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Abstract Many problems about local analysis in a finite group G reduce to a special case in which
G has a large normal p-subgroup satisfying several restrictions. In 1983, R. Niles and G. Glauberman
showed that every finite p-group S of nilpotence class at least 4 must have two characteristic subgroups
S1 and S2 such that, whenever S is a Sylow p-subgroup of a group G as above, S1 or S2 is normal in G.
In this paper, we prove a similar theorem with a more explicit choice of S1 and S2.
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1. Introduction and notation

Let p be a prime and let S be a finite p-group. Let JR(S) be the subgroup of S generated
by the abelian subgroups of largest rank. In 1964, John G. Thompson introduced the
subgroup JR(G) and used it to prove the following result [7, p. 118].

Suppose p is odd and S is a Sylow p-subgroup of a finite group G. Assume that
CG(Z(S)) and NG(JR(S)) both have normal p-complements. Then G has a normal p-
complement.

This theorem led to further work by Thompson and others that used subgroups similar
to JR(S) and local information about Sylow subgroups to obtain global information about
finite groups, particularly simple groups [14, pp. 225–282]. Much of this work reduced to
the following minimal situation:

(E0) G is a nonidentity finite group;

p is a prime;

S is a Sylow p-subgroup of G;

CG(Op(G)) � Op(G);

S is contained in a unique maximal subgroup of G; and

for some normal subgroup K of G and some natural
number n, G/K ∼= PSL(2, pn).
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72 G. Glauberman

Here, one needs to show that some non-identity characteristic subgroup of S is a normal
subgroup of G.

There are examples (below) in which no such characteristic subgroup exists, even
though S has nilpotence class precisely 2 and is thus almost abelian. Thus, it seems
surprising that there must exist such a subgroup if S has nilpotence class precisely 4
or larger (or precisely 3 or larger, if p �= 3), by results of Niles [19] (in 1977) and
Baumann [2] (in 1979). In 1983, Niles and the author managed to extend these results
as follows [12, Theorem A].

Theorem. Suppose p is a prime and S is a finite p-group. Assume that S has nilpo-
tence class at least 3; if p = 3, assume that S has nilpotence class at least 4. Then there
exist non-identity characteristic subgroups S1, S2 of S satisfying the following condition:
whenever a group G satisfies (E0), S1 � G or S2 � G.

This result is useful when G ranges over a family of subgroups of a group, such as a
simple group [14, pp. 273–279].

In this article we extend this theorem in two ways. First, we find further sufficient
conditions under which some pair S1, S2 satisfies the conclusion of the theorem (Theo-
rems A, B, D and E). Second, motivated by a question about the results of [12], we focus
on a different particular pair and find sufficient conditions for it to satisfy the conclusion
of the theorem (Theorem C). These results may shed light on a conjecture of Thompson
(below).

Just as the results of [12] used characteristic subgroups similar to JR(S), our new
results involve characteristic subgroups arising from a recent article [11] using work of
Chermak and Delgado [5].

Some results related to [12] (and to this paper) appear in [1] and [3]. (For these articles,
J(S) is defined to be generated by the elementary abelian subgroups of maximal order
in S, and so may be different from the subgroup called J(S) in this paper. Similarly, the
Baumann subgroup is defined differently in these articles.)

The results of [12] are divided into cases, and this article was inspired by a question
about one case. In every case of [12], the subgroup S1 is relatively small and is contained
in the centre of S, while the subgroup S2 is relatively large and contains its centralizer
in S, just like the pair Z(S), JR(S) in Thompson’s theorem. Moreover, in all except one
case, S2 has the additional property that no subgroup of S other than S2 is isomorphic
to S2. (This property is clearly satisfied by JR(S), which is one of the reasons that JR(S)
is useful.) Hence, in these cases, whenever (E0) is satisfied and S2 is contained in Op(G),
then S2 is normal in G.

The exceptional case of [12] (which occurs in part (c) of Theorem D of [12] and
occupies most of the proof in [12]) is somewhat mysterious. Here, S2 is defined as the
intersection of some subgroups of S, and the author suspected that some subgroup S∗ of
S2 defined more explicitly would satisfy the additional property above. After obtaining
the results of [11], our suspicion fell in particular on the subgroup SMCL defined below,
which clearly satisfies the additional property.

Example 7.1 below shows that these suspicions were incorrect in general. However, in
Theorem C we use [11] to prove them under some restrictions on G. In part of the proof,
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we are able to prove that SMCL � G in a situation in which a variation of JR(S) (namely,
the subgroup J(S) defined below) may not be normal in G. In Theorems B and D, we
apply [11] to obtain new sufficient conditions on S for S1 and S2 to exist. This yields
Theorems A and E, which extend the theorem of [12] above.

To state Theorem A, we use notation from [14, pp. 227, 274] for two subgroups similar
to JR(S). As before, S denotes an arbitrary finite p-group. Let A (S) be the set of all
abelian subgroups of S of maximal order and let J(S) be the Thompson subgroup of
S, which is generated by A (S). Let J̃(S) be the Baumann subgroup of S, given by
CS(Z(J(S))). As usual, for any group G, let Φ(G) denote the Frattini subgroup of G and
let Z2(G) denote the subgroup given by Z2(G)/Z(G) = Z(G/Z(G)). In this article, we
call the elements of A (S) the large abelian subgroups of S.

Consider the following hypothesis:

(P ) (i) S1 is a subgroup of Z(S) and S2 is a characteristic subgroup of J̃(S),

(ii) whenever (E0) is satisfied for some group G, then S1 � G or S2 � G.

Theorem A. Suppose p is a prime and S is a non-identity finite p-group. Then there
exist non-identity characteristic subgroups S1 and S2 of S satisfying the hypothesis (P ),
except possibly when S satisfies the following conditions:

(a) S is not abelian;

(b) J(S) = S;

(c) Z(S) and Φ(S) are elementary abelian;

(d) (i) if p = 2, then Φ(S) � Z(S),

(ii) if p = 3, then Φ(S) � Z2(S), and

(iii) if p > 3, then Φ(S) � Z(S) and S has exponent p;

(e) some large abelian subgroup of S is elementary abelian; and

(f) for all large abelian subgroups A, B of S and all subgroups Q of S,

|A|2 = |S| |Z(S)| � |Q| |Z(Q)| and 〈A, B〉 = AB = BA = CS(A ∩ B).

Note that conditions (a) and (d) yield that S has nilpotence class precisely 2 if p �= 3
and precisely 2 or 3 if p = 3. Parts (a)–(d) come mainly from [12], while parts (e) and (f)
come from Theorem B below, and thus mainly from [11].

To describe some examples in which S has nilpotence class 2, consider a group H that
is isomorphic to SL(2, pn) for some natural number n and acts faithfully on an elementary
abelian group V of order p2n. We say that V is a standard module for H if there exists a
field F such that V is a two-dimensional vector space over F and SL(V, F ) is the group
of all automorphisms of V induced by H.

Now, suppose that S is a Sylow p-subgroup of the semi-direct product V H in the
situation above. In the simplest case, when n = 1, S is a dihedral group of order 8 if
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p = 2 and a non-abelian group of order p3 and exponent p if p is odd. It is well known that,
for every n, no non-identity characteristic subgroup of S is normal in G. We show this in
Example 7.6 for n = 1 and give references for n > 1. Hence, S satisfies conditions (a)–(f)
of Theorem A, as one may easily verify.

For p = 3, we give in Example 7.7 a family of examples in which S has nilpotence
class 3 and no non-identity characteristic subgroup of S is normal in G.

We need additional notation from [11] and [12] for our other results:

d(S) = max{|A| | A � S and A is abelian},

f(S) = max{|R| · |Z(R)| | R � S},

f1(S) = max{|R| · |CS(R)| | R � S},

F (S) = {R � S | |R| · |Z(R)| = f(S)},

F1(S) = {R � S | |R| · |CS(R)| = f1(S)},

SCL = 〈F (S)〉,
S′ = [S, S].

We call elements of F (S) centrally large subgroups, or CL-subgroups, of S.
By Proposition 2.4 of [11], f(S) = f1(S) and F (S) is a subset of F1(S). A CL-sub-

group of S that is minimal under inclusion in F (S) is called a minimal CL-subgroup of
S. Let SMCL denote the subgroup of S generated by all the minimal CL-subgroups of S.

For a finite group G and a prime p, we also let Op(G) be the subgroup generated by
all the p′-elements of G.

Now we may state our other main results.

Theorem B. Assume (E0), and suppose J̃(S) = S. Let

mz(S) = max{|Ω1(Z(Q))| | Q is a minimal CL-subgroup of S}

and

SΦ = 〈Φ(Q) | Q is a minimal CL-subgroup of S and |Ω1(Z(Q))| = mz(S)〉.

Then

(a) Z(S) � G or SΦ � G, and

(b) if SΦ = 1, then the minimal CL-subgroups of S coincide with the large abelian
subgroups of S, and at least one of them is elementary abelian.

Remark 1.1. Note that SΦ contains �1(Z(S)). Whenever (E0) is satisfied, Z(S) � G

if and only if Z(S) = Z(G), by Lemma 2.19 below.
Theorem B will follow easily from results in [11]. We show in § 3 that in case (b) of

Theorem B and case (c) of Theorem D (below), some large abelian subgroup of S is
normal in S and, for all large abelian subgroups A, B of S and all subgroups Q of S,

|A|2 = |S| |Z(S)| � |Q| |Z(Q)| and AB = BA = CS(A ∩ B)

(as in condition (f) of Theorem A).
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Theorem C. Assume (E0), and suppose J̃(S) = S. Let

T = Op(G), Ĝ = Op(G), Ŝ = S ∩ Ĝ, T̂ = Op(Ĝ), L = CG(Z(T )) and q = pn.

Then Z(S) � G or SMCL � G, except possibly if G satisfies the following conditions.

(a) Ŝ is a Sylow p-subgroup of Ĝ of nilpotence class at most 3.

(b) The commutator subgroup Q′ is the same for each minimal CL-subgroup Q of S

and is a characteristic subgroup of S, T and G, and G = TCG(Q′).

(c) T̂ has nilpotence class at most 2, T̂ /Z(T̂ ) is elementary abelian, and T̂ ′ � Z(Ĝ) <

Z(T̂ ) � T̂ = [T̂ , Ĝ].

(d) T̂ has exponent p if p is odd, and Ŝ has exponent p if p � 5.

(e) G/L ∼= SL(2, q) and Z(T )/Z(G) is a standard module for G/L.

(f) A chief factor U/V of G for which U � T is central if U � Z(Ĝ) or T̂ � V < U � T

and is not central if Z(Ĝ) � V < U � T̂ .

(g) If q = 2, then G/T is a dihedral group of order 2 · 3k for some natural number k.

(h) If q > 2, then L = T and every non-central chief factor U/V of G satisfying U � T

is a standard module for G/T .

(i) If q � 4, then there exists a normal subgroup R of NG(S) such that

R � Ŝ, S = TR, [S, R] � Ŝ′Z(Ĝ) and [S, R, R, R] = 1.

By Theorem 2.10, the condition that Q′ = R′ for all minimal CL-subgroups Q, R of S

is satisfied for all groups S, and does not depend on the hypothesis of Theorem C.
While SMCL has the advantage of being defined more explicitly than the group S2 in the

exceptional case in [12], there are cases (Examples 7.1–7.3) in which S2 � G, but neither
Z(S) nor SMCL is normal in G. (Thus, G satisfies conditions (a)–(i) of Theorem C.)

Consider the following condition:

(P ′) condition (P ) is satisfied and f(S2) = f(J̃(S)).

Remark 1.2. Condition (P ′) says that S2 contains a CL-subgroup Q of J̃(S). By
Theorem 3.1 of [11], Q contains some large abelian subgroup A of J̃(S). Then A is a
large abelian subgroup of S. Therefore, d(S2) = d(S) and CS(S2) � CS(A) = A � S2.

We also obtain the following analogues of Theorems A and B.

Theorem D. Assume (E0) and suppose J̃(S) = S. Let Q be any minimal CL-sub-
group of S. Then

(a) Q′ is a characteristic subgroup of S;

(b) Z(S) ∩ Q′ � G or SMCL � G; and

(c) if Q′ = 1, then the minimal CL-subgroups of S coincide with the large abelian
subgroups of S.
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Note that in case (c), S satisfies the conditions of Remark 1.1.

Theorem E. Suppose p is a prime and S is a non-identity finite p-group. Then there
exist non-identity characteristic subgroups S1 and S2 of S satisfying condition (P ′),
except possibly if S satisfies the following conditions:

(a) S is not abelian;

(b) J(S) = S;

(c) Z(S) and Φ(S) are elementary abelian;

(d) (i) if p = 2, then Φ(S) � Z(S),

(ii) if p = 3, then Φ(S) � Z2(S), and

(iii) if p > 3, then Φ(S) � Z(S) and S has exponent p; and

(e) for all large abelian subgroups A, B of S and all subgroups Q of S,

|A|2 = |S| |Z(S)| � |Q| |Z(Q)| and 〈A, B〉 = AB = BA = CS(A ∩ B).

Rather than alternating between two subgroups S1 and S2, it would be ideal to find
a single characteristic subgroup S3 of S that is normal in every group satisfying (E0).
However, examples (as in [12, pp. 412–413]) show that S3 need not exist, even for S of
arbitrarily large class.

Despite this, there are results that give some global information about a group G from
information about the normalizer NG(S3) of a single non-identity characteristic subgroup
S3 of S. These results generally reduce to showing that S3 �G in a group G that satisfies
conditions like (E0) as well as additional conditions, such as commutator conditions on
the chief factors U/V of G for U contained in Op(G) [9, §§ 7 and 12].

