } A \text { is abelian }\} \\
f(S) & =\max \{|R| \cdot|Z(R)| \mid R \leqslant S\} \\
f_{1}(S) & =\max \left\{|R| \cdot\left|C_{S}(R)\right| \mid R \leqslant S\right\} \\
\mathscr{F}(S) & =\{R \leqslant S| | R|\cdot| Z(R) \mid=f(S)\} \\
\mathscr{F}_{1}(S) & =\left\{R \leqslant S| | R|\cdot| C_{S}(R) \mid=f_{1}(S)\right\}, \\
S_{\mathrm{CL}} & =\langle\mathscr{F}(S)\rangle, \\
S^{\prime} & =[S, S] .
\end{aligned}
$$

We call elements of $\mathscr{F}(S)$ centrally large subgroups, or CL-subgroups, of S.
By Proposition 2.4 of $[\mathbf{1 1}], f(S)=f_{1}(S)$ and $\mathscr{F}(S)$ is a subset of $\mathscr{F}_{1}(S)$. A CL-subgroup of S that is minimal under inclusion in $\mathscr{F}(S)$ is called a minimal CL-subgroup of S. Let S_{MCL} denote the subgroup of S generated by all the minimal CL-subgroups of S.

For a finite group G and a prime p, we also let $\mathrm{O}^{p}(G)$ be the subgroup generated by all the p^{\prime}-elements of G.

Now we may state our other main results.
Theorem B. Assume $\left(E_{0}\right)$, and suppose $\tilde{J}(S)=S$. Let

$$
m z(S)=\max \left\{\left|\Omega_{1}(Z(Q))\right| \mid Q \text { is a minimal CL-subgroup of } S\right\}
$$

and

$$
\left.S_{\Phi}=\langle\Phi(Q)| Q \text { is a minimal CL-subgroup of } S \text { and }\left|\Omega_{1}(Z(Q))\right|=m z(S)\right\rangle
$$

Then
(a) $Z(S) \triangleleft G$ or $S_{\Phi} \triangleleft G$, and
(b) if $S_{\Phi}=1$, then the minimal CL-subgroups of S coincide with the large abelian subgroups of S, and at least one of them is elementary abelian.

Remark 1.1. Note that S_{Φ} contains $\mho^{1}(Z(S))$. Whenever $\left(E_{0}\right)$ is satisfied, $Z(S) \triangleleft G$ if and only if $Z(S)=Z(G)$, by Lemma 2.19 below.

Theorem B will follow easily from results in [11]. We show in $\S 3$ that in case (b) of Theorem B and case (c) of Theorem D (below), some large abelian subgroup of S is normal in S and, for all large abelian subgroups A, B of S and all subgroups Q of S,

$$
|A|^{2}=|S||Z(S)| \geqslant|Q||Z(Q)| \quad \text { and } \quad A B=B A=C_{S}(A \cap B)
$$

(as in condition (f) of Theorem A).

Theorem C. Assume $\left(E_{0}\right)$, and suppose $\tilde{J}(S)=S$. Let
$T=\mathrm{O}_{p}(G), \quad \hat{G}=\mathrm{O}^{p}(G), \quad \hat{S}=S \cap \hat{G}, \quad \hat{T}=\mathrm{O}_{p}(\hat{G}), \quad L=C_{G}(Z(T)) \quad$ and $\quad q=p^{n}$.
Then $Z(S) \triangleleft G$ or $S_{\mathrm{MCL}} \triangleleft G$, except possibly if G satisfies the following conditions.
(a) \hat{S} is a Sylow p-subgroup of \hat{G} of nilpotence class at most 3 .
(b) The commutator subgroup Q^{\prime} is the same for each minimal CL-subgroup Q of S and is a characteristic subgroup of S, T and G, and $G=T C_{G}\left(Q^{\prime}\right)$.
(c) \hat{T} has nilpotence class at most $2, \hat{T} / Z(\hat{T})$ is elementary abelian, and $\hat{T}^{\prime} \leqslant Z(\hat{G})<$ $Z(\hat{T}) \leqslant \hat{T}=[\hat{T}, \hat{G}]$.
(d) \hat{T} has exponent p if p is odd, and \hat{S} has exponent p if $p \geqslant 5$.
(e) $G / L \cong \mathrm{SL}(2, q)$ and $Z(T) / Z(G)$ is a standard module for G / L.
(f) A chief factor U / V of G for which $U \leqslant T$ is central if $U \leqslant Z(\hat{G})$ or $\hat{T} \leqslant V<U \leqslant T$ and is not central if $Z(\hat{G}) \leqslant V<U \leqslant \hat{T}$.
(g) If $q=2$, then G / T is a dihedral group of order $2 \cdot 3^{k}$ for some natural number k.
(h) If $q>2$, then $L=T$ and every non-central chief factor U / V of G satisfying $U \leqslant T$ is a standard module for G / T.
(i) If $q \geqslant 4$, then there exists a normal subgroup R of $N_{G}(S)$ such that

$$
R \leqslant \hat{S}, \quad S=T R, \quad[S, R] \leqslant \hat{S}^{\prime} Z(\hat{G}) \quad \text { and } \quad[S, R, R, R]=1
$$

By Theorem 2.10, the condition that $Q^{\prime}=R^{\prime}$ for all minimal CL-subgroups Q, R of S is satisfied for all groups S, and does not depend on the hypothesis of Theorem C.

While S_{MCL} has the advantage of being defined more explicitly than the group S_{2} in the exceptional case in [12], there are cases (Examples 7.1-7.3) in which $S_{2} \triangleleft G$, but neither $Z(S)$ nor S_{MCL} is normal in G. (Thus, G satisfies conditions (a)-(i) of Theorem C.)

Consider the following condition:
$\left(P^{\prime}\right)$ condition (P) is satisfied and $f\left(S_{2}\right)=f(\tilde{J}(S))$.
Remark 1.2. Condition $\left(P^{\prime}\right)$ says that S_{2} contains a CL-subgroup Q of $\tilde{J}(S)$. By Theorem 3.1 of [11], Q contains some large abelian subgroup A of $\tilde{J}(S)$. Then A is a large abelian subgroup of S. Therefore, $d\left(S_{2}\right)=d(S)$ and $C_{S}\left(S_{2}\right) \leqslant C_{S}(A)=A \leqslant S_{2}$.

We also obtain the following analogues of Theorems A and B.
Theorem D. Assume $\left(E_{0}\right)$ and suppose $\tilde{J}(S)=S$. Let Q be any minimal CL-subgroup of S. Then
(a) Q^{\prime} is a characteristic subgroup of S;
(b) $Z(S) \cap Q^{\prime} \triangleleft G$ or $S_{\mathrm{MCL}} \triangleleft G$; and
(c) if $Q^{\prime}=1$, then the minimal CL-subgroups of S coincide with the large abelian subgroups of S.

Note that in case (c), S satisfies the conditions of Remark 1.1.
Theorem E. Suppose p is a prime and S is a non-identity finite p-group. Then there exist non-identity characteristic subgroups S_{1} and S_{2} of S satisfying condition (P^{\prime}), except possibly if S satisfies the following conditions:
(a) S is not abelian;
(b) $J(S)=S$;
(c) $Z(S)$ and $\Phi(S)$ are elementary abelian;
(d) (i) if $p=2$, then $\Phi(S) \leqslant Z(S)$,
(ii) if $p=3$, then $\Phi(S) \leqslant Z_{2}(S)$, and
(iii) if $p>3$, then $\Phi(S) \leqslant Z(S)$ and S has exponent p; and
(e) for all large abelian subgroups A, B of S and all subgroups Q of S,

$$
|A|^{2}=|S||Z(S)| \geqslant|Q||Z(Q)| \quad \text { and } \quad\langle A, B\rangle=A B=B A=C_{S}(A \cap B)
$$

Rather than alternating between two subgroups S_{1} and S_{2}, it would be ideal to find a single characteristic subgroup S_{3} of S that is normal in every group satisfying $\left(E_{0}\right)$. However, examples (as in [12, pp. 412-413]) show that S_{3} need not exist, even for S of arbitrarily large class.

Despite this, there are results that give some global information about a group G from information about the normalizer $N_{G}\left(S_{3}\right)$ of a single non-identity characteristic subgroup S_{3} of S. These results generally reduce to showing that $S_{3} \triangleleft G$ in a group G that satisfies conditions like $\left(E_{0}\right)$ as well as additional conditions, such as commutator conditions on the chief factors U / V of G for U contained in $\mathrm{O}_{p}(G)[\mathbf{9}, \S \S 7$ and 12].

As mentioned in [12, p. 413], John G. Thompson has asked whether, for p odd, there exists a characteristic subgroup S_{3} such that $S_{3} \triangleleft G$ for every group G that satisfies $\left(E_{0}\right)$ and the conditions that $G / \mathrm{O}_{p}(G) \cong \mathrm{SL}\left(2, p^{n}\right)$ and some non-central chief factor U / V of G with $U \leqslant \mathrm{O}_{p}(G)$ is not a standard module for $G / \mathrm{O}_{p}(G)$. From Theorem 2.15 below, the latter condition is equivalent to the commutator condition $[U / V, S, S]>1$. This is related to the condition of p-stability, which yields $Z(J(S)) \triangleleft G$ [9, pp. 22, 23, 41], and, indeed, Thompson has conjectured [12, p. 452] that one can take $S_{3}=Z(J(S))$ under his conditions as well.

By Remark 1.2 of [12], every group G satisfying Thompson's conditions falls into one of the cases of [12], and hence satisfies $S_{1} \triangleleft G$ or $S_{2} \triangleleft G$ for the corresponding pair S_{1}, S_{2}. If it also satisfies $\tilde{J}(S)=S$, then $Z(S) \triangleleft G$ or $S_{\mathrm{MCL}} \triangleleft G$, by part (h) of Theorem C. These observations may shed light on Thompson's question.

Section 2 consists of preliminary results. Theorems A, B, D and E are proved in $\S 3$. The proofs come mainly from $[\mathbf{1 2}]$ and $[\mathbf{1 1}]$ and do not require most of the results of $\S 2$. Thus, most of this paper is devoted to the proof of Theorem C.

Starting before Proposition 3.4, we assume the following additional hypothesis and notation:

$$
\begin{aligned}
(H) \quad & G, p, S, K \text { and } n \text { satisfy }\left(E_{0}\right) \\
& T=\mathrm{O}_{p}(G) \\
& Z(S) \neq Z(G) \text { and } S=\tilde{J}(S)
\end{aligned}
$$

Note that (H) is the hypothesis of case (c) of Theorem D of [12], except that there one denotes $\mathrm{O}_{p}(G)$ by M and one also assumes that $\mho^{1}(Z(S))=1$. Note also that if (H) holds, then $Z(S)=Z(J(S))$.

In $\S \S 3-5$, we reduce the proof of Theorem C to the special case in which the minimal CL-subgroups of S are large abelian subgroups and G is generated by two large abelian subgroups from different Sylow subgroups. We complete the proof in $\S 6$, and we give examples in § 7 .

All groups in this paper will be finite. In addition to the notation already defined, most of our notation is standard and taken from [13]. In particular, for subgroups X, Y, Z of a group,

$$
\begin{gathered}
{[X, Y, Z]=[[X, Y], Z], \quad[X, Y ; 1]=[X, Y]} \\
{[X, Y ; i+1]=[[X, Y ; i], Y] \quad \text { for } i=1,2,3, \ldots}
\end{gathered}
$$

Throughout this paper, p denotes a fixed but arbitrary prime, and S denotes a fixed but arbitrary p-group.

2. Preliminary results

Here we state several previous results, mainly from [11]. Theorem 2.7 and Proposition 2.8 will be used very frequently, as will Dedekind's Law: if H, K, L and $H K$ are subgroups of a group and $H \leqslant L$, then $H K \cap L=H(K \cap L)$. Therefore, we will usually apply them without quoting them.

Most of the results in this section are used only for Theorem C. The other main theorems are proved in $\S 3$ and require only Theorems 2.7 and 2.10, Proposition 2.8 and Lemmas 2.12 and 2.19 from this section.

In this section, P denotes a fixed, but arbitrary, p-group. (Some of these results remain valid when P is an arbitrary finite group.)

Lemma 2.1.

(a) If H and K are subgroups of a group G, then $[H, K] \triangleleft\langle H, K\rangle$.
(b) (Frattini argument.) If H is a normal subgroup of a group G and P is a Sylow subgroup of H, then $G=N_{G}(P) H$.
(c) If A is a p^{\prime}-group of automorphisms of P, then

$$
P=C_{P}(A)[P, A] \quad \text { and } \quad[P, A, A]=[P, A]
$$

and, if P is abelian, $P=C_{P}(A) \times[P, A]$.
(d) If N is a normal A-invariant subgroup of P in (c), then $C_{P / N}(A)=C_{P}(A) N / N$.
(e) If A centralizes P / N and N in (d), then A centralizes P.
(f) If P is a Sylow subgroup of a group G, then $P \cap G^{\prime} \cap Z(G) \leqslant P^{\prime}$.

Proof. Parts (a)-(d) are proved in [13] (part (a) on p. 18, part (b) on p. 12 and parts (c) and (d) on pp. 177-181). Part (e) follows from (d). Part (f) follows from Theorem 10.8 in [21].

Theorem 2.2. Suppose that A is a group acting on a p-group P. Let B be a Sylow p-subgroup of A.
(a) (Thompson.) Assume $A=B \times C$ for some p^{\prime}-subgroup C of A, and C centralizes $C_{P}(B)$. Then C centralizes P.
(b) (Gaschütz.) Assume P is abelian and $P=Q \times R$ for some A-invariant subgroup Q and some B-invariant subgroup R of P. Then $P=Q \times R^{\star}$ for some A-invariant subgroup R^{\star} of P.

Proof. (a) This is proved in [13, pp. 179-180].
(b) Let X be the semi-direct product of P by A. We embed P and A in X in the usual manner. Then

$$
P \triangleleft X, \quad P B \text { is a Sylow } p \text {-subgroup of } X, \quad P B \cap Q=Q,
$$

and $R B$ is a complement to Q in $P B$, i.e. $P B$ splits over $P B \cap Q$.
For any prime q other than p, a Sylow q-subgroup of A is a Sylow q-subgroup of X and intersects Q trivially, and hence obviously splits over this intersection. Thus, for every prime q, including p, X possesses a Sylow q-subgroup that splits over its intersection with Q. It follows from [16, Theorem 15.8.6] that X is a splitting extension of Q by some subgroup Y.

Let $R^{\star}=P \cap Y$. Then $P=Q \times R^{\star}$ and $R^{\star} \triangleleft Q Y=X$. Therefore, R^{\star} is invariant under A, as desired.

Theorem 2.3 (Noboru Itô). Suppose A and B are abelian subgroups of a group and $A B=B A$. Then $(A B)^{\prime}$ is abelian.

Proof. This is proved in [17, p. 674].
Theorem 2.4. Suppose P has nilpotence class at most $p-1$. Then
(a) every element of $\Omega_{1}(P)$ has order 1 or p and
(b) if $x, y \in P$ and $x^{p}=y^{p}$, then $\left(x y^{-1}\right)^{p}=1$.

Proof. This follows easily from Hall's theory of regular p-groups, since P is a regular p-group by [16, Corollary 12.3.1, p. 182]. Specifically, (a) and (b) follow from [16, p. 186].

Alternatively, these results follow easily from Lazard's correspondence between p-groups of class at most $p-1$ and finite nilpotent Lie rings of p-power order and class at most $p-1[\mathbf{1 8}$, Chapter 10].

Lemma 2.5. Suppose p is a prime, n is a natural number and H is an abelian group of order dividing $p^{n}-1$ acting irreducibly on an elementary abelian p-group V.

Then $|V|=p^{k}$ for some natural number k dividing n.
Proof. Let H^{\star} be the group of automorphisms of V induced by the elements of H, and let E be the ring of endomorphisms of V generated by H^{\star}. Since E centralizes H, E is an integral domain by Schur's Lemma. As E is finite, it is a finite field GF $\left(p^{k}\right)$. Hence, H^{\star} is cyclic.

We may regard V as a vector space over E. As H is irreducible on V, the dimension of V over E is 1 . Since the order of H^{\star} divides $p^{n}-1$, the theory of finite fields shows that k is a divisor of n. Then $|V|=|E|=p^{k}$.

Theorem 2.6 (Richard Niles). Suppose n is a natural number, K is a normal p^{\prime}-subgroup of a group H, A is a non-identity p-subgroup of H, and V is an elementary abelian p-group on which H operates. Assume that
(i) $H / K \simeq \operatorname{PSL}\left(2, p^{n}\right)$,
(ii) some Sylow p-subgroup of H lies in a unique maximal subgroup of H,
(iii) $[V, A, A]=1$ and
(iv) $\left|V / C_{V}(A)\right| \leqslant|A|$ and $C_{V}(A) \neq C_{V}(H)$.

Then
(a) A is a Sylow p-subgroup of H,
(b) $H / C_{H}(V) \simeq \mathrm{SL}\left(2, p^{n}\right)$ and
(c) $V / C_{V}(H)$ is a standard module for $H / C_{H}(V)$.

Proof. This is proved in Lemma 2.8 of [19] (and is part of Lemma 2.3 of [12]).
Theorem 2.7 (Chermak and Delgado). Suppose $Q, R \in \mathfrak{F}_{1}(P)$. Then
(a) $Q R=R Q$ and $Q R, Q \cap R \in \mathfrak{F}_{1}(P)$,
(b) $C_{P}(Q) \in \mathfrak{F}_{1}(P)$ and $Q=C_{P}\left(C_{P}(Q)\right)$, and
(c) $C_{P}(Q \cap R)=C_{P}(Q) C_{P}(R)$.

Proof. This is part of Theorem 2.1 and Proposition 2.3 of [11] (and follows from Lemmas 1.1 and 3.1 of [$\mathbf{5}]$).

Proposition 2.8. Suppose Q is a subgroup of P. Then
(a) if Q is a CL-subgroup of P, then $Q \in \mathfrak{F}_{1}(P)$ and $C_{P}(Q)=Z(Q)$;
(b) if $Q \in \mathfrak{F}_{1}(P)$, then Q is a CL-subgroup of P if and only if $Q \geqslant C_{P}(Q)$;
(c) if Q and R are CL-subgroups of R, then $Q R=R Q$ and $Q R$ is a CL-subgroup of P; and
(d) P_{CL} and P_{MCL} are $C L$-subgroups of P.

Proof. Parts (a) and (b) come from Proposition 2.4 and Corollary 2.6 of [11]. Then (c) follows from (a) and (b) and Theorem 2.7, and (d) follows from (c).

Theorem 2.9. Suppose Q is a $C L$-subgroup of P and A is a large abelian subgroup of P. Then
(a) $Q A=A Q$ and $Q A$ is a $C L$-subgroup of P,
(b) $C_{Q A}(Q \cap A)=Z(Q) A=A Z(Q)$ and
(c) P_{CL} contains $\tilde{J}(P)$.

Proof. Theorem 3.1 and Corollary 3.2 of [11] give (a) and (b) and the containment $P_{\mathrm{CL}} \geqslant J(P)$. Then $Z\left(P_{\mathrm{CL}}\right) \leqslant C_{P}(J(P))=Z(J(P))$. By Theorem 2.7,

$$
P_{\mathrm{CL}}=C_{P}\left(Z\left(P_{\mathrm{CL}}\right)\right) \geqslant C_{P}(Z(J(P)))=\tilde{J}(P)
$$

Theorem 2.10. Suppose Q and R are minimal $C L$-subgroups of P. Then
(a) $Q=(Q \cap R) Z(Q)$,
(b) $Q^{\prime}=R^{\prime}$,
(c) $|Q|=|R|$ and $|Z(Q)|=|Z(R)|$ and
(d) if Q is abelian, then $\mathscr{A}(P)$ is the set of all minimal CL-subgroups of P.

Proof. Parts (a)-(c) are part of Corollary 4.2 and Theorem 4.5 of [11].
For (d), assume Q is abelian. By (b) and (c), every minimal CL-subgroup of P is abelian of the same order as Q. By the definition of a CL-subgroup,

$$
|Q|^{2}=|Q||Z(Q)| \geqslant|A||Z(A)|=|A|^{2}
$$

for every abelian subgroup A of P. This gives (d).
Our next result uses the methods of Lemma 4.3 of [11] to extend the lemma.

Lemma 2.11. Suppose $K, L \triangleleft P=K L$ and $L=C_{P}(K)$. Assume that K is contained in some minimal CL-subgroup of P. Let $Z=K \cap L$.

Then $Z=Z(K)$ and there is a bijection between

$$
\text { the set of all minimal CL-subgroups } Q \text { of } P \text { containing } K
$$

and

$$
\text { the set of all minimal CL-subgroups } Q^{\star} \text { of } L \text {, }
$$

given by $Q^{\star}=Q \cap L$ and $Q=K Q^{\star}$. In this bijection, $|Q|=|K / Z|\left|Q^{\star}\right|$.
Proof. Since $L=C_{P}(K), Z=K \cap C_{P}(K)=Z(K)$. Clearly, there is a bijection between the set of all subgroups T of P that contain K and the set of all subgroups T^{\star} of L that contain Z, given by

$$
T^{\star}=T \cap L \quad \text { and } \quad T=T \cap K L=K(T \cap L)=K T^{\star}
$$

In this bijection, we have $Z=K \cap L=(K \cap T) \cap L=K \cap(T \cap L)=K \cap T^{\star}$ and

$$
\begin{gathered}
|T|=\left|K T^{\star}\right|=|K|\left|T^{\star}\right| /\left|K \cap T^{\star}\right|=|K / Z|\left|T^{\star}\right| \\
Z(T)=C_{T}\left(K T^{\star}\right)=C_{T}(K) \cap C_{T}\left(T^{\star}\right)=L \cap T \cap C_{T}\left(T^{\star}\right)=Z\left(T^{\star}\right)
\end{gathered}
$$

Therefore, $|T||Z(T)|=|K / Z|\left|T^{\star}\right|\left|Z\left(T^{\star}\right)\right|$. It is now clear that this bijection restricts to the desired bijection for minimal CL-subgroups.

Lemma 2.12.

(a) If Q is a CL-subgroup of P, then $Q J(P) \geqslant \tilde{J}(P)$.
(b) Some minimal CL-subgroup of P is normalized by $J(P)$ and P_{MCL}.
(c) If $P=J(P)$ and $d(P)^{2}=|P||Z(P)|$, then every minimal CL-subgroup of P is abelian.
(d) If every minimal CL-subgroup of P is abelian, then $\tilde{J}(P)=J(P)$.

Proof. (a) Let $R=Q J(P)$. Then $Z(R) \leqslant C_{P}(J(P))=Z(J(P))$.
By Theorems 2.7 and 2.9 and a short argument, R is a CL-subgroup of P and

$$
R=C_{P}(Z(R)) \geqslant C_{P}(Z(J(P)))=\tilde{J}(P)
$$

(b) This follows from Theorem 5.7 of [11].
(c) By Proposition 2.8 and Theorem 2.9, $P_{\mathrm{CL}} \geqslant \tilde{J}(P) \geqslant J(P)=P$ and P_{CL} is a CL-subgroup of P. Hence, $P=P_{\mathrm{CL}}$ and $f(P)=|P||Z(P)|=d(P)^{2}$. Let A be a large abelian subgroup of P. Then $f(P)=d(P)^{2}=|A||Z(A)|$, and A is a CL-subgroup of P. Apply Theorem 2.10.
(d) Here, $J(P)=P_{\text {MCL }}$ by part (d) of Theorem 2.10. By Theorem 2.7 and Proposition 2.8, $J(P)=C_{P}(Z(J(P)))=\tilde{J}(P)$.

Definition 2.13. Suppose Q is a subgroup of P and \mathcal{C} is a central series

$$
1=Q_{0} \leqslant Q_{1} \leqslant \cdots \leqslant Q_{k}=Q
$$

of Q. We define a partial ordering $\prec_{\mathcal{C}}$ on the set of all subgroups of Q as follows: $A \prec_{\mathcal{C}} B$ if $|A|=|B|$ and
(a) $\left|A \cap Q_{i}\right| \leqslant\left|B \cap Q_{i}\right|$ for $i=1,2, \ldots, k$ and
(b) $\left|A \cap Q_{i}\right|<\left|B \cap Q_{i}\right|$ for some $i, 1 \leqslant i \leqslant k$.

Theorem 2.14. Suppose Q is a minimal CL-subgroup of P and $x \in P$. Assume that $[x, Z(Q)]$ is abelian.

Let

$$
Z=Z(Q), \quad M=[x, Z], \quad Y=M C_{Z}(M) \quad \text { and } \quad T=\left(Q \cap Q^{x}\right) Y
$$

Then
(a) T is a minimal CL-subgroup of P,
(b) $Y=Z(T)$ and $T=C_{P}(Y)$, and
(c) if x does not normalize Q, then $Z \prec_{\mathcal{C}} Y$ for every central series \mathcal{C} of P.

Proof. This is Theorem 5.5 of [11].
Theorem 2.15. Let n be a natural number, let G be $\mathrm{SL}\left(2, p^{n}\right)$ and let V be an elementary abelian p-group on which G acts irreducibly. Suppose S is a Sylow p-subgroup of G and $V_{0}=\{v$ in $V \mid S$ fixes $v\}$.

Assume that G does not centralize V and that
(a) $[V, S, S]=0$ or
(b) $|V| \leqslant\left|V_{0}\right|^{2}$.