As mentioned in [12, p. 413], John G. Thompson has asked whether, for p odd, there
exists a characteristic subgroup S3 such that S3 �G for every group G that satisfies (E0)
and the conditions that G/ Op(G) ∼= SL(2, pn) and some non-central chief factor U/V of
G with U � Op(G) is not a standard module for G/ Op(G). From Theorem 2.15 below,
the latter condition is equivalent to the commutator condition [U/V, S, S] > 1. This is
related to the condition of p-stability, which yields Z(J(S)) � G [9, pp. 22, 23, 41], and,
indeed, Thompson has conjectured [12, p. 452] that one can take S3 = Z(J(S)) under
his conditions as well.

By Remark 1.2 of [12], every group G satisfying Thompson’s conditions falls into one
of the cases of [12], and hence satisfies S1 �G or S2 �G for the corresponding pair S1, S2.
If it also satisfies J̃(S) = S, then Z(S)�G or SMCL �G, by part (h) of Theorem C. These
observations may shed light on Thompson’s question.

Section 2 consists of preliminary results. Theorems A, B, D and E are proved in § 3.
The proofs come mainly from [12] and [11] and do not require most of the results of § 2.
Thus, most of this paper is devoted to the proof of Theorem C.
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Starting before Proposition 3.4, we assume the following additional hypothesis and
notation:

(H) G, p, S, K and n satisfy (E0),

T = Op(G),

Z(S) �= Z(G) and S = J̃(S).

Note that (H) is the hypothesis of case (c) of Theorem D of [12], except that there
one denotes Op(G) by M and one also assumes that �1(Z(S)) = 1. Note also that if (H)
holds, then Z(S) = Z(J(S)).

In §§ 3–5, we reduce the proof of Theorem C to the special case in which the minimal
CL-subgroups of S are large abelian subgroups and G is generated by two large abelian
subgroups from different Sylow subgroups. We complete the proof in § 6, and we give
examples in § 7.

All groups in this paper will be finite. In addition to the notation already defined, most
of our notation is standard and taken from [13]. In particular, for subgroups X, Y , Z of
a group,

[X, Y, Z] = [[X, Y ], Z], [X, Y ; 1] = [X, Y ],

[X, Y ; i + 1] = [[X, Y ; i], Y ] for i = 1, 2, 3, . . . .

Throughout this paper, p denotes a fixed but arbitrary prime, and S denotes a fixed but
arbitrary p-group.

2. Preliminary results

Here we state several previous results, mainly from [11]. Theorem 2.7 and Proposition 2.8
will be used very frequently, as will Dedekind’s Law: if H, K, L and HK are subgroups
of a group and H � L, then HK ∩L = H(K ∩L). Therefore, we will usually apply them
without quoting them.

Most of the results in this section are used only for Theorem C. The other main
theorems are proved in § 3 and require only Theorems 2.7 and 2.10, Proposition 2.8 and
Lemmas 2.12 and 2.19 from this section.

In this section, P denotes a fixed, but arbitrary, p-group. (Some of these results remain
valid when P is an arbitrary finite group.)

Lemma 2.1.

(a) If H and K are subgroups of a group G, then [H, K] � 〈H, K〉.

(b) (Frattini argument.) If H is a normal subgroup of a group G and P is a Sylow
subgroup of H, then G = NG(P )H.

(c) If A is a p′-group of automorphisms of P , then

P = CP (A)[P, A] and [P, A, A] = [P, A],

and, if P is abelian, P = CP (A) × [P, A].
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(d) If N is a normal A-invariant subgroup of P in (c), then CP/N (A) = CP (A)N/N .

(e) If A centralizes P/N and N in (d), then A centralizes P .

(f) If P is a Sylow subgroup of a group G, then P ∩ G′ ∩ Z(G) � P ′.

Proof. Parts (a)–(d) are proved in [13] (part (a) on p. 18, part (b) on p. 12 and parts
(c) and (d) on pp. 177–181). Part (e) follows from (d). Part (f) follows from Theorem 10.8
in [21]. �

Theorem 2.2. Suppose that A is a group acting on a p-group P . Let B be a Sylow
p-subgroup of A.

(a) (Thompson.) Assume A = B × C for some p′-subgroup C of A, and C centralizes
CP (B). Then C centralizes P .

(b) (Gaschütz.) Assume P is abelian and P = Q × R for some A-invariant subgroup
Q and some B-invariant subgroup R of P . Then P = Q × R� for some A-invariant
subgroup R� of P .

Proof. (a) This is proved in [13, pp. 179–180].

(b) Let X be the semi-direct product of P by A. We embed P and A in X in the usual
manner. Then

P � X, PB is a Sylow p-subgroup of X, PB ∩ Q = Q,

and RB is a complement to Q in PB, i.e. PB splits over PB ∩ Q.
For any prime q other than p, a Sylow q-subgroup of A is a Sylow q-subgroup of X and

intersects Q trivially, and hence obviously splits over this intersection. Thus, for every
prime q, including p, X possesses a Sylow q-subgroup that splits over its intersection
with Q. It follows from [16, Theorem 15.8.6] that X is a splitting extension of Q by some
subgroup Y .

Let R� = P ∩ Y . Then P = Q × R� and R� � QY = X. Therefore, R� is invariant
under A, as desired. �

Theorem 2.3 (Noboru Itô). Suppose A and B are abelian subgroups of a group
and AB = BA. Then (AB)′ is abelian.

Proof. This is proved in [17, p. 674]. �

Theorem 2.4. Suppose P has nilpotence class at most p − 1. Then

(a) every element of Ω1(P ) has order 1 or p and

(b) if x, y ∈ P and xp = yp, then (xy−1)p = 1.
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Proof. This follows easily from Hall’s theory of regular p-groups, since P is a regular
p-group by [16, Corollary 12.3.1, p. 182]. Specifically, (a) and (b) follow from [16, p. 186].

Alternatively, these results follow easily from Lazard’s correspondence between
p-groups of class at most p − 1 and finite nilpotent Lie rings of p-power order and class
at most p − 1 [18, Chapter 10]. �

Lemma 2.5. Suppose p is a prime, n is a natural number and H is an abelian group
of order dividing pn − 1 acting irreducibly on an elementary abelian p-group V .

Then |V | = pk for some natural number k dividing n.

Proof. Let H� be the group of automorphisms of V induced by the elements of H,
and let E be the ring of endomorphisms of V generated by H�. Since E centralizes H, E

is an integral domain by Schur’s Lemma. As E is finite, it is a finite field GF(pk). Hence,
H� is cyclic.

We may regard V as a vector space over E. As H is irreducible on V , the dimension
of V over E is 1. Since the order of H� divides pn − 1, the theory of finite fields shows
that k is a divisor of n. Then |V | = |E| = pk. �

Theorem 2.6 (Richard Niles). Suppose n is a natural number, K is a normal
p′-subgroup of a group H, A is a non-identity p-subgroup of H, and V is an elementary
abelian p-group on which H operates. Assume that

(i) H/K � PSL(2, pn),

(ii) some Sylow p-subgroup of H lies in a unique maximal subgroup of H,

(iii) [V, A, A] = 1 and

(iv) |V/CV (A)| � |A| and CV (A) �= CV (H).

Then

(a) A is a Sylow p-subgroup of H,

(b) H/CH(V ) � SL(2, pn) and

(c) V/CV (H) is a standard module for H/CH(V ).

Proof. This is proved in Lemma 2.8 of [19] (and is part of Lemma 2.3 of [12]). �

Theorem 2.7 (Chermak and Delgado). Suppose Q, R ∈ F1(P ). Then

(a) QR = RQ and QR, Q ∩ R ∈ F1(P ),

(b) CP (Q) ∈ F1(P ) and Q = CP (CP (Q)), and

(c) CP (Q ∩ R) = CP (Q)CP (R).

Proof. This is part of Theorem 2.1 and Proposition 2.3 of [11] (and follows from
Lemmas 1.1 and 3.1 of [5]). �
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Proposition 2.8. Suppose Q is a subgroup of P . Then

(a) if Q is a CL-subgroup of P , then Q ∈ F1(P ) and CP (Q) = Z(Q);

(b) if Q ∈ F1(P ), then Q is a CL-subgroup of P if and only if Q � CP (Q);

(c) if Q and R are CL-subgroups of R, then QR = RQ and QR is a CL-subgroup of
P ; and

(d) PCL and PMCL are CL-subgroups of P .

Proof. Parts (a) and (b) come from Proposition 2.4 and Corollary 2.6 of [11]. Then (c)
follows from (a) and (b) and Theorem 2.7, and (d) follows from (c). �

Theorem 2.9. Suppose Q is a CL-subgroup of P and A is a large abelian subgroup
of P . Then

(a) QA = AQ and QA is a CL-subgroup of P ,

(b) CQA(Q ∩ A) = Z(Q)A = AZ(Q) and

(c) PCL contains J̃(P ).

Proof. Theorem 3.1 and Corollary 3.2 of [11] give (a) and (b) and the containment
PCL � J(P ). Then Z(PCL) � CP (J(P )) = Z(J(P )). By Theorem 2.7,

PCL = CP (Z(PCL)) � CP (Z(J(P ))) = J̃(P ).

�

Theorem 2.10. Suppose Q and R are minimal CL-subgroups of P . Then

(a) Q = (Q ∩ R)Z(Q),

(b) Q′ = R′,

(c) |Q| = |R| and |Z(Q)| = |Z(R)| and

(d) if Q is abelian, then A (P ) is the set of all minimal CL-subgroups of P .

Proof. Parts (a)–(c) are part of Corollary 4.2 and Theorem 4.5 of [11].

For (d), assume Q is abelian. By (b) and (c), every minimal CL-subgroup of P is
abelian of the same order as Q. By the definition of a CL-subgroup,

|Q|2 = |Q| |Z(Q)| � |A| |Z(A)| = |A|2

for every abelian subgroup A of P . This gives (d). �

Our next result uses the methods of Lemma 4.3 of [11] to extend the lemma.
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Lemma 2.11. Suppose K, L�P = KL and L = CP (K). Assume that K is contained
in some minimal CL-subgroup of P . Let Z = K ∩ L.

Then Z = Z(K) and there is a bijection between

the set of all minimal CL-subgroups Q of P containing K

and
the set of all minimal CL-subgroups Q� of L,

given by Q� = Q ∩ L and Q = KQ�. In this bijection, |Q| = |K/Z| |Q�|.

Proof. Since L = CP (K), Z = K ∩ CP (K) = Z(K). Clearly, there is a bijection
between the set of all subgroups T of P that contain K and the set of all subgroups T �

of L that contain Z, given by

T � = T ∩ L and T = T ∩ KL = K(T ∩ L) = KT �.

In this bijection, we have Z = K ∩ L = (K ∩ T ) ∩ L = K ∩ (T ∩ L) = K ∩ T � and

|T | = |KT �| = |K| |T �|/|K ∩ T �| = |K/Z| |T �|,
Z(T ) = CT (KT �) = CT (K) ∩ CT (T �) = L ∩ T ∩ CT (T �) = Z(T �).

Therefore, |T | |Z(T )| = |K/Z| |T �| |Z(T �)|. It is now clear that this bijection restricts to
the desired bijection for minimal CL-subgroups. �

Lemma 2.12.

(a) If Q is a CL-subgroup of P , then QJ(P ) � J̃(P ).

(b) Some minimal CL-subgroup of P is normalized by J(P ) and PMCL.

(c) If P = J(P ) and d(P )2 = |P | |Z(P )|, then every minimal CL-subgroup of P is
abelian.

(d) If every minimal CL-subgroup of P is abelian, then J̃(P ) = J(P ).

Proof. (a) Let R = QJ(P ). Then Z(R) � CP (J(P )) = Z(J(P )).
By Theorems 2.7 and 2.9 and a short argument, R is a CL-subgroup of P and

R = CP (Z(R)) � CP (Z(J(P ))) = J̃(P ).

(b) This follows from Theorem 5.7 of [11].

(c) By Proposition 2.8 and Theorem 2.9, PCL � J̃(P ) � J(P ) = P and PCL is a
CL-subgroup of P . Hence, P = PCL and f(P ) = |P | |Z(P )| = d(P )2. Let A be a large
abelian subgroup of P . Then f(P ) = d(P )2 = |A| |Z(A)|, and A is a CL-subgroup of P .
Apply Theorem 2.10.
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(d) Here, J(P ) = PMCL by part (d) of Theorem 2.10. By Theorem 2.7 and Proposi-
tion 2.8, J(P ) = CP (Z(J(P ))) = J̃(P ). �

Definition 2.13. Suppose Q is a subgroup of P and C is a central series

1 = Q0 � Q1 � · · · � Qk = Q

of Q. We define a partial ordering ≺C on the set of all subgroups of Q as follows: A ≺C B

if |A| = |B| and

(a) |A ∩ Qi| � |B ∩ Qi| for i = 1, 2, . . . , k and

(b) |A ∩ Qi| < |B ∩ Qi| for some i, 1 � i � k.

Theorem 2.14. Suppose Q is a minimal CL-subgroup of P and x ∈ P . Assume that
[x, Z(Q)] is abelian.

Let
Z = Z(Q), M = [x, Z], Y = MCZ(M) and T = (Q ∩ Qx)Y.

Then

(a) T is a minimal CL-subgroup of P ,

(b) Y = Z(T ) and T = CP (Y ), and

(c) if x does not normalize Q, then Z ≺C Y for every central series C of P .

Proof. This is Theorem 5.5 of [11]. �

Theorem 2.15. Let n be a natural number, let G be SL(2, pn) and let V be an
elementary abelian p-group on which G acts irreducibly. Suppose S is a Sylow p-subgroup
of G and V0 = {v in V | S fixes v}.

Assume that G does not centralize V and that

(a) [V, S, S] = 0 or

(b) |V | � |V0|2.

Then V is a standard module for G.