Then V is a standard module for G.
Proof. Let F be the set of all endomorphisms of V that commute with the action of each element of G :

$$
F=\operatorname{Hom}_{G}(V, V)
$$

By Schur's Lemma, F is a division ring. Since F is finite, it is a field, by Wedderburn's Theorem. Then V is a vector space over F and it is an absolutely irreducible module for G over F, and V_{0} is an F-subspace of V. Let $d=\operatorname{dim}_{F} V$. By a special case of a result of Curtis and Richen (see [22, Theorem 44(b), pp. 231-232] or [20, Theorem 3.9(b), p. 446]), $\operatorname{dim}_{F} V_{0}=1$. Since G is generated by conjugates of S and G does not centralize V,

$$
\begin{equation*}
d \geqslant 2 \tag{2.1}
\end{equation*}
$$

We first assume (a). Then $|V|=\left|V_{0}\right|^{d} \leqslant\left|V_{0}\right|^{2}$, so that $d=2$ and $\operatorname{dim}_{F} V / V_{0}=1$. Since S is a p-group and F has characteristic p, S centralizes V / V_{0} and

$$
[V, S, S] \leqslant\left[V_{0}, S\right]=0
$$

which gives (b).
Thus, we may assume (b) for the rest of the proof. Let us regard V as a vector space over \boldsymbol{F}_{p} rather than F. Set $H=N_{G}(S)$ and $q=p^{n}$. Then V_{0} is a subspace of V under H. Let W be an irreducible subspace of V_{0} under H. Then H / S acts irreducibly on W. From the structure of $\mathrm{SL}(2, q), H / S$ is a cyclic group of order $q-1$, i.e. $p^{n}-1$. By Lemma 2.5,

$$
\begin{equation*}
|W| \leqslant q \tag{2.2}
\end{equation*}
$$

Since V is irreducible under G, the subspace

$$
\sum_{g \in G} W^{g}
$$

of V is equal to V. Take an element u of G outside H. By the structure of $\operatorname{SL}(2, q), G$ is the set-theoretic union of H and the double coset $H u S$. Note that

$$
W^{x}=W \quad \text { and } \quad W^{x u y}=\left(W^{u}\right)^{y} \quad \text { for all } x \text { in } H \text { and } y \text { in } S
$$

Therefore,

$$
\begin{equation*}
V=\sum_{g \in G} W^{g}=W+\sum_{y \in S}\left(W^{u}\right)^{y} \tag{2.3}
\end{equation*}
$$

Recall that $W \leqslant V_{0}$ and $[V, S, S]=0$, by (2.1). Therefore, for each v in W^{u} and y in S,

$$
v^{y}=v+\left(v^{y}-v\right)=v+[v, u] \in W^{u}+C_{V}(S)=W^{u}+V_{0}
$$

and by (2.3), (2.1) and (2.2),

$$
\begin{equation*}
V=V_{0}+W^{u} \quad \text { and } \quad|F| \leqslant|F|^{d-1}=\left|V / V_{0}\right| \leqslant\left|W^{u}\right|=|W| \leqslant q=|S| \tag{2.4}
\end{equation*}
$$

Then $|F|=\left|V_{0}\right| \geqslant|W| \geqslant|F|^{d-1}$, and $d=2$.
Now the theorem follows from Theorem 2.6. Alternatively, let $|F|=p^{k}$. Since G is generated by p-elements, which act by determinant 1 on V over F, the action of G on V induces a homomorphism of G into an irreducible subgroup of $\operatorname{SL}\left(2, p^{k}\right)$. It is easy to see that the homomorphism has trivial kernel, so that

$$
|\mathrm{SL}(2, q)|=|G| \leqslant\left|\mathrm{SL}\left(2, p^{k}\right)\right|
$$

Since $|F|=p^{k} \leqslant q$ by $(2.4), q=p^{k}=|F|$ and V is a standard module for G.
Theorem 2.16. Suppose S is a Sylow p-subgroup of a group G, K and L are normal p^{\prime}-subgroups of G, and n is a natural number. Assume that G acts on an elementary
abelian p-group M and
(i) $G / L \cong \mathrm{SL}\left(2, p^{n}\right), K \geqslant L$ and $K / L=Z(G / L)$,
(ii) $L=[L, G]$ and $K=\Phi(G)$,
(iii) $[M, S, S, S]=1$,
(iv) $|M|=\left|C_{M}(S)\right|^{2}$ and
(v) for each x in $S^{\#}, C_{M}(x)=C_{M}(S)$.

Then L centralizes M except possibly if $p^{n}=2$ or 3 .
Proof. Assume that L does not centralize M. Note that S is isomorphic to a Sylow p-subgroup of $\mathrm{SL}\left(2, p^{n}\right)$, and hence is elementary abelian of order p^{n}.

Since $L \triangleleft G$, the kernel $C_{L}(M)$ of L on M is normal in G. Assume first that S centralizes $L / C_{L}(M)$. Let $C=C_{G}\left(L / C_{L}(M)\right)$. Then C is a normal subgroup of G that contains S. So $C K / K$ is a normal subgroup of G / K that contains $S K / K$. Since G / K is isomorphic to $\operatorname{PSL}\left(2, p^{n}\right)$, which is generated by its p-elements,

$$
C K / K=G / K \quad \text { and } \quad G=C K=C \Phi(G)
$$

As $\Phi(G)$ is the Frattini subgroup of G, we obtain

$$
G=C \quad \text { and } \quad L=[L, G] \leqslant C_{L}(M)
$$

This is a contradiction because L does not centralize M. Thus,

$$
\begin{equation*}
S \text { does not centralize } L / C_{L}(M) \tag{2.5}
\end{equation*}
$$

We regard M as a vector space over \boldsymbol{F}_{p}. Let $\bar{G}=G / C_{G}(M)$. For every element x and subgroup H of G, let \bar{x} and \bar{H} be the images under the canonical homomorphism of G onto \bar{G}. By (2.5), \bar{S} does not centralize \bar{L}.

We show first that $p<5$. Let y be an element of S that does not centralize \bar{L}. Since S is elementary abelian, y has order p. Therefore, \bar{y} has order p and $\mathrm{O}_{p}(\bar{L}\langle\bar{y}\rangle)=1$. By a theorem of Philip Hall and Graham Higman (see [13, Theorem 11.1.1, p. 359]), the linear transformation t of M over \boldsymbol{F}_{p} induced by the action of \bar{y} has minimal polynomial $(x-1)^{p}$ or $(x-1)^{p-1}$. Therefore, $(t-1)^{p-2} \neq 0$, which gives

$$
[M, y ; p-2]>1
$$

By (iii), $[M, S ; 3]=1$. Consequently, $p-2<3$, and $p<5$, as desired.
To complete the proof, we assume that $n \geqslant 2$ and derive a contradiction. Since S is elementary abelian of order p^{n}, S is not cyclic. By [13, Theorem 6.2.4],

$$
L=\left\langle C_{L}(u) \mid u \in S^{\#}\right\rangle
$$

For each u in $S^{\#}, C_{L}(u)$ preserves $C_{M}(u)$, which is equal to $C_{M}(S)$, by (v). Therefore, $C_{M}(S)$ is preserved by L and hence by $L S$.

Let $L^{*}=[L, S]$. Since $L S$ preserves $C_{M}(S)$, the centralizer of $C_{M}(S)$ in $L S$ is a normal subgroup of $L S$ that contains S and, therefore, L^{*}. So

$$
C_{M}(S) \leqslant C_{M}\left(L^{*}\right)
$$

By (2.5), $\left[M, L^{*}\right]>1$ because L^{*} does not centralize M. By Lemma 2.1, $M=C_{M}\left(L^{*}\right) \times$ $\left[M, L^{*}\right]$. Hence,

$$
\left[M, L^{*}\right] \cap C_{M}(S) \leqslant\left[M, L^{*}\right] \cap C_{M}\left(L^{*}\right)=1
$$

However, $\left[M, L^{*}\right]$ is a non-trivial S-invariant subgroup of M, and so must contain nonidentity fixed elements under S. This contradiction completes the proof of Theorem 2.16.

Lemma 2.17. Assume the hypothesis of Theorem 2.16, and suppose also that
(i) G acts faithfully and irreducibly on M,
(ii) $L>1$ and $p^{n}=3$, and
(iii) $G=\mathrm{SO}_{2}(G)$ and $K=\Phi\left(\mathrm{O}_{2}(G)\right)$.

Regard M as a module for G over \boldsymbol{F}_{p}. Then
(a) the restriction of M to $K S$ contains a unique irreducible submodule N subject to being also irreducible for K,
(b) the representation of G on M is induced from the representation of $K S$ on N,
(c) the restriction of M to K is the direct sum of N and three other irreducible submodules N_{1}, N_{2}, N_{3},
(d) no two of N, N_{1}, N_{2}, N_{3} are isomorphic as K-modules,
(e) the modules N_{1}, N_{2}, N_{3} are cyclically permuted by S,
(f) S acts trivially on N, and
(g) M is the only K-submodule of M that contains $C_{M}(S)$.

Proof. Here, $\left|G / \mathrm{O}_{2}(G)\right|=|S|=3$. Let $Q=\mathrm{O}_{2}(G)$. From (iii) and Theorem 2.16, $K=\Phi(Q) \geqslant L$ and $G / L \cong \operatorname{SL}(2,3)$. From the structure of $\operatorname{SL}(2,3)$,

$$
G / L=(S L / L)(G / L)^{\prime}=S G^{\prime} L / L \quad \text { and } \quad G=S G^{\prime} L
$$

Assume first that K is cyclic. Then the automorphism group of K is an abelian 2group. So K is centralized by S, G^{\prime} and itself. As $G=S G^{\prime} L \leqslant S G^{\prime} K$, Theorem 2.16 yields

$$
1=[K, G] \geqslant[L, G]=L
$$

contrary to (ii). Thus, K is not cyclic.

If every characteristic abelian subgroup of Q is cyclic, then a theorem of Philip Hall (see [13, p. 198]) asserts that Q is a central product of two subgroups E and R, where $E=1$ or E is an extra-special 2 -group, and $R=1$ or R is a 2 -group of maximal class. Then $\Phi(Q)$ is abelian, hence cyclic. But $\Phi(Q)=K$, which is not cyclic, which is a contradiction. Thus, there exists a non-cyclic abelian characteristic subgroup A of Q.

Since Q is normal in G, A is normal in G. As M is irreducible under G, we may decompose it as a direct sum

$$
M=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{r}
$$

of homogeneous A-modules transitively permuted by G. Moreover, M_{1} is irreducible under the stabilizer $N_{G}\left(M_{1}\right)$ in G, and M is induced from the representation of $N_{G}\left(M_{1}\right)$ on M_{1}.

Now, M_{1} is a direct sum of isomorphic irreducible A-modules. As A is abelian, this forces $A / C_{A}\left(M_{1}\right)$ to be cyclic. Hence, $C_{A}\left(M_{1}\right)>1$, and $M_{1}<M$ by (i). Let H be a maximal subgroup of G containing $N_{G}\left(M_{1}\right)$, and let N be the sum of M_{1}^{h} as h ranges over H. Then N is an irreducible H-module that is induced from the irreducible $N_{G}\left(M_{1}\right)$-module M_{1}, and M is induced from the representation of H on N. Therefore, H is the stabilizer of N in G, and M is the direct sum

$$
\begin{equation*}
M=\bigoplus \sum_{g \in T} N^{g} \tag{2.6}
\end{equation*}
$$

as g ranges over a transversal T to H in G (i.e. $H T=G$ and $H u \neq H v$ for $u \neq v$ in T).
Let u be a generator of S. If S does not fix any subspace N^{g} in (2.6), then it permutes these subspaces in cycles of length 3 , and

$$
M=M^{*} \oplus M^{* u} \oplus M^{* u^{2}}
$$

for some subspace M^{*} of M. Then

$$
C_{M}(S)=C_{M}(u)=\left\{x+x^{u}+x^{u^{2}} \mid x \in M^{*}\right\}
$$

and $|M|=\left|M^{*}\right|^{3}=\left|C_{M}(S)\right|^{3}>\left|C_{M}(S)\right|^{2}$. But $|M|=\left|C_{M}(S)\right|^{2}$ from Theorem 2.16, which is a contradiction. Thus, S fixes some subspace N^{g} in (2.6).

By replacing M_{1} by $M_{1}^{g^{-1}}$, we may replace N^{g} by N. Then S is contained in the stabilizer of N in G, which is the maximal subgroup H of G. Since $\Phi(G)$ is the intersection of all the maximal subgroups of G and $K=\Phi(G)$, we have $K \leqslant H$. So $S K \leqslant H$.

Now H / K is a maximal subgroup of G / K that contains the Sylow 3-subgroup $S K / K$ of G / K. From Theorem $2.16, G / K$ is isomorphic to $\operatorname{PSL}(2,3)$ and thus to the alternating group of degree 4 . Therefore, $S K / K$ itself is a maximal subgroup of G / K. Hence,

$$
H / K=S K / K, \quad H=S K, \quad|G: H|=|G / K: H / K|=4
$$

and the transversal T has cardinality 4 .

Since $K \triangleleft G$ and K preserves N, K preserves N^{g} for every g in G. Thus, G / K acts as a permutation group on the four summands N^{g} in (2.6), and the group H / K of order 3 is the stabilizer of N in G / K. It is easy to see that S permutes the other three summands cyclically. Let N_{1} be one of them. Then $N_{1} \oplus N_{1}^{u} \oplus N_{1}^{u^{2}}$ is irreducible under $S K$,

$$
\begin{equation*}
C_{M}(S)=C_{N}(S) \oplus\left\{x+x^{u}+x^{u^{2}} \mid x \in N_{1}\right\} \quad \text { and } \quad M=N \oplus\left(N_{1} \oplus N_{1}^{u} \oplus N_{1}^{u^{2}}\right) \tag{2.7}
\end{equation*}
$$

Now we obtain (a), (b), (c) and (e).
Consider the dimensions of various subgroups of M as vector spaces over the prime field \boldsymbol{F}_{p}. Since $|N|^{4}=|M|=\left|C_{M}(S)\right|^{2}$ and $\left|N_{1}\right|=|N|$, (2.7) gives

$$
4 \operatorname{dim} N=\operatorname{dim} M=2 \operatorname{dim} C_{M}(S)=2\left(\operatorname{dim} C_{N}(S)+\operatorname{dim} N\right) \leqslant 4 \operatorname{dim} N
$$

Therefore, $\operatorname{dim} C_{N}(S)=\operatorname{dim} N$, and S centralizes N, which gives (f).
As $K S$ is irreducible on N and S centralizes N, K acts irreducibly on N and $[K, S]$ centralizes N. As $K \triangleleft G$, we see that K acts irreducibly on N^{g} for every g in G. Since $M_{1} \leqslant N$ and $A \triangleleft G$ and M_{1} is a homogeneous component of M as an A-module, none of the summands $N_{1}, N_{1}^{u}, N_{1}^{u^{2}}$ is isomorphic to N as an A-module, or, a fortiori, as a K-module. Thus, no two of the four distinct summands of M in (2.7) are isomorphic as K-modules, as claimed in (d).

Suppose M^{*} is a K-submodule of M that contains $C_{M}(S)$. Then $M^{*} \geqslant N$. If $M^{*}<$ M, then we may assume that M^{*} is a maximal K-submodule of M. By the JordanHölder Theorem for modules, M / M^{*} is isomorphic as a K-module to N_{1}, N_{1}^{u} or $N_{1}^{u^{2}}$. If $M / M^{*} \cong N_{1}$, then M^{*} contains N, N_{1}^{u} and $N_{1}^{u^{2}}$, and hence (by (2.7)),

$$
M^{*} \text { contains }\left(N \oplus N_{1}^{u} \oplus N_{1}^{u^{2}}\right)+C_{M}(S), \text { which is } M .
$$

This is a contradiction. Similar contradictions for the other cases show that $M^{*}=M$. This proves (g) and completes the proof of the lemma.

Lemma 2.18. Suppose p, G, S, K and L satisfy conditions (i) and (ii) of Theorem 2.16 for $n=1$, and p is 2 or 3 . Let G act on elementary abelian p-subgroups M_{1}, M_{2} and M. Regard M_{1}, M_{2} and M as vector spaces over the prime field \boldsymbol{F}_{p}. Assume that f is an \boldsymbol{F}_{p}-bilinear function on $M_{1} \times M_{2}$ into M and
(i) $f\left(u^{g}, v^{g}\right)=f(u, v)^{g}$ for all u in M_{1}, v in M_{2}, and g in G, and
(ii) $f(u, v) \neq 0$ for some u in M_{1} and v in M_{2}.

Assume also that
(iii) G acts irreducibly on M_{1} and M_{2}, and L centralizes M,
(iv) for all u in $C_{M_{1}}(S)$ and v in $C_{M_{2}}(S), f(u, v)=0$,
(v) for $i=1,2,\left|M_{i}\right|=\left|C_{M_{i}}(S)\right|^{2}$ and L does not centralize M_{i},
(vi) if $p=2$, then G is a dihedral group of order $2 \cdot 3^{k}$ for some natural number k, and (vii) if $p=3$, then $G=\mathrm{SO}_{2}(G)$ and $K=\Phi\left(\mathrm{O}_{2}(G)\right)$.

Then $p=2$ and G centralizes the image of f.
Proof. Here, $|S|=p^{n}=p$. Let x be a generator of S. Take i to be 1 or 2 . By (v), S acts faithfully on M_{i}. We embed S in the endomorphism ring of M_{i}. Since $p \leqslant 3$ and M_{i} has characteristic p,

$$
(x-1)^{p}=x^{p}-1=0 \quad \text { and } \quad 0=(x-1)^{3}=\left(x^{j}-1\right)\left(x^{k}-1\right)\left(x^{l}-1\right)
$$

for all natural numbers j, k and l. Therefore,

$$
\left[M_{i}, S, S, S\right]=0 \quad \text { for } i=1,2 .
$$

Assume first that $p=3$. We work towards a contradiction. By Lemma 2.17, $C_{M_{1}}(S)$ contains a non-zero K-submodule N of M_{1}, and $C_{M_{2}}(S)$ contains a non-zero K-submodule N^{*} of M_{2}.

Let X be the set of all u in M_{1} such that

$$
f(u, v)=0 \text { for all } v \text { in } N^{*} .
$$

By (i) and (iv), X is a K-submodule of M_{1} that contains $C_{M_{1}}(S)$. By Lemma 2.17, $X=M_{1}$. Similarly, the set Y of all v in M_{2} satisfying

$$
f(u, v)=0 \text { for all } u \text { in } M_{1}
$$

is a G-submodule of M_{2} containing N^{*}. As G acts irreducibly on M_{2}, we have $Y=M_{2}$. Thus, f is identically zero, contrary to (ii). This contradiction shows that $p=2$.

Let F be a finite field extension of \boldsymbol{F}_{2} that is a splitting field for all of the subgroups of G. Let

$$
M_{i}^{*}=F \otimes_{\boldsymbol{F}_{2}} M_{i} \quad \text { for each } i
$$

and let

$$
M^{*}=F \otimes_{\boldsymbol{F}_{2}} M
$$

Then f extends uniquely to a bilinear function over F on $M_{1}^{*} \times M_{2}^{*}$ into M^{*}, which we also call f for convenience. Part (i) of the hypothesis is still valid, but M_{1}^{*} and M_{2}^{*} need not be irreducible. However, by [6, pp. 471-472],
each of M_{1}^{*} and M_{2}^{*} is a direct sum of irreducible modules.
It is easy to see that $C_{M_{i}^{*}}(S)=F \otimes_{\boldsymbol{F}_{2}} C_{M_{i}}(S)$ for each i, and hence, from (iv), that

$$
\begin{equation*}
\text { for all } u \text { in } C_{M_{1}^{*}}(S) \text { and } v \text { in } C_{M_{2}^{*}}(S), \quad f(u, v)=0 . \tag{2.9}
\end{equation*}
$$

To complete the proof, we wish to show that G centralizes the image of f. By (2.8), it suffices to show that, for arbitrary irreducible summands N_{1} of M_{1} and N_{2} of M_{2}, G centralizes $f(u, v)$ for every u in N_{1} and v in N_{2}.

By (vi), G is a dihedral group of order $2 \cdot 3^{k}$ for some natural number k. Let H be the Sylow 3-subgroup of G, so that $|G / H|=2$. Let h be a generator of H. By Theorem 2.16, G / L is isomorphic to $\operatorname{SL}(2,2)$, the dihedral group of order 6 . Hence, $L<H$.

Now we take i to be 1 or 2 in order to choose notation. By (v), L does not centralize M_{i}. So $C_{M_{i}}(L)<M_{i}$. As G is irreducible on M_{i} and $L \triangleleft G$, the subspace $C_{M_{i}}(L)$ of M_{i} is invariant under G and must be zero. Therefore,

$$
C_{N_{i}}(L) \leqslant C_{M_{i}^{*}}(L)=F \otimes_{\boldsymbol{F}_{2}} C_{M_{i}}(L)=0
$$

and $G / C_{G}\left(N_{i}\right)$ is a dihedral group of order $2 \cdot 3^{m}$ for some natural number m. Since F is a splitting field for H and N_{i} is irreducible under G, it is easy to see that N_{i} is induced from a one-dimensional representation of H. Thus, N_{i} has dimension 2 and $C_{N_{i}}(S)$ has dimension 1. Let u_{i} be a non-zero vector in $C_{N_{i}}(S)$ and $v_{i}=u_{i}^{h}$.

We continue with the assumption that i is 1 or 2 . Then u_{i}, v_{i} is a basis of N_{i}. Since $S^{h^{2}}$ is different from S and S^{h} when taken modulo $C_{G}\left(N_{i}\right)$, the subspace $C_{N_{i}}\left(S^{h^{2}}\right)$ is different from $\left\langle u_{i}\right\rangle$ and $\left\langle v_{i}\right\rangle$. So

$$
C_{N_{i}}\left(S^{h^{2}}\right)=\left\langle u_{i}^{h^{2}}\right\rangle=\left\langle u_{i}+\lambda_{i} v_{i}\right\rangle \text { for some non-zero element } \lambda_{i} \text { in } F .
$$

Now we apply the notation chosen above for $i=1$ and $i=2$. By $(2.9), f\left(u_{1}, u_{2}\right)=0$. Therefore,

$$
0=0^{g}=f\left(u_{1}^{g}, u_{2}^{g}\right)=f\left(v_{1}, v_{2}\right)
$$

and similarly,

$$
0=f\left(u_{1}+\lambda_{1} v_{1}, u_{2}+\lambda_{2} v_{2}\right)=\lambda_{2} f\left(u_{1}, v_{2}\right)+\lambda_{1} f\left(v_{1}, u_{2}\right)
$$

Hence,

$$
f\left(v_{1}, u_{2}\right)=\lambda_{1}^{-1} \lambda_{2} f\left(u_{1}, v_{2}\right)
$$

This shows that the image of f on $N_{1} \times N_{2}$ into M^{*} is spanned by $f\left(u_{1}, v_{2}\right)$ and is either one dimensional or zero. Since M^{*} has characteristic $2, S$ centralizes this image. As G is generated by S and S^{h}, G centralizes this image. As mentioned above, this suffices to prove the lemma.

Lemma 2.19. Assume $\left(E_{0}\right)$. Then
(a) $G=\left\langle S, S^{y}\right\rangle$ for every element y in $G \backslash N_{G}(S K)$ and
(b) $Z(S) \triangleleft G$ if and only if $Z(S)=Z(G)$.

Proof. (a) This is part of Lemma 2.7 of [12].
(b) Obviously, $Z(S) \triangleleft G$ if $Z(S)=Z(G)$.

Assume conversely that $Z(S) \triangleleft G$. Take some element y in $G \backslash N_{G}(S K)$. Since $C_{G}(Z(S))$ is a normal subgroup of G that contains S, it contains S^{y}. Hence, by (a), $C_{G}(Z(S))=G$, and $Z(S) \leqslant Z(G)$. Since

$$
Z(G) \leqslant C_{G}\left(\mathrm{O}_{p}(G)\right) \leqslant \mathrm{O}_{p}(G) \leqslant S
$$

by $\left(E_{0}\right)$, we obtain $Z(S)=Z(G)$.

3. Proof of Theorems A, B, D and E

Let $T=\mathrm{O}_{p}(G)$. In this section, we prove Theorems $\mathrm{A}, \mathrm{B}, \mathrm{D}$ and E and Remark 1.1. Then we reduce part of Theorem C to studying the chief factors within a particular subgroup of T.

Recall conditions $\left(E_{0}\right)$ and (H) from $\S 1$. Assume condition $\left(E_{0}\right)$. Let

$$
q=p^{n}, \quad Z=Z(T) \quad \text { and } \quad L=C_{G}(Z)
$$

Theorem 3.1. Assume (H). Then
(a) $Z(G) \leqslant Z(S) \leqslant Z$ and $T \leqslant L \leqslant K$,
(b) $G / L \simeq \operatorname{SL}(2, q)$ and $Z / Z(G)$ is a standard module for G / L,
(c) $Z(S) / Z(G)=C_{Z / Z(G)}(S / Z(G))$,
(d) $\mathscr{A}(T)$ is a proper subset of $\mathscr{A}(S)$,
(e) whenever $A \in \mathscr{A}(S)-\mathscr{A}(T)$, then $A T=S$ and $(A \cap T) Z \in \mathscr{A}(T)$,
(f) $Z \leqslant Z_{2}(S)$,
(g) if p is odd or $n=1$, then $Z=[Z, G] \times Z(G)$,
(h) $K / L=Z(G / L)$, and
(i) $L / T=[L / T, G / T]=[L, G] T / T$ and $K / T=\Phi(G / T)$.

Moreover, let W_{1} be the subgroup of T that contains $Z(G)$ and satisfies $W_{1} / Z(G)=$ $Z(T / Z(G))$. Then
(j) if $q>2$, then $L=T C_{L}\left(W_{1}\right)$,
(k) if $q=2$, then G / T is a dihedral group and $\frac{1}{2}|L / T|$ is a power of 3 , and
(l) if $q=3$, then $G / T=(S / T) \mathrm{O}_{2}(G / T)$ and $K / T=\Phi\left(\mathrm{O}_{2}(G / T)\right)$.

Proof. Obviously, $T \leqslant C_{G}(Z(T))=L$. Since (H) includes condition (E) of [12], parts $(\mathrm{a})-(\mathrm{g})$ of the theorem follow from Lemma 2.9 of [12]. Part (h) follows from (H) and part (b). Parts (i)-(l) follow from Lemmas 3.5 and 2.2 in [12].

Lemma 3.2. Assume (H). Then
(a) $Z(G)<Z(S)<Z=\Omega_{1}(Z) Z(G)$ and $|Z / Z(S)|=|S / T|=q$,
(b) $[Z, S] \leqslant Z(S)$, and
(c) for each x in $Z-Z(S), C_{S}(x)=T$.