Proof. Let F be the set of all endomorphisms of V that commute with the action of
each element of G:

F = HomG(V, V ).

By Schur’s Lemma, F is a division ring. Since F is finite, it is a field, by Wedderburn’s
Theorem. Then V is a vector space over F and it is an absolutely irreducible module for
G over F , and V0 is an F -subspace of V . Let d = dimF V . By a special case of a result of
Curtis and Richen (see [22, Theorem 44(b), pp. 231–232] or [20, Theorem 3.9(b), p. 446]),
dimF V0 = 1. Since G is generated by conjugates of S and G does not centralize V ,

d � 2. (2.1)
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We first assume (a). Then |V | = |V0|d � |V0|2, so that d = 2 and dimF V/V0 = 1. Since
S is a p-group and F has characteristic p, S centralizes V/V0 and

[V, S, S] � [V0, S] = 0,

which gives (b).
Thus, we may assume (b) for the rest of the proof. Let us regard V as a vector space

over Fp rather than F . Set H = NG(S) and q = pn. Then V0 is a subspace of V under H.
Let W be an irreducible subspace of V0 under H. Then H/S acts irreducibly on W . From
the structure of SL(2, q), H/S is a cyclic group of order q − 1, i.e. pn − 1. By Lemma 2.5,

|W | � q. (2.2)

Since V is irreducible under G, the subspace
∑
g∈G

W g

of V is equal to V . Take an element u of G outside H. By the structure of SL(2, q), G is
the set-theoretic union of H and the double coset HuS. Note that

W x = W and W xuy = (Wu)y for all x in H and y in S.

Therefore,
V =

∑
g∈G

W g = W +
∑
y∈S

(Wu)y. (2.3)

Recall that W � V0 and [V, S, S] = 0, by (2.1). Therefore, for each v in Wu and y in
S,

vy = v + (vy − v) = v + [v, u] ∈ Wu + CV (S) = Wu + V0,

and by (2.3), (2.1) and (2.2),

V = V0 + Wu and |F | � |F |d−1 = |V/V0| � |Wu| = |W | � q = |S|. (2.4)

Then |F | = |V0| � |W | � |F |d−1, and d = 2.
Now the theorem follows from Theorem 2.6. Alternatively, let |F | = pk. Since G is

generated by p-elements, which act by determinant 1 on V over F , the action of G on
V induces a homomorphism of G into an irreducible subgroup of SL(2, pk). It is easy to
see that the homomorphism has trivial kernel, so that

| SL(2, q)| = |G| � | SL(2, pk)|.

Since |F | = pk � q by (2.4), q = pk = |F | and V is a standard module for G. �

Theorem 2.16. Suppose S is a Sylow p-subgroup of a group G, K and L are normal
p′-subgroups of G, and n is a natural number. Assume that G acts on an elementary
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abelian p-group M and

(i) G/L ∼= SL(2, pn), K � L and K/L = Z(G/L),

(ii) L = [L, G] and K = Φ(G),

(iii) [M, S, S, S] = 1,

(iv) |M | = |CM (S)|2 and

(v) for each x in S#, CM (x) = CM (S).

Then L centralizes M except possibly if pn = 2 or 3.

Proof. Assume that L does not centralize M . Note that S is isomorphic to a Sylow
p-subgroup of SL(2, pn), and hence is elementary abelian of order pn.

Since L�G, the kernel CL(M) of L on M is normal in G. Assume first that S centralizes
L/CL(M). Let C = CG(L/CL(M)). Then C is a normal subgroup of G that contains S.
So CK/K is a normal subgroup of G/K that contains SK/K. Since G/K is isomorphic
to PSL(2, pn), which is generated by its p-elements,

CK/K = G/K and G = CK = CΦ(G).

As Φ(G) is the Frattini subgroup of G, we obtain

G = C and L = [L, G] � CL(M).

This is a contradiction because L does not centralize M . Thus,

S does not centralize L/CL(M). (2.5)

We regard M as a vector space over Fp. Let Ḡ = G/CG(M). For every element x and
subgroup H of G, let x̄ and H̄ be the images under the canonical homomorphism of G

onto Ḡ. By (2.5), S̄ does not centralize L̄.
We show first that p < 5. Let y be an element of S that does not centralize L̄. Since

S is elementary abelian, y has order p. Therefore, ȳ has order p and Op(L̄〈ȳ〉) = 1. By
a theorem of Philip Hall and Graham Higman (see [13, Theorem 11.1.1, p. 359]), the
linear transformation t of M over Fp induced by the action of ȳ has minimal polynomial
(x − 1)p or (x − 1)p−1. Therefore, (t − 1)p−2 �= 0, which gives

[M, y; p − 2] > 1.

By (iii), [M, S; 3] = 1. Consequently, p − 2 < 3, and p < 5, as desired.
To complete the proof, we assume that n � 2 and derive a contradiction. Since S is

elementary abelian of order pn, S is not cyclic. By [13, Theorem 6.2.4],

L = 〈CL(u) | u ∈ S#〉.
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For each u in S#, CL(u) preserves CM (u), which is equal to CM (S), by (v). Therefore,
CM (S) is preserved by L and hence by LS.

Let L∗ = [L, S]. Since LS preserves CM (S), the centralizer of CM (S) in LS is a normal
subgroup of LS that contains S and, therefore, L∗. So

CM (S) � CM (L∗).

By (2.5), [M, L∗] > 1 because L∗ does not centralize M . By Lemma 2.1, M = CM (L∗)×
[M, L∗]. Hence,

[M, L∗] ∩ CM (S) � [M, L∗] ∩ CM (L∗) = 1.

However, [M, L∗] is a non-trivial S-invariant subgroup of M , and so must contain non-
identity fixed elements under S. This contradiction completes the proof of Theorem 2.16.

�

Lemma 2.17. Assume the hypothesis of Theorem 2.16, and suppose also that

(i) G acts faithfully and irreducibly on M ,

(ii) L > 1 and pn = 3, and

(iii) G = SO2(G) and K = Φ(O2(G)).

Regard M as a module for G over Fp. Then

(a) the restriction of M to KS contains a unique irreducible submodule N subject to
being also irreducible for K,

(b) the representation of G on M is induced from the representation of KS on N ,

(c) the restriction of M to K is the direct sum of N and three other irreducible sub-
modules N1, N2, N3,

(d) no two of N , N1, N2, N3 are isomorphic as K-modules,

(e) the modules N1, N2, N3 are cyclically permuted by S,

(f) S acts trivially on N , and

(g) M is the only K-submodule of M that contains CM (S).

Proof. Here, |G/ O2(G)| = |S| = 3. Let Q = O2(G). From (iii) and Theorem 2.16,
K = Φ(Q) � L and G/L ∼= SL(2, 3). From the structure of SL(2, 3),

G/L = (SL/L)(G/L)′ = SG′L/L and G = SG′L.

Assume first that K is cyclic. Then the automorphism group of K is an abelian 2-
group. So K is centralized by S, G′ and itself. As G = SG′L � SG′K, Theorem 2.16
yields

1 = [K, G] � [L, G] = L,

contrary to (ii). Thus, K is not cyclic.
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If every characteristic abelian subgroup of Q is cyclic, then a theorem of Philip Hall
(see [13, p. 198]) asserts that Q is a central product of two subgroups E and R, where
E = 1 or E is an extra-special 2-group, and R = 1 or R is a 2-group of maximal class.
Then Φ(Q) is abelian, hence cyclic. But Φ(Q) = K, which is not cyclic, which is a
contradiction. Thus, there exists a non-cyclic abelian characteristic subgroup A of Q.

Since Q is normal in G, A is normal in G. As M is irreducible under G, we may
decompose it as a direct sum

M = M1 ⊕ M2 ⊕ · · · ⊕ Mr

of homogeneous A-modules transitively permuted by G. Moreover, M1 is irreducible
under the stabilizer NG(M1) in G, and M is induced from the representation of NG(M1)
on M1.

Now, M1 is a direct sum of isomorphic irreducible A-modules. As A is abelian, this
forces A/CA(M1) to be cyclic. Hence, CA(M1) > 1, and M1 < M by (i). Let H be a max-
imal subgroup of G containing NG(M1), and let N be the sum of Mh

1 as h ranges over H.
Then N is an irreducible H-module that is induced from the irreducible NG(M1)-module
M1, and M is induced from the representation of H on N . Therefore, H is the stabilizer
of N in G, and M is the direct sum

M =
⊕ ∑

g∈T

Ng (2.6)

as g ranges over a transversal T to H in G (i.e. HT = G and Hu �= Hv for u �= v in T ).
Let u be a generator of S. If S does not fix any subspace Ng in (2.6), then it permutes

these subspaces in cycles of length 3, and

M = M∗ ⊕ M∗u ⊕ M∗u2

for some subspace M∗ of M . Then

CM (S) = CM (u) = {x + xu + xu2 | x ∈ M∗}

and |M | = |M∗|3 = |CM (S)|3 > |CM (S)|2. But |M | = |CM (S)|2 from Theorem 2.16,
which is a contradiction. Thus, S fixes some subspace Ng in (2.6).

By replacing M1 by Mg−1

1 , we may replace Ng by N . Then S is contained in the
stabilizer of N in G, which is the maximal subgroup H of G. Since Φ(G) is the intersection
of all the maximal subgroups of G and K = Φ(G), we have K � H. So SK � H.

Now H/K is a maximal subgroup of G/K that contains the Sylow 3-subgroup SK/K

of G/K. From Theorem 2.16, G/K is isomorphic to PSL(2, 3) and thus to the alternating
group of degree 4. Therefore, SK/K itself is a maximal subgroup of G/K. Hence,

H/K = SK/K, H = SK, |G : H| = |G/K : H/K| = 4,

and the transversal T has cardinality 4.
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Since K �G and K preserves N , K preserves Ng for every g in G. Thus, G/K acts as a
permutation group on the four summands Ng in (2.6), and the group H/K of order 3 is
the stabilizer of N in G/K. It is easy to see that S permutes the other three summands
cyclically. Let N1 be one of them. Then N1 ⊕ Nu

1 ⊕ Nu2

1 is irreducible under SK,

CM (S) = CN (S) ⊕ {x + xu + xu2 | x ∈ N1} and M = N ⊕ (N1 ⊕ Nu
1 ⊕ Nu2

1 ). (2.7)

Now we obtain (a), (b), (c) and (e).
Consider the dimensions of various subgroups of M as vector spaces over the prime

field Fp. Since |N |4 = |M | = |CM (S)|2 and |N1| = |N |, (2.7) gives

4 dim N = dimM = 2 dimCM (S) = 2(dimCN (S) + dimN) � 4 dim N.

Therefore, dimCN (S) = dimN , and S centralizes N , which gives (f).
As KS is irreducible on N and S centralizes N , K acts irreducibly on N and [K, S]

centralizes N . As K � G, we see that K acts irreducibly on Ng for every g in G. Since
M1 � N and A � G and M1 is a homogeneous component of M as an A-module, none
of the summands N1, Nu

1 , Nu2

1 is isomorphic to N as an A-module, or, a fortiori, as a
K-module. Thus, no two of the four distinct summands of M in (2.7) are isomorphic as
K-modules, as claimed in (d).

Suppose M∗ is a K-submodule of M that contains CM (S). Then M∗ � N . If M∗ <

M , then we may assume that M∗ is a maximal K-submodule of M . By the Jordan–
Hölder Theorem for modules, M/M∗ is isomorphic as a K-module to N1, Nu

1 or Nu2

1 . If
M/M∗ ∼= N1, then M∗ contains N , Nu

1 and Nu2

1 , and hence (by (2.7)),

M∗ contains (N ⊕ Nu
1 ⊕ Nu2

1 ) + CM (S), which is M.

This is a contradiction. Similar contradictions for the other cases show that M∗ = M .
This proves (g) and completes the proof of the lemma. �

Lemma 2.18. Suppose p, G, S, K and L satisfy conditions (i) and (ii) of Theorem 2.16
for n = 1, and p is 2 or 3. Let G act on elementary abelian p-subgroups M1, M2 and M .
Regard M1, M2 and M as vector spaces over the prime field Fp. Assume that f is an
Fp-bilinear function on M1 × M2 into M and

(i) f(ug, vg) = f(u, v)g for all u in M1, v in M2, and g in G, and

(ii) f(u, v) �= 0 for some u in M1 and v in M2.

Assume also that

(iii) G acts irreducibly on M1 and M2, and L centralizes M ,

(iv) for all u in CM1(S) and v in CM2(S), f(u, v) = 0,

(v) for i = 1, 2, |Mi| = |CMi
(S)|2 and L does not centralize Mi,
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(vi) if p = 2, then G is a dihedral group of order 2 · 3k for some natural number k, and

(vii) if p = 3, then G = SO2(G) and K = Φ(O2(G)).

Then p = 2 and G centralizes the image of f .

Proof. Here, |S| = pn = p. Let x be a generator of S. Take i to be 1 or 2. By (v), S

acts faithfully on Mi. We embed S in the endomorphism ring of Mi. Since p � 3 and Mi

has characteristic p,

(x − 1)p = xp − 1 = 0 and 0 = (x − 1)3 = (xj − 1)(xk − 1)(xl − 1)

for all natural numbers j, k and l. Therefore,

[Mi, S, S, S] = 0 for i = 1, 2.

Assume first that p = 3. We work towards a contradiction. By Lemma 2.17, CM1(S)
contains a non-zero K-submodule N of M1, and CM2(S) contains a non-zero K-sub-
module N∗ of M2.

Let X be the set of all u in M1 such that

f(u, v) = 0 for all v in N∗.