Proof. This follows from Theorem 3.1 above and Lemma 3.1 of [12].
Theorem 3.3. Suppose G satisfies (H) and S_{MCL} is not normal in G. Then some minimal CL-subgroup Q of S is not contained in T. For any such subgroup,
(a) $S=Q T=Z(Q) T$ and $Q \cap Z=Z(S)$,
(b) $(Q \cap T) Z$ is a minimal CL-subgroup of S and of T,
(c) Q^{\prime} is a characteristic subgroup of T and of S,
(d) $S=T C_{S}\left(Q^{\prime}\right)$ and $G=T C_{G}\left(Q^{\prime}\right)$,
(e) $Q=(Q \cap T) Z(Q)$,
(f) $|Q /(Q \cap T)|=q$, and
(g) $f(S)=f(T)$ and the CL-subgroups of T are the CL-subgroups of S that are contained in T.

Proof. Suppose every minimal CL-subgroup of S is contained in T. Then $f(S)=f(T)$ and the minimal CL-subgroups of S and T coincide. So

$$
S_{\mathrm{MCL}}=T_{\mathrm{MCL}} \triangleleft G
$$

contrary to hypothesis. This contradiction shows that Q exists.
Now, (a)-(c) and the first part of (d) follow directly from Theorem 4.7 and Corollary 4.8 of [11], and (g) follows from (b). Hence, $Q^{\prime} \triangleleft G$.

Take y in $G \backslash N_{G}(S K)$. Since Q^{\prime} is normal in G, so are $C_{G}\left(Q^{\prime}\right)$ and $T C_{G}\left(Q^{\prime}\right)$. Since $S=T C_{S}\left(Q^{\prime}\right) \leqslant T C_{G}\left(Q^{\prime}\right)$, we also have $S^{y} \leqslant T C_{G}\left(Q^{\prime}\right)$. By Lemma 2.19, $G=\left\langle S, S^{y}\right\rangle \leqslant$ $T C_{G}\left(Q^{\prime}\right)$. So $G=T C_{G}\left(Q^{\prime}\right)$, which completes the proof of (d).

Let $R=(Q \cap T) Z$. By (b) and Theorem 2.10,

$$
Q=(Q \cap R) Z(Q) \leqslant(Q \cap T) Z(Q) \leqslant Q
$$

which yields (e). By (a) and Lemma 3.2,

$$
|Q /(Q \cap T)|=|Q T / T|=|S / T|=q
$$

Thus, (f) is valid.
Now we can prove most of our main results. Note first that Remark 1.1 follows from Theorems 2.7 and 2.10, Proposition 2.8 and Lemma 2.12.

Proof of Theorem B. Define T_{Φ} by analogy with the definition of S_{Φ}. Then T_{Φ} is characteristic in T and hence normal in G. If $Z(S)$ is not normal in G, then $Z(S) \neq Z(G)$ and we obtain condition (H). By Lemma 3.2 above and Remark 4.9 of [11], the theorem follows.

Proof of Theorem D. Theorem 2.10 gives (a) and (c). To prove (b), assume S_{MCL} is not normal in G. If $Z(S) \triangleleft G$, then Lemma 2.19 yields

$$
Z(S) \cap Q^{\prime} \leqslant Z(S)=Z(G) \quad \text { and } \quad Z(S) \cap Q^{\prime} \triangleleft G
$$

So assume $Z(S)$ is not normal in G. Then (H) holds. By Theorem 3.3,

$$
G=T C_{G}\left(Q^{\prime}\right) \leqslant N_{G}\left(Z(S) \cap Q^{\prime}\right) \quad \text { and } \quad Z(S) \cap Q^{\prime} \triangleleft G,
$$

as desired.
Proof of Theorem E. As in Theorem B of [12], let

$$
S_{0}= \begin{cases}{[\Phi(S), S] \Phi(\Phi(S))} & \text { if } p=2, \\ {[[\Phi(S), S], S] \Phi(\Phi(S))} & \text { if } p=3, \\ {[\Phi(S), S] \mho^{1}(S)} & \text { if } p>3\end{cases}
$$

We wish to find a pair of characteristic subgroups S_{1}, S_{2} that satisfies (P) and the condition that $f\left(S_{2}\right)=f(\tilde{J}(S))$. By Theorem D of [12], we can satisfy (P) by taking

$$
S_{1}=[Z J(S), S] \cap Z(S) \quad \text { and } \quad S_{2}=\tilde{J}(S) \quad \text { if } S \neq \tilde{J}(S)
$$

and

$$
S_{1}=\mho^{1}(Z(S)) \quad \text { and } \quad S_{2}=S \quad \text { if } S=\tilde{J}(S) \text { and } \mho^{1}(Z(S))>1
$$

Since we have $f\left(S_{2}\right)=f(\tilde{J}(S))$ in both cases, we may assume that $S=\tilde{J}(S)$ and $\mho^{1}(Z(S))=1$. So $Z(S)$ is elementary abelian.

Let Q be any minimal CL-subgroup of S. If $Q^{\prime}>1$, then Theorem D yields that we can satisfy (P) by taking $S_{1}=Z(S) \cap Q^{\prime}$ and $S_{2}=S_{\mathrm{MCL}}$. Since $f\left(S_{\mathrm{MCL}}\right)=f(S)$ and $S=\tilde{J}(S)$, this pair satisfies $\left(P^{\prime}\right)$. Hence, we may assume that $Q^{\prime}=1$. By Theorem 2.10, the minimal CL-subgroups of S coincide with the large abelian subgroups of S. Thus, we will have $f\left(S_{2}\right)=f(\tilde{J}(S))$ if and only if $d\left(S_{2}\right)=d(S)$.

Now we return to Theorem D of [12]. Assume $S_{0}>1$. Then we are in case (c) of Theorem D of [12], in which $S_{1}=Z(S) \cap S_{0}$ and S_{2} is an intersection of subgroups $\mathrm{O}_{p}\left(G^{*}\right)$ for a family of groups G^{*} that satisfy $\left(E_{0}\right)$.

Take a large abelian subgroup A of S for which $\left|A \cap S_{2}\right|$ is as large as possible. If $A \leqslant S_{2}$, then $d\left(S_{2}\right)=d(S)$, as desired. We assume that A is not contained in S_{2} and work towards a contradiction.

Clearly, A is not contained in $\mathrm{O}_{p}\left(G_{1}\right)$ for some group G_{1} in the family of groups G^{*} above. Let $P=\mathrm{O}_{p}\left(G_{1}\right)$ and $B=(A \cap P) Z(P)$. By Lemma 2.9 of $[\mathbf{1 2]}, B$ is a large abelian subgroup of S. Since $B \leqslant P$, we have $B \neq A$. Therefore, $Z(P)$ is not contained in A.

By Theorem C of $[\mathbf{1 2}], Z(P) \leqslant \mathrm{O}_{p}\left(G^{*}\right)$ for every group G^{*} above. Therefore,

$$
B \cap S_{2} \geqslant\left(A \cap S_{2}\right) Z(P)>A \cap S_{2},
$$

contrary to the choice of A. This contradiction shows that $A \leqslant S_{2}$, as desired.
This leaves us with the case in which $S=\tilde{J}(S)$ and $Q^{\prime}=S_{0}=1$. Since $Q^{\prime}=1$, Theorem 2.10 and Lemma 2.12 give parts (b) and (e) of Theorem E. Since $S_{0}=1$, we obtain parts (c) and (d). Finally, since $C_{G}\left(\mathrm{O}_{p}(G)\right) \leqslant \mathrm{O}_{p}(G)<S$, we obtain part (a).

Proof of Theorem A. Assume that there exists no pair of non-identity characteristic subgroups of S satisfying condition (P). Since condition $\left(P^{\prime}\right)$ includes condition (P), Theorem E yields conditions (a), (b), (c), (d) and (f) of Theorem A. In particular, $\tilde{J}(S)=S$.

By Theorem B, $Z(S) \triangleleft G$ or $S_{\Phi} \triangleleft G$ for every group G satisfying $\left(E_{0}\right)$. Since $\tilde{J}(S)=S$, the subgroup S_{Φ} is a characteristic subgroup of $\tilde{J}(S)$. Therefore, the pair $Z(S), S_{\Phi}$ satisfies (P). Since $Z(S)>1$, we must have $S_{\Phi}=1$. Now Theorem B gives us condition (e) of Theorem A.

We have now proved Remark 1.1 (after Theorem 3.3) and Theorems A, B, D and E. So we turn our attention to Theorem C.

3.0.1. Henceforth in this article, we assume the hypothesis of Theorem C.

Then $\tilde{J}(S)=S$. Clearly, we may assume $Z(S) \neq Z(G)$. Then G satisfies condition (H).

Take a central series \mathcal{C} of S. Define a partial ordering $\prec=\prec_{\mathcal{C}}$ on the set of all subgroups of S as in Definition 2.13. Consider the centres $Z(Q)$ for all the minimal CL-subgroups Q that are not contained in T. By Theorem 2.10 , the order $|Z(Q)|$ is the same for all the choices of Q. Choose Q_{0} so that $Z\left(Q_{0}\right)$ is maximal under \prec, that is, no choice of Q satisfies $Z\left(Q_{0}\right) \prec Z(Q)$.

Proposition 3.4. Take Q_{0} as above. Then
(a) K / T is a p^{\prime}-group,
(b) $N_{G}(S K)$ is the unique maximal subgroup of G that contains S,
(c) $S=Q_{0} T=Z\left(Q_{0}\right) T$, and
(d) for every element y in $G-N_{G}(S K)$,

$$
G=\left\langle S, S^{y}\right\rangle=\left\langle Q_{0}, Q_{0}^{y}\right\rangle T=\left\langle Z\left(Q_{0}\right), Z\left(Q_{0}\right)^{y}\right\rangle T
$$

Proof. Lemma 2.7 of [12] gives (a) and (b), and gives $\left\langle S, S^{y}\right\rangle=G$ for (d). Theorem 3.3 above gives (c). Then (c) gives

$$
G=\left\langle S, S^{y}\right\rangle=\left\langle\left(Q_{0} T\right)^{y},\left(Q_{0} T\right)^{y}\right\rangle=\left\langle Q_{0}, Q_{0}^{y}\right\rangle T
$$

Similarly, $G=\left\langle Z\left(Q_{0}\right), Z\left(Q_{0}\right)^{y}\right\rangle T$.

Now we obtain our first main reduction.
Proposition 3.5. Let \hat{Z} be the subgroup of T generated by the subgroups $Z(R)$ as R ranges over all of the minimal CL-subgroups of T. Then $\left[Z\left(Q_{0}\right), S\right] \leqslant \hat{Z}$.

Proof. Let $W=Z\left(Q_{0}\right)$ and $Q_{1}=\left(Q_{0} \cap T\right) Z$. Note that \hat{Z} is a characteristic subgroup of T and hence a normal subgroup of G. We must show that W centralizes the quotient group S / \hat{Z}.

By Proposition 3.3, Q_{1} is a minimal CL-subgroup of T (and of S). So, by Lemma 2.12, $\tilde{J}(S) \leqslant Q_{1} J(S)$. Since $S=\tilde{J}(S)$,

$$
\begin{equation*}
S=Q_{1} J(S) \tag{3.1}
\end{equation*}
$$

Since $Z=Z(T) \leqslant Z\left(Q_{1}\right) \leqslant \hat{Z}$,

$$
Q_{1}=\left(Q_{0} \cap T\right) Z \leqslant\left(Q_{0} \cap T\right) \hat{Z}
$$

As W centralizes Q_{0},

$$
\begin{equation*}
W \text { centralizes } Q_{1} \hat{Z} / \hat{Z} \tag{3.2}
\end{equation*}
$$

Now take any large abelian subgroup A of S and any element x of A. By Theorems 2.9 and 2.3, $W A$ is a subgroup of S, and $(W A)^{\prime}$ is abelian. Hence, $[x, W]$ is abelian. Let

$$
M=[x, W], \quad Y=M C_{W}(M) \quad \text { and } \quad R=\left(Q_{0} \cap Q_{0}^{x}\right) Y
$$

If x normalizes Q_{0}, then x normalizes W and

$$
[x, W] \leqslant W \cap T=Z\left(Q_{0}\right) \cap T \leqslant Z\left(Q_{1}\right) \leqslant \hat{Z}
$$

Assume x does not normalize Q_{0}. By Theorem 2.14, R is a minimal CL-subgroup of S and $Y=Z(R)$; moreover, $W \prec Y$. Therefore, $R \leqslant T$ by our choice of Q_{0}, and

$$
[x, W]=M \leqslant Y=Z(R) \leqslant \hat{Z}
$$

This shows that in all cases, $[x, W] \leqslant \hat{Z}$. Since x was chosen arbitrarily in A, we see that W centralizes $A \hat{Z} / \hat{Z}$. As $J(S)$ is generated by all the large abelian subgroups A of S,

$$
W \text { centralizes } J(S) \hat{Z} / \hat{Z}
$$

By (3.1) and (3.2), W centralizes S / \hat{Z}, as desired.
Theorem 3.6. For \hat{Z} as in Proposition 3.5, $\left[\mathrm{O}^{p}(G), T\right] \leqslant \hat{Z}$.
Proof. As in the proof of Proposition 3.5, we let $W=Z\left(Q_{0}\right)$ and consider the action of G on T / \hat{Z} by conjugation. Let C be the kernel of this action, i.e. $C=C_{G}(T / \hat{Z})$, the centralizer of T / \hat{Z} in G. We must show $\mathrm{O}^{p}(G) \leqslant C$.

Clearly, $C \triangleleft G$. By Proposition 3.5, W centralizes S / \hat{Z} and hence T / \hat{Z}. So $W \leqslant C$. Take y in $G-N_{G}(S K)$. By Proposition 3.4,

$$
G=\left\langle W, W^{y}\right\rangle T \leqslant C T
$$

whence $G=C T$. Therefore, G / C is a p-group, and $\mathrm{O}^{p}(G) \leqslant C$.

Theorem 3.6 gives our first reduction. It shows that G centralizes all of the chief factors U / V of G for which $\hat{Z} \leqslant V<U \leqslant T$, so that we need to consider only the chief factors for which $U \leqslant \hat{Z}$.

4. The second reduction

Take Q_{0} as in $\S 3$. We fix a p^{\prime}-element f in $G-N_{G}(S K)$ for the rest of this paper. Recall that $q=p^{n}, Z=Z(T)$ and $L=C_{G}(Z)$. Let

$$
\begin{gathered}
R_{0}=Q_{0}^{f}, \quad G_{0}=\left\langle Q_{0}, R_{0}\right\rangle, \quad T_{0}=G_{0} \cap T \\
Q_{1}=\left(Q_{0} \cap T\right) Z \quad \text { and } \quad R_{1}=Q_{1}^{f}=\left(R_{0} \cap T\right) Z
\end{gathered}
$$

We define G^{\star}, T^{\star} and S^{\star} after Proposition 4.5.
In $\S 3$, we showed that $\left[\mathrm{O}^{p}(G), T\right]$ is contained in the group \hat{Z} of Proposition 3.5. In this section, we show that it is contained in $G_{0} \cap \hat{Z}$ and that $\mathrm{O}^{p}(G)$ is contained in G_{0}.

Lemma 4.1. The following conditions are satisfied.
(a) Q_{1} and R_{1} are minimal CL-subgroups of T and S.
(b) $Q_{0} \cap Q_{1}=Q_{0} \cap T$ and $\left|Q_{0}: Q_{0} \cap T\right|=q$.
(c) $Z \cap Z\left(Q_{0}\right)=Z \cap Q_{0}=Z(S)$.
(d) $Q_{0} \cap R_{0}=Q_{0} \cap Q_{1} \cap R_{0} \cap R_{1} \leqslant T$.
(e) $T=C_{S}(Z)$.
(f) $Z=Z(S) Z(S)^{f}=\left(Z \cap Q_{0}\right)\left(Z \cap R_{0}\right)=\left(Z \cap Z\left(Q_{0}\right)\right)\left(Z \cap Z\left(R_{0}\right)\right)$.
(g) T_{0} contains Q_{1} and R_{1}.

Proof. By Theorem 3.3, Q_{1} is a minimal CL-subgroup of T, and the CL-subgroups of T are merely the CL-subgroups of S that are contained in T; moreover,

$$
\begin{equation*}
Q_{0} \cap Z=Z(S) \quad \text { and } \quad\left|Q_{0} /\left(Q_{0} \cap T\right)\right|=q \tag{4.1}
\end{equation*}
$$

Conjugation by f shows that R_{1} is a minimal CL-subgroup of T. Thus, we obtain (a).
Since $Q_{0} \cap T \leqslant Q_{0} \cap Q_{1} \leqslant Q_{0} \cap T$, we have $Q_{0} \cap T=Q_{0} \cap Q_{1}$. So (4.1) gives (b). As $Z(S) \leqslant Z\left(Q_{0}\right),(4.1)$ also gives $Z(S)=Z\left(Q_{0}\right) \cap Z$ and (c).
By Proposition 3.4, the quotient groups $Q_{0} K / K$ and $R_{0} K / K$ generate G / K and hence are distinct Sylow p-subgroups of $\operatorname{PSL}(2, q)$, which must intersect in the identity subgroup. Therefore, $Q_{0} \cap R_{0} \leqslant S \cap K=T$ and, by (b),

$$
Q_{0} \cap R_{0}=\left(Q_{0} \cap T\right) \cap\left(R_{0} \cap T\right)=Q_{0} \cap Q_{1} \cap R_{0} \cap R_{1},
$$

which gives (d).
Part (e) follows from Lemma 3.2. Part (f) follows from Lemma 3.1 of [12] and part (c). Part (g) follows from (f) and the definition of Q_{1} and R_{1}.

Part (d) of the following result shows that G_{0} is smaller than one might expect.
Proposition 4.2. The following conditions are satisfied.
(a) $Z\left(Q_{1}\right)$ and $Z\left(R_{1}\right)$ are contained in $\left\langle Z\left(Q_{0}\right), Z\left(R_{0}\right)\right\rangle$.
(b) $Z\left(Q_{1}\right) \cap Z\left(R_{1}\right)=\left(Z\left(Q_{0}\right) \cap Z\left(R_{0}\right)\right) Z$.
(c) $Q_{1} \cap R_{1}=\left(Q_{0} \cap R_{0}\right) Z$.
(d) $T_{0}=Q_{1} R_{1}=\left(Q_{0} \cap T\right)\left(R_{0} \cap T\right)$.

Proof. By Lemma 4.1, Q_{1} and R_{1} are minimal CL-subgroups of T and of S. Therefore, by Theorems 2.7 and 2.10 and Proposition 2.8,

$$
\begin{equation*}
\left\langle Q_{1}, R_{1}\right\rangle=Q_{1} R_{1}, \quad Q_{0}=\left(Q_{0} \cap Q_{1}\right) Z\left(Q_{0}\right), \quad Z \leqslant C_{S}\left(Q_{1}\right)=Z\left(Q_{1}\right) \tag{4.2}
\end{equation*}
$$

and $Q_{1} R_{1}$ is a CL-subgroup of T and of S.
Since $Q_{1}=\left(Q_{0} \cap T\right) Z$ and $Z \leqslant Z\left(Q_{1}\right)$,

$$
Z\left(Q_{1}\right)=Z\left(Q_{1}\right) \cap\left(Q_{0} \cap T\right) Z=\left(Z\left(Q_{1}\right) \cap Q_{0} \cap T\right) Z=\left(Z\left(Q_{1}\right) \cap Q_{0}\right) Z
$$

Clearly, $Z\left(Q_{1}\right) \cap Q_{0}$ centralizes $Q_{0} \cap Q_{1}$ and $Z\left(Q_{0}\right)$. Hence, by (4.2), $Z\left(Q_{1}\right) \cap Q_{0} \leqslant$ $C_{S}\left(Q_{0}\right)=Z\left(Q_{0}\right)$. Therefore,

$$
\begin{equation*}
Z\left(Q_{1}\right) \cap Q_{0}=Z\left(Q_{1}\right) \cap Z\left(Q_{0}\right) \quad \text { and } \quad Z\left(Q_{1}\right)=\left(Z\left(Q_{1}\right) \cap Z\left(Q_{0}\right)\right) Z \tag{4.3}
\end{equation*}
$$

Let $J=Q_{0} \cap R_{0}$. Conjugation of (4.3) by f yields $Z\left(R_{1}\right) \cap R_{0}=Z\left(R_{1}\right) \cap Z\left(R_{0}\right)$ and $Z\left(R_{1}\right)=\left(Z\left(R_{1}\right) \cap Z\left(R_{0}\right)\right) Z$. Therefore,

$$
\begin{equation*}
Z\left(Q_{1}\right) \cap Z\left(R_{1}\right) \cap J=Z\left(Q_{1}\right) \cap Z\left(R_{1}\right) \cap Z\left(Q_{0}\right) \cap Z\left(R_{0}\right) \tag{4.4}
\end{equation*}
$$

and Lemma 4.1 (f) gives (a).
By Lemma 4.1 and Theorem 2.10, $J \leqslant Q_{1} \cap R_{1} \leqslant T, Q_{0} \cap Q_{1}=Q_{0} \cap T$ and $\left|Q_{0}\right|=\left|Q_{1}\right|$. Therefore,

$$
q=\left|Q_{0}: Q_{0} \cap T\right|=\left|Q_{0}: Q_{0} \cap Q_{1}\right|=\left|Q_{1}: Q_{0} \cap Q_{1}\right|
$$

Conjugation by f gives $\left|R_{1}: R_{0} \cap R_{1}\right|=q$. Consequently,

$$
\begin{align*}
\left|Q_{1} \cap R_{1}: J\right| & =\left|Q_{1} \cap R_{1}: Q_{1} \cap R_{1} \cap J\right| \\
& =\left|Q_{1} \cap R_{1}: Q_{1} \cap Q_{0} \cap R_{1} \cap R_{0}\right| \\
& =\left|Q_{1} \cap R_{1}: Q_{1} \cap Q_{0} \cap R_{1}\right|\left|Q_{1} \cap Q_{0} \cap R_{1}: Q_{1} \cap Q_{0} \cap R_{1} \cap R_{0}\right| \\
& \leqslant\left|Q_{1}: Q_{1} \cap Q_{0}\right|\left|R_{1}: R_{1} \cap R_{0}\right| \\
& =q^{2} . \tag{4.5}
\end{align*}
$$

Now let $I_{i}=Z\left(Q_{i}\right) \cap Z\left(R_{i}\right)$ for $i=0,1$. Then $Z=Z(T) \leqslant I_{1}$. Since

$$
I_{0} \leqslant J \leqslant T \quad \text { and } \quad Q_{1}=\left(Q_{0} \cap T\right) Z=\left(Q_{0} \cap T\right) Z(T)
$$

we have $I_{0} \leqslant Z\left(Q_{0}\right) \cap T \leqslant C_{S}\left(Q_{1}\right)=Z\left(Q_{1}\right)$. Similarly, $I_{0} \leqslant Z\left(R_{1}\right)$. So $I_{0} \leqslant I_{1}$. By (4.4), $I_{1} \cap J=I_{1} \cap I_{0}=I_{0}$.
By Proposition 3.4, $G=\left\langle Z\left(Q_{0}\right), Z\left(R_{0}\right)\right\rangle T$. Hence,

$$
Z \cap J=Z(T) \cap Q_{0} \cap R_{0} \leqslant Z(G) .
$$

By Theorem 3.1, $Z(G) \leqslant Z$. Therefore, by (4.5),

$$
q^{2}=|Z / Z(G)| \leqslant|Z /(Z \cap J)| \leqslant\left|I_{1} /\left(I_{1} \cap J\right)\right| \leqslant\left|Q_{1} \cap R_{1}: J\right| \leqslant q^{2} .
$$

Since $I_{1} \cap J=I_{0}$, we have $Z(G)=Z \cap J$ and we obtain (b) and (c).
By (b) and Theorem 2.7,

$$
C_{S}\left(Q_{1} R_{1}\right)=C_{S}\left(Q_{1}\right) \cap C_{S}\left(R_{1}\right)=Z\left(Q_{1}\right) \cap Z\left(R_{1}\right)=\left(Z\left(Q_{0}\right) \cap Z\left(R_{0}\right)\right) Z
$$

and

$$
Q_{1} R_{1}=C_{S}\left(C_{S}\left(Q_{1} R_{1}\right)\right) \geqslant C_{S}\left(\left(Z\left(Q_{0}\right) \cap Z\left(R_{0}\right)\right) Z\right) \geqslant T \cap\left\langle Q_{0}, R_{0}\right\rangle=T_{0} .
$$

Since $Q_{1} R_{1} \leqslant T_{0}$ and $Z=\left(Z \cap Q_{0}\right)\left(Z \cap R_{0}\right)$ by Lemma 4.1, we obtain (d).
Lemma 4.3. Let P be a CL-subgroup of T. Then G_{0} normalizes $T_{0} P$.
Proof. By Proposition 4.2, $T_{0}=Q_{1} R_{1}$, which is a CL-subgroup of T and of S. So $T_{0} P$ is a CL-subgroup of S, and so is $Q_{0} T_{0} P$. Since $T_{0} P \leqslant T$,

$$
T_{0} P \leqslant Q_{0} T_{0} P \cap T=\left(Q_{0} \cap T\right) T_{0} P \leqslant Q_{1} T_{0} P=T_{0} P .
$$

Therefore,

$$
T_{0} P=Q_{0} T_{0} P \cap T \triangleleft Q_{0} T_{0} P \quad \text { and } \quad Q_{0} \text { normalizes } T_{0} P .
$$

Similarly, $R_{0} T_{0} P$ is a CL-subgroup of S^{f}, and R_{0} normalizes $T_{0} P$. Since Q_{0} and R_{0} generate G_{0}, it follows that G_{0} normalizes $T_{0} P$.

Proposition 4.4. There exists a series of subgroups

$$
T_{0}=U_{0} \leqslant U_{1} \leqslant \cdots \leqslant U_{n}=T_{\mathrm{MCL}}
$$

such that, for $i=1,2, \ldots, n$,

$$
\begin{equation*}
U_{i-1} \triangleleft U_{i}, \quad G_{0} \text { normalizes } U_{i} \quad \text { and } \quad\left[U_{i}, G_{0}\right] \leqslant U_{i-1} . \tag{4.6}
\end{equation*}
$$

Proof. Consider the CL-subgroups X of $T_{\text {MCL }}$ containing T such that

$$
G_{0} \text { normalizes } X
$$

and there exists a series of CL-subgroups

$$
T_{0}=U_{0} \leqslant U_{1} \leqslant \cdots \leqslant U_{n}=X
$$

satisfying (4.6).

Trivially, T_{0} is such a subgroup. Take X of maximal order among these subgroups. We show by contradiction that $X=T_{\mathrm{MCL}}$.

Assume $X<T_{\mathrm{MCL}}$. Since T_{MCL} is generated by all minimal CL-subgroups P of T, some P is not contained in X. As X and P are CL-subgroups, $X P=P X$. Choose P such that the order of $X P$ is as small as possible. Since G_{0} normalizes $T_{0} P$ by Lemma 4.3 and $X\left(T_{0} P\right)=X P, G_{0}$ normalizes $X P$.

Since T is nilpotent and G_{0} normalizes X and $X P$, there exists a series of subgroups of $X P, X=V_{0}<V_{1}<\cdots<V_{k}=X P$ such that $V_{i-1} \triangleleft V_{i}$ and G_{0} normalizes V_{i}, for $i=1, \ldots, k$. By our assumptions, there exists i such that

$$
\left[V_{i}, G_{0}\right] \text { is not contained in } V_{i-1}
$$

i.e. G_{0} does not centralize V_{i} / V_{i-1}.

As G_{0} is generated by Q_{0} and R_{0}, at least one of Q_{0} and R_{0} does not centralize V_{i} / V_{i-1}. We assume that Q_{0} does not centralize V_{i} / V_{i-1}, as the argument for the other case is similar because

$$
Q_{0}^{f}=R_{0} \leqslant S^{f} \leqslant G_{0}
$$

Since Q_{0} and P are minimal CL-subgroups of S, Theorem 2.10 gives

$$
P=\left(Q_{0} \cap P\right) Z(P) \quad \text { and } \quad X P=X\left(Q_{0} \cap P\right) Z(P)=X Z(P)
$$

Similarly, since $Q_{0} \cap T \leqslant Q_{1} \leqslant X$,

$$
\begin{equation*}
Q_{0}=\left(Q_{0} \cap P\right) Z\left(Q_{0}\right) \quad \text { and } \quad X Q_{0}=X Z\left(Q_{0}\right) \tag{4.7}
\end{equation*}
$$

Thus, $X \leqslant V_{i-1}<V_{i} \leqslant X Z(P)$. Since Q_{0} does not centralize V_{i} / V_{i-1}, there exists w in $Z(P)$ such that

$$
w \text { lies in } V_{i} \text { and } Q_{0} \text { does not centralize the element } V_{i-1} w \text { of } V_{i} / V_{i-1}
$$

By (4.7), $Z\left(Q_{0}\right)$ does not centralize $V_{i-1} w$. Therefore,

$$
\begin{equation*}
\left[w, Z\left(Q_{0}\right)\right] \text { is contained in } X P \text { but not in } V_{i-1} \tag{4.8}
\end{equation*}
$$

Let $Y=Z\left(Q_{0}\right)$ and $W=Z(P)$. Then $w \in W$. We now argue as in the proof of Proposition 3.5. By Theorem 2.7 and Proposition 2.8, $\mathscr{F}_{1}(S)$ contains Y, W and $Y W$. Therefore, by Theorem 2.3,

$$
(Y W)^{\prime} \text { is abelian. }
$$

So $[w, Y]$ is abelian. Let

$$
M=[w, Y], \quad L=M C_{Y}(M) \quad \text { and } \quad R=\left(Q_{0} \cap Q_{0}^{w}\right) L
$$

Since $\left[w, Y\right.$] is not contained in V_{i-1}, it is not contained in $Q_{0} \cap T$, and hence it is not contained in Q_{0}. Therefore, w does not normalize Q_{0}. As in the proof of Proposition 3.5, R is a minimal CL-subgroup of S and $R \leqslant T$. Since

$$
\left(Q_{0} \cap Q_{0}^{w}\right) C_{Y}(M) \leqslant Q_{0} \cap R \leqslant Q_{0} \cap T \leqslant T_{0} \leqslant X
$$

we have

$$
R=\left(Q_{0} \cap Q_{0}^{w}\right) L=\left(Q_{0} \cap Q_{0}^{w}\right) C_{Y}(M) M \leqslant X M \leqslant X R
$$

Hence, $X R=X M$ and $V_{i-1} R=V_{i-1} M$.
Recall that $M=[w, Y]$ and that w lies in V_{i} but Y does not centralize w, modulo V_{i-1}. As $V_{i} Y / V_{i-1}$ is a p-group and Y normalizes V_{i},

$$
1<V_{i-1} M / V_{i-1} \leqslant\left[V_{i} / V_{i-1}, V_{i} Y / V_{i-1}\right]<V_{i} / V_{i-1}
$$

Therefore, $X \leqslant V_{i-1}<V_{i-1} M=V_{i-1} R<V_{i} \leqslant X P$, which yields $X<X R<X P$ and $|X R|<|X P|$. This contradicts our choice of P and proves the proposition.

Proposition 4.5. Let $G^{\star}=\left\langle Z\left(Q_{0}\right), Z\left(R_{0}\right)\right\rangle$ and $T^{\star}=\left\langle Z\left(Q_{1}\right), Z\left(R_{1}\right)\right\rangle$. Then
(a) $G=G^{\star} T$,
(b) $T^{\star}=Z\left(Q_{1}\right) Z\left(R_{1}\right)$,
(c) $T^{\star} \triangleleft G_{0}$,
(d) $\left[G^{\star}, T_{0}\right] \leqslant T^{\star}$, and
(e) $G^{\star}=C_{G}\left(Q_{0} \cap R_{0}\right)$ and $T^{\star}=G^{\star} \cap T=\mathrm{O}_{p}\left(G^{\star}\right)$.

Proof. Proposition 3.4 gives (a). By Theorem 2.7, $\mathfrak{F}_{1}(S)$ contains $Z\left(Q_{1}\right)$ and $Z\left(R_{1}\right)$ and (b) is valid. Note that, similarly, $\mathfrak{F}_{1}(S)$ contains T^{\star} and $\left\langle T^{\star}, Z\left(Q_{0}\right)\right\rangle=T^{\star} Z\left(Q_{0}\right)$.

Recall that $Q_{1}=\left(Q_{0} \cap T\right) Z(T)$. Hence, $Z\left(Q_{0}\right) \cap T \leqslant Z\left(Q_{1}\right) \leqslant T^{\star} \leqslant T$. Therefore,

$$
T^{\star}=T^{\star}\left(Z\left(Q_{0}\right) \cap T\right)=T^{\star} Z\left(Q_{0}\right) \cap T \triangleleft T^{\star} Z\left(Q_{0}\right)
$$

whence $Z\left(Q_{0}\right)$ normalizes T^{\star}.
By Theorem 2.10, $Q_{1}=\left(Q_{1} \cap R_{1}\right) Z\left(Q_{1}\right)$. Since $Z\left(Q_{1}\right) \leqslant T^{\star}$ and $Q_{1} \cap R_{1}$ centralizes T^{\star}, Q_{1} normalizes T^{\star}. By Theorem 3.3,

$$
Q_{0}=\left(Q_{0} \cap T\right) Z\left(Q_{0}\right) \leqslant\left\langle Q_{1}, Z\left(Q_{0}\right)\right\rangle
$$

So Q_{0} normalizes T^{\star}. Similarly, R_{0} normalizes T^{\star}. Hence, $T^{\star} \triangleleft G_{0}$, which is (c).
Recall that $T_{0}=Q_{1} R_{1}$. By Theorem 2.10,

$$
Q_{1}=\left(Q_{1} \cap R_{0}\right) Z\left(Q_{1}\right) \leqslant\left(Q_{1} \cap R_{0}\right) T^{\star}
$$

Hence, $Z\left(R_{0}\right)$ centralizes $Q_{1} T^{\star} / T^{\star}$. Similarly, $Z\left(R_{0}\right)$ centralizes $R_{1} T^{\star} / T^{\star}$, and $Z\left(Q_{0}\right)$ centralizes $Q_{1} T^{\star} / T^{\star}$ and $R_{1} T^{\star} / T^{\star}$. Therefore, G^{\star} centralizes T_{0} / T^{\star}, which gives (d).

Let $C=C_{G}\left(Q_{0} \cap R_{0}\right)$. Clearly, $G^{\star}=\left\langle Z\left(Q_{0}\right), Z\left(R_{0}\right)\right\rangle \leqslant C$. By (a), $G=G^{\star} T$. Hence,

$$
C=C \cap G^{\star} T=G^{\star}(C \cap T)
$$

By Proposition 4.2, $T^{\star} \leqslant G^{\star}$ and $Q_{1} \cap R_{1}=\left(Q_{0} \cap R_{0}\right) Z$. Therefore,

$$
C \cap T=C_{T}\left(Q_{0} \cap R_{0}\right)=C_{T}\left(Q_{1} \cap R_{1}\right)
$$

and Theorem 2.7 yields

$$
C \cap T=C_{T}\left(Q_{1}\right) C_{T}\left(R_{1}\right)=Z\left(Q_{1}\right) Z\left(R_{1}\right)=T^{\star} \quad \text { and } \quad C=G^{\star}(C \cap T)=G^{\star} T^{\star}=G^{\star} .
$$

Thus, $T^{\star}=C \cap T=G^{\star} \cap T$.
Since $G^{\star} / T^{\star}=G^{\star} /\left(G^{\star} \cap T\right) \simeq G^{\star} T / T=G / T$ and $T=\mathrm{O}_{p}(G)$, we obtain

$$
1=\mathrm{O}_{p}(G / T) \quad \text { and } \quad \mathrm{O}_{p}\left(G^{\star} / T^{\star}\right)=1
$$

Hence, $T^{\star}=\mathrm{O}_{p}\left(G^{\star}\right)$, which completes the proof of (e) and of the proposition.
Henceforth, we define G^{\star} and T^{\star} as in Proposition 4.5, and let S^{\star} be $S \cap G^{\star}$.
Theorem 4.6. Take G^{\star}, S^{\star} and T^{\star} as above. Then
(a) $S^{\star}=Z\left(Q_{0}\right) T^{\star}$ and S^{\star} is a Sylow p-subgroup of G^{\star},
(b) $Z\left(Q_{0}\right) T_{0}$ is a Sylow p-subgroup of G_{0},
(c) $\mathrm{O}^{p}(G)=\mathrm{O}^{p}\left(G^{\star}\right)$, and
(d) $\left[T, \mathrm{O}^{p}(G)\right] \leqslant T^{\star}$.

Proof. Let $Q=Q_{0}$. Since $Z(Q) \leqslant G^{\star}$ and $T^{\star}=G^{\star} \cap T$ (by Proposition 4.5), we have $Z(Q) \cap T^{\star}=Z(Q) \cap T$. Therefore,

$$
Z(Q) T^{\star} / T^{\star} \simeq Z(Q) /\left(Z(Q) \cap T^{\star}\right)=Z(Q) /(Z(Q) \cap T) \simeq Z(Q) T / T=S / T
$$

This shows that $Z(Q) T^{\star} / T^{\star}$ is a Sylow p-subgroup of G^{\star} / T^{\star} and $Z(Q) T^{\star}$ is a Sylow p-subgroup of G^{\star}. Since $Z(Q) T^{\star} \leqslant S$, we obtain $S^{\star}=Z(Q) T^{\star}$ and (a). A similar proof yields (b) because $S=Z(Q) T$ and $T_{0}=G_{0} \cap T$.

Let x be any p^{\prime}-element of G^{\star}. By Lemma 2.1,

$$
\begin{equation*}
[T,\langle x\rangle,\langle x\rangle]=[T,\langle x\rangle] . \tag{4.9}
\end{equation*}
$$

By Theorem 3.6, $[T,\langle x\rangle] \leqslant \hat{Z}$ for

$$
\hat{Z}=\langle Z(P)| P \text { is a minimal CL-subgroup of } T\rangle .
$$

Since

$$
\hat{Z} \leqslant\langle P| P \text { is a minimal CL-subgroup of } T\rangle=T_{\mathrm{MCL}}
$$

we have $[T,\langle x\rangle] \leqslant T_{\mathrm{MCL}}$.
Take U_{0}, \ldots, U_{n} as in Proposition 4.4, i.e.

$$
T_{0}=U_{0} \leqslant U_{1} \leqslant \cdots \leqslant U_{n}=T_{\mathrm{MCL}} \quad \text { and } \quad\left[U_{i}, G_{0}\right] \leqslant U_{i-1} \quad \text { for } i=1, \ldots, n
$$

Obviously, $G^{\star} \leqslant G_{0}$. Then $[T,\langle x\rangle] \leqslant U_{n}$ and, by (4.9), $[T,\langle x\rangle]=[T,\langle x\rangle,\langle x\rangle] \leqslant$ $\left[U_{n},\langle x\rangle\right] \leqslant U_{n-1}$. Similar further arguments give $[T,\langle x\rangle] \leqslant U_{0}=T_{0}$. Since $\left[T_{0},\langle x\rangle\right] \leqslant T^{\star}$ by Proposition 4.5, we obtain similarly

$$
\begin{equation*}
[T,\langle x\rangle,\langle x\rangle]=[T,\langle x\rangle] \leqslant T^{\star} \tag{4.10}
\end{equation*}
$$

Let

$$
\left.T_{1}=\langle[T,\langle x\rangle]| x \text { is a } p^{\prime} \text {-element of } G^{\star}\right\rangle .
$$

Then $T_{1} \leqslant T^{\star}$. By Lemma 2.1, $[T,\langle x\rangle] \triangleleft T$ for every p^{\prime}-element x of G^{\star}. Therefore, $T_{1} \triangleleft T$. The definition of T_{1} shows that G^{\star} normalizes T_{1}. Hence, by Proposition 4.5,

$$
T_{1} \triangleleft G^{\star} T=G .
$$

Let C be the centralizer of T / T_{1} in G. Clearly, C contains every p^{\prime}-element of G^{\star}, and hence contains $\mathrm{O}^{p}\left(G^{\star}\right)$. So

$$
\begin{equation*}
\left[\mathrm{O}^{p}\left(G^{\star}\right), T\right] \leqslant T_{1} \tag{4.11}
\end{equation*}
$$

Let $H=\mathrm{O}^{p}\left(G^{\star}\right)$. By Proposition 4.5, $G^{\star} \geqslant T^{\star} \geqslant T_{1}$. For every p^{\prime}-element x in G^{\star}, (4.10) gives

$$
[T,\langle x\rangle]=[T,\langle x\rangle,\langle x\rangle] \leqslant\left[T_{1},\langle x\rangle\right] \leqslant\left[G^{\star}, H\right] \leqslant H .
$$

Therefore, $T_{1} \leqslant H$ and, by (4.11), $[H, T] \leqslant T_{1} \leqslant H$. It follows that T normalizes H. Since H is obviously normal in G^{\star},

$$
H \triangleleft G^{\star} T=G .
$$

Now, G / H is the product of the p-group G^{\star} / H and the normal p-subgroup $T H / H$, and so must be a p-group. Consequently, $\mathrm{O}^{p}(G) \leqslant H=\mathrm{O}^{p}\left(G^{\star}\right)$. This and (4.11) give (c) and (d).

5. Reduction to G^{\star}

In this section, we reduce the proof of Theorem C to the case in which $G=G^{\star}$. (We take G^{\star}, T^{\star} and S^{\star} as defined before Theorem 4.6.)
Lemma 5.1. Let $I=Q_{0} \cap R_{0}$. Then
(a) $Q_{0}=Z\left(Q_{0}\right) I$ and $R_{0}=Z\left(R_{0}\right) I$,
(b) $G_{0}=I G^{\star}$ and $I \triangleleft G_{0}$,
(c) $G_{0} \cap S=I S^{\star}=Z\left(Q_{0}\right) T_{0}$ and $G_{0} \cap S$ is a Sylow p-subgroup of G_{0}, and
(d) $S^{\star}=Z\left(Q_{0}\right) Z\left(Q_{1}\right) Z\left(R_{1}\right)$.

Proof. Let $Q=Q_{0}$ and $R=R_{0}$. By Proposition 4.5 and Lemma 4.1, $G^{\star}=C_{G}(I)$ and $T^{\star}=G^{\star} \cap T$, and $I \leqslant T$ and $Z=Z(S) Z(S)^{f}$. Therefore,

$$
\begin{equation*}
R_{1}=(R \cap T) Z=(R \cap T) Z(S)^{f} Z(S)=(R \cap T) Z(S) \tag{5.1}
\end{equation*}
$$

Since Q and R_{1} are minimal CL-subgroups of S,

$$
\begin{equation*}
Q=\left(Q \cap R_{1}\right) Z(Q) . \tag{5.2}
\end{equation*}
$$

Since $Z(S) \leqslant Z(Q)$ and $I \leqslant T$, (5.1) yields

$$
Q \cap R_{1}=Q \cap((R \cap T) Z(S))=(Q \cap R \cap T) Z(S)=I Z(S)
$$

So, by (5.2), $Q=(I Z(S)) Z(Q)=I Z(Q)$. Similarly, $R=I Z(R)$. Since $G^{\star}=C_{G}(I)$, this gives (a) and shows that

$$
G_{0}=\langle Q, R\rangle=\langle I Z(Q), I Z(R)\rangle \leqslant\left\langle I, G^{\star}\right\rangle=I G^{\star} \leqslant G_{0}
$$

whence $G_{0}=I G^{\star}$ and $I \triangleleft G_{0}$. Now we have (b) and

$$
\begin{equation*}
G_{0} \cap S=I G^{\star} \cap S=I\left(G^{\star} \cap S\right)=I S^{\star} \tag{5.3}
\end{equation*}
$$

By Theorem 4.6, $S^{\star}=Z\left(Q_{0}\right) T^{\star}$, and $Z\left(Q_{0}\right) T_{0}$ is a Sylow p-subgroup of G_{0}. Since $Z\left(Q_{0}\right) T_{0} \leqslant S$, we have $Z\left(Q_{0}\right) T_{0}=G_{0} \cap S$. This and (5.3) give (c). Since $T^{\star}=$ $Z\left(Q_{1}\right) Z\left(R_{1}\right)$ by Proposition 4.5, we obtain (d).

Recall that, for a p-group $P, \mathscr{A}(P)$ is the set of all large abelian subgroups of P, i.e. all abelian subgroups of maximal order in P.

Lemma 5.2. Let $Q=Q_{0}$. Then
(a) $Z(Q)$ is in $\mathscr{A}\left(S^{\star}\right)$ and
(b) $\mathscr{A}\left(S^{\star}\right)$ is the set of all minimal CL-subgroups of S^{\star}.

Proof. As in the proof of Lemma 5.1, let $R=R_{0}$ and $I=Q_{0} \cap R_{0}$.
Then $Q=I Z(Q)$ by Lemma 5.1. Thus, $C_{Q}(I)$ lies in the centre of Q, which it obviously contains. So

$$
\begin{equation*}
C_{Q}(I)=Z(Q) \tag{5.4}
\end{equation*}
$$

Let $P=G_{0} \cap S$. Then $Q_{0} \leqslant P$. By Lemma 5.1, $P=I S^{\star}$. Since $S^{\star}=G^{\star} \cap S=C_{G}(I) \cap S$,

$$
\begin{equation*}
I, S^{\star} \triangleleft P \quad \text { and } \quad S^{\star}=G^{\star} \cap P=C_{P}(I) \tag{5.5}
\end{equation*}
$$

Moreover, I is contained in Q, which is a minimal CL-subgroup of S and hence of P. Therefore, the hypothesis of Lemma 2.11 is satisfied with I and S^{\star} in place of K and L, and the conclusion of the lemma tells us that $Q \cap S^{\star}$ is a minimal CL-subgroup of S^{\star}. By (5.4) and (5.5), $Q \cap S^{\star}=C_{Q}(I)=Z(Q)$. This gives (a), and Theorem 2.10 gives (b).

Lemma 5.3. The following conditions are satisfied.
(a) $G / T=G^{\star} T / T \cong G^{\star} /\left(G^{\star} \cap T\right)=G^{\star} / T^{\star}$.
(b) $Z\left(\mathrm{O}^{p}(G)\right) \leqslant T \cap \mathrm{O}^{p}(G)=\mathrm{O}_{p}\left(\mathrm{O}^{p}(G)\right)$.

Proof. By Proposition 4.5, $G=G^{\star} T$. This gives (a).
Let $H=\mathrm{O}^{p}(G)$ and $W=Z\left(\mathrm{O}^{p}(G)\right)$. Then $W=\mathrm{O}_{p}(W) \times Y$ for the subgroup Y of all p^{\prime}-elements of W, and H, W and Y are characteristic, hence normal, subgroups of G. Since $T=\mathrm{O}_{p}(G)$,

$$
\mathrm{O}_{p}(W) \leqslant T \quad \text { and } \quad Y \cap T=1
$$

Therefore, $[Y, T] \leqslant Y \cap T=1$. But then $Y \leqslant C_{G}(T) \leqslant T$, which gives $Y=1$. Hence, $W=\mathrm{O}_{p}(W) \leqslant T$. Thus, $W \leqslant T \cap H$.

Since $T \cap H$ is a normal p-subgroup of H, and $\mathrm{O}_{p}(H)$ is a normal p-subgroup of G,

$$
T \cap H \leqslant \mathrm{O}_{p}(H) \leqslant \mathrm{O}_{p}(G) \cap H=T \cap H
$$

This completes the proof of (b) and of the lemma.
Lemma 5.4. Assume $q \geqslant 4$ and $L=T$. Then
(a) $G=\mathrm{O}^{p}(G) T$ and $S=\left(S \cap \mathrm{O}^{p}(G)\right) T$, and
(b) there exists a non-identity cyclic p^{\prime}-subgroup M of $\mathrm{O}^{p}(G)$ and an element x of $\left(\mathrm{O}^{p}(G) \cap S\right) \backslash T$ such that x normalizes M and $x^{p} \in C_{T}(M)$.

Proof. (a) Let $H=\mathrm{O}^{p}(G)$. Since we have assumed $L=T$, Theorem 3.1 yields $G / T \cong \mathrm{SL}(2, q)$.

As $q \geqslant 4, \mathrm{SL}(2, q)$ is generated by its p^{\prime}-elements. Therefore,

$$
G / T=\mathrm{O}^{p}(G / T)=\mathrm{O}^{p}(G) T / T=H T / T \cong H /(H \cap T) .
$$

Hence,

$$
G=H T \quad \text { and } \quad S=S \cap H T=(S \cap H) T
$$

(b) Assume first that $p=2$. Then $\mathrm{SL}(2, q)$ has non-trivial cyclic Sylow 3-subgroups. Let $H_{3} /(H \cap T)$ be a Sylow 3-subgroup of $H /(H \cap T)$.

Let $H_{1} /(H \cap T)$ be the normalizer of $H_{3} /(H \cap T)$ in $H /(H \cap T)$ and let M be a Sylow 3-subgroup of H_{3}. Then M is cyclic and $H_{1} /(H \cap T)$ is a dihedral group. By the Frattini argument (part of Lemma 2.1),

$$
H_{1}=H_{3} N_{H_{1}}(M)=((H \cap T) M) N_{H_{1}}(M)=(H \cap T) N_{H_{1}}(M)
$$

As $H_{1} /(H \cap T)$ is dihedral, $N_{H_{1}}(M)$ contains an element x of 2-power order that lies outside T such that x^{2} lies in T. Since H is normal in $G, H \cap S$ is a Sylow 2-subgroup of H. Therefore, we may replace H_{1}, H_{3} and x by conjugates, if necessary, so that x lies in $(H \cap S) \backslash T$. Then

$$
x^{2} \in T \cap N_{G}(M) \leqslant C_{T}(M)
$$

as desired.
If p is odd, we obtain x by a similar argument in which we let $H_{3} /(H \cap T)$ be the centre of $H /(H \cap T)$ (of order 2) and we let $H_{1} /(H \cap T)$ be the direct product of $H_{3} /(H \cap T)$ with a subgroup of order p in $H /(H \cap T)$.

Now we present the first step in the reduction of Theorem C from G to G^{\star}.
Proposition 5.5. Condition (H) and the hypothesis of Theorem C are satisfied with G^{\star}, S^{\star} and $G^{\star} \cap K$ in place of G, S and K. Moreover, $\left(S^{\star}\right)_{\mathrm{MCL}}=S^{\star}$.

Proof. We first check condition $\left(E_{0}\right)$ of $\S 1$ with G^{\star}, S^{\star} and $G^{\star} \cap K$ in place of G, S and K. Recall (from before Theorem 4.6) that $S^{\star}=S \cap G^{\star}$. By Theorem 4.6, S^{\star} is a Sylow p-subgroup of G^{\star}. By Proposition $4.5, G=G^{\star} T$ and $T^{\star}=G^{\star} \cap T=\mathrm{O}_{p}\left(G^{\star}\right)$. Therefore,

$$
\begin{equation*}
S=S \cap G^{\star} T=\left(S \cap G^{\star}\right) T=S^{\star} T \quad \text { and } \quad G^{\star} / T^{\star} \cong G^{\star} T / T=G / T \tag{5.6}
\end{equation*}
$$

Since S is contained in a unique maximal subgroup of G, (5.6) shows that the same is true for S / T in G / T, for S^{\star} / T^{\star} in G^{\star} / T^{\star} and for S^{\star} in G^{\star}.

As $K \geqslant T$ and $G=G^{\star} T$, we have

$$
\left(K \cap G^{\star}\right) \cap T=G^{\star} \cap T=T^{\star}, \quad K=K \cap G^{\star} T=\left(K \cap G^{\star}\right) T \quad \text { and } \quad G=G^{\star} K
$$

Hence, the isomorphism of G^{\star} / T^{\star} onto G / T in (5.6) takes $\left(K \cap G^{\star}\right) T^{\star} / T^{\star}$ onto K / T. Consequently, by (E_{0}),

$$
G^{\star} /\left(G^{\star} \cap K\right) \cong G / K \cong \operatorname{PSL}(2, q)
$$

Let $H=C_{G^{\star}}\left(T^{\star}\right)$. Then $H \triangleleft G^{\star}$. To finish the proof of $\left(E_{0}\right)$ for G^{\star}, S^{\star} and $G^{\star} \cap K$, we must show that $H \leqslant T^{\star}$.