By (i) and (iv), X is a K-submodule of M1 that contains CM1(S). By Lemma 2.17,
X = M1. Similarly, the set Y of all v in M2 satisfying

f(u, v) = 0 for all u in M1

is a G-submodule of M2 containing N∗. As G acts irreducibly on M2, we have Y = M2.
Thus, f is identically zero, contrary to (ii). This contradiction shows that p = 2.

Let F be a finite field extension of F2 that is a splitting field for all of the subgroups
of G. Let

M∗
i = F ⊗F2 Mi for each i

and let

M∗ = F ⊗F2 M.

Then f extends uniquely to a bilinear function over F on M∗
1 × M∗

2 into M∗, which we
also call f for convenience. Part (i) of the hypothesis is still valid, but M∗

1 and M∗
2 need

not be irreducible. However, by [6, pp. 471–472],

each of M∗
1 and M∗

2 is a direct sum of irreducible modules. (2.8)

It is easy to see that CM∗
i
(S) = F ⊗F2 CMi(S) for each i, and hence, from (iv), that

for all u in CM∗
1
(S) and v in CM∗

2
(S), f(u, v) = 0. (2.9)
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To complete the proof, we wish to show that G centralizes the image of f . By (2.8),
it suffices to show that, for arbitrary irreducible summands N1 of M1 and N2 of M2, G

centralizes f(u, v) for every u in N1 and v in N2.
By (vi), G is a dihedral group of order 2 · 3k for some natural number k. Let H be the

Sylow 3-subgroup of G, so that |G/H| = 2. Let h be a generator of H. By Theorem 2.16,
G/L is isomorphic to SL(2, 2), the dihedral group of order 6. Hence, L < H.

Now we take i to be 1 or 2 in order to choose notation. By (v), L does not centralize
Mi. So CMi

(L) < Mi. As G is irreducible on Mi and L � G, the subspace CMi
(L) of Mi

is invariant under G and must be zero. Therefore,

CNi(L) � CM∗
i
(L) = F ⊗F2 CMi(L) = 0,

and G/CG(Ni) is a dihedral group of order 2 · 3m for some natural number m. Since F is
a splitting field for H and Ni is irreducible under G, it is easy to see that Ni is induced
from a one-dimensional representation of H. Thus, Ni has dimension 2 and CNi(S) has
dimension 1. Let ui be a non-zero vector in CNi(S) and vi = uh

i .
We continue with the assumption that i is 1 or 2. Then ui, vi is a basis of Ni. Since

Sh2
is different from S and Sh when taken modulo CG(Ni), the subspace CNi(S

h2
) is

different from 〈ui〉 and 〈vi〉. So

CNi(S
h2

) = 〈uh2

i 〉 = 〈ui + λivi〉 for some non-zero element λi in F .

Now we apply the notation chosen above for i = 1 and i = 2. By (2.9), f(u1, u2) = 0.
Therefore,

0 = 0g = f(ug
1, u

g
2) = f(v1, v2),

and similarly,

0 = f(u1 + λ1v1, u2 + λ2v2) = λ2f(u1, v2) + λ1f(v1, u2).

Hence,

f(v1, u2) = λ−1
1 λ2f(u1, v2).

This shows that the image of f on N1 ×N2 into M∗ is spanned by f(u1, v2) and is either
one dimensional or zero. Since M∗ has characteristic 2, S centralizes this image. As G

is generated by S and Sh, G centralizes this image. As mentioned above, this suffices to
prove the lemma. �

Lemma 2.19. Assume (E0). Then

(a) G = 〈S, Sy〉 for every element y in G \ NG(SK) and

(b) Z(S) � G if and only if Z(S) = Z(G).
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Proof. (a) This is part of Lemma 2.7 of [12].

(b) Obviously, Z(S) � G if Z(S) = Z(G).
Assume conversely that Z(S)�G. Take some element y in G\NG(SK). Since CG(Z(S))

is a normal subgroup of G that contains S, it contains Sy. Hence, by (a), CG(Z(S)) = G,
and Z(S) � Z(G). Since

Z(G) � CG(Op(G)) � Op(G) � S

by (E0), we obtain Z(S) = Z(G). �

3. Proof of Theorems A, B, D and E

Let T = Op(G). In this section, we prove Theorems A, B, D and E and Remark 1.1. Then
we reduce part of Theorem C to studying the chief factors within a particular subgroup
of T .

Recall conditions (E0) and (H) from § 1. Assume condition (E0). Let

q = pn, Z = Z(T ) and L = CG(Z).

Theorem 3.1. Assume (H). Then

(a) Z(G) � Z(S) � Z and T � L � K,

(b) G/L � SL(2, q) and Z/Z(G) is a standard module for G/L,

(c) Z(S)/Z(G) = CZ/Z(G)(S/Z(G)),

(d) A (T ) is a proper subset of A (S),

(e) whenever A ∈ A (S) − A (T ), then AT = S and (A ∩ T )Z ∈ A (T ),

(f) Z � Z2(S),

(g) if p is odd or n = 1, then Z = [Z, G] × Z(G),

(h) K/L = Z(G/L), and

(i) L/T = [L/T, G/T ] = [L, G]T/T and K/T = Φ(G/T ).

Moreover, let W1 be the subgroup of T that contains Z(G) and satisfies W1/Z(G) =
Z(T/Z(G)). Then

(j) if q > 2, then L = TCL(W1),

(k) if q = 2, then G/T is a dihedral group and 1
2 |L/T | is a power of 3, and

(l) if q = 3, then G/T = (S/T ) O2(G/T ) and K/T = Φ(O2(G/T )).

Proof. Obviously, T � CG(Z(T )) = L. Since (H) includes condition (E) of [12],
parts (a)–(g) of the theorem follow from Lemma 2.9 of [12]. Part (h) follows from (H)
and part (b). Parts (i)–(l) follow from Lemmas 3.5 and 2.2 in [12]. �
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Lemma 3.2. Assume (H). Then

(a) Z(G) < Z(S) < Z = Ω1(Z)Z(G) and |Z/Z(S)| = |S/T | = q,

(b) [Z, S] � Z(S), and

(c) for each x in Z − Z(S), CS(x) = T .

Proof. This follows from Theorem 3.1 above and Lemma 3.1 of [12]. �

Theorem 3.3. Suppose G satisfies (H) and SMCL is not normal in G. Then some
minimal CL-subgroup Q of S is not contained in T . For any such subgroup,

(a) S = QT = Z(Q)T and Q ∩ Z = Z(S),

(b) (Q ∩ T )Z is a minimal CL-subgroup of S and of T ,

(c) Q′ is a characteristic subgroup of T and of S,

(d) S = TCS(Q′) and G = TCG(Q′),

(e) Q = (Q ∩ T )Z(Q),

(f) |Q/(Q ∩ T )| = q, and

(g) f(S) = f(T ) and the CL-subgroups of T are the CL-subgroups of S that are
contained in T .

Proof. Suppose every minimal CL-subgroup of S is contained in T . Then f(S) = f(T )
and the minimal CL-subgroups of S and T coincide. So

SMCL = TMCL � G,

contrary to hypothesis. This contradiction shows that Q exists.
Now, (a)–(c) and the first part of (d) follow directly from Theorem 4.7 and Corollary 4.8

of [11], and (g) follows from (b). Hence, Q′ � G.
Take y in G \ NG(SK). Since Q′ is normal in G, so are CG(Q′) and TCG(Q′). Since

S = TCS(Q′) � TCG(Q′), we also have Sy � TCG(Q′). By Lemma 2.19, G = 〈S, Sy〉 �
TCG(Q′). So G = TCG(Q′), which completes the proof of (d).

Let R = (Q ∩ T )Z. By (b) and Theorem 2.10,

Q = (Q ∩ R)Z(Q) � (Q ∩ T )Z(Q) � Q,

which yields (e). By (a) and Lemma 3.2,

|Q/(Q ∩ T )| = |QT/T | = |S/T | = q.

Thus, (f) is valid. �

Now we can prove most of our main results. Note first that Remark 1.1 follows from
Theorems 2.7 and 2.10, Proposition 2.8 and Lemma 2.12.

https://doi.org/10.1017/S0013091512000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000089


92 G. Glauberman

Proof of Theorem B. Define TΦ by analogy with the definition of SΦ. Then TΦ is
characteristic in T and hence normal in G. If Z(S) is not normal in G, then Z(S) �= Z(G)
and we obtain condition (H). By Lemma 3.2 above and Remark 4.9 of [11], the theorem
follows. �

Proof of Theorem D. Theorem 2.10 gives (a) and (c). To prove (b), assume SMCL

is not normal in G. If Z(S) � G, then Lemma 2.19 yields

Z(S) ∩ Q′ � Z(S) = Z(G) and Z(S) ∩ Q′ � G.

So assume Z(S) is not normal in G. Then (H) holds. By Theorem 3.3,

G = TCG(Q′) � NG(Z(S) ∩ Q′) and Z(S) ∩ Q′ � G,

as desired. �

Proof of Theorem E. As in Theorem B of [12], let

S0 =

⎧⎪⎨
⎪⎩

[Φ(S), S]Φ(Φ(S)) if p = 2,

[[Φ(S), S], S]Φ(Φ(S)) if p = 3,

[Φ(S), S]�1(S) if p > 3.

We wish to find a pair of characteristic subgroups S1, S2 that satisfies (P ) and the
condition that f(S2) = f(J̃(S)). By Theorem D of [12], we can satisfy (P ) by taking

S1 = [ZJ(S), S] ∩ Z(S) and S2 = J̃(S) if S �= J̃(S)

and
S1 = �1(Z(S)) and S2 = S if S = J̃(S) and �1(Z(S)) > 1.

Since we have f(S2) = f(J̃(S)) in both cases, we may assume that S = J̃(S) and
�1(Z(S)) = 1. So Z(S) is elementary abelian.

Let Q be any minimal CL-subgroup of S. If Q′ > 1, then Theorem D yields that we
can satisfy (P ) by taking S1 = Z(S) ∩ Q′ and S2 = SMCL. Since f(SMCL) = f(S) and
S = J̃(S), this pair satisfies (P ′). Hence, we may assume that Q′ = 1. By Theorem 2.10,
the minimal CL-subgroups of S coincide with the large abelian subgroups of S. Thus,
we will have f(S2) = f(J̃(S)) if and only if d(S2) = d(S).

Now we return to Theorem D of [12]. Assume S0 > 1. Then we are in case (c) of
Theorem D of [12], in which S1 = Z(S) ∩ S0 and S2 is an intersection of subgroups
Op(G∗) for a family of groups G∗ that satisfy (E0).

Take a large abelian subgroup A of S for which |A ∩ S2| is as large as possible. If
A � S2, then d(S2) = d(S), as desired. We assume that A is not contained in S2 and
work towards a contradiction.

Clearly, A is not contained in Op(G1) for some group G1 in the family of groups G∗

above. Let P = Op(G1) and B = (A ∩ P )Z(P ). By Lemma 2.9 of [12], B is a large
abelian subgroup of S. Since B � P , we have B �= A. Therefore, Z(P ) is not contained
in A.
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By Theorem C of [12], Z(P ) � Op(G∗) for every group G∗ above. Therefore,

B ∩ S2 � (A ∩ S2)Z(P ) > A ∩ S2,

contrary to the choice of A. This contradiction shows that A � S2, as desired.
This leaves us with the case in which S = J̃(S) and Q′ = S0 = 1. Since Q′ = 1,

Theorem 2.10 and Lemma 2.12 give parts (b) and (e) of Theorem E. Since S0 = 1, we
obtain parts (c) and (d). Finally, since CG(Op(G)) � Op(G) < S, we obtain part (a). �

Proof of Theorem A. Assume that there exists no pair of non-identity characteristic
subgroups of S satisfying condition (P ). Since condition (P ′) includes condition (P ),
Theorem E yields conditions (a), (b), (c), (d) and (f) of Theorem A. In particular,
J̃(S) = S.

By Theorem B, Z(S) �G or SΦ �G for every group G satisfying (E0). Since J̃(S) = S,
the subgroup SΦ is a characteristic subgroup of J̃(S). Therefore, the pair Z(S), SΦ

satisfies (P ). Since Z(S) > 1, we must have SΦ = 1. Now Theorem B gives us condition (e)
of Theorem A. �

We have now proved Remark 1.1 (after Theorem 3.3) and Theorems A, B, D and E.
So we turn our attention to Theorem C.

3.0.1. Henceforth in this article, we assume the hypothesis of Theorem C.

Then J̃(S) = S. Clearly, we may assume Z(S) �= Z(G). Then G satisfies condition
(H).

Take a central series C of S. Define a partial ordering ≺ = ≺C on the set of all subgroups
of S as in Definition 2.13. Consider the centres Z(Q) for all the minimal CL-subgroups
Q that are not contained in T . By Theorem 2.10, the order |Z(Q)| is the same for all
the choices of Q. Choose Q0 so that Z(Q0) is maximal under ≺, that is, no choice of Q

satisfies Z(Q0) ≺ Z(Q).

Proposition 3.4. Take Q0 as above. Then

(a) K/T is a p′-group,

(b) NG(SK) is the unique maximal subgroup of G that contains S,

(c) S = Q0T = Z(Q0)T , and

(d) for every element y in G − NG(SK),

G = 〈S, Sy〉 = 〈Q0, Q
y
0〉T = 〈Z(Q0), Z(Q0)y〉T.

Proof. Lemma 2.7 of [12] gives (a) and (b), and gives 〈S, Sy〉 = G for (d). Theorem 3.3
above gives (c). Then (c) gives

G = 〈S, Sy〉 = 〈(Q0T )y, (Q0T )y〉 = 〈Q0, Q
y
0〉T.

Similarly, G = 〈Z(Q0), Z(Q0)y〉T . �
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Now we obtain our first main reduction.

Proposition 3.5. Let Ẑ be the subgroup of T generated by the subgroups Z(R) as
R ranges over all of the minimal CL-subgroups of T . Then [Z(Q0), S] � Ẑ.