Let x be a p^{\prime}-element of H. As in Lemma 5.1, let $I=Q_{0} \cap R_{0}$. By Proposition 4.5, $G^{\star}=C_{G}(I)$. So $T^{\star}=C_{T}(I)$ and x centralizes I and $C_{T}(I)$. Thus,

$$
\langle x, I\rangle=\langle x\rangle \times I
$$

Now $\langle x\rangle \times I$ acts on T by conjugation, and x centralizes $C_{T}(I)$. By Theorem $2.2,\langle x\rangle$ centralizes T. Since x is a p^{\prime}-element and $C_{G}(T) \leqslant T$ by $\left(E_{0}\right), x=1$. This shows that H is a p-group. As $H \triangleleft G^{\star}$, we have $H \leqslant \mathrm{O}_{p}\left(G^{\star}\right)=T^{\star}$, as desired.

Next, we check the hypothesis (H) of $\S 1$ for $G^{\star}, S^{\star}, G^{\star} \cap K$ and T^{\star} in place of G, S, K and T. We saw above that $T^{\star}=\mathrm{O}_{p}\left(G^{\star}\right)$. Since $Z(S) \leqslant S \cap C_{S}(I)=S \cap G^{\star}=S^{\star}$, we have $Z(S) \leqslant Z\left(S^{\star}\right)$. By Lemma 3.2,

$$
Z(G)<Z(S)<Z=Z(T)
$$

As $G=G^{\star} T, G^{\star}$ does not centralize $Z(S)$ and hence does not centralize $Z\left(S^{\star}\right)$. Thus, $Z\left(S^{\star}\right) \neq Z\left(G^{\star}\right)$.

The final condition needed for (H) and the hypothesis of Theorem C is that $S^{\star}=$ $\tilde{J}\left(S^{\star}\right)$. By Lemma $5.2, Z\left(Q_{0}\right)$ is a large abelian subgroup of S^{\star} and is a minimal CL-subgroup of S^{\star}. By Theorem 2.10, $Z\left(Q_{1}\right)$ and $Z\left(R_{1}\right)$ have the same order as $Z\left(Q_{0}\right)$, and hence are large abelian subgroups of S^{\star}. By Lemma 5.1,

$$
S^{\star}=Z\left(Q_{0}\right) Z\left(Q_{1}\right) Z\left(R_{1}\right)
$$

Therefore, $S^{\star}=J\left(S^{\star}\right)=\tilde{J}\left(S^{\star}\right)=\left(S^{\star}\right)_{\mathrm{MCL}}$, as desired.
Since $Z\left(Q_{0}\right)$ is a minimal CL-subgroup of S^{\star} and is not contained in T^{\star} (by Theorem 4.6), $\left(S^{\star}\right)_{\text {MCL }}$ is not normal in G^{\star}. This completes the hypothesis of Theorem C for G^{\star}, S^{\star} and $G^{\star} \cap K$ in place of G, S and K.

5.1. Reduction for Theorem \mathbf{C}

By Proposition 5.5, condition (H) and the hypothesis of Theorem C are satisfied with G^{\star}, S^{\star} and $G^{\star} \cap K$ in place of G, S and K, and $\left(S^{\star}\right)_{\mathrm{MCL}}=S^{\star}$.
Now assume that the conclusion of Theorem C is valid for G^{\star}, S^{\star} and $G^{\star} \cap K$ in place of G, S and K. By (H) and Lemma 2.19, $Z\left(S^{\star}\right)$ is not normal in G^{\star}. Since $\left(S^{\star}\right)_{\mathrm{MCL}}=S^{\star}$, $\left(S^{*}\right)_{\mathrm{MCL}}$ is not normal in G^{\star}. Therefore, conditions (a)-(i) of Theorem C are valid for G^{\star}, S^{\star} and $G^{\star} \cap K$ in place of G, S and K. Since $Z(S)$ and $S_{\text {MCL }}$ are not normal in G, we must show that (a)-(i) are valid for G, S and K.
Parts (b), (e) and (g) follow from Theorems 2.10, 3.1 and 3.3. By Theorem 4.6, $\mathrm{O}^{p}\left(G^{\star}\right)=\mathrm{O}^{p}(G)$. Recall that we define $\hat{G}=\mathrm{O}^{p}(G)$ and $\hat{T}=\mathrm{O}_{p}(\hat{G})$ for Theorem C. Therefore, parts (a)-(d) carry over immediately from G^{\star} to G.
Clearly,

$$
\begin{equation*}
\hat{T}, \hat{G} \text { and } Z(\hat{G}) \text { are characteristic, hence normal, subgroups of } G \text {. } \tag{5.7}
\end{equation*}
$$

By Lemma 5.3,

$$
\begin{equation*}
G=G^{\star} T, \quad G / T \cong G^{\star} / T^{\star} \quad \text { and } \quad Z(\hat{G}) \leqslant T \cap \hat{G}=\hat{T} . \tag{5.8}
\end{equation*}
$$

Hence, by parts (e) and (h) of Theorem C for G^{\star} and Theorem 3.1,

$$
\begin{equation*}
\text { if } q>2 \text {, then } G / T \cong \mathrm{SL}(2, q) \text { and } L=T \text {. } \tag{5.9}
\end{equation*}
$$

To prove (f) and (h), we consider a chief series of G containing the series

$$
1 \leqslant Z(\hat{G}) \leqslant \hat{T} \leqslant T \leqslant G
$$

Let U / V be a chief factor coming from successive terms in the chief series such that $U \leqslant T$. Then we have one of the following cases:
(i) $\hat{T} \leqslant V<U \leqslant T$;
(ii) $Z(\hat{G}) \leqslant V<U \leqslant \hat{T}$;
(iii) $V<U \leqslant Z(\hat{G})$.

In case (i), (5.7) gives

$$
[U, \hat{G}] \leqslant T \cap \hat{G}=\hat{T} \leqslant U .
$$

Thus, \hat{G} centralizes U / V. Since conjugation by G induces an irreducible action of G on the module U / V, we see that G / \hat{G} acts irreducibly on U / V. As $\hat{G}=\mathrm{O}^{p}(G), G / \hat{G}$ is a p-group. Hence, U / V is a central chief factor of G.
A similar argument shows that U / V is a central chief factor in case (iii).
Now assume case (ii). Here, $U \leqslant \hat{T}<\hat{G}=\mathrm{O}^{p}(G)=\mathrm{O}^{p}\left(G^{\star}\right) \leqslant G^{\star}$. Again, G acts irreducibly on U / V. Since $T=\mathrm{O}_{p}(G)$ and $G=G^{\star} T, T$ centralizes U / V and G^{\star} acts irreducibly on U / V. Therefore, U / V is a chief factor of G^{\star} such that $U \leqslant \mathrm{O}_{p}\left(G^{\star}\right)$. Since
G^{\star} satisfies Theorem C, (5.8) and (5.9) and parts (f) and (h) of Theorem C show that U / V is not a central chief factor and that
if $q>2$, then $G / T \cong G^{\star} / T^{\star} \cong \mathrm{SL}(2, q)$ and U / V is a standard module for G^{\star} / T^{\star}, and hence for G / T.

This proves part (f) of Theorem C and shows that U / V satisfies the conditions in part (h) for cases (i)-(iii) above. By the Jordan-Hölder Theorem for chief series (see [16, Theorem 8.44], where they are called principal series), this proves part (h) in general.

To finish the proof, we must obtain part (i) of Theorem C. We may assume that $q \geqslant 4$. By (5.9),

$$
L=T \quad \text { and } \quad G / T \cong \mathrm{SL}(2, q)
$$

We take x and M as in Lemma 5.4, so that

$$
\begin{equation*}
S=\hat{S} T, \quad x \in \hat{S} \backslash T \quad \text { and } \quad M \text { is a non-trivial } p^{\prime} \text {-subgroup of } \hat{G} \text { normalized by } x \tag{5.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
[M, T] \leqslant[\hat{G}, T] \leqslant \hat{G} \cap T \leqslant \hat{T} \tag{5.11}
\end{equation*}
$$

and, by Lemma 2.1, $T=[M, T] C_{T}(M)=\hat{T} C_{T}(M)$. Therefore, by (5.10),

$$
\begin{equation*}
S=\hat{S} T=\hat{S} \hat{T} C_{T}(M)=\hat{S} C_{T}(M) \tag{5.12}
\end{equation*}
$$

By (f) and (h), each chief factor U / V of G satisfying $Z(\hat{G}) \leqslant V<U \leqslant \hat{T}$ is a standard module for G / T, and hence (by (5.10)) has no non-zero fixed points under M. Therefore, $C_{\hat{T}}(M) \leqslant Z(\hat{G})$ and, by (5.10) and (5.11),

$$
\begin{equation*}
Z(\hat{G}) \geqslant C_{\hat{T}}(M) \geqslant C_{T}(M) \cap[\hat{G}, T] \geqslant\left[\langle x\rangle, C_{T}(M)\right] . \tag{5.13}
\end{equation*}
$$

Since $\hat{S}=S \cap \hat{G},(5.7)$ and (5.8) show that $\hat{S}, Z(\hat{G})$ and $\hat{S}^{\prime} Z(\hat{G})$ are normal subgroups of S and $N_{G}(S)$. Therefore, by (5.13),

$$
\left[\langle x\rangle, C_{T}(M)\right] \leqslant Z(\hat{G}) \leqslant \hat{S}^{\prime} Z(\hat{G})
$$

and x centralizes $C_{T}(M)$, module $\hat{S}^{\prime} Z(\hat{G})$. Since $[\langle x\rangle, \hat{S}] \leqslant \hat{S}^{\prime} \leqslant \hat{S}^{\prime} Z(\hat{G})$, (5.12) shows that x centralizes S, modulo $\hat{S}^{\prime} Z(\hat{G})$.

By (5.10), x lies in $\hat{S} \backslash T$. Let

$$
R=C_{\hat{S}}\left(S / \hat{S}^{\prime} Z(\hat{G})\right)
$$

Then $R \leqslant \hat{S}$ and R is normal in $N_{G}(S)$. Therefore, $R T / T$ is a normal subgroup of $N_{G}(S) / T$ that contains the non-identity element $x T$. By (5.9), $G / T \cong \mathrm{SL}(2, q)$. Note that $N_{G}(S) / T=N_{G}(S / T)$. Therefore, from the structure of $\operatorname{SL}(2, q), S / T$ is the only non-identity normal subgroup of $N_{G / T}(S / T)$ contained in S / T. Consequently,

$$
\begin{equation*}
R T / T=S / T \quad \text { and } \quad R T=S \tag{5.14}
\end{equation*}
$$

By definition, $[S, R] \leqslant \hat{S}^{\prime} Z(\hat{G})$. Since G satisfies (a),

$$
[S, R, R] \leqslant\left[\hat{S}^{\prime} Z(\hat{G}), R\right] \leqslant\left[\hat{S}^{\prime}, \hat{S}\right] \leqslant Z(\hat{S})
$$

So $[S, R, R, R]=1$. This completes the proof of (i) and the reduction of Theorem C to the case in which $G=G^{\star}$.

Remark 5.6. The reduction above did not use the assumption that G^{\star} satisfies parts (b), (e), (g) and (i) of Theorem C. Moreover, the only parts of (f) and (h) for G^{\star} that were needed were the following statements:

$$
\begin{align*}
& \text { if } U / V \text { is a chief factor of } G^{\star} \text { and } Z(\hat{G}) \leqslant V<U \leqslant \hat{T} \\
& \text { then } U / V \text { is not a central chief factor } \tag{5.15}
\end{align*}
$$

and
if $q>2$, then $L=T$, and every chief factor U / V of G^{\star}

$$
\begin{equation*}
\text { as in }(5.15) \text { is a standard module for } G^{\star} / T^{\star} \text {. } \tag{5.16}
\end{equation*}
$$

Therefore, to prove Theorem C, we need only check parts (a), (c) and (d), and (5.15) and (5.16) when $G=G^{\star}$. Note also that the p^{\prime}-element f from the beginning of $\S 4$ lies in G^{\star} because $\mathrm{O}^{p}(G)=\mathrm{O}^{p}\left(G^{\star}\right)$.

6. Proof of Theorem C

In this section we complete the proof of Theorem C. We continue with the assumptions stated at the beginning of $\S 4$. By $\S 5$, we may assume that $G=G^{\star}=\left\langle Z\left(Q_{0}\right), Z\left(R_{0}\right)\right\rangle$ and that the minimal CL-subgroups of S are the large abelian subgroups of S. To remind us of this, we change notation. Let

$$
A=Q_{0}=Z\left(Q_{0}\right), \quad B=R_{0}=Z\left(R_{0}\right), \quad A^{\star}=Q_{1} \quad \text { and } \quad B^{\star}=R_{1}
$$

We also let $\tilde{T}=\left\langle\left[A, B^{\star}\right],\left[B, A^{\star}\right]\right\rangle$. Recall that $B=A^{f}$ and $T^{\prime}=[T, T]$.
Lemma 6.1. The following conditions are satisfied.
(a) $T=(A \cap T)(B \cap T)$.
(b) $\left[A, B^{\star}\right]$ and $\left[B, A^{\star}\right]$ are abelian.
(c) $T^{\prime}=[A \cap T, B \cap T] \leqslant\left[A, B^{\star}\right] \cap\left[B, A^{\star}\right] \leqslant Z(\tilde{T})$.
(d) $\tilde{T}=[T, G] \triangleleft G$.
(e) $T=(A \cap T) \tilde{T}=(B \cap T) \tilde{T}$.

Proof. Recall that $T=A^{\star} B^{\star}=(A \cap T)(B \cap T)$ from Proposition 4.2. This gives (a).
Let $U=[A \cap T, B \cap T]$. Then $U \triangleleft\langle A \cap T, B \cap T\rangle=T$ and $U \leqslant T^{\prime}$. Since $A \cap T$ and $B \cap T$ are abelian and centralize each other modulo U, we have $T^{\prime} \leqslant U$. Thus,

$$
\begin{equation*}
T^{\prime}=U=[A \cap T, B \cap T] \tag{6.1}
\end{equation*}
$$

Since A and B^{\star} are CL-subgroups of $S, A B^{\star}$ is a CL-subgroup of S. As A and B^{\star} are abelian, Itô's Theorem (Theorem 2.3) yields that $\left[A, B^{\star}\right]$ is abelian. By (6.1),

$$
T^{\prime}=[A \cap T, B \cap T] \leqslant\left[A, B^{\star}\right]
$$

Similarly, $\left[B, A^{\star}\right]$ is abelian and $T^{\prime} \leqslant\left[B, A^{\star}\right]$. Now we obtain (b) and (c).
As $T^{\prime} \leqslant \tilde{T}$, we have $\tilde{T} \triangleleft T$. By (a),

$$
[\tilde{T}, A] \leqslant[T, A]=[(A \cap T)(B \cap T), A]=[B \cap T, A] \leqslant\left[B^{\star}, A\right] \leqslant \tilde{T}
$$

Therefore, A normalizes \tilde{T} and centralizes T / \tilde{T}. Similarly, B normalizes \tilde{T} and centralizes T / \tilde{T}. Since A and B generate G,

$$
G \text { normalizes } \tilde{T} \quad \text { and } \quad[T, G] \leqslant \tilde{T}
$$

But clearly $\tilde{T} \leqslant[T, G]$. This gives (d).
Finally, recall that $B=A^{f}$. Hence,

$$
B \cap T=A^{f} \cap T=(A \cap T)^{f}
$$

By (a) and (d),

$$
T=(A \cap T)(B \cap T) \tilde{T}=(A \cap T)(A \cap T)^{f} \tilde{T} \leqslant(A \cap T)[A \cap T, f] \tilde{T}=(A \cap T) \tilde{T}
$$

So $T=(A \cap T) \tilde{T}$. Similarly, $T=(B \cap T) \tilde{T}$. This proves (e) and completes the proof of the lemma.

For this section only, we say that a subgroup U of T is an F-subgroup of T (factorizable subgroup of T) if

$$
U \triangleleft G \quad \text { and } \quad U=(U \cap A)(U \cap B)
$$

Lemma 6.2. Suppose N is a normal subgroup of T. Let

$$
\left.N^{\star}=\langle a, b| a \text { is in } A \cap T, b \text { is in } B \cap T \text { and } a b \text { is in } N\right\rangle .
$$

Then
(a) $N \leqslant N^{\star}$ and N^{\star} / N is contained in the centre of G / N,
(b) $N^{\star}=\left(A \cap N^{\star}\right) N=\left(B \cap N^{\star}\right) N=\left(A \cap N^{\star}\right)\left(B \cap N^{\star}\right)$, and
(c) N^{\star} is an F-subgroup of T.

Proof. By Lemma 6.1,

$$
\begin{equation*}
T=(A \cap T)(B \cap T) \tag{6.2}
\end{equation*}
$$

Since $N \triangleleft G$,

$$
\left(A \cap N^{\star}\right) N \text { is a subgroup of } G \text {. }
$$

For each a in $A \cap T$ and b in $B \cap T$ such that $a b$ lies in N,
$\left(A \cap N^{\star}\right) N$ contains a and $a b$, and hence contains b.
Therefore, $N^{\star} \leqslant\left(A \cap N^{\star}\right) N$. By (6.2) and the definition of N^{\star}, we have $N \leqslant N^{\star}$. So $\left(A \cap N^{\star}\right) N=N^{\star}$. Similarly, we obtain

$$
\begin{equation*}
\left(B \cap N^{\star}\right) N=N^{\star}=\left(A \cap N^{\star}\right) N . \tag{6.3}
\end{equation*}
$$

By (6.3), $A N / N$ and $B N / N$ centralize N^{\star} / N. Since A and B generate G, we obtain (a). Note that this also shows that N^{\star} is a normal subgroup of G.

Consider the subset $\left(A \cap N^{\star}\right)\left(B \cap N^{\star}\right)$ of N^{\star}. By (6.2) and the definition of N^{\star}, this set contains N. Clearly, it is closed under left multiplication by $A \cap N^{\star}$. So it contains $\left(A \cap N^{\star}\right) N$. By (6.3), it is equal to N^{\star}, and we obtain (b) and (c).

Recall that $Z=Z(T)$.
Proposition 6.3. The group T satisfies $Z(G / Z) \cap(T / Z)=1$.
Proof. Let N be the subgroup of G that contains Z and satisfies

$$
N / Z=Z(G / Z) \cap(T / Z) .
$$

We must show that $N=Z$.
Let $\bar{G}=G / Z$ and let $\bar{H}=H Z / Z$ for every subgroup H of G. Define N^{\star} as in Lemma 6.2. Then

$$
\bar{N}=Z(\bar{G}) \cap \bar{T} \quad \text { and } \quad N^{\star}=\left(A \cap N^{\star}\right) N=\left(B \cap N^{\star}\right) N
$$

So $\overline{N^{\star}}=\left(\overline{A \cap N^{\star}}\right)(Z(\bar{G}) \cap \bar{T})=\left(\overline{B \cap N^{\star}}\right)(Z(\bar{G}) \cap \bar{T})$. Therefore, $\overline{N^{\star}}$ is centralized by \bar{A} and by \bar{B}, and hence by \bar{G}. So

$$
Z(\bar{G}) \cap \bar{T} \geqslant \overline{N^{\star}} \geqslant \bar{N}=Z(\bar{G}) \cap \bar{T}
$$

This shows that $N^{\star}=N$ and, by Lemma 6.2,

$$
\begin{equation*}
N=\left(A \cap N^{\star}\right)\left(B \cap N^{\star}\right)=(A \cap N)(B \cap N) \tag{6.4}
\end{equation*}
$$

Recall that $A^{f}=B$. Therefore,

$$
B \cap N=A^{f} \cap N=(A \cap N)^{f}
$$

Since $\bar{N} \leqslant Z(\bar{G}),(6.4)$ yields

$$
\bar{N}=(\overline{A \cap N})(\overline{A \cap N})^{f}=\overline{A \cap N} \quad \text { and } \quad N=(A \cap N) Z=(A \cap N) Z(T)
$$

It follows that $A \cap T$ centralizes N. Similarly, $B \cap T$ centralizes N. By Lemma 6.1, $T=(A \cap T)(B \cap T)$. Consequently, $N \leqslant Z(T)=Z$. As $Z \leqslant N$, we obtain $N=Z$, as desired.

Now we show that G has no central chief factors between Z and the subgroup T_{1} of T determined by $T_{1} / Z=Z(T / Z)$.

Proposition 6.4. Suppose $N \triangleleft G$ and

$$
Z \leqslant N \quad \text { and } \quad N / Z \leqslant Z(T / Z)
$$

Then
(a) $N=[N, G] Z$,
(b) $N=(N \cap A)(N \cap B)$.

Proof. As in the previous proof, let $\bar{H}=H Z / Z$ for every subgroup H of G. Let

$$
M=[N, G] Z
$$

The hypothesis and the definition of M yield that

$$
\begin{equation*}
G \text { centralizes } N / M \quad \text { and } \quad \bar{N} \leqslant Z(\bar{T}) \tag{6.5}
\end{equation*}
$$

Define N^{\star} as in Lemma 6.2, so that

$$
N^{\star}=\left(A \cap N^{\star}\right) N \quad \text { and } \quad \overline{N^{\star}}=\left(\overline{A \cap N^{\star}}\right) \bar{N} \leqslant\left(\overline{A \cap N^{\star}}\right) Z(\bar{T})
$$

Obviously, $\overline{N^{\star}}$ is centralized by $\overline{A \cap T}$. Similarly, $\overline{N^{\star}}$ is centralized by $\overline{B \cap T}$. Since $T=$ $(A \cap T)(B \cap T)$,

$$
\begin{equation*}
\overline{N^{\star}} \leqslant Z(\bar{T}) \tag{6.6}
\end{equation*}
$$

By Lemma 6.2,

$$
\begin{equation*}
N^{\star} / N \text { is centralized by } G \text {. } \tag{6.7}
\end{equation*}
$$

Now we prove (a) and (b) separately.
(a) We use induction on $|N|$. Assume first that \bar{N} is not elementary abelian. Let

$$
N_{1} / Z=\Omega_{1}(\bar{N})=\left\{x \in N \mid x^{p} \in Z\right\} / Z
$$

Then $\left|N_{1}\right|<|N|$. By induction,

$$
\begin{equation*}
N_{1}=\left[N_{1}, G\right] Z \leqslant[N, G] Z=M \quad \text { and } \quad \bar{N}_{1} \leqslant \bar{M} \tag{6.8}
\end{equation*}
$$

Continuing from the previous paragraph, let ϕ be the mapping on \bar{N} given by $\phi(x)=$ x^{p}. Since \bar{N} is abelian, ϕ is a homomorphism. Clearly, ϕ commutes with the action of each element of G under conjugation, and the kernel of ϕ is \bar{N}_{1}. By (6.8), $\bar{N}_{1} \leqslant \bar{M}$. Therefore, by (6.5),

$$
\begin{equation*}
\phi(\bar{N}) / \phi(\bar{M}) \text { is isomorphic to } \bar{N} / \bar{M} \quad \text { and } \quad[\phi(\bar{N}), \bar{G}] \leqslant \phi(\bar{M}) \leqslant \phi(\bar{N}) \tag{6.9}
\end{equation*}
$$

By induction, $[\phi(\bar{N}), \bar{G}]=\phi(\bar{N})$. Hence, by (6.9),

$$
\phi(\bar{M})=\phi(\bar{N}) \quad \text { and } \quad \bar{N}=\bar{M}
$$

which shows that $N=M$, as desired. Thus, we may assume that

$$
\begin{equation*}
\bar{N} \text { is elementary abelian. } \tag{6.10}
\end{equation*}
$$

Define a mapping ϕ^{\star} on $\overline{N^{\star}}$ by $\phi^{\star}(x)=x^{p}$. By (6.10), $\phi^{\star}(\bar{N})=1$. Hence, by (6.7), $\phi^{\star}\left(\overline{N^{\star}}\right)$ is centralized by \bar{G}. Thus,

$$
\phi^{\star}\left(\overline{N^{\star}}\right) \leqslant Z(\bar{G}) \cap \bar{T}
$$

By Proposition 6.3, $\phi^{\star}\left(\overline{N^{\star}}\right)=1$. This says that $\overline{N^{\star}}$ is elementary abelian.
We regard $\overline{N^{\star}}$ as a vector space over the prime field \mathbb{F}_{p} and as a module for G over \mathbb{F}_{p}. By Lemma 6.2, $N^{\star}=\left(A \cap N^{\star}\right) N$. Therefore, there exists a subgroup W of N^{\star} such that

$$
\begin{equation*}
Z \leqslant W \leqslant\left(A \cap N^{\star}\right) Z \quad \text { and } \quad \overline{N^{\star}}=\bar{W} \times \bar{N} \tag{6.11}
\end{equation*}
$$

Then \bar{N} is a G-submodule of $\overline{N^{\star}}$ and \bar{W} is a vector space complement to \bar{N} in $\overline{N^{\star}}$. By (6.6) and (6.11), \bar{W} is invariant (in fact, centralized) under T and under A. Since $S=T A$ (by Theorem 3.3), \bar{W} is invariant under S. By Theorem 2.2, there exists a complement \bar{V} to \bar{N} in $\overline{N^{\star}}$ that is invariant under G.

By (6.7), G centralizes \bar{V}. Therefore,

$$
\bar{V} \leqslant Z(\bar{G}) \cap \bar{T}
$$

By Proposition $6.3, \bar{V}=1$. Consequently, $\overline{N^{\star}}=\bar{N}$. So $N^{\star}=N$. By Lemma 6.2 ,

$$
N=(A \cap N)(B \cap N)=(A \cap N)(A \cap N)^{f} \leqslant(A \cap N)[N, G] Z=(A \cap N) M
$$

Hence, $\bar{N}=\overline{(A \cap N)} \bar{M}$.
Since \bar{N} is elementary abelian and G centralizes N / M (by (6.10) and (6.5)), a small variation on our proof that $N^{\star}=N$ shows that $\bar{N}=\bar{M}$, whence $N=M$, as desired.
(b) By (6.6) and (6.7), $\overline{N^{\star}} \leqslant Z(\bar{T})$ and G centralizes $\overline{N^{\star}} / \bar{N}$. Therefore, by part (a),

$$
\overline{N^{\star}}=\left[\overline{N^{\star}}, G\right] \leqslant \bar{N} \leqslant \overline{N^{\star}} .
$$

So $\bar{N}=\overline{N^{\star}}$ and $N^{\star}=N$. By Lemma $6.2, N=(N \cap A)(N \cap B)$, as desired.
Proposition 6.5. The group T satisfies

$$
T^{\prime} \leqslant C_{T}(\tilde{T})=Z
$$

Proof. Clearly, $Z=Z(T) \leqslant C_{T}(\tilde{T})$. By Lemma $6.1, T^{\prime} \leqslant Z(\tilde{T}) \leqslant C_{T}(\tilde{T})$. So we need only prove that $C_{T}(\tilde{T})=Z$.

As in the proofs of Propositions 6.3 and 6.4 , let $\bar{H}=H Z / Z$ for every subgroup H of G.

Let $C=C_{T}(\tilde{T})$. We will assume that $C>Z$ and aim for a contradiction.
Here, $1<\bar{C} \leqslant \bar{T}$ and $\bar{C} \triangleleft \bar{G}$. Therefore,

$$
\bar{C} \cap Z(\bar{T})>1
$$

Take the subgroup W of T for which

$$
W \geqslant Z \quad \text { and } \quad \bar{W}=\bar{C} \cap Z(\bar{T})
$$

Then $1<\bar{W} \triangleleft \bar{G}$.
By Proposition 6.4 and Lemma 6.1,

$$
W=(W \cap A)(W \cap B) \quad \text { and } \quad T=(A \cap T) \tilde{T}=(B \cap T) \tilde{T}
$$

Since $W \leqslant C=C_{T}(\tilde{T})$, it follows that \tilde{T} and $A \cap T$ both centralize $W \cap A$, and

$$
W \cap A \leqslant Z(T)=Z
$$

Similarly, $W \cap B \leqslant Z$. Hence, $W \leqslant Z$ and $\bar{W}=1$, a contradiction. This completes the proof of Proposition 6.5.

Proposition 6.6. The following conditions are satisfied.
(a) T / Z is abelian.
(b) Whenever $U \triangleleft G$ and $Z \leqslant U \leqslant T$, then

$$
U=[U, G] Z \quad \text { and } \quad U=(U \cap A)(U \cap B)
$$

(c) Whenever $U, V \triangleleft G$ and $Z \leqslant V<U \leqslant T$, then in the action of G induced on U / V by conjugation,

$$
C_{U / V}(A)=(A \cap U) V / V, \quad C_{U / V}(B)=(B \cap U) V / V
$$

and

$$
U / V=C_{U / V}(A) \times C_{U / V}(B), \quad C_{U / V}(G)=1
$$

(d) In the situation of (c),

$$
T \text { centralizes } U / V \quad \text { and } \quad C_{U / V}(A)=C_{U / V}(x) \quad \text { for every } x \text { in } A \backslash T
$$

(e) $T=\left[T, \mathrm{O}^{p}(G)\right] Z(G)$.

Proof. (a) This follows from Proposition 6.5.
(b) This follows from (a) and Proposition 6.4.
(c) Let $F=U / V, \hat{A}=(A \cap U) V / V$ and $\hat{B}=(B \cap U) V / V$. Since A and B are abelian, we can use (b) to obtain

$$
\begin{equation*}
\hat{A} \leqslant C_{F}(A), \quad \hat{B} \leqslant C_{F}(B) \quad \text { and } \quad F=\hat{A} \hat{B} \leqslant C_{F}(A) C_{F}(B) \leqslant F \tag{6.12}
\end{equation*}
$$

Let $C_{F}(A) \cap C_{F}(B)=U^{\star} / V$. Since $\langle A, B\rangle=G$, we have

$$
U^{\star} / V=C_{F}(G), \quad U^{\star} \triangleleft G \quad \text { and } \quad\left[U^{\star}, G\right] \leqslant V
$$

But $Z \leqslant V \leqslant U^{\star} \leqslant T$, and (b) gives

$$
U^{\star}=\left[U^{\star}, G\right] \leqslant V Z=V \leqslant U^{\star}
$$

So $U^{\star}=V$ and

$$
1=U^{\star} / V=C_{F}(A) \cap C_{F}(B)=C_{F}(G)
$$

Now (6.12) gives $F=\hat{A} \times \hat{B}$ and (c).
(d) Take U and V as in (c) and $x \in A \backslash T$. Recall that $A^{f}=B$. From the structure of $\operatorname{PSL}(2, q), x^{f^{-1}}$ lies outside S and $N_{G}(S)$. Therefore, by condition $\left(E_{0}\right)$ in $\S 1$,

$$
G=\left\langle S, x^{f^{-1}}\right\rangle \quad \text { and } \quad G=G^{f}=\left\langle S^{f}, x\right\rangle=\langle B, T, x\rangle
$$

By (a), $[U, T] \leqslant Z \leqslant V$. So T centralizes F. Hence, $1=C_{F}(G)=C_{F}(B) \cap C_{F}(x)$. Since $C_{F}(A) \leqslant C_{F}(x)$, part (c) gives

$$
C_{F}(x)=C_{F}(x) \cap\left(C_{F}(A) C_{F}(B)\right)=C_{F}(A)\left(C_{F}(x) \cap C_{F}(B)\right)=C_{F}(A)
$$

as desired.
(e) Let

$$
H=\mathrm{O}^{p}(G), \quad R=[T, H], \quad Y=Z(G) \quad \text { and } \quad Q=R Y
$$

Then, $H, R, Y, Q \triangleleft G$.
By Theorem 3.1, Z / Y is a standard module for G / L, and hence is irreducible under G and is not centralized by H. As $[Z, H] Y / Y$ is a submodule of Z / Y,

$$
[Z, H] Y / Y=Z / Y \quad \text { and } \quad Z=[Z, H] Y \leqslant R Y=Q
$$

Let $\bar{G}=G / Q$, and let $\bar{X}=X Q / Q$ for every subgroup X of G. Then \bar{H} centralizes \bar{T} because $[T, H] \leqslant Q$. By (c), $T=[T, G] Z=[T, G] Q$. Since $G=\mathrm{O}^{p}(G) S=H S$,

$$
\bar{T}=[\bar{T}, \bar{G}]=[\bar{T}, \bar{H} \bar{S}]=[\bar{T}, \bar{S}]
$$

As \bar{S} is nilpotent, this shows that $\bar{T}=1$, i.e. $Q=T$, as desired.
Recall that $Z(G) \leqslant C_{G}(T) \leqslant T$, so that $Z(G) \leqslant Z(S)$.
Proposition 6.7. In the situation of Proposition 6.6(c),
(a) $[U, A, A] \leqslant V$ if $p=2$ and U / V is elementary abelian, and
(b) $[U, A ; 3] \leqslant V$ and $[T, A ; 3] \leqslant Z$ if p is odd.

Proof. As in the proof of Proposition 6.6, let $F=U / V$. By Proposition 6.6 (d),

$$
\begin{equation*}
T \text { centralizes } F \tag{6.13}
\end{equation*}
$$

(a) Assume that $p=2$ and that F is elementary abelian, and thus a vector space over \boldsymbol{F}_{2}. Take any x in A. Then x^{2} lies in T because S / T is elementary abelian. Therefore, by (6.13), the linear transformation t induced on F over \boldsymbol{F}_{2} by conjugation by x satisfies

$$
0=t^{2}-1=(t-1)^{2}
$$

which gives $[F, x, x]=0$. Thus, $[F, x] \leqslant C_{F}(x)$. By Proposition 6.6,

$$
[F, x] \leqslant C_{F}(A)
$$

As this is true for all x in A,

$$
[F, A] \leqslant C_{F}(A) \quad \text { and } \quad[F, A, A]=0
$$

which gives (a).
(b) Assume that p is odd. By Theorem 3.1, $Z=[Z, G] \times Z(G)$ and $Z / Z(G)$ is a standard module for G / L. Therefore, $[Z / Z(G), A, A]=1$ and

$$
\begin{equation*}
[Z, A, A]=1 \tag{6.14}
\end{equation*}
$$

Take any elements y in $A \cap T, a$ in A and w in T. Since $T^{\prime} \leqslant Z(T)=Z$,

$$
\begin{gathered}
{[y, w] \in Z \quad \text { and } \quad[y, w]^{a}=\left[y^{a}, w^{a}\right]=\left[y, w^{a}\right]} \\
{[y, w, a]=[y, w]^{-1}[y, w]^{a}=\left[y, w^{-1}\right]\left[y, w^{a}\right]=\left[y, w^{-1} w^{a}\right] .}
\end{gathered}
$$

Thus,

$$
[y, w, a]=[y,[w, a]]
$$

Similarly, for a^{\prime} in A,

$$
\left[y, w, a, a^{\prime}\right]=\left[y,[w, a], a^{\prime}\right]=\left[y,\left[[w, a], a^{\prime}\right]\right]=\left[y,\left[w, a, a^{\prime}\right]\right]
$$

By (6.14), we obtain

$$
\left[y,\left[w, a, a^{\prime}\right]\right]=\left[y, w, a, a^{\prime}\right] \in\left[T^{\prime}, A, A\right] \leqslant[Z, A, A]=1
$$

As y can be any element of $A \cap T$,

$$
\left[w, a, a^{\prime}\right] \in C_{T}(A \cap T)=C_{T}((A \cap T) Z)=C_{T}\left(A^{*}\right)=A^{*}
$$

Thus, $[T, A, A] \leqslant A^{*}=(A \cap T) Z$ and

$$
[T, A ; 3] \leqslant[(A \cap T) Z, A] \leqslant Z
$$

Since $Z \leqslant V<U \leqslant T$, we also have $[U, A ; 3] \leqslant V$, as desired.
Proposition 6.8. The subgroup L contains T and satisfies the following conditions.
(a) L / T is a p^{\prime}-group.
(b) $T / Z=C_{T / Z}(L) \times[T, L] Z / Z$.
(c) Whenever $U, V \triangleleft G$ and $Z \leqslant V<U \leqslant[T, L] Z, U / V$ is centralized by T, but not by L.
(d) If $L>T$, then q is 2 or 3 .

Proof. (a) By Theorem 3.1 and Proposition 3.4, $L \leqslant K$ and K / T is a p^{\prime}-group. Hence, L / T is a p^{\prime}-group.
(b), (c) Let $T^{*}=[T, L] Z$. By Proposition $6.6, T / Z$ is abelian. Therefore, conjugation by L on T induces an action of L / T on T / Z. By (a) and Lemma 2.1,

$$
T / Z=C_{T / Z}(L / T) \times[T / Z, L / T]=C_{T / Z}(L) \times[T / Z, L]=C_{T / Z}(L) \times\left(T^{*} / Z\right)
$$

which gives (b). Moreover,

$$
C_{T^{*} / Z}(L)=\left(T^{*} / Z\right) \cap C_{T / Z}(L)=1
$$

For U and V as in (c), T centralizes U / V because T centralizes T / Z. Moreover, $C_{U / Z}(L) \leqslant C_{T^{*} / Z}(L)=1$. Therefore, Lemma 2.1 with $P=U / Z, A=L / T$ and $N=V / Z$ gives

$$
C_{P / N}(L)=C_{P / N}(L / T)=C_{P}(L / T) N / N=C_{U / Z}(L) N / N=N / N
$$

Thus,

$$
C_{U / V}(L) \cong C_{(U / Z) /(V / Z)}(L)=C_{P / N}(L)=1
$$

which gives (c).
(d) Suppose $L>T$. By (a) and Cauchy's Theorem, L contains a subgroup X of prime order other than p.

Assume first that X centralizes T / Z. Since $L=C_{G}(Z)$ (defined before Theorem 3.1), X centralizes Z. Therefore, Lemma 2.1 yields that X centralizes T. However, by condition $(H), C_{G}(T) \leqslant T$. As $|X|$ does not divide $|T|$, this is a contradiction. Thus,
X does not centralize T / Z.
Now we have $T^{*}=[T, L] Z \geqslant[T, X] Z>Z$. Clearly, Z and T^{*} are normal in G. Let U / V be a chief factor of G such that

$$
Z \leqslant V<U \leqslant T^{*}
$$

Let $M=U / V$. Then (c) shows that G / T acts on M and that L / T acts non-trivially on M in this action. Since $S=A T$, Proposition 6.7 gives

$$
\begin{equation*}
[M, S ; 3]=1 \tag{6.15}
\end{equation*}
$$

Let $\bar{G}=G / T$ and let $\bar{H}=H T / T$ for every subgroup H of G. By Theorem 3.1,

$$
\bar{K}=\Phi(\bar{G}), \quad \bar{K} / \bar{L}=Z(\bar{G} / \bar{L}) \quad \text { and } \quad \bar{L}=[\bar{L}, \bar{G}] .
$$

Hence, by (6.15) and Theorem 3.1 and Proposition 6.6, the hypothesis of Theorem 2.16 is satisfied. As \bar{L} does not centralize M, Theorem 2.16 yields that $q=2$ or 3 .

Recall from Theorem 3.1 that $G / L \cong \operatorname{SL}(2, q)$.
Proposition 6.9. Suppose U / V is a chief factor of G such that $Z \leqslant V<U \leqslant T$ and L centralizes U / V.

Then U / V is a standard module for G / L.
Proof. Since $S=A T$ and $T \leqslant L$,

$$
C_{U / V}(S)=C_{U / V}(A)
$$

Then, by Proposition 6.6, $\left|C_{U / V}(S)\right|^{2}=|U / V|$. By Theorem 2.15 with $G / L, U / V$, $C_{U / V}(S)$ and $S L / L$ in place of G, V, V_{0} and S, we see that U / V is a standard module for G / L.

Proposition 6.10. The group $T / Z(G)$ is abelian.

Proof. Assume otherwise. Recall that $Z=Z(T)$ and, by Proposition 6.6, T / Z is abelian. Let C and D be subgroups of T containing Z such that

$$
C / Z=C_{T / Z}(L) \quad \text { and } \quad D / Z=[T, L] Z / Z .
$$

Then $C, D \triangleleft G$. By Proposition 6.8,

$$
\begin{equation*}
T / Z=(C / Z) \times(D / Z) \tag{6.16}
\end{equation*}
$$

So $T=C D$.
Let $Y=Z(G)$. By Theorem 3.1,

$$
\begin{equation*}
G / L \cong \mathrm{SL}(2, q), \quad Z / Y \text { is a standard module for } G / L \tag{6.17}
\end{equation*}
$$

and $K / L=Z(G / L)$. Hence, Z / Y is irreducible under G / L. As T / Z is abelian, $T^{\prime} \leqslant Z$. Thus, $T^{\prime} Y / Y \leqslant Z / Y$ and

$$
\begin{equation*}
\text { if } T / Y \text { is not abelian, then }(T / Y)^{\prime}=T^{\prime} Y / Y=Z / Y \tag{6.18}
\end{equation*}
$$

In any case, since T has nilpotence class 2 , the commutator mapping $T \times T \rightarrow Z$ induces a bi-additive mapping of abelian groups

$$
T / Z \times T / Z \rightarrow Z / Y
$$

that takes $(x Z, y Z)$ to $[x, y] Y$.
We consider the action of G on its chief factors induced by conjugation. By Proposition 6.6,

$$
\begin{equation*}
C_{X}(A)=(A \cap U) V / V \quad \text { and } \quad X=C_{X}(A) \times C_{X}(B) \tag{6.19}
\end{equation*}
$$

whenever $U, V \triangleleft G$ and $Z \leqslant V<U \leqslant T$ and $X=U / V$. Since $B=A^{f},(6.19)$ also gives

$$
\begin{equation*}
|U / V|=\left|C_{U / V}(A)\right|^{2} \tag{6.20}
\end{equation*}
$$

in this situation.
We prove the result in three steps:

1. C / Y is abelian;
2. D / Y is abelian;
3. D / Y centralizes C / Y.

Since $T=C D$, this suffices.

Step 1. C / Y is abelian.
Proof. Assume first that p is odd. Then $\operatorname{SL}(2, q)$ contains a unique element of order 2. Therefore, by (6.17), there exists a 2 -element g of G such that $g L$ is the unique element of order 2 in G / L.

Now g^{2} is a p^{\prime}-element of L. So g^{2} centralizes C / Z. By (6.17), g^{2} centralizes Z / Y. Hence, by Lemma 2.1, g^{2} centralizes C / Y, and g induces an automorphism of order 2 on C / Y.

By (6.17), g acts as the -1 transformation of Z / Y. So $C_{Z / Y}(g)=1$, and $C_{Z}(g) \leqslant Y$. Similarly, by Proposition 6.9,

$$
C_{U / V}(g)=1
$$

whenever U / V is a chief factor of G and $Z \leqslant U<V \leqslant C$. Therefore, g induces an automorphism of order 2 on C / Y that fixes only the identity element. By an elementary result, C / Y is an abelian group inverted by g.

Next, assume that $p=2$. Then, by (6.17) and Theorem 3.1 (h),

$$
K / L=Z(G / L) \cong Z(\mathrm{SL}(2, q))=1 \quad \text { and } \quad K=L
$$

Now, $\mathrm{SL}(2, q)$ contains a subgroup H / L isomorphic to the symmetric group of degree 3 . Since S is a Sylow 2-subgroup of G, we may replace H by a conjugate, if necessary, so that $H \cap S$ is a Sylow 2-subgroup of H. Let g be a 3 -element of H such that $g L$ is an element of order 3 in H / L. Then g does not normalize S because $g L$ does not normalize $S L / L$.

We chose f (at the beginning of $\S 4$) to be an arbitrary p^{\prime}-element of $G \backslash N_{G}(S K)$. Since $S L=S K$, we may assume for this part of the proof that $f=g$. Hence, $B=A^{f}=A^{g}$.

By an argument similar to our argument above for p odd,

$$
\begin{equation*}
C_{C / Z}(g)=1 \quad \text { and } \quad C_{Z / Y}(g)=1 \tag{6.21}
\end{equation*}
$$

We write C / Z and Z / Y as additive groups and let

$$
\phi:(C / Z) \times(C / Z) \rightarrow Z / Y
$$

be the bi-additive mapping induced by the commutator mapping. For any x in $C / Z, g$ centralizes $x+x^{g}+x^{g^{2}}$, so that $x+x^{g}+x^{g^{2}}=0$, by (6.21); and similarly for x in Z / Y.

By Proposition 4.5 and the definitions at the beginning of $\S 6$,

$$
\begin{equation*}
G=G^{*}=\left\langle Z\left(Q_{0}\right), Z\left(R_{0}\right)\right\rangle=\langle A, B\rangle \tag{6.22}
\end{equation*}
$$

By (6.19) and (6.20) with $U=C$ and $V=Z$,

$$
C_{C / Z}(A)=(A \cap C) Z / Z \quad \text { and } \quad|C / Z|=\left|C_{C / Z}(A)\right|^{2}
$$

and

$$
\begin{equation*}
C / Z=C_{C / Z}(A) \times C_{C / Z}(B) \tag{6.23}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\phi\left(a, a^{\prime}\right)=0 \text { whenever } a, a^{\prime} \text { lie in } C_{C / Z}(A) \tag{6.24}
\end{equation*}
$$

Take any a in $C_{C / Z}(A)$ and $b^{\prime}=C_{C / Z}(B)$. Let $b=a^{g}$ and $a^{\prime}=b^{\prime g^{2}}$. Then $a^{\prime} \in C_{C / Z}(A)$ and $b^{\prime} \in C_{C / Z}(B)$. By (6.24),

$$
\phi\left(a, a^{\prime}\right)=0, \quad \phi\left(b, b^{\prime}\right)=\phi\left(a^{g}, a^{\prime g}\right)=\phi\left(a, a^{\prime}\right)^{g}=0
$$

and

$$
\begin{aligned}
0 & =\phi\left(a^{g^{2}}, a^{\prime g^{2}}\right) \\
& =\phi\left(-a-a^{g},-a^{\prime}-a^{\prime g}\right) \\
& =\phi\left(a^{g}, a^{\prime}\right)+\phi\left(a, a^{\prime g}\right) \\
& =\phi\left(b, a^{\prime}\right)+\phi\left(a, b^{\prime}\right) .
\end{aligned}
$$

Therefore,

$$
\phi\left(a, b^{\prime}\right)^{g}=\phi\left(b, a^{\prime g^{2}}\right)=\phi\left(b,-a^{\prime}-b^{\prime}\right)=-\phi\left(b, a^{\prime}\right)=\phi\left(a, b^{\prime}\right) .
$$

However, $C_{Z / Y}(g)=1$, by (6.21). Thus, $\phi\left(a, b^{\prime}\right)=0$. As $\left[b^{\prime}, a\right]=-\left[a, b^{\prime}\right], \phi\left(b^{\prime}, a\right)=$ $-\phi\left(a, b^{\prime}\right)=0$. Since a and b^{\prime} are arbitrary elements of $C_{C / Z}(A)$ and $C_{C / Z}(B),(6.23)$ and (6.24) and the argument above show that ϕ is identically zero. By (6.18), we are done.

Step 2. The group D / Y is abelian.
Proof. Assume that D / Y is not abelian. We work towards a contradiction.
Recall that $D=[T, L] Z$. Since Z / Y is abelian, $[T, L]$ is not contained in Z. Since $T^{\prime} \leqslant Z$ and $L \geqslant T$, we have $L>T$. By Proposition $6.8, q$ is 2 or 3 .

Consider a chief series for G that contains the series

$$
1 \leqslant Y<Z<D<G .
$$

Let

$$
Y=W_{0}<W_{1}<\cdots<W_{k}=D
$$

be the portion of the chief series from Y to D.
Take i maximal such that $1 \leqslant i \leqslant k$ and W_{i} / Y is contained in the centre of D / Y. Since D / Y is not abelian, $1 \leqslant i \leqslant k-1$.
Now, W_{i+1} / Y is not contained in the centre of D / Y. Take j maximal such that $0 \leqslant j \leqslant k$ and W_{j} / Y centralizes W_{i+1} / Y. Then $j \leqslant k-1$ and W_{j+1} / Y does not centralize W_{i+1} / Y. To summarize:
Y contains $\left[W_{i}, D\right]$ (and hence $\left.\left[W_{i}, W_{j+1}\right]\right)$ and $\left[W_{i+1}, W_{j}\right]$, but not $\left[W_{i+1}, W_{j+1}\right]$.
By (6.17) and (6.18), $[D, D] Z / Z=Y / Z$. The previous paragraph shows that the biadditive mapping $(T / Z) \times(T / Z) \rightarrow Y / Z$ induced by the commutator mapping restricts to a bi-additive surjective mapping

$$
f:\left(W_{i+1} / W_{i}\right) \times\left(W_{j+1} / W_{j}\right) \rightarrow Y / Z
$$

such that

$$
f\left(u^{g}, v^{g}\right)=f(u, v)^{g} \quad \text { for all } u \text { in } W_{i+1} / W_{i}, v \text { in } W_{j+1} / W_{j} \text { and } g \text { in } G .
$$

Let $M_{1}=W_{i+1} / W_{i}, M_{2}=W_{j+1} / W_{j}$ and $M=Y / Z$. Since T centralizes every chief p-factor of G, conjugation induces action of G / T on M_{1}, M_{2} and M. By Proposition 6.8 and (6.17), L / T acts non-trivially on M_{1} and M_{2} and trivially on M. By (6.19) and (6.20) applied to $U / V=M_{k}$ for $k=1,2$,

$$
\begin{gathered}
\left|M_{k}\right|=\left|C_{M_{k}}(A)\right|^{2}=\left|C_{M_{k}}(S)\right|^{2} \\
C_{M_{1}}(A)=\left(W_{i+1} \cap A\right) W_{i} / W_{i} \\
C_{M_{2}}(A)=\left(W_{j+1} \cap A\right) W_{j} / W_{j}
\end{gathered}
$$

Therefore,

$$
f(u, v)=0 \quad \text { for all } u \text { in } C_{M_{1}}(A) \text { and } v \text { in } C_{M_{2}}(A)
$$

and, by Theorem 3.1, the hypothesis of Lemma 2.18 is satisfied with $G / T, K / T$ and L / T in place of G, K and L. Therefore, G / T centralizes the image of f. However, f is a surjective mapping onto Z / Y, which is a standard module for G / L. This contradiction shows that D / Y is abelian.

Step 3. D / Y centralizes C / Y.
Proof. Since L / T is a p^{\prime}-group, there exists a complement, L_{0}, to T in L, by the Schur-Zassenhaus Theorem. Then $L=L_{0} T$. As $L=C_{G}(Z)$ and L centralizes $C / Z, L_{0}$ centralizes C / Z and Z. By Lemma 2.1, L_{0} centralizes C.

Clearly, $C \triangleleft G$ and $L_{0} \leqslant C_{G}(C) \triangleleft G$. Therefore,

$$
\left[T, L_{0}\right] \leqslant C_{G}(C) \leqslant C_{G}(C / Y)
$$

As T / Z is abelian and $Z=Z(T)$,

$$
C_{G}(C / Y) \geqslant\left[T, L_{0}\right] Z \geqslant\left[T, L_{0} T\right] Z=[T, L] Z=D
$$

Thus, D / Y centralizes C / Y, as desired.
As mentioned at the beginning of the proof, Steps $1-3$ complete the proof of the proposition.

Corollary 6.11. The group S satisfies
(a) $S^{\prime} \leqslant(A \cap T) Z=A^{\star}$ and
(b) $\gamma_{3}(S) \leqslant[Z, A] T^{\prime} \leqslant Z(S)$ and $\gamma_{4}(S)=1$.