Proof. Let W = Z(Q0) and Q1 = (Q0∩T )Z. Note that Ẑ is a characteristic subgroup
of T and hence a normal subgroup of G. We must show that W centralizes the quotient
group S/Ẑ.

By Proposition 3.3, Q1 is a minimal CL-subgroup of T (and of S). So, by Lemma 2.12,
J̃(S) � Q1J(S). Since S = J̃(S),

S = Q1J(S). (3.1)

Since Z = Z(T ) � Z(Q1) � Ẑ,

Q1 = (Q0 ∩ T )Z � (Q0 ∩ T )Ẑ.

As W centralizes Q0,
W centralizes Q1Ẑ/Ẑ. (3.2)

Now take any large abelian subgroup A of S and any element x of A. By Theorems 2.9
and 2.3, WA is a subgroup of S, and (WA)′ is abelian. Hence, [x, W ] is abelian. Let

M = [x, W ], Y = MCW (M) and R = (Q0 ∩ Qx
0)Y.

If x normalizes Q0, then x normalizes W and

[x, W ] � W ∩ T = Z(Q0) ∩ T � Z(Q1) � Ẑ.

Assume x does not normalize Q0. By Theorem 2.14, R is a minimal CL-subgroup of
S and Y = Z(R); moreover, W ≺ Y . Therefore, R � T by our choice of Q0, and

[x, W ] = M � Y = Z(R) � Ẑ.

This shows that in all cases, [x, W ] � Ẑ. Since x was chosen arbitrarily in A, we see
that W centralizes AẐ/Ẑ. As J(S) is generated by all the large abelian subgroups A

of S,
W centralizes J(S)Ẑ/Ẑ.

By (3.1) and (3.2), W centralizes S/Ẑ, as desired. �

Theorem 3.6. For Ẑ as in Proposition 3.5, [Op(G), T ] � Ẑ.

Proof. As in the proof of Proposition 3.5, we let W = Z(Q0) and consider the action
of G on T/Ẑ by conjugation. Let C be the kernel of this action, i.e. C = CG(T/Ẑ), the
centralizer of T/Ẑ in G. We must show Op(G) � C.

Clearly, C � G. By Proposition 3.5, W centralizes S/Ẑ and hence T/Ẑ. So W � C.
Take y in G − NG(SK). By Proposition 3.4,

G = 〈W, W y〉T � CT,

whence G = CT . Therefore, G/C is a p-group, and Op(G) � C. �
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Theorem 3.6 gives our first reduction. It shows that G centralizes all of the chief factors
U/V of G for which Ẑ � V < U � T , so that we need to consider only the chief factors
for which U � Ẑ.

4. The second reduction

Take Q0 as in § 3. We fix a p′-element f in G−NG(SK) for the rest of this paper. Recall
that q = pn, Z = Z(T ) and L = CG(Z). Let

R0 = Qf
0 , G0 = 〈Q0, R0〉, T0 = G0 ∩ T,

Q1 = (Q0 ∩ T )Z and R1 = Qf
1 = (R0 ∩ T )Z.

We define G�, T � and S� after Proposition 4.5.
In § 3, we showed that [Op(G), T ] is contained in the group Ẑ of Proposition 3.5. In

this section, we show that it is contained in G0 ∩ Ẑ and that Op(G) is contained in G0.

Lemma 4.1. The following conditions are satisfied.

(a) Q1 and R1 are minimal CL-subgroups of T and S.

(b) Q0 ∩ Q1 = Q0 ∩ T and |Q0 : Q0 ∩ T | = q.

(c) Z ∩ Z(Q0) = Z ∩ Q0 = Z(S).

(d) Q0 ∩ R0 = Q0 ∩ Q1 ∩ R0 ∩ R1 � T .

(e) T = CS(Z).

(f) Z = Z(S)Z(S)f = (Z ∩ Q0)(Z ∩ R0) = (Z ∩ Z(Q0))(Z ∩ Z(R0)).

(g) T0 contains Q1 and R1.

Proof. By Theorem 3.3, Q1 is a minimal CL-subgroup of T , and the CL-subgroups
of T are merely the CL-subgroups of S that are contained in T ; moreover,

Q0 ∩ Z = Z(S) and |Q0/(Q0 ∩ T )| = q. (4.1)

Conjugation by f shows that R1 is a minimal CL-subgroup of T . Thus, we obtain (a).
Since Q0 ∩ T � Q0 ∩ Q1 � Q0 ∩ T , we have Q0 ∩ T = Q0 ∩ Q1. So (4.1) gives (b). As

Z(S) � Z(Q0), (4.1) also gives Z(S) = Z(Q0) ∩ Z and (c).
By Proposition 3.4, the quotient groups Q0K/K and R0K/K generate G/K and hence

are distinct Sylow p-subgroups of PSL(2, q), which must intersect in the identity sub-
group. Therefore, Q0 ∩ R0 � S ∩ K = T and, by (b),

Q0 ∩ R0 = (Q0 ∩ T ) ∩ (R0 ∩ T ) = Q0 ∩ Q1 ∩ R0 ∩ R1,

which gives (d).
Part (e) follows from Lemma 3.2. Part (f) follows from Lemma 3.1 of [12] and part (c).

Part (g) follows from (f) and the definition of Q1 and R1. �
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Part (d) of the following result shows that G0 is smaller than one might expect.

Proposition 4.2. The following conditions are satisfied.

(a) Z(Q1) and Z(R1) are contained in 〈Z(Q0), Z(R0)〉.

(b) Z(Q1) ∩ Z(R1) = (Z(Q0) ∩ Z(R0))Z.

(c) Q1 ∩ R1 = (Q0 ∩ R0)Z.

(d) T0 = Q1R1 = (Q0 ∩ T )(R0 ∩ T ).

Proof. By Lemma 4.1, Q1 and R1 are minimal CL-subgroups of T and of S. Therefore,
by Theorems 2.7 and 2.10 and Proposition 2.8,

〈Q1, R1〉 = Q1R1, Q0 = (Q0 ∩ Q1)Z(Q0), Z � CS(Q1) = Z(Q1), (4.2)

and Q1R1 is a CL-subgroup of T and of S.
Since Q1 = (Q0 ∩ T )Z and Z � Z(Q1),

Z(Q1) = Z(Q1) ∩ (Q0 ∩ T )Z = (Z(Q1) ∩ Q0 ∩ T )Z = (Z(Q1) ∩ Q0)Z.

Clearly, Z(Q1) ∩ Q0 centralizes Q0 ∩ Q1 and Z(Q0). Hence, by (4.2), Z(Q1) ∩ Q0 �
CS(Q0) = Z(Q0). Therefore,

Z(Q1) ∩ Q0 = Z(Q1) ∩ Z(Q0) and Z(Q1) = (Z(Q1) ∩ Z(Q0))Z. (4.3)

Let J = Q0 ∩ R0. Conjugation of (4.3) by f yields Z(R1) ∩ R0 = Z(R1) ∩ Z(R0) and
Z(R1) = (Z(R1) ∩ Z(R0))Z. Therefore,

Z(Q1) ∩ Z(R1) ∩ J = Z(Q1) ∩ Z(R1) ∩ Z(Q0) ∩ Z(R0) (4.4)

and Lemma 4.1 (f) gives (a).
By Lemma 4.1 and Theorem 2.10, J � Q1∩R1 � T , Q0∩Q1 = Q0∩T and |Q0| = |Q1|.

Therefore,
q = |Q0 : Q0 ∩ T | = |Q0 : Q0 ∩ Q1| = |Q1 : Q0 ∩ Q1|.

Conjugation by f gives |R1 : R0 ∩ R1| = q. Consequently,

|Q1 ∩ R1 : J | = |Q1 ∩ R1 : Q1 ∩ R1 ∩ J |
= |Q1 ∩ R1 : Q1 ∩ Q0 ∩ R1 ∩ R0|
= |Q1 ∩ R1 : Q1 ∩ Q0 ∩ R1| |Q1 ∩ Q0 ∩ R1 : Q1 ∩ Q0 ∩ R1 ∩ R0|
� |Q1 : Q1 ∩ Q0| |R1 : R1 ∩ R0|
= q2. (4.5)

Now let Ii = Z(Qi) ∩ Z(Ri) for i = 0, 1. Then Z = Z(T ) � I1. Since

I0 � J � T and Q1 = (Q0 ∩ T )Z = (Q0 ∩ T )Z(T ),
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we have I0 � Z(Q0)∩T � CS(Q1) = Z(Q1). Similarly, I0 � Z(R1). So I0 � I1. By (4.4),
I1 ∩ J = I1 ∩ I0 = I0.

By Proposition 3.4, G = 〈Z(Q0), Z(R0)〉T . Hence,

Z ∩ J = Z(T ) ∩ Q0 ∩ R0 � Z(G).

By Theorem 3.1, Z(G) � Z. Therefore, by (4.5),

q2 = |Z/Z(G)| � |Z/(Z ∩ J)| � |I1/(I1 ∩ J)| � |Q1 ∩ R1 : J | � q2.

Since I1 ∩ J = I0, we have Z(G) = Z ∩ J and we obtain (b) and (c).
By (b) and Theorem 2.7,

CS(Q1R1) = CS(Q1) ∩ CS(R1) = Z(Q1) ∩ Z(R1) = (Z(Q0) ∩ Z(R0))Z

and

Q1R1 = CS(CS(Q1R1)) � CS((Z(Q0) ∩ Z(R0))Z) � T ∩ 〈Q0, R0〉 = T0.

Since Q1R1 � T0 and Z = (Z ∩ Q0)(Z ∩ R0) by Lemma 4.1, we obtain (d). �

Lemma 4.3. Let P be a CL-subgroup of T . Then G0 normalizes T0P .

Proof. By Proposition 4.2, T0 = Q1R1, which is a CL-subgroup of T and of S. So
T0P is a CL-subgroup of S, and so is Q0T0P . Since T0P � T ,

T0P � Q0T0P ∩ T = (Q0 ∩ T )T0P � Q1T0P = T0P.

Therefore,
T0P = Q0T0P ∩ T � Q0T0P and Q0 normalizes T0P.

Similarly, R0T0P is a CL-subgroup of Sf , and R0 normalizes T0P . Since Q0 and R0

generate G0, it follows that G0 normalizes T0P . �

Proposition 4.4. There exists a series of subgroups

T0 = U0 � U1 � · · · � Un = TMCL

such that, for i = 1, 2, . . . , n,

Ui−1 � Ui, G0 normalizes Ui and [Ui, G0] � Ui−1. (4.6)

Proof. Consider the CL-subgroups X of TMCL containing T such that

G0 normalizes X

and there exists a series of CL-subgroups

T0 = U0 � U1 � · · · � Un = X

satisfying (4.6).

https://doi.org/10.1017/S0013091512000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000089


98 G. Glauberman

Trivially, T0 is such a subgroup. Take X of maximal order among these subgroups. We
show by contradiction that X = TMCL.

Assume X < TMCL. Since TMCL is generated by all minimal CL-subgroups P of T ,
some P is not contained in X. As X and P are CL-subgroups, XP = PX. Choose P

such that the order of XP is as small as possible. Since G0 normalizes T0P by Lemma 4.3
and X(T0P ) = XP , G0 normalizes XP .

Since T is nilpotent and G0 normalizes X and XP , there exists a series of subgroups
of XP , X = V0 < V1 < · · · < Vk = XP such that Vi−1 � Vi and G0 normalizes Vi, for
i = 1, . . . , k. By our assumptions, there exists i such that

[Vi, G0] is not contained in Vi−1,

i.e. G0 does not centralize Vi/Vi−1.
As G0 is generated by Q0 and R0, at least one of Q0 and R0 does not centralize

Vi/Vi−1. We assume that Q0 does not centralize Vi/Vi−1, as the argument for the other
case is similar because

Qf
0 = R0 � Sf � G0.

Since Q0 and P are minimal CL-subgroups of S, Theorem 2.10 gives

P = (Q0 ∩ P )Z(P ) and XP = X(Q0 ∩ P )Z(P ) = XZ(P ).

Similarly, since Q0 ∩ T � Q1 � X,

Q0 = (Q0 ∩ P )Z(Q0) and XQ0 = XZ(Q0). (4.7)

Thus, X � Vi−1 < Vi � XZ(P ). Since Q0 does not centralize Vi/Vi−1, there exists w in
Z(P ) such that

w lies in Vi and Q0 does not centralize the element Vi−1w of Vi/Vi−1.

By (4.7), Z(Q0) does not centralize Vi−1w. Therefore,

[w, Z(Q0)] is contained in XP but not in Vi−1. (4.8)

Let Y = Z(Q0) and W = Z(P ). Then w ∈ W . We now argue as in the proof of
Proposition 3.5. By Theorem 2.7 and Proposition 2.8, F1(S) contains Y , W and Y W .
Therefore, by Theorem 2.3,

(Y W )′ is abelian.

So [w, Y ] is abelian. Let

M = [w, Y ], L = MCY (M) and R = (Q0 ∩ Qw
0 )L.

Since [w, Y ] is not contained in Vi−1, it is not contained in Q0 ∩ T , and hence it is not
contained in Q0. Therefore, w does not normalize Q0. As in the proof of Proposition 3.5,
R is a minimal CL-subgroup of S and R � T . Since

(Q0 ∩ Qw
0 )CY (M) � Q0 ∩ R � Q0 ∩ T � T0 � X,
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we have
R = (Q0 ∩ Qw

0 )L = (Q0 ∩ Qw
0 )CY (M)M � XM � XR.

Hence, XR = XM and Vi−1R = Vi−1M .
Recall that M = [w, Y ] and that w lies in Vi but Y does not centralize w, modulo Vi−1.