G. Glauberman

Proof. Take x in $A \cap T, y$ in T, and a in A. By Proposition 6.10, $T^{\prime} \leqslant Z(G)$. Hence,

$$
[x, y]=[x, y]^{a}=\left[x^{a}, y^{a}\right]=\left[x, y^{a}\right] \quad \text { and } \quad\left[x, y^{-1} y^{a}\right]=[x, y]^{-1}\left[x, y^{a}\right]=1
$$

Thus, $[y, a]=y^{-1} y^{a} \in C_{T}(A \cap T)=C_{T}((A \cap T) Z)=C_{T}\left(A^{\star}\right)=A^{\star}$. Since y and a were chosen arbitrarily, $[T, A] \leqslant A^{\star}$.

Now, $[T, A] \triangleleft A T=S$. So $[T, A] Z(G) \triangleleft S$. As $T^{\prime} \leqslant Z(G)$ and A is abelian, $S /[T, A] Z(G)$ is abelian. Therefore, since $Z(G) \leqslant Z \leqslant A^{\star}$,

$$
S^{\prime} \leqslant[T, A] Z(G) \leqslant A^{\star}
$$

which proves (a).
By Lemma 3.2, $[Z, S] \leqslant Z(S)$. Hence, by (a),

$$
\gamma_{3}(S)=\left[S^{\prime}, S\right] \leqslant[(A \cap T) Z, A T] \leqslant T^{\prime}[Z, A] \leqslant Z(G) Z(S)=Z(S)
$$

Then $\gamma_{4}(S) \leqslant[Z(S), S]=1$. This proves (b).

Proposition 6.12. The subgroup L contains T and satisfies the following conditions.
(a) $G / L \simeq \operatorname{SL}(2, q)$.
(b) If $q>2$, then $L=T$.
(c) If $q=2$, then G / T is a dihedral group of order $2 \cdot 3^{k}$ for some positive integer k.
(d) $Z / Z(G)$ is a standard module for G / L.

Proof. By $\left(E_{0}\right), C_{G}(T) \leqslant T$. By Proposition $6.10, T / Z(G)$ is abelian, and thus is the centre of itself. Therefore, the group W_{1} in Theorem 3.1 is equal to T, and all of this proposition follows from Theorem 3.1.

Proposition 6.13. Let $H=\mathrm{O}^{p}(G), P=H \cap S$ and $R=H \cap T$. Then
(a) T / Z is elementary abelian,
(b) if p is odd, then $T / Z(G)$ is elementary abelian,
(c) $[R, H]=R$,
(d) if p is odd, then R has exponent p, and
(e) if $p \geqslant 5$, then P has exponent p and $S=P Z(G)$.

Proof. Recall that $Z(G)<Z(S)<Z$, by Lemma 3.2. Let $Y=Z(G)$.
(a) Let $\bar{T}=T / Z$. By Proposition $6.6, \bar{T}$ is abelian. Let $T_{1} / Z=\Omega_{1}(\bar{T})$. Then $T_{1} \triangleleft G$.

Take any element a of A and let α be the automorphism of \bar{T} induced by conjugation by a. We regard the operation of \bar{T} as addition, and α as an invertible element of the endomorphism ring of \bar{T}. Let $\delta=\alpha-1$. Since

$$
[T, A, A] \leqslant \gamma_{3}(S) \leqslant Z(S)<Z
$$

by Corollary $6.11, \delta^{2}=(\alpha-1)^{2}=0$.
As S / T is elementary abelian, a^{p} lies in T and hence centralizes T / Z. Therefore,

$$
1=\alpha^{p}=(1+\delta)^{p}=1+p \delta
$$

whence $p \delta=0$. Thus, $[T, a]^{p} \leqslant Z$ and $[T, a] \leqslant T_{1}$. This shows that A centralizes T / T_{1}. Since $T^{\prime} \leqslant Z \leqslant T_{1}$ and $S=A T$,
S centralizes T / T_{1}.
As $T, T_{1} \triangleleft G$, we see that $C_{G}\left(T / T_{1}\right)$ is a normal subgroup of G that contains S and hence $\left\langle S^{G}\right\rangle$, which is G, by Proposition 3.4. Thus, $[T, G] \leqslant T_{1}$. However, by Proposition 6.6,

$$
\begin{equation*}
T=[T, H] Y=[T, G] Z \tag{6.25}
\end{equation*}
$$

Since $[T, G] Z \leqslant T_{1} \leqslant T$, we obtain $T_{1}=T$, i.e.
T / Z is elementary abelian.
(b) Assume p is odd. We follow the proof of (a) with a few changes.

Recall that $Y=Z(G)$. We take \bar{T} to be T / Y instead of T / Z. By Proposition $6.10, \bar{T}$ is abelian.

Take any element a of A. Define α and δ as in the proof of (a), but acting on \bar{T} instead of T / Z. It is possible that $\delta^{2} \neq 0$. But since $[T, A, A, A]=1$ by Corollary $6.11, \delta^{3}=0$. Let $k=(p-1) / 2$. Then

$$
1=\alpha^{p}=(1+\delta)^{p}=1+p \delta+p k \delta^{2} \quad \text { and } \quad 0=p \delta+p k \delta^{2}=p \delta(1+k \delta)
$$

Then $0=0(1-k \delta)=p \delta(1+k \delta)(1-k \delta)=p \delta\left(1-k^{2} \delta^{2}\right)=p \delta$ because $\delta^{3}=0$.
As in the proof of (a), we obtain $[T, G] \leqslant T_{1}$, where $T_{1} / T=\Omega_{1}(T / Y)$. Then Proposition 6.6 yields $T=[T, H] Y \leqslant T_{1}$. Consequently, $T=T_{1}$, and T / Y is elementary abelian.
(c) Here, p is arbitrary. Let $Q=[T, H]$. Since $T, H \triangleleft G$, we see that $Q \triangleleft G$ and $Q \leqslant T \cap H=R \triangleleft G$, and P is a Sylow p-subgroup of H.

Let $\bar{G}=G / Q$. For every subgroup X of G, let $\bar{X}=X Q / Q$. By (6.25), $T=Q Y$ and $\bar{T}=\bar{Y} \leqslant Z(\bar{G})$. Since $S=T A$ and A is abelian, \bar{S} is abelian and $\bar{R} \leqslant Z(\bar{H})$.

As H is generated by p^{\prime}-elements, so is \bar{H}. So $\bar{H} / \bar{H}^{\prime}$ is a p^{\prime}-group, and $\bar{P} \leqslant \bar{H}^{\prime}$. By Lemma 2.1,

$$
\bar{R} \leqslant \bar{P} \cap Z(\bar{H})=\bar{P} \cap \bar{H}^{\prime}=Z(\bar{H}) \leqslant \bar{P}^{\prime}=1 \quad \text { and } \quad R=Q=[T, H] .
$$

By Proposition 6.6, $T=[T, H] Y=R Y$. Hence, $R=[T, H]=[R Y, H]=[R, H]$, as desired.
(d) Assume p is odd. Since T has nilpotence class at most $2, \Omega_{1}(T)$ has exponent p, by Theorem 2.4.

Take any elements u of T and g of G. Let $v=u^{g}$. By (b), $u^{p} \in Y=Z(G)$. Hence, $v^{p}=\left(u^{g}\right)^{p}=\left(u^{p}\right)^{g}=u^{p}$. By Theorem 2.4, $\left(u v^{-1}\right)^{p}=1$, and $u v^{-1} \in \Omega_{1}(T)$. Thus,

$$
[T, G] \leqslant \Omega_{1}(T)
$$

So $R=[T, H] \leqslant \Omega_{1}(T)$, and R has exponent p.
(e) Assume $p \geqslant 5$. Let $W=H \cap Y$. By Corollary 6.11 and Theorem 2.4,
S has nilpotence class at most 3 and $\Omega_{1}(S)$ has exponent p.
Similarly,
S / W has nilpotence class at most 3 and $\Omega_{1}(S / W)$ has exponent p.
By Proposition 6.12, $L=T$ and $G / L \cong \operatorname{SL}(2, q)$. Since $q \geqslant p \geqslant 5$, we may take x and M as in Lemma 5.4. Then x lies in $P \backslash T, M$ is a non-identity p^{\prime}-subgroup of G normalized by x, and x^{p} lies in $C_{T}(M) \cap H$.

By Proposition 6.9, every chief factor U / V of G such that $Y \leqslant V<U \leqslant T$ is a standard module for G / L. Thus, $C_{U / V}(M)=1$ for every such chief factor. By arguing as in Step 1 of the proof of Proposition 6.10 , we see that $C_{T}(M) \leqslant Y$. Hence,

$$
\begin{equation*}
x^{p} \in C_{T}(M) \cap H \leqslant Y \cap H=W \tag{6.28}
\end{equation*}
$$

For each element g and subgroup G^{*} of G, let \bar{g} and $\overline{G^{\star}}$ be the element $g W$ and subgroup $G^{*} W / W$ of G / W. Let $F=N_{H}(P)$. Since $W \leqslant H \cap T=R \leqslant P$,

$$
F / R=N_{H / R}(P / R) \quad \text { and } \quad \bar{F} / \bar{R}=N_{\bar{H} / \bar{R}}(\bar{P} / \bar{R}) .
$$

By (d) and (6.28),

$$
\Omega_{1}(\bar{P}) \geqslant\langle\bar{x}, \bar{R}\rangle>\bar{R} .
$$

So $\Omega_{1}(\bar{P}) / \bar{R}$ is a non-identity normal subgroup of \bar{F} / \bar{R} contained in \bar{P} / \bar{R}. However, from the structure of $\mathrm{SL}(2, q)$ for $q \geqslant 4$,

$$
\begin{gather*}
G / T=\mathrm{O}^{p}(G / T)=\mathrm{O}^{p}(G) T / T=H T / T \cong H /(H \cap T)=H / R \cong \bar{H} / \bar{R}, \\
\bar{P} / \bar{R} \text { is a minimal normal subgroup of } \bar{F} / \bar{R}, \\
\bar{P} / \bar{R}=[\bar{F} / \bar{R}, \bar{P} / \bar{R}] . \tag{6.29}
\end{gather*}
$$

Therefore, $G=H T, S=P T, \bar{P} / \bar{R}=\Omega_{1}(\bar{P}) / \bar{R}$ and $\bar{P}=\Omega_{1}(\bar{P})$. By (6.25) and (6.27),

$$
\begin{equation*}
S=P R Y=P Y \quad \text { and } \quad \bar{P} \text { has exponent } p \tag{6.30}
\end{equation*}
$$

Since P is a normal Hall subgroup of F, it has a normal complement F_{0}, which is a Hall p^{\prime}-subgroup of F. Then $F=F_{0} P$. As \bar{P} / \bar{R} is abelian, (6.29) yields

$$
\bar{P} / \bar{R}=[\bar{F} / \bar{R}, \bar{P} / \bar{R}]=[\bar{F}, \bar{P}] \bar{R} / \bar{R}=\left[\bar{F}_{0}, \bar{P}\right] \bar{R} / \bar{R},
$$

whence

$$
\begin{equation*}
P=\left[F_{0}, P\right] R \tag{6.31}
\end{equation*}
$$

By (6.26), S has nilpotence class at most 3 and $\Omega_{1}(S)$ has exponent p. Then, from (d), (6.30), (6.31) and the method of proof of part (d), $P=\Omega_{1}(P) R \leqslant \Omega_{1}(S)$. So P has exponent p, as desired.

Proof of Theorem C. Now we prove Theorem C. By Remark 5.6, we need to check only (5.15), (5.16) and parts (a), (c) and (d) of the theorem when $G=G^{*}$. Recall that we assumed $G=G^{*}$ before Lemma 6.1, and that we defined

$$
\hat{G}=\mathrm{O}^{p}(G), \quad \hat{S}=S \cap \hat{G} \quad \text { and } \quad \hat{T}=\mathrm{O}_{p}(\hat{G})
$$

in Theorem C. Moreover, by Proposition 4.5, $T^{*}=\mathrm{O}_{p}\left(G^{*}\right)=\mathrm{O}_{p}(G)=T$.
As $\left[\mathrm{O}_{p^{\prime}}(G), T\right] \leqslant \mathrm{O}_{p^{\prime}}(G) \cap \mathrm{O}_{p}(G)=1$, we have $\mathrm{O}_{p^{\prime}}(G) \leqslant C_{G}(T) \leqslant T$. Therefore, $\mathrm{O}_{p^{\prime}}(G)=1$.

Since $\hat{G} \triangleleft G$ and S is a Sylow p-subgroup of G,

$$
\hat{S} \text { is a Sylow } p \text {-subgroup of } \hat{G} \text { and } \mathrm{O}_{p^{\prime}}(Z(\hat{G})) \leqslant \mathrm{O}_{p^{\prime}}(\hat{G}) \leqslant \mathrm{O}_{p^{\prime}}(G)=1
$$

So

$$
Z(\hat{G})=\mathrm{O}_{p^{\prime}}(Z(\hat{G})) \times \mathrm{O}_{p}(Z(\hat{G}))=\mathrm{O}_{p}(Z(\hat{G})) \leqslant \mathrm{O}_{p}(\hat{G})=\hat{T}
$$

Hence,

$$
\begin{equation*}
Z(\hat{G}) \leqslant Z(\hat{T}) \tag{6.32}
\end{equation*}
$$

By Corollary $6.11, S$ has nilpotence class at most 3 . As \hat{S} is a subgroup of S, we obtain part (a) of the theorem.

Recall that $Z=Z(T)$. As before, let $Y=Z(G)$. In the proof of part (e) of Proposition 6.6, we obtained $Z=[Z, H] Y$, i.e. $Z=[Z, \hat{G}] Y$. Clearly,

$$
[Z, \hat{G}] \leqslant Z \cap T \cap \hat{G}=Z(T) \cap \hat{T} \leqslant Z(\hat{T})
$$

Hence, $Z \leqslant Z(\hat{T}) Z(G)$ and $[Z, \hat{G}] \leqslant[Z(\hat{T}) Z(G), \hat{G}]=[Z(\hat{T}), \hat{G}]$. By Proposition 6.12, Z / Y is a standard module for G / L, and thus is not centralized by $\mathrm{O}^{p}(G)$, i.e. \hat{G}. So $1<[Z, \hat{G}] \leqslant[Z(\hat{T}), \hat{G}]$, and $Z(\hat{T})$ is not contained in $Z(\hat{G})$. Therefore, by (6.32),

$$
\begin{equation*}
Z(\hat{G})<Z(\hat{T}) \tag{6.33}
\end{equation*}
$$

By Proposition 6.10 and $6.13, T / Z(G)$ is abelian, T / Z is elementary abelian, and $[\hat{T}, \hat{G}]=\hat{T}$. Since $\hat{T} \leqslant T$, we obtain

$$
\hat{T}^{\prime} \leqslant T^{\prime} \cap \hat{T} \leqslant Z(G) \cap \hat{T} \leqslant Z(\hat{G})
$$

By $(6.33), Z(\hat{G})<Z(\hat{T}) \leqslant \hat{T}$. This proves part (c) of the theorem.
Parts (d) and (e) of Proposition 6.13 give part (d) of the theorem.
Now recall statements (5.15) and (5.16) in Remark 5.6. Since $G=G^{*}$, we may restate them as follows.
(5.15') If U / V is a chief factor of G and $Z(\hat{G}) \leqslant V<U \leqslant \hat{T}$, then U / V is not a central chief factor.
(5.16') If $q>2$, then $L=T$, and every chief factor U / V of G as in (5.15') is a standard module for G / T.
Take a chief factor U / V of G as in (5.15'). Then $Z(\hat{G}) \leqslant V<U \leqslant \hat{T}$ and

$$
V \leqslant U \cap V Y=V(U \cap Y)=V(U \cap Z(G)) \leqslant V Z(\hat{G})=V
$$

Thus, $V=U \cap V Y$. We obtain an isomorphism of G-modules

$$
U Y / V Y=U(V Y) / V Y \cong U /(U \cap V Y)=U / V
$$

Therefore, $U Y / V Y$ is a chief factor of G isomorphic to U / V.
Consider a chief series of G that contains the series

$$
1 \leqslant Y<Z \leqslant T \leqslant G
$$

Since $Y \leqslant V Y<U Y \leqslant T$, the proof of the Jordan-Hölder Theorem for chief series [16, pp. 125-127] shows that some chief factor W / X from this chief series satisfies $Y \leqslant X<$ $W \leqslant T$ and is isomorphic to $U Y / V Y$, and hence to U / V.

Since Z / Y is a standard module for G / L (by Proposition 6.12), it is a non-central chief factor of G, and we have

$$
W / X=Z / Y \quad \text { or } \quad Z \leqslant X<W \leqslant T
$$

However, in the latter case, W / X is not central, by Proposition 6.6. Thus, in all cases, W / X, and hence U / V, are not central. This proves (5.15').

To prove $\left(5.16^{\prime}\right)$, assume that $q>2$ and take a chief factor U / V as above. By Proposition 6.12, $L=T$. Therefore, L centralizes U / V. By Proposition $6.9, U / V$ is a standard module for G / T, as desired.

This completes the proof of Theorem C.

7. Examples

As mentioned in $\S 1$, the group S_{MCL} in Theorem C has an advantage over the group S_{2} in the exceptional case of [12] in being defined more explicitly and having (like $J(S)$) the property that no other subgroup of S is isomorphic to it. But Theorem C has the disadvantage of allowing a wider family of exceptions to specifying a characteristic subgroup of S that is normal in G. We illustrate this in Examples 7.1-7.3, where S is 'large' enough that one of the groups S_{1} or S_{2} in the exceptional case of [12] is normal in G, but 'small' enough that conditions (a)-(i) in Theorem C are satisfied and neither $Z(S)$ nor S_{MCL} is normal. Examples 7.2 and 7.3 also show that some of the restrictions on p and q in Theorem C are necessary.

In Theorem C, $\tilde{J}(S)$ is not normal in G, while $S_{\text {MCL }}$ may be normal. In contrast, in Examples 7.4 and $7.5, Z(J(S))$ is normal, while $Z\left(S_{\mathrm{MCL}}\right)$ is not. In Examples 7.6 and 7.7, $\left(E_{0}\right)$ is satisfied, but no non-identity characteristic subgroup of S is normal in G.

Example 7.1. Let Q be a quaternion group of order 8 if $p=2$ and a non-abelian group of order p^{3} and exponent p if p is odd. It is well known that the automorphism group of Q contains a subgroup H isomorphic to $\mathrm{SL}(2, p)$ that centralizes $Z(Q)$. (For $p=2$, take H as in Example 7.2.) Let E be a standard module for H.

Let m be a natural number and Q_{1}, \ldots, Q_{m} be isomorphic copies of Q. We embed E, Q_{1}, \ldots, Q_{m} in their direct product $T=E \times Q_{1} \times \cdots \times Q_{m}$ and let H act on T by acting on each component according to the action above. Let G be the semi-direct product of T by H.

Let S be the product of T with a Sylow p-subgroup $\langle\sigma\rangle$ of H, and let K be the product of T with the centre of H. It is easy to verify that $T=\mathrm{O}_{p}(G)$ and that G satisfies $\left(E_{0}\right)$ for $p^{n}=p$. To verify the hypothesis of Theorem C, we must show that $S=\tilde{J}(S)$.

Clearly,

$$
\begin{equation*}
Z(G)=Z\left(Q_{1}\right) \times \cdots \times Z\left(Q_{m}\right), \quad Z(S)=C_{E}(\sigma) \times Z(G), \quad \mho^{1}(Z(S))=1 \tag{7.1}
\end{equation*}
$$

and $Z(T)=E \times Z(G)$. Then $T / Z(S)$ is abelian and $Z_{2}(S) / Z(S)=Z(S / Z(S)) \leqslant T / Z(S)$. So

$$
\begin{equation*}
Z_{2}(S) \leqslant T<S \tag{7.2}
\end{equation*}
$$

Consider first the case in which p is odd. Here, T has exponent p. It is well known that σ centralizes a subgroup B of order p^{2} in Q. Let B_{1}, \ldots, B_{m} be the corresponding subgroups of Q_{1}, \ldots, Q_{m}. Let

$$
\tilde{B}=B_{1} \times \cdots \times B_{m}, \quad A^{*}=E \times \tilde{B} \quad \text { and } \quad A=C_{E}(\sigma) \times \tilde{B} \times\langle\sigma\rangle
$$

It is easy to see that A and A^{*} are large abelian subgroups of S and that

$$
\begin{equation*}
d(S)=d(T)=p^{2 m+2}, \quad J(T)=T, \quad J(S)=S \quad \text { and } \quad S^{\prime}=\Phi(S)=C_{E}(\sigma) \times \tilde{B} \tag{7.3}
\end{equation*}
$$

Next, consider the case in which $p=2$. Then (see Example 7.2) Q contains elements i, j, k such that

$$
i^{\sigma}=j, \quad j^{\sigma}=i, \quad k=i j \quad \text { and } \quad k^{\sigma}=k^{-1}
$$

Let i_{1}, \ldots, i_{m} and j_{1}, \ldots, j_{m} and k_{1}, \ldots, k_{m} be elements of $Q_{1} \times \cdots \times Q_{m}$ corresponding to i, j and k, and let $\sigma^{\prime}=i_{1} i_{2} \cdots i_{m} \sigma$ and

$$
\tilde{B}=\left\langle k_{1}, \ldots, k_{m}\right\rangle, \quad A^{*}=E \times \tilde{B} \quad \text { and } \quad A=C_{E}(\sigma) \times \tilde{B}\left\langle\sigma^{\prime}\right\rangle
$$

Then

$$
\sigma^{\prime 2}=\left(i_{1} i_{2} \cdots i_{m}\right) \sigma^{-1}\left(i_{1} i_{2} \cdots i_{m}\right) \sigma=\left(i_{1} i_{2} \cdots i_{m}\right)\left(j_{1} j_{2} \cdots j_{m}\right)=k_{1} k_{2} \cdots k_{m}
$$

Since σ^{\prime} centralizes $\sigma^{\prime 2}, \sigma^{\prime}$ centralizes \tilde{B}. It is easy to see that A and A^{*} are large abelian subgroups of S, and (7.3) is still valid in this case.

Thus, (7.1)-(7.3) hold for all choices of p. Note that $|S|=p|T|=p \cdot p^{2} \cdot\left(p^{3}\right)^{m}=p^{3 m+3}$ and, by (7.1), $|Z(S)|=p^{m+1}$. Therefore,

$$
|S||Z(S)|=p^{3 m+3} \cdot p^{m+1}=p^{4 m+4}=\left(p^{2 m+2}\right)^{2}=d(S)^{2}
$$

By Lemma 2.12, the minimal CL-subgroups of S are the large abelian subgroups of S, and $S=S_{\mathrm{CL}}=S_{\mathrm{MCL}}=\tilde{J}(S)$.

By (7.1) and (7.3), $Z(S) \neq Z(G)$ and $\tilde{J}(S)=S$. Since $S=S_{\mathrm{MCL}}$, it follows from Lemma 2.19 that neither of the two subgroups $Z(S)$ and S_{MCL} of Theorem C is normal in G, and G satisfies conditions (a)-(i) of Theorem C.

In contrast, (7.1)-(7.3) yield that $\tilde{J}(S)=S, \mho^{1}(Z(S))=1$ and S^{\prime} is not contained in $Z(S)$. Hence, S has nilpotence class at least 3 (in fact, precisely 3). Therefore, if $p \neq 3$, then S satisfies the hypothesis of the exceptional case of $[\mathbf{1 2}]$ discussed in $\S 1$ (i.e. case (c) of Theorem D of [12]), and one of the pair of subgroups S_{1}, S_{2} given in that case is normal in G.

Actually, the proof of Theorem D of [12] (on p. 450 of [12], where $Z_{2}(G)$ in (7.1) should be corrected to $Z_{2}(S)$) shows a little more for $p \neq 3: S_{2} \triangleleft G$ because we have the conditions

$$
\tilde{J}(S)=S, \quad \mho^{1}(Z(S))=1, \quad Z(S) \neq Z(G) \quad \text { and } \quad \Omega_{1}\left(Z_{2}(S)\right) \leqslant \mathrm{O}_{p}(G)
$$

As $S=S_{\mathrm{MCL}}$, our suspicion (in $\S 1$) that $S_{2} \geqslant S_{\mathrm{MCL}}$ is false. (Note that here we obtained $S_{2} \triangleleft G$ without assuming that S_{1} is not normal in G. Indeed, one may calculate that $S_{1}=Z(G) \triangleleft G$ here.)

Again, assume $p \neq 3$. Since S_{2} is an intersection of subgroups $\mathrm{O}_{p}\left(G^{*}\right)$ for groups G^{*} that satisfy $\left(E_{0}\right), S_{2} \geqslant \Phi(S)=C_{E}(\sigma) \times \tilde{B}$ by (7.3). It is easy to see that the normal closure of $\Phi(S)$ in G is equal to T. Since $S_{2} \triangleleft G$, we have $S_{2}=T$.

This example illustrates another difference between Theorem C and the results of [12]. If $p \neq 3$ and S is 'too small' to satisfy the hypothesis of [12], then, by Remark 1.2 of [12], a group G satisfying $\left(E_{0}\right)$ will have a unique non-central chief factor within $\mathrm{O}_{p}(G)$ (and this chief factor lies within $Z\left(\mathrm{O}_{p}(G)\right)$). But for G in this example, G has precisely $m+1$ non-central chief factors within $\mathrm{O}_{p}(G)$, since one occurs for each of E, $Q_{1} / Z\left(Q_{1}\right), \ldots, Q_{m} / Z\left(Q_{m}\right)$.

Now assume that $p \geqslant 5$ and $m=1$. Then $S_{2}=T=E \times Q_{1}$ and T has exponent p. Let $x_{1}=\sigma$. Take x_{2} in $B_{1} \backslash Z(G), x_{5}$ in $E \backslash C_{E}(\sigma)$, and x_{6} in $Q_{1} \backslash B_{1}$, and take $x_{3}=\left[x_{1}, x_{5}\right]$ and $x_{4}=\left[x_{2}, x_{6}\right]$. Then

$$
E=\left\langle x_{3}, x_{5}\right\rangle, \quad Q_{1}=\left\langle x_{2}, x_{4}, x_{6}\right\rangle, \quad Z(Q)=\left\langle x_{4}\right\rangle, \quad T=\left\langle x_{2}, x_{3}, \ldots, x_{6}\right\rangle
$$

and $\left[x_{i}, x_{j}\right]=1$ whenever $1 \leqslant i, j \leqslant 6$ and $|j-i| \leqslant 3$. Since $\left\langle x_{1}, x_{5}\right\rangle$ is a non-abelian group of order p^{3} generated by elements of order p, it has exponent p. Now

$$
\left\langle x_{1}, \ldots, x_{5}\right\rangle=\left\langle x_{1}, x_{3}, x_{5}\right\rangle \times\left\langle x_{2}, x_{4}\right\rangle
$$

and there exists an isomorphism ϕ of $\left\langle x_{1}, \ldots, x_{5}\right\rangle$ onto T given by $\phi\left(x_{i}\right)=x_{i+1}$ for $i=1,2, \ldots, 5$. (This example comes from Example 8.2 of $[\mathbf{1 2}]$ and $§ 9$ of $[\mathbf{1 0}]$.)