As ViY/Vi−1 is a p-group and Y normalizes Vi,

1 < Vi−1M/Vi−1 � [Vi/Vi−1, ViY/Vi−1] < Vi/Vi−1.

Therefore, X � Vi−1 < Vi−1M = Vi−1R < Vi � XP , which yields X < XR < XP and
|XR| < |XP |. This contradicts our choice of P and proves the proposition. �

Proposition 4.5. Let G� = 〈Z(Q0), Z(R0)〉 and T � = 〈Z(Q1), Z(R1)〉. Then

(a) G = G�T ,

(b) T � = Z(Q1)Z(R1),

(c) T � � G0,

(d) [G�, T0] � T �, and

(e) G� = CG(Q0 ∩ R0) and T � = G� ∩ T = Op(G�).

Proof. Proposition 3.4 gives (a). By Theorem 2.7, F1(S) contains Z(Q1) and Z(R1)
and (b) is valid. Note that, similarly, F1(S) contains T � and 〈T �, Z(Q0)〉 = T �Z(Q0).

Recall that Q1 = (Q0 ∩ T )Z(T ). Hence, Z(Q0) ∩ T � Z(Q1) � T � � T . Therefore,

T � = T �(Z(Q0) ∩ T ) = T �Z(Q0) ∩ T � T �Z(Q0),

whence Z(Q0) normalizes T �.
By Theorem 2.10, Q1 = (Q1 ∩ R1)Z(Q1). Since Z(Q1) � T � and Q1 ∩ R1 centralizes

T �, Q1 normalizes T �. By Theorem 3.3,

Q0 = (Q0 ∩ T )Z(Q0) � 〈Q1, Z(Q0)〉.

So Q0 normalizes T �. Similarly, R0 normalizes T �. Hence, T � � G0, which is (c).
Recall that T0 = Q1R1. By Theorem 2.10,

Q1 = (Q1 ∩ R0)Z(Q1) � (Q1 ∩ R0)T �.

Hence, Z(R0) centralizes Q1T
�/T �. Similarly, Z(R0) centralizes R1T

�/T �, and Z(Q0)
centralizes Q1T

�/T � and R1T
�/T �. Therefore, G� centralizes T0/T �, which gives (d).

Let C = CG(Q0 ∩ R0). Clearly, G� = 〈Z(Q0), Z(R0)〉 � C. By (a), G = G�T . Hence,

C = C ∩ G�T = G�(C ∩ T ).

By Proposition 4.2, T � � G� and Q1 ∩ R1 = (Q0 ∩ R0)Z. Therefore,

C ∩ T = CT (Q0 ∩ R0) = CT (Q1 ∩ R1),
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and Theorem 2.7 yields

C ∩ T = CT (Q1)CT (R1) = Z(Q1)Z(R1) = T � and C = G�(C ∩ T ) = G�T � = G�.

Thus, T � = C ∩ T = G� ∩ T .
Since G�/T � = G�/(G� ∩ T ) � G�T/T = G/T and T = Op(G), we obtain

1 = Op(G/T ) and Op(G�/T �) = 1.

Hence, T � = Op(G�), which completes the proof of (e) and of the proposition. �

Henceforth, we define G� and T � as in Proposition 4.5, and let S� be S ∩ G�.

Theorem 4.6. Take G�, S� and T � as above. Then

(a) S� = Z(Q0)T � and S� is a Sylow p-subgroup of G�,

(b) Z(Q0)T0 is a Sylow p-subgroup of G0,

(c) Op(G) = Op(G�), and

(d) [T, Op(G)] � T �.

Proof. Let Q = Q0. Since Z(Q) � G� and T � = G� ∩T (by Proposition 4.5), we have
Z(Q) ∩ T � = Z(Q) ∩ T . Therefore,

Z(Q)T �/T � � Z(Q)/(Z(Q) ∩ T �) = Z(Q)/(Z(Q) ∩ T ) � Z(Q)T/T = S/T.

This shows that Z(Q)T �/T � is a Sylow p-subgroup of G�/T � and Z(Q)T � is a Sylow
p-subgroup of G�. Since Z(Q)T � � S, we obtain S� = Z(Q)T � and (a). A similar proof
yields (b) because S = Z(Q)T and T0 = G0 ∩ T .

Let x be any p′-element of G�. By Lemma 2.1,

[T, 〈x〉, 〈x〉] = [T, 〈x〉]. (4.9)

By Theorem 3.6, [T, 〈x〉] � Ẑ for

Ẑ = 〈Z(P ) | P is a minimal CL-subgroup of T 〉.

Since
Ẑ � 〈P | P is a minimal CL-subgroup of T 〉 = TMCL,

we have [T, 〈x〉] � TMCL.
Take U0, . . . , Un as in Proposition 4.4, i.e.

T0 = U0 � U1 � · · · � Un = TMCL and [Ui, G0] � Ui−1 for i = 1, . . . , n.

Obviously, G� � G0. Then [T, 〈x〉] � Un and, by (4.9), [T, 〈x〉] = [T, 〈x〉, 〈x〉] �
[Un, 〈x〉] � Un−1. Similar further arguments give [T, 〈x〉] � U0 = T0. Since [T0, 〈x〉] � T �

by Proposition 4.5, we obtain similarly

[T, 〈x〉, 〈x〉] = [T, 〈x〉] � T �. (4.10)
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Let
T1 = 〈[T, 〈x〉] | x is a p′-element of G�〉.

Then T1 � T �. By Lemma 2.1, [T, 〈x〉] � T for every p′-element x of G�. Therefore,
T1 � T . The definition of T1 shows that G� normalizes T1. Hence, by Proposition 4.5,

T1 � G�T = G.

Let C be the centralizer of T/T1 in G. Clearly, C contains every p′-element of G�, and
hence contains Op(G�). So

[Op(G�), T ] � T1. (4.11)

Let H = Op(G�). By Proposition 4.5, G� � T � � T1. For every p′-element x in G�,
(4.10) gives

[T, 〈x〉] = [T, 〈x〉, 〈x〉] � [T1, 〈x〉] � [G�, H] � H.

Therefore, T1 � H and, by (4.11), [H, T ] � T1 � H. It follows that T normalizes H.
Since H is obviously normal in G�,

H � G�T = G.

Now, G/H is the product of the p-group G�/H and the normal p-subgroup TH/H,
and so must be a p-group. Consequently, Op(G) � H = Op(G�). This and (4.11) give (c)
and (d). �

5. Reduction to G�

In this section, we reduce the proof of Theorem C to the case in which G = G�. (We
take G�, T � and S� as defined before Theorem 4.6.)

Lemma 5.1. Let I = Q0 ∩ R0. Then

(a) Q0 = Z(Q0)I and R0 = Z(R0)I,

(b) G0 = IG� and I � G0,

(c) G0 ∩ S = IS� = Z(Q0)T0 and G0 ∩ S is a Sylow p-subgroup of G0, and

(d) S� = Z(Q0)Z(Q1)Z(R1).

Proof. Let Q = Q0 and R = R0. By Proposition 4.5 and Lemma 4.1, G� = CG(I)
and T � = G� ∩ T , and I � T and Z = Z(S)Z(S)f . Therefore,

R1 = (R ∩ T )Z = (R ∩ T )Z(S)fZ(S) = (R ∩ T )Z(S). (5.1)

Since Q and R1 are minimal CL-subgroups of S,

Q = (Q ∩ R1)Z(Q). (5.2)
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Since Z(S) � Z(Q) and I � T , (5.1) yields

Q ∩ R1 = Q ∩ ((R ∩ T )Z(S)) = (Q ∩ R ∩ T )Z(S) = IZ(S).

So, by (5.2), Q = (IZ(S))Z(Q) = IZ(Q). Similarly, R = IZ(R). Since G� = CG(I), this
gives (a) and shows that

G0 = 〈Q, R〉 = 〈IZ(Q), IZ(R)〉 � 〈I, G�〉 = IG� � G0,

whence G0 = IG� and I � G0. Now we have (b) and

G0 ∩ S = IG� ∩ S = I(G� ∩ S) = IS�. (5.3)

By Theorem 4.6, S� = Z(Q0)T �, and Z(Q0)T0 is a Sylow p-subgroup of G0. Since
Z(Q0)T0 � S, we have Z(Q0)T0 = G0 ∩ S. This and (5.3) give (c). Since T � =
Z(Q1)Z(R1) by Proposition 4.5, we obtain (d). �

Recall that, for a p-group P , A (P ) is the set of all large abelian subgroups of P , i.e. all
abelian subgroups of maximal order in P .

Lemma 5.2. Let Q = Q0. Then

(a) Z(Q) is in A (S�) and

(b) A (S�) is the set of all minimal CL-subgroups of S�.

Proof. As in the proof of Lemma 5.1, let R = R0 and I = Q0 ∩ R0.
Then Q = IZ(Q) by Lemma 5.1. Thus, CQ(I) lies in the centre of Q, which it obviously

contains. So

CQ(I) = Z(Q). (5.4)

Let P = G0∩S. Then Q0 � P . By Lemma 5.1, P = IS�. Since S� = G�∩S = CG(I)∩S,

I, S� � P and S� = G� ∩ P = CP (I). (5.5)

Moreover, I is contained in Q, which is a minimal CL-subgroup of S and hence of P .
Therefore, the hypothesis of Lemma 2.11 is satisfied with I and S� in place of K and L,
and the conclusion of the lemma tells us that Q∩S� is a minimal CL-subgroup of S�. By
(5.4) and (5.5), Q∩S� = CQ(I) = Z(Q). This gives (a), and Theorem 2.10 gives (b). �

Lemma 5.3. The following conditions are satisfied.

(a) G/T = G�T/T ∼= G�/(G� ∩ T ) = G�/T �.

(b) Z(Op(G)) � T ∩ Op(G) = Op(Op(G)).
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Proof. By Proposition 4.5, G = G�T . This gives (a).
Let H = Op(G) and W = Z(Op(G)). Then W = Op(W ) × Y for the subgroup Y of

all p′-elements of W , and H, W and Y are characteristic, hence normal, subgroups of G.
Since T = Op(G),

Op(W ) � T and Y ∩ T = 1.

Therefore, [Y, T ] � Y ∩ T = 1. But then Y � CG(T ) � T , which gives Y = 1. Hence,
W = Op(W ) � T . Thus, W � T ∩ H.

Since T ∩ H is a normal p-subgroup of H, and Op(H) is a normal p-subgroup of G,

T ∩ H � Op(H) � Op(G) ∩ H = T ∩ H.

This completes the proof of (b) and of the lemma. �

Lemma 5.4. Assume q � 4 and L = T . Then

(a) G = Op(G)T and S = (S ∩ Op(G))T , and

(b) there exists a non-identity cyclic p′-subgroup M of Op(G) and an element x of
(Op(G) ∩ S) \ T such that x normalizes M and xp ∈ CT (M).

Proof. (a) Let H = Op(G). Since we have assumed L = T , Theorem 3.1 yields
G/T ∼= SL(2, q).

As q � 4, SL(2, q) is generated by its p′-elements. Therefore,

G/T = Op(G/T ) = Op(G)T/T = HT/T ∼= H/(H ∩ T ).

Hence,
G = HT and S = S ∩ HT = (S ∩ H)T.

(b) Assume first that p = 2. Then SL(2, q) has non-trivial cyclic Sylow 3-subgroups.
Let H3/(H ∩ T ) be a Sylow 3-subgroup of H/(H ∩ T ).

Let H1/(H ∩T ) be the normalizer of H3/(H ∩T ) in H/(H ∩T ) and let M be a Sylow
3-subgroup of H3. Then M is cyclic and H1/(H ∩T ) is a dihedral group. By the Frattini
argument (part of Lemma 2.1),

H1 = H3NH1(M) = ((H ∩ T )M)NH1(M) = (H ∩ T )NH1(M).

As H1/(H ∩ T ) is dihedral, NH1(M) contains an element x of 2-power order that lies
outside T such that x2 lies in T . Since H is normal in G, H ∩ S is a Sylow 2-subgroup
of H. Therefore, we may replace H1, H3 and x by conjugates, if necessary, so that x lies
in (H ∩ S) \ T . Then

x2 ∈ T ∩ NG(M) � CT (M),

as desired.
If p is odd, we obtain x by a similar argument in which we let H3/(H ∩T ) be the centre

of H/(H ∩ T ) (of order 2) and we let H1/(H ∩ T ) be the direct product of H3/(H ∩ T )
with a subgroup of order p in H/(H ∩ T ). �
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Now we present the first step in the reduction of Theorem C from G to G�.

Proposition 5.5. Condition (H) and the hypothesis of Theorem C are satisfied with
G�, S� and G� ∩ K in place of G, S and K. Moreover, (S�)MCL = S�.

Proof. We first check condition (E0) of § 1 with G�, S� and G� ∩ K in place of G,
S and K. Recall (from before Theorem 4.6) that S� = S ∩ G�. By Theorem 4.6, S� is
a Sylow p-subgroup of G�. By Proposition 4.5, G = G�T and T � = G� ∩ T = Op(G�).
Therefore,

S = S ∩ G�T = (S ∩ G�)T = S�T and G�/T � ∼= G�T/T = G/T. (5.6)

Since S is contained in a unique maximal subgroup of G, (5.6) shows that the same is
true for S/T in G/T , for S�/T � in G�/T � and for S� in G�.

As K � T and G = G�T , we have

(K ∩ G�) ∩ T = G� ∩ T = T �, K = K ∩ G�T = (K ∩ G�)T and G = G�K.

Hence, the isomorphism of G�/T � onto G/T in (5.6) takes (K ∩ G�)T �/T � onto K/T .
Consequently, by (E0),

G�/(G� ∩ K) ∼= G/K ∼= PSL(2, q).

Let H = CG�(T �). Then H � G�. To finish the proof of (E0) for G�, S� and G� ∩ K,
we must show that H � T �.

Let x be a p′-element of H. As in Lemma 5.1, let I = Q0 ∩ R0. By Proposition 4.5,
G� = CG(I). So T � = CT (I) and x centralizes I and CT (I). Thus,

〈x, I〉 = 〈x〉 × I.

Now 〈x〉 × I acts on T by conjugation, and x centralizes CT (I). By Theorem 2.2, 〈x〉
centralizes T . Since x is a p′-element and CG(T ) � T by (E0), x = 1. This shows that H

is a p-group. As H � G�, we have H � Op(G�) = T �, as desired.
Next, we check the hypothesis (H) of § 1 for G�, S�, G� ∩ K and T � in place of G, S,

K and T . We saw above that T � = Op(G�). Since Z(S) � S ∩ CS(I) = S ∩ G� = S�, we
have Z(S) � Z(S�). By Lemma 3.2,

Z(G) < Z(S) < Z = Z(T ).

As G = G�T , G� does not centralize Z(S) and hence does not centralize Z(S�). Thus,
Z(S�) �= Z(G�).

The final condition needed for (H) and the hypothesis of Theorem C is that S� =
J̃(S�). By Lemma 5.2, Z(Q0) is a large abelian subgroup of S� and is a minimal CL-sub-
group of S�. By Theorem 2.10, Z(Q1) and Z(R1) have the same order as Z(Q0), and
hence are large abelian subgroups of S�. By Lemma 5.1,

S� = Z(Q0)Z(Q1)Z(R1).

Therefore, S� = J(S�) = J̃(S�) = (S�)MCL, as desired.
Since Z(Q0) is a minimal CL-subgroup of S� and is not contained in T � (by Theo-

rem 4.6), (S�)MCL is not normal in G�. This completes the hypothesis of Theorem C for
G�, S� and G� ∩ K in place of G, S and K. �
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5.1. Reduction for Theorem C

By Proposition 5.5, condition (H) and the hypothesis of Theorem C are satisfied with
G�, S� and G� ∩ K in place of G, S and K, and (S�)MCL = S�.

Now assume that the conclusion of Theorem C is valid for G�, S� and G� ∩K in place
of G, S and K. By (H) and Lemma 2.19, Z(S�) is not normal in G�. Since (S�)MCL = S�,
(S∗)MCL is not normal in G�. Therefore, conditions (a)–(i) of Theorem C are valid for
G�, S� and G� ∩ K in place of G, S and K. Since Z(S) and SMCL are not normal in G,
we must show that (a)–(i) are valid for G, S and K.

Parts (b), (e) and (g) follow from Theorems 2.10, 3.1 and 3.3. By Theorem 4.6,
Op(G�) = Op(G). Recall that we define Ĝ = Op(G) and T̂ = Op(Ĝ) for Theorem C.
Therefore, parts (a)–(d) carry over immediately from G� to G.

Clearly,

T̂ , Ĝ and Z(Ĝ) are characteristic, hence normal, subgroups of G. (5.7)

By Lemma 5.3,

G = G�T, G/T ∼= G�/T � and Z(Ĝ) � T ∩ Ĝ = T̂ . (5.8)

Hence, by parts (e) and (h) of Theorem C for G� and Theorem 3.1,

if q > 2, then G/T ∼= SL(2, q) and L = T. (5.9)

To prove (f) and (h), we consider a chief series of G containing the series

1 � Z(Ĝ) � T̂ � T � G.

Let U/V be a chief factor coming from successive terms in the chief series such that
U � T . Then we have one of the following cases:

(i) T̂ � V < U � T ;

(ii) Z(Ĝ) � V < U � T̂ ;

(iii) V < U � Z(Ĝ).

In case (i), (5.7) gives
[U, Ĝ] � T ∩ Ĝ = T̂ � U.

Thus, Ĝ centralizes U/V . Since conjugation by G induces an irreducible action of G on
the module U/V , we see that G/Ĝ acts irreducibly on U/V . As Ĝ = Op(G), G/Ĝ is a
p-group. Hence, U/V is a central chief factor of G.

A similar argument shows that U/V is a central chief factor in case (iii).
Now assume case (ii). Here, U � T̂ < Ĝ = Op(G) = Op(G�) � G�. Again, G acts

irreducibly on U/V . Since T = Op(G) and G = G�T , T centralizes U/V and G� acts
irreducibly on U/V . Therefore, U/V is a chief factor of G� such that U � Op(G�). Since
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G� satisfies Theorem C, (5.8) and (5.9) and parts (f) and (h) of Theorem C show that
U/V is not a central chief factor and that

if q > 2, then G/T ∼= G�/T � ∼= SL(2, q) and U/V is a standard module
for G�/T �, and hence for G/T.

This proves part (f) of Theorem C and shows that U/V satisfies the conditions in
part (h) for cases (i)–(iii) above. By the Jordan–Hölder Theorem for chief series (see [16,
Theorem 8.44], where they are called principal series), this proves part (h) in general.

To finish the proof, we must obtain part (i) of Theorem C. We may assume that q � 4.
By (5.9),

L = T and G/T ∼= SL(2, q).

We take x and M as in Lemma 5.4, so that

S = ŜT, x ∈ Ŝ \ T and M is a non-trivial p′-subgroup of Ĝ normalized by x.

(5.10)
Then

[M, T ] � [Ĝ, T ] � Ĝ ∩ T � T̂ , (5.11)

and, by Lemma 2.1, T = [M, T ]CT (M) = T̂CT (M). Therefore, by (5.10),

S = ŜT = ŜT̂CT (M) = ŜCT (M). (5.12)

By (f) and (h), each chief factor U/V of G satisfying Z(Ĝ) � V < U � T̂ is a standard
module for G/T , and hence (by (5.10)) has no non-zero fixed points under M . Therefore,
CT̂ (M) � Z(Ĝ) and, by (5.10) and (5.11),

Z(Ĝ) � CT̂ (M) � CT (M) ∩ [Ĝ, T ] � [〈x〉, CT (M)]. (5.13)

Since Ŝ = S ∩ Ĝ, (5.7) and (5.8) show that Ŝ, Z(Ĝ) and Ŝ′Z(Ĝ) are normal subgroups
of S and NG(S). Therefore, by (5.13),

[〈x〉, CT (M)] � Z(Ĝ) � Ŝ′Z(Ĝ),

and x centralizes CT (M), module Ŝ′Z(Ĝ). Since [〈x〉, Ŝ] � Ŝ′ � Ŝ′Z(Ĝ), (5.12) shows
that x centralizes S, modulo Ŝ′Z(Ĝ).

By (5.10), x lies in Ŝ \ T . Let

R = CŜ(S/Ŝ′Z(Ĝ)).

Then R � Ŝ and R is normal in NG(S). Therefore, RT/T is a normal subgroup of
NG(S)/T that contains the non-identity element xT . By (5.9), G/T ∼= SL(2, q). Note
that NG(S)/T = NG(S/T ). Therefore, from the structure of SL(2, q), S/T is the only
non-identity normal subgroup of NG/T (S/T ) contained in S/T . Consequently,

RT/T = S/T and RT = S. (5.14)
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By definition, [S, R] � Ŝ′Z(Ĝ). Since G satisfies (a),

[S, R, R] � [Ŝ′Z(Ĝ), R] � [Ŝ′, Ŝ] � Z(Ŝ).

So [S, R, R, R] = 1. This completes the proof of (i) and the reduction of Theorem C to
the case in which G = G�.

Remark 5.6. The reduction above did not use the assumption that G� satisfies parts
(b), (e), (g) and (i) of Theorem C. Moreover, the only parts of (f) and (h) for G� that
were needed were the following statements:

if U/V is a chief factor of G� and Z(Ĝ) � V < U � T̂ ,

then U/V is not a central chief factor (5.15)

and

if q > 2, then L = T , and every chief factor U/V of G�

as in (5.15) is a standard module for G�/T �. (5.16)

Therefore, to prove Theorem C, we need only check parts (a), (c) and (d), and (5.15)
and (5.16) when G = G�. Note also that the p′-element f from the beginning of § 4 lies
in G� because Op(G) = Op(G�).

6. Proof of Theorem C

In this section we complete the proof of Theorem C. We continue with the assumptions
stated at the beginning of § 4. By § 5, we may assume that G = G� = 〈Z(Q0), Z(R0)〉
and that the minimal CL-subgroups of S are the large abelian subgroups of S. To remind
us of this, we change notation. Let

A = Q0 = Z(Q0), B = R0 = Z(R0), A� = Q1 and B� = R1.

We also let T̃ = 〈[A, B�], [B, A�]〉. Recall that B = Af and T ′ = [T, T ].

Lemma 6.1. The following conditions are satisfied.

(a) T = (A ∩ T )(B ∩ T ).

(b) [A, B�] and [B, A�] are abelian.

(c) T ′ = [A ∩ T, B ∩ T ] � [A, B�] ∩ [B, A�] � Z(T̃ ).

(d) T̃ = [T, G] � G.

(e) T = (A ∩ T )T̃ = (B ∩ T )T̃ .
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Proof. Recall that T = A�B� = (A ∩ T )(B ∩ T ) from Proposition 4.2. This gives (a).
Let U = [A ∩ T, B ∩ T ]. Then U � 〈A ∩ T, B ∩ T 〉 = T and U � T ′. Since A ∩ T and

B ∩ T are abelian and centralize each other modulo U , we have T ′ � U . Thus,

T ′ = U = [A ∩ T, B ∩ T ]. (6.1)

Since A and B� are CL-subgroups of S, AB� is a CL-subgroup of S. As A and B� are
abelian, Itô’s Theorem (Theorem 2.3) yields that [A, B�] is abelian. By (6.1),

T ′ = [A ∩ T, B ∩ T ] � [A, B�].

Similarly, [B, A�] is abelian and T ′ � [B, A�]. Now we obtain (b) and (c).
As T ′ � T̃ , we have T̃ � T . By (a),

[T̃ , A] � [T, A] = [(A ∩ T )(B ∩ T ), A] = [B ∩ T, A] � [B�, A] � T̃ .

Therefore, A normalizes T̃ and centralizes T/T̃ . Similarly, B normalizes T̃ and centralizes
T/T̃ . Since A and B generate G,

G normalizes T̃ and [T, G] � T̃ .

But clearly T̃ � [T, G]. This gives (d).
Finally, recall that B = Af . Hence,

B ∩ T = Af ∩ T = (A ∩ T )f .

By (a) and (d),

T = (A ∩ T )(B ∩ T )T̃ = (A ∩ T )(A ∩ T )f T̃ � (A ∩ T )[A ∩ T, f ]T̃ = (A ∩ T )T̃ .

So T = (A ∩ T )T̃ . Similarly, T = (B ∩ T )T̃ . This proves (e) and completes the proof of
the lemma. �

For this section only, we say that a subgroup U of T is an F -subgroup of T (factorizable
subgroup of T ) if

U � G and U = (U ∩ A)(U ∩ B).

Lemma 6.2. Suppose N is a normal subgroup of T . Let

N� = 〈a, b | a is in A ∩ T, b is in B ∩ T and ab is in N〉.

Then

(a) N � N� and N�/N is contained in the centre of G/N ,

(b) N� = (A ∩ N�)N = (B ∩ N�)N = (A ∩ N�)(B ∩ N�), and

(c) N� is an F -subgroup of T .
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Proof. By Lemma 6.1,
T = (A ∩ T )(B ∩ T ). (6.2)

Since N � G,
(A ∩ N�)N is a subgroup of G.

For each a in A ∩ T and b in B ∩ T such that ab lies in N ,

(A ∩ N�)N contains a and ab, and hence contains b.

Therefore, N� � (A ∩ N�)N . By (6.2) and the definition of N�, we have N � N�. So
(A ∩ N�)N = N�. Similarly, we obtain

(B ∩ N�)N = N� = (A ∩ N�)N. (6.3)

By (6.3), AN/N and BN/N centralize N�/N . Since A and B generate G, we obtain (a).
Note that this also shows that N� is a normal subgroup of G.

Consider the subset (A ∩ N�)(B ∩ N�) of N�. By (6.2) and the definition of N�, this
set contains N . Clearly, it is closed under left multiplication by A ∩ N�. So it contains
(A ∩ N�)N . By (6.3), it is equal to N�, and we obtain (b) and (c). �

Recall that Z = Z(T ).

Proposition 6.3. The group T satisfies Z(G/Z) ∩ (T/Z) = 1.

Proof. Let N be the subgroup of G that contains Z and satisfies

N/Z = Z(G/Z) ∩ (T/Z).

We must show that N = Z.
Let Ḡ = G/Z and let H̄ = HZ/Z for every subgroup H of G. Define N� as in

Lemma 6.2. Then

N̄ = Z(Ḡ) ∩ T̄ and N� = (A ∩ N�)N = (B ∩ N�)N.

So N� = (A ∩ N�)(Z(Ḡ) ∩ T̄ ) = (B ∩ N�)(Z(Ḡ) ∩ T̄ ). Therefore, N� is centralized by Ā

and by B̄, and hence by Ḡ. So

Z(Ḡ) ∩ T̄ � N� � N̄ = Z(Ḡ) ∩ T̄ .

This shows that N� = N and, by Lemma 6.2,

N = (A ∩ N�)(B ∩ N�) = (A ∩ N)(B ∩ N). (6.4)

Recall that Af = B. Therefore,

B ∩ N = Af ∩ N = (A ∩ N)f .

Since N̄ � Z(Ḡ), (6.4) yields

N̄ = (A ∩ N)(A ∩ N)f = A ∩ N and N = (A ∩ N)Z = (A ∩ N)Z(T ).