We saw above that T does not contain S_{MCL}. The isomorphism ϕ shows more generally that T does not contain any non-identity subgroup S^{*} satisfying the condition that every subgroup of S isomorphic to S^{*} is equal to S^{*}.

Example 7.2. In Theorem C, part (d) yields that if $\hat{T} / Z(\hat{G})$ is not elementary abelian and $p \neq 2$, then $Z(S)$ or S_{MCL} is normal in G. Here, we show that the assumption that $p \neq 2$ is necessary.

Let H be a group isomorphic to the symmetric group of order 3 . Let U be the direct product of two cyclic groups of order 4 with a quaternion group of order 8 . Then

$$
H=\langle\sigma, \tau\rangle \quad \text { and } \quad U=\langle a\rangle \times\langle b\rangle \times\langle i, j\rangle
$$

where $\sigma^{2}=\tau^{3}=1, a^{4}=b^{4}=i^{4}=j^{4}=1$ and $i^{2}=j^{2}=[i, j]$. Let $i j=k$, as usual.
We let H act faithfully on U by defining

$$
a^{\sigma}=b, \quad b^{\sigma}=a, \quad i^{\sigma}=j, \quad j^{\sigma}=i, \quad a^{\tau}=b, \quad b^{\tau}=a^{-1} b^{-1}, \quad i^{\tau}=j^{-1}, \quad j^{\tau}=k^{-1}
$$

Inside U, let $c=a i, d=b j$ and $z=[i, j]$. Note that $\Phi(U)=\left\langle a^{2}, b^{2}, z\right\rangle=\left\langle c^{2}, d^{2}, z\right\rangle$.
Let $T=\langle c, d, \Phi(U)\rangle$. Then $z=[c, d]$ and $\Phi(T)=\Phi(U)=Z(T)$. Since

$$
c^{\sigma}=d, \quad d^{\sigma}=c, \quad c^{\tau}=d z \quad \text { and } \quad d^{\tau}=c^{-1} d^{-1} z
$$

T is invariant under H. Let G be the semi-direct product of T by H.
Let $S=\langle T, \sigma\rangle$. Then S is a Sylow 2-subgroup of G,

$$
\begin{equation*}
|T|=2^{5}, \quad|S|=2^{6}, \quad Z(S)=C_{Z(T)}(\sigma)=\left\langle c^{2} d^{2}, z\right\rangle \quad \text { and } \quad Z(G)=\langle z\rangle \tag{7.4}
\end{equation*}
$$

Moreover, $T=\mathrm{O}_{p}(G)$ and G satisfies $\left(E_{0}\right)$ for $p^{n}=2$. Since $\langle c, Z(T)\rangle$ is an abelian subgroup of T of order 2^{4} and T is not abelian,

$$
d(S) \geqslant d(T)=2^{4}
$$

We claim that $d(S)=2^{4}$. Suppose A is an abelian subgroup of S. Then $|A| \leqslant 2^{4}$ if $A \leqslant T$. So assume that A is not contained in T. Then

$$
A \cap Z(T) \leqslant C_{Z(T)}(\sigma)=Z(S)=\left\langle c^{2} d^{2}, z\right\rangle<Z(T)
$$

and $(A \cap T) Z(T)$ is an abelian subgroup of T. Therefore,

$$
T>(A \cap T) Z(T)>A \cap T, \quad|A \cap T| \leqslant|T| / 2^{2}=2^{3} \quad \text { and } \quad|A|=2|A \cap T| \leqslant 2^{4}
$$

as desired. Thus, $d(S)=2^{4}$.
Let $A^{*}=\langle\sigma d, z\rangle$. Since $\langle c, Z(T)\rangle$ and $\langle d, Z(T)\rangle$ are abelian subgroups of order 2^{4} in T that generate T, we have $T=J(T)$. Moreover,

$$
\begin{aligned}
(\sigma d)^{2} & =\sigma^{-1} d \sigma d=c d \\
(\sigma d)^{4} & =(c d)^{2}=(a i b j)^{2}=(a b)^{2} k^{2} \\
& =a^{2} b^{2} z=c^{2} z d^{2} z z=c^{2} d^{2} z
\end{aligned}
$$

So σd has order $8, A^{*}=\langle\sigma d\rangle \times\langle z\rangle$ and A^{*} is abelian of order 16 . Therefore, $J(S) \geqslant$ $\left\langle J(T), A^{*}\right\rangle=S$ and $S=J(S)$.

Here,

$$
|S||Z(S)|=2^{6} \cdot 2^{2}=2^{8}=d(S)^{2}
$$

By Lemma 2.12, the minimal CL-subgroups of S are the large abelian subgroups of S, and $S=S_{\mathrm{CL}}=S_{\mathrm{MCL}}=\tilde{J}(S)$. By $(7.4), Z(S) \neq Z(G)$. Now, as in Example 7.1, neither of the subgroups $Z(S)$ and S_{MCL} of Theorem C is normal in G, but one of the subgroups S_{1}, S_{2} for this case of [12] is normal in G. (In fact, $S_{2}=T \triangleleft G$, as in Example 7.1.) So G satisfies conditions (a)-(i) of Theorem C. However, it is easy to see that

$$
\hat{G}=\mathrm{O}^{p}(G)=T\langle z\rangle, \quad \hat{T}=\mathrm{O}_{p}(\hat{G})=T, \quad Z(\hat{G})=C_{Z(T)}(z)=\langle z\rangle=Z(G)
$$

and $\hat{T} / Z(\hat{G})$ is not elementary abelian, unlike the case when p is odd.
Further calculation shows that, for every large abelian subgroup A of $S,\left|\Omega_{1}(Z(A))\right|=$ $\left|\Omega_{1}(A)\right| \leqslant 2^{3}<d(S)$ because A is not elementary abelian. Since $\left|\Omega_{1}(A)\right|=2^{3}$ for $A=\langle c, Z(T)\rangle$, the parameter $m z(S)$ in Theorem B is equal to 2^{3} and we have

$$
\left.1<S_{\Phi}=\langle\Phi(A)| A \text { is a large abelian subgroup of } S \text { and }\left|\Omega_{1}(A)\right|=2^{3}\right\rangle
$$

Since $Z(S) \neq Z(G)$, Lemma 2.19 and Theorem B yield that S_{Φ} is a normal subgroup of G. (In fact, $S_{\Phi}=\Phi(T)=Z(T)>1$.)

Example 7.3. In Theorem C, part (h) yields that if $L>T$ and $q>2$, then $Z(S)$ or S_{MCL} is normal in G. Here, we show that the assumption that $q>2$ is necessary.

Let F be the Galois field of order 2^{6}. Then the multiplicative group F^{\times}contains a unique subgroup M of order 9 , and the Galois group of F contains a unique element σ of order 2 , given by $x \mapsto x^{8}$. We may regard σ and the elements of M as permutations of F. Then σ normalizes M.

Let $H=M\langle\sigma\rangle$. Then H is a dihedral group of order 18. Therefore, $H / \Omega_{1}(M)$ is isomorphic to the symmetric group of degree 3 , so that H acts on a Klein 4 -group E with kernel $\Omega_{1}(M)$.

Let R be the set of all triples (x, y, z) for $x, y \in F$ and $z \in \mathrm{GF}(2)$. Define a bilinear mapping of $F \times F$ into $\mathrm{GF}(2)$ by $f(x, y)=T\left(x y^{8}\right)$, where T denotes the trace function from F to $\operatorname{GF}(2)$. Note that $f\left(x^{\alpha}, y^{\alpha}\right)=f(x, y)$ whenever $\alpha \in M$ or $\alpha=\sigma$, and hence whenever $\alpha \in H$.

We define multiplication on R by

$$
(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+f\left(x^{\prime}, y\right)\right)
$$

and we let $(x, y, z)^{\alpha}=\left(x^{\alpha}, y^{\alpha}, z\right)$ for $(x, y, z) \in R$ and $\alpha \in H$. Straightforward calculation shows that R is a group and that

$$
\left[(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right]=\left(0,0, f\left(x^{\prime}, y\right)+f\left(x, y^{\prime}\right)\right)
$$

Moreover, H acts faithfully on R by automorphisms. Finally, we embed E and R in their direct product T, and we embed T and H in their semi-direct product G.

Let $S=T\langle\sigma\rangle$. Then S is a Sylow 2-subgroup of G and $T=\mathrm{O}_{2}(G)$, and G satisfies $\left(E_{0}\right)$ for $p^{n}=2$. It is easy to see that R is an extra-special group of order 2^{13} and

$$
|S|=2^{16}, \quad Z(T)=E \times Z(R), \quad Z(S)=C_{E}(\sigma) \times Z(R) \quad \text { and } \quad|Z(S)|=4
$$

Let

$$
R_{1}=\{(x, y, z) \mid x, y \in \mathrm{GF}(8) \text { and } z \in \mathrm{GF}(2)\}
$$

and

$$
A_{1}=E \times R_{1}
$$

Then R_{1} is an elementary abelian subgroup of R of order 2^{7} that is centralized by σ. Let $A=C_{E}(\sigma) \times R_{1} \times\langle\sigma\rangle$. Easy calculation shows that
A_{1} and A are elementary abelian subgroups of order 2^{9} in $S, \quad d(T)=d(S)=2^{9}$,

$$
T=J(T) \quad \text { and } \quad S=J(S)
$$

Therefore, $|S||Z(S)|=2^{16} \cdot 2^{2}=2^{18}=d(S)^{2}$. By Lemma 2.12, the minimal CL-subgroups of S are the large abelian subgroups of S, and $S=S_{\mathrm{CL}}=S_{\mathrm{MCL}}=\tilde{J}(S)$.

As in Examples 7.1 and 7.2 , neither of the subgroups $Z(S)$ and S_{MCL} of Theorem C is normal in G, but one of the subgroups S_{1}, S_{2} for this case of [12] is normal in G. (As in Examples 7.1 and $7.2, S_{2}=T \triangleleft G$.) Since

$$
L=C_{G}(Z(T))=C_{G}(E Z(R))=T \Omega_{1}(M)>T
$$

we have $L>T$, unlike the case when $q>2$.
Example 7.4. Here we verify a case of Thompson's conjecture in $\S 1$ when $S=J(S)$ and show that neither S_{Φ} nor S_{MCL} is normal in this case.

Assume $p \geqslant 5$. For convenience, we take $q=p$. Let G be the group denoted by G_{-a} in Example 8.1 of [12]. Then

$$
G=\langle x \in P| x \text { is a } p \text {-element }\rangle
$$

for a rank-1 parabolic subgroup P of the simple group $G_{2}(p), P / G$ is a cyclic p^{\prime}-group, and S is a Sylow p-subgroup of G, P and $G_{2}(p)$.

Let F be the field \boldsymbol{F}_{p}. In the usual notation for simple groups of Lie type $[\mathbf{4}], S=U$ and $G=\left\langle x_{-a}(F), S\right\rangle$ for the short root a in a fundamental root system $\{a, b\}$ of type G_{2}. As usual, let $T=\mathrm{O}_{p}(G)$. Then

$$
\begin{aligned}
|S| & =p^{6}, \quad G / T \cong \mathrm{SL}(2, p), \quad G \text { satisfies }\left(E_{0}\right), \quad d(S)=p^{3} \\
S & =J(S)=\tilde{J}(S), \quad|Z(S)|=p \quad \text { and } \quad Z(S)=Z(T) \triangleleft G
\end{aligned}
$$

Moreover, T is an extra-special group of order p^{5} and exponent p, and $T / Z(T)$ is a chief factor of order p^{4} in G, and thus not a standard module for G / T.

In the usual notation, the Chevalley commutator formulae [4] give

$$
\begin{array}{rr}
Z(T)=x_{3 a+2 b}(F), \quad T=\left\langle x_{b}(F), x_{b+a}(F), x_{b+2 a}(F), x_{b+3 a}(F)\right\rangle \\
S^{\prime}=\left\langle x_{b+a}(F), x_{b+2 a}(F), x_{b+3 a}(F), Z(T)\right\rangle & \left(\text { of order } p^{4}\right) \\
{\left[S^{\prime}, S\right]=\left\langle x_{b+2 a}(F), x_{b+3 a}(F), Z(T)\right\rangle} & \text { (of order } \left.p^{3}\right) \\
{\left[S^{\prime}, S, S\right]=\left\langle x_{b+3 a}(F), Z(T)\right\rangle=Z_{2}(S)} & \text { (of order } \left.p^{2}\right)
\end{array}
$$

Moreover, $S=\left\langle x_{a}(F), T\right\rangle$ and $Z_{2}(S)=C_{T}\left(x_{a}(F)\right)$. Thus, S has nilpotence class 5 , and it is a p-group of maximal class.

By Proposition 2.8 and Theorem 2.9, $S_{\mathrm{CL}} \geqslant \tilde{J}(S)=S$ and S_{CL} is a CL-subgroup of S. So $S=S_{\mathrm{CL}}$ and $f(S)=|S||Z(S)|=p^{6} \cdot p=p^{7}$. Let $S^{*}=C_{S}\left(Z_{2}(S)\right)$. Then calculation shows that

$$
S^{*}=\left\langle S^{\prime}, x_{a}(F)\right\rangle, \quad Z\left(S^{*}\right)=Z_{2}(S), \quad\left|S^{*}\right|=p^{5}, \quad\left|S^{*}\right|\left|Z\left(S^{*}\right)\right|=p^{5} \cdot p^{2}=p^{7}=f(S)
$$

and S^{*} is the unique minimal CL-subgroup of S. Therefore,

$$
S_{\mathrm{MCL}}=S^{*} \quad \text { and } \quad S_{\Phi}=\Phi\left(S^{*}\right)=\left(S^{*}\right)^{\prime}=\left[S^{\prime}, S\right]
$$

Hence, none of $S_{\Phi}, Z\left(S_{\mathrm{MCL}}\right)$ or S_{MCL} is normal in G.
Here, $Z(J(S))=Z(S)=Z(T) \triangleleft G$, in accordance with Thompson's conjecture in $\S 1$.
Example 7.5. Assume p is odd. Let T be an extra-special group of order p^{7} and exponent p, let H be $\operatorname{PSL}(2, p)$ and let σ be an element of order p in H. Let F be the prime field \boldsymbol{F}_{p}.

In Example 10.4 of [8] (where T, H and σ are denoted by H, L and x, respectively), it is shown that there exists a semi-direct product, G, of T by H satisfying the following conditions.
(a) $H / Z(H)$ is the direct sum of two copies, V_{1} and V_{2}, of a three-dimensional vector space V over F on which H acts irreducibly as an orthogonal group.
(b) σ acts with cubic minimal polynomial on V_{1} and V_{2}.
(c) For $S=T\langle\sigma\rangle, S$ is a Sylow p-subgroup of G and $d(S)=d(T)=p^{4}$ and $J(S)=S$.
(d) $C_{S}(\sigma)$ is an elementary abelian subgroup of G of order p^{4}.

Clearly, $T=\mathrm{O}_{p}(G), Z(S)=Z(T)$ and G satisfies $\left(E_{0}\right)$ for $p^{n}=p$. Since $S=J(S)$, Proposition 2.8 and Theorem 2.9 yield that $S=S_{\mathrm{CL}}=\tilde{J}(S)$ and $f(S)=|S||Z(S)|=$ $p^{8} \cdot p=p^{9}$. Let $S^{*}=C_{S}\left(Z_{2}(S)\right)$.

This example is similar to Example 7.4. By similar methods, one sees that

$$
\left|Z_{2}(S)\right|=p^{3}, \quad\left|S^{*}\right|=p^{6} \quad \text { and } \quad Z\left(S^{*}\right)=Z_{2}(S)
$$

S^{*} is the unique minimal CL-subgroup of S; and $S_{\mathrm{MCL}}=S^{*}$ and $S_{\Phi}=\Phi\left(S^{*}\right)=Z_{2}(S)$. Thus, none of $S_{\mathrm{MCL}}, Z\left(S_{\mathrm{MCL}}\right)$ or S_{Φ} is normal in G.

Since $\mathrm{SL}(2, p)$ is not involved in G, G is p-stable, by [$\mathbf{1 3}$, Theorem 8.12].
Example 7.6. (Here, p is arbitrary.) Let H be $\mathrm{SL}(2, p)$, let V be a standard module for H, and embed V and H in their semi-direct product G.

There exist elements u, v of V and w of H such that

$$
V=\langle u, v\rangle, \quad u^{w}=u v \quad \text { and } \quad v^{w}=v .
$$

Let $S=\langle V, w\rangle$, so that S is a Sylow p-subgroup of G. Then

$$
u^{p}=v^{p}=w^{p}=1, \quad[u, w]=v, \quad V=\mathrm{O}_{p}(G) \quad \text { and } \quad G \text { satisfies }\left(E_{0}\right) \text { for } p^{n}=p .
$$

It is easy to see that V is the unique non-identity normal p-subgroup of G (because H permutes the non-identity elements of V transitively) and that there exists a unique automorphism α of S such that

$$
u^{\alpha}=w, \quad w^{\alpha}=u^{-1} \quad \text { and } \quad v^{\alpha}=v
$$

Thus, V is not characteristic in S, and no non-identity characteristic subgroup of S is normal in G.

For an arbitrary power q of p, we may take H to be $\operatorname{SL}(2, q)$ instead of $\operatorname{SL}(2, p)$ and then generalize the proof above to show that no non-identity characteristic subgroup of S is normal in G. Alternatively, one may embed G in a rank-1 parabolic subgroup of $\operatorname{PSL}(3, q)$ and use [4, pp. 200-202] and the method of Example 7.7.

Example 7.7. In Theorem A and several related results, S has nilpotence class 2 if $p \neq 3$. We show here that the assumption that $p \neq 3$ is necessary.

Assume that $p=3$. Let $q=3^{n}$ for some natural number n. Take G and S to be the subgroups of $G_{2}(q)$ analogous to the subgroups G and S of $G_{2}(p)$ for p as in Example 7.4. (A different construction of G and S for $q=3$ is given below.) Thus,

$$
G=\langle x \in P| x \text { is a 3-element }\rangle
$$

for a rank-1 parabolic subgroup P of the simple group $G_{2}(q), P / G$ is a cyclic 3^{\prime}-group, and S is a Sylow 3-subgroup of G, P and $G_{2}(q)$. As usual, let $T=\mathrm{O}_{3}(G)$.

It is easy to see that G satisfies $\left(E_{0}\right)$. By [15, pp. 358-359], S has nilpotence class 3 if $q=3$. Since $G_{2}(q)$ contains $G_{2}(3), S$ has nilpotence class at least 3 in general. We will show that no non-identity characteristic subgroup of S is normal in G. Therefore, S satisfies conditions (a)-(f) of Theorem A. In particular, S has nilpotence class precisely 3.

Suppose W is a characteristic subgroup of S that is normal in G. Then $W \triangleleft N_{P}(S)$. By the Frattini argument (Lemma 2.1), $P=G N_{P}(S)$. Hence, $W \triangleleft P$. We must show that $W=1$.

Since q is a power of 3 , there exists an automorphism α of $G_{2}(q)$ that preserves S and takes P to the other rank-1 parabolic subgroup P^{*} of $G_{2}(q)$ that contains $S[\mathbf{4}$, p. 206]. Then α preserves W, and $W=W^{\alpha} \triangleleft P^{\alpha}=P^{*}$. Hence, $W \triangleleft\left\langle P, P^{*}\right\rangle=G_{2}(q)$. As $G_{2}(q)$ is simple, $W=1$, as desired.

Let $F=\boldsymbol{F}_{q}$. The main reason that this example is very different from Example 7.4 (where $Z(S) \triangleleft G$) is that here [4, pp. 206-210]

$$
\left[x_{a}(F), x_{2 a+b}(F)\right]=\left[x_{a+b}(F), x_{2 a+b}(F)\right]=1
$$

because F has characteristic 3 . Indeed,

$$
Z(S)=\left\langle x_{2 a+b}(F), x_{3 a+2 b}(F)\right\rangle, \quad|Z(S)|=q^{2} \quad \text { and } \quad d(S)=q^{4}
$$

For the case when $q=3$, one can also construct G without using the group $G_{2}(3)$. One takes T to be a direct product

$$
T=\left\langle x_{2}, x_{6}\right\rangle \times\left\langle x_{3}, x_{5}\right\rangle
$$

where $\left\langle x_{2}, x_{6}\right\rangle$ is a non-abelian group of order 3^{3} and exponent 3 , and $\left\langle x_{3}, x_{5}\right\rangle$ is an elementary abelian group of order 9 . Let $x_{4}=\left[x_{2}, x_{6}\right]$, and define automorphisms x_{1} and x_{7} of T by

$$
\begin{gathered}
x_{2}^{x_{1}}=x_{2}, \quad x_{3}^{x_{1}}=x_{3}, \quad x_{5}^{x_{1}}=x_{3}^{-1} x_{5}, \quad x_{6}^{x_{1}}=x_{2} x_{3} x_{4} x_{5} x_{6} \\
x_{2}^{x_{7}}=x_{2} x_{3}^{-1} x_{4}^{-1} x_{5} x_{6}^{-1}, \quad x_{3}^{x_{7}}=x_{3} x_{5}, \quad x_{5}^{x_{7}}=x_{5}, \quad x_{6}^{x_{7}}=x_{6}
\end{gathered}
$$

Then $x_{i}^{3}=1$ for $i=1, \ldots, 7$. Let G be the semi-direct product of T by $\left\langle x_{1}, x_{7}\right\rangle$. Then $T=\mathrm{O}_{p}(G)$.

By $\S 9$ of $[\mathbf{1 0}],\left\langle x_{1}, x_{7}\right\rangle$ is isomorphic to $\operatorname{SL}(2,3)$ and, for $S=\left\langle x_{1}, T\right\rangle$, there exists an isomorphism ϕ of S onto $\left\langle x_{7}, T\right\rangle$ determined by

$$
\phi\left(x_{i}\right)=x_{i+1} \quad \text { for } i=1, \ldots, 6
$$

Clearly, $\left\langle x_{1}\right\rangle$ and S are Sylow 3 -subgroups of $\left\langle x_{1}, x_{7}\right\rangle$ and of G, and G satisfies $\left(E_{0}\right)$. Let g be an element of $\operatorname{SL}(2,3)$ such that $\left\langle x_{7}\right\rangle^{g}=\left\langle x_{1}\right\rangle$. Then the mapping given by $x \mapsto \phi(x)^{g}$ is an automorphism of S.
Suppose W is a characteristic subgroup of S that is normal in G. Then

$$
W=\phi(W)^{g} \quad \text { and } \quad \phi(W)=W^{g^{-1}}=W
$$

From the definition of ϕ, we see that $W=1$, as desired.
Acknowledgements. It is a pleasure to dedicate this article to Ron Solomon for many years of friendship, help and encouragement.

During the preparation of this paper, the author enjoyed the support of the National Security Agency (USA) through a grant, and the hospitality of the Schare Research Institute. G.G. thanks these institutions warmly.

References

1. M. Aschbacher, Generation of fusion systems of characteristic-2 type, Invent. Math. 180 (2010), 225-299.
2. B. Baumann, Über endliche Gruppen mit einer zu $L_{2}\left(2^{n}\right)$ isomorphen Faktorgruppe, Proc. Am. Math. Soc. 74 (1979), 215-222.
3. N. Campbell, Pushing-up in finite groups, PhD Thesis, California Institute of Technology, Pasadena, CA (1979).
4. R. Carter, Simple groups of Lie type (Wiley, 1972).
5. A. Chermak and A. Delgado, A measuring argument for finite groups, Proc. Am. Math. Soc. 107 (1989), 907-914.
6. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Wiley, 1962).
7. W. Feit, Characters of finite groups (W. A. Benjamin, New York, 1967).
8. G. Glauberman, A characteristic subgroup of a p-stable group, Can. J. Math. 20 (1968), 1101-1135.
9. G. Glauberman, Global and local properties of finite groups, in Finite simple groups (ed. M. B. Powell and G. Higman), pp. 1-64 (Academic Press, New York, 1971).
10. G. Glauberman, Isomorphic subgroups of finite p-subgroups, I, Can. J. Math. 23 (1971), 983-1022.
11. G. Glauberman, Centrally large subgroups of finite p-groups, J. Alg. $\mathbf{3 0 0}$ (2006), 480508.
12. G. Glauberman and R. Niles, A pair of characteristic subgroups for pushing-up in finite groups, Proc. Lond. Math. Soc. 46 (1983), 411-453.
13. D. Gorenstein, Finite groups (Harper \& Row, New York, 1968).
14. D. Gorenstein, Finite simple groups: an introduction to their classification (Plenum, New York, 1982).
15. R. L. Griess Jr, Schur multipliers of finite simple groups of Lie type, Trans. Am. Math. Soc. 183 (1973), 355-421.
16. M. Hall, The theory of groups (Macmillan, New York, 1959).
17. B. Huppert, Endliche Gruppen I (Springer, 1967).
18. E. I. Khukhro, p-automorphisms of finite p-groups, London Mathematical Society Lecture Note Series, Volume 246 (Cambridge University Press, 1998).
19. R. Niles, Pushing-up in finite groups, J. Alg. 57 (1979), 26-63.
20. F. Richen, Modular representations of split $B N$ pairs, Trans. Am. Math. Soc. 140 (1969), 435-460.
21. J. S. Rose, A course on group theory (Dover, New York, 1994).
22. R. Steinberg, Lectures on Chevalley groups, Yale University (1968) (available at www.math.ucla.edu/~rst).