It follows that A ∩ T centralizes N . Similarly, B ∩ T centralizes N . By Lemma 6.1,
T = (A ∩ T )(B ∩ T ). Consequently, N � Z(T ) = Z. As Z � N , we obtain N = Z, as
desired. �
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Now we show that G has no central chief factors between Z and the subgroup T1 of T

determined by T1/Z = Z(T/Z).

Proposition 6.4. Suppose N � G and

Z � N and N/Z � Z(T/Z).

Then

(a) N = [N, G]Z,

(b) N = (N ∩ A)(N ∩ B).

Proof. As in the previous proof, let H̄ = HZ/Z for every subgroup H of G. Let

M = [N, G]Z.

The hypothesis and the definition of M yield that

G centralizes N/M and N̄ � Z(T̄ ). (6.5)

Define N� as in Lemma 6.2, so that

N� = (A ∩ N�)N and N� = (A ∩ N�)N̄ � (A ∩ N�)Z(T̄ ).

Obviously, N� is centralized by A ∩ T . Similarly, N� is centralized by B ∩ T . Since T =
(A ∩ T )(B ∩ T ),

N� � Z(T̄ ). (6.6)

By Lemma 6.2,
N�/N is centralized by G. (6.7)

Now we prove (a) and (b) separately.

(a) We use induction on |N |. Assume first that N̄ is not elementary abelian. Let

N1/Z = Ω1(N̄) = {x ∈ N | xp ∈ Z}/Z.

Then |N1| < |N |. By induction,

N1 = [N1, G]Z � [N, G]Z = M and N̄1 � M̄. (6.8)

Continuing from the previous paragraph, let φ be the mapping on N̄ given by φ(x) =
xp. Since N̄ is abelian, φ is a homomorphism. Clearly, φ commutes with the action of each
element of G under conjugation, and the kernel of φ is N̄1. By (6.8), N̄1 � M̄ . Therefore,
by (6.5),

φ(N̄)/φ(M̄) is isomorphic to N̄/M̄ and [φ(N̄), Ḡ] � φ(M̄) � φ(N̄). (6.9)

By induction, [φ(N̄), Ḡ] = φ(N̄). Hence, by (6.9),

φ(M̄) = φ(N̄) and N̄ = M̄,
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which shows that N = M , as desired. Thus, we may assume that

N̄ is elementary abelian. (6.10)

Define a mapping φ� on N� by φ�(x) = xp. By (6.10), φ�(N̄) = 1. Hence, by (6.7),
φ�(N�) is centralized by Ḡ. Thus,

φ�(N�) � Z(Ḡ) ∩ T̄ .

By Proposition 6.3, φ�(N�) = 1. This says that N� is elementary abelian.
We regard N� as a vector space over the prime field Fp and as a module for G over

Fp. By Lemma 6.2, N� = (A ∩ N�)N . Therefore, there exists a subgroup W of N� such
that

Z � W � (A ∩ N�)Z and N� = W̄ × N̄ . (6.11)

Then N̄ is a G-submodule of N� and W̄ is a vector space complement to N̄ in N�. By
(6.6) and (6.11), W̄ is invariant (in fact, centralized) under T and under A. Since S = TA

(by Theorem 3.3), W̄ is invariant under S. By Theorem 2.2, there exists a complement
V̄ to N̄ in N� that is invariant under G.

By (6.7), G centralizes V̄ . Therefore,

V̄ � Z(Ḡ) ∩ T̄ .

By Proposition 6.3, V̄ = 1. Consequently, N� = N̄ . So N� = N . By Lemma 6.2,

N = (A ∩ N)(B ∩ N) = (A ∩ N)(A ∩ N)f � (A ∩ N)[N, G]Z = (A ∩ N)M.

Hence, N̄ = (A ∩ N)M̄ .
Since N̄ is elementary abelian and G centralizes N/M (by (6.10) and (6.5)), a small

variation on our proof that N� = N shows that N̄ = M̄ , whence N = M , as desired.

(b) By (6.6) and (6.7), N� � Z(T̄ ) and G centralizes N�/N̄ . Therefore, by part (a),

N� = [N�, G] � N̄ � N�.

So N̄ = N� and N� = N . By Lemma 6.2, N = (N ∩ A)(N ∩ B), as desired. �

Proposition 6.5. The group T satisfies

T ′ � CT (T̃ ) = Z.

Proof. Clearly, Z = Z(T ) � CT (T̃ ). By Lemma 6.1, T ′ � Z(T̃ ) � CT (T̃ ). So we need
only prove that CT (T̃ ) = Z.

As in the proofs of Propositions 6.3 and 6.4, let H̄ = HZ/Z for every subgroup H

of G.
Let C = CT (T̃ ). We will assume that C > Z and aim for a contradiction.
Here, 1 < C̄ � T̄ and C̄ � Ḡ. Therefore,

C̄ ∩ Z(T̄ ) > 1.

https://doi.org/10.1017/S0013091512000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000089


112 G. Glauberman

Take the subgroup W of T for which

W � Z and W̄ = C̄ ∩ Z(T̄ ).

Then 1 < W̄ � Ḡ.
By Proposition 6.4 and Lemma 6.1,

W = (W ∩ A)(W ∩ B) and T = (A ∩ T )T̃ = (B ∩ T )T̃ .

Since W � C = CT (T̃ ), it follows that T̃ and A ∩ T both centralize W ∩ A, and

W ∩ A � Z(T ) = Z.

Similarly, W ∩ B � Z. Hence, W � Z and W̄ = 1, a contradiction. This completes the
proof of Proposition 6.5. �

Proposition 6.6. The following conditions are satisfied.

(a) T/Z is abelian.

(b) Whenever U � G and Z � U � T , then

U = [U, G]Z and U = (U ∩ A)(U ∩ B).

(c) Whenever U, V � G and Z � V < U � T , then in the action of G induced on U/V

by conjugation,

CU/V (A) = (A ∩ U)V/V, CU/V (B) = (B ∩ U)V/V

and
U/V = CU/V (A) × CU/V (B), CU/V (G) = 1.

(d) In the situation of (c),

T centralizes U/V and CU/V (A) = CU/V (x) for every x in A \ T.

(e) T = [T, Op(G)]Z(G).

Proof. (a) This follows from Proposition 6.5.

(b) This follows from (a) and Proposition 6.4.

(c) Let F = U/V , Â = (A∩U)V/V and B̂ = (B ∩U)V/V . Since A and B are abelian,
we can use (b) to obtain

Â � CF (A), B̂ � CF (B) and F = ÂB̂ � CF (A)CF (B) � F. (6.12)

Let CF (A) ∩ CF (B) = U�/V . Since 〈A, B〉 = G, we have

U�/V = CF (G), U� � G and [U�, G] � V.

But Z � V � U� � T , and (b) gives

U� = [U�, G] � V Z = V � U�.

So U� = V and
1 = U�/V = CF (A) ∩ CF (B) = CF (G).

Now (6.12) gives F = Â × B̂ and (c).
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(d) Take U and V as in (c) and x ∈ A \ T . Recall that Af = B. From the structure of
PSL(2, q), xf−1

lies outside S and NG(S). Therefore, by condition (E0) in § 1,

G = 〈S, xf−1〉 and G = Gf = 〈Sf , x〉 = 〈B, T, x〉.

By (a), [U, T ] � Z � V . So T centralizes F . Hence, 1 = CF (G) = CF (B) ∩ CF (x).
Since CF (A) � CF (x), part (c) gives

CF (x) = CF (x) ∩ (CF (A)CF (B)) = CF (A)(CF (x) ∩ CF (B)) = CF (A),

as desired.

(e) Let
H = Op(G), R = [T, H], Y = Z(G) and Q = RY.

Then, H, R, Y, Q � G.
By Theorem 3.1, Z/Y is a standard module for G/L, and hence is irreducible under

G and is not centralized by H. As [Z, H]Y/Y is a submodule of Z/Y ,

[Z, H]Y/Y = Z/Y and Z = [Z, H]Y � RY = Q.

Let Ḡ = G/Q, and let X̄ = XQ/Q for every subgroup X of G. Then H̄ centralizes T̄

because [T, H] � Q. By (c), T = [T, G]Z = [T, G]Q. Since G = Op(G)S = HS,

T̄ = [T̄ , Ḡ] = [T̄ , H̄S̄] = [T̄ , S̄].

As S̄ is nilpotent, this shows that T̄ = 1, i.e. Q = T , as desired. �

Recall that Z(G) � CG(T ) � T , so that Z(G) � Z(S).

Proposition 6.7. In the situation of Proposition 6.6 (c),

(a) [U, A, A] � V if p = 2 and U/V is elementary abelian, and

(b) [U, A; 3] � V and [T, A; 3] � Z if p is odd.

Proof. As in the proof of Proposition 6.6, let F = U/V . By Proposition 6.6 (d),

T centralizes F. (6.13)

(a) Assume that p = 2 and that F is elementary abelian, and thus a vector space over
F2. Take any x in A. Then x2 lies in T because S/T is elementary abelian. Therefore,
by (6.13), the linear transformation t induced on F over F2 by conjugation by x satisfies

0 = t2 − 1 = (t − 1)2,

which gives [F, x, x] = 0. Thus, [F, x] � CF (x). By Proposition 6.6,

[F, x] � CF (A).

As this is true for all x in A,

[F, A] � CF (A) and [F, A, A] = 0,

which gives (a).
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(b) Assume that p is odd. By Theorem 3.1, Z = [Z, G] × Z(G) and Z/Z(G) is a
standard module for G/L. Therefore, [Z/Z(G), A, A] = 1 and

[Z, A, A] = 1. (6.14)

Take any elements y in A ∩ T , a in A and w in T . Since T ′ � Z(T ) = Z,

[y, w] ∈ Z and [y, w]a = [ya, wa] = [y, wa],

[y, w, a] = [y, w]−1[y, w]a = [y, w−1][y, wa] = [y, w−1wa].

Thus,
[y, w, a] = [y, [w, a]].

Similarly, for a′ in A,

[y, w, a, a′] = [y, [w, a], a′] = [y, [[w, a], a′]] = [y, [w, a, a′]].

By (6.14), we obtain

[y, [w, a, a′]] = [y, w, a, a′] ∈ [T ′, A, A] � [Z, A, A] = 1.

As y can be any element of A ∩ T ,

[w, a, a′] ∈ CT (A ∩ T ) = CT ((A ∩ T )Z) = CT (A∗) = A∗.

Thus, [T, A, A] � A∗ = (A ∩ T )Z and

[T, A; 3] � [(A ∩ T )Z, A] � Z.

Since Z � V < U � T , we also have [U, A; 3] � V , as desired. �

Proposition 6.8. The subgroup L contains T and satisfies the following conditions.

(a) L/T is a p′-group.

(b) T/Z = CT/Z(L) × [T, L]Z/Z.

(c) Whenever U, V � G and Z � V < U � [T, L]Z, U/V is centralized by T , but not
by L.

(d) If L > T , then q is 2 or 3.

Proof. (a) By Theorem 3.1 and Proposition 3.4, L � K and K/T is a p′-group. Hence,
L/T is a p′-group.

(b), (c) Let T ∗ = [T, L]Z. By Proposition 6.6, T/Z is abelian. Therefore, conjugation
by L on T induces an action of L/T on T/Z. By (a) and Lemma 2.1,

T/Z = CT/Z(L/T ) × [T/Z, L/T ] = CT/Z(L) × [T/Z, L] = CT/Z(L) × (T ∗/Z),
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which gives (b). Moreover,

CT ∗/Z(L) = (T ∗/Z) ∩ CT/Z(L) = 1.

For U and V as in (c), T centralizes U/V because T centralizes T/Z. Moreover,
CU/Z(L) � CT ∗/Z(L) = 1. Therefore, Lemma 2.1 with P = U/Z, A = L/T and N = V/Z

gives
CP/N (L) = CP/N (L/T ) = CP (L/T )N/N = CU/Z(L)N/N = N/N.

Thus,
CU/V (L) ∼= C(U/Z)/(V/Z)(L) = CP/N (L) = 1,

which gives (c).

(d) Suppose L > T . By (a) and Cauchy’s Theorem, L contains a subgroup X of prime
order other than p.

Assume first that X centralizes T/Z. Since L = CG(Z) (defined before Theorem 3.1),
X centralizes Z. Therefore, Lemma 2.1 yields that X centralizes T . However, by condi-
tion (H), CG(T ) � T . As |X| does not divide |T |, this is a contradiction. Thus,

X does not centralize T/Z.

Now we have T ∗ = [T, L]Z � [T, X]Z > Z. Clearly, Z and T ∗ are normal in G. Let
U/V be a chief factor of G such that

Z � V < U � T ∗.

Let M = U/V . Then (c) shows that G/T acts on M and that L/T acts non-trivially
on M in this action. Since S = AT , Proposition 6.7 gives

[M, S; 3] = 1. (6.15)

Let Ḡ = G/T and let H̄ = HT/T for every subgroup H of G. By Theorem 3.1,

K̄ = Φ(Ḡ), K̄/L̄ = Z(Ḡ/L̄) and L̄ = [L̄, Ḡ].

Hence, by (6.15) and Theorem 3.1 and Proposition 6.6, the hypothesis of Theorem 2.16
is satisfied. As L̄ does not centralize M , Theorem 2.16 yields that q = 2 or 3. �

Recall from Theorem 3.1 that G/L ∼= SL(2, q).

Proposition 6.9. Suppose U/V is a chief factor of G such that Z � V < U � T and
L centralizes U/V .

Then U/V is a standard module for G/L.

Proof. Since S = AT and T � L,

CU/V (S) = CU/V (A).

Then, by Proposition 6.6, |CU/V (S)|2 = |U/V |. By Theorem 2.15 with G/L, U/V ,
CU/V (S) and SL/L in place of G, V , V0 and S, we see that U/V is a standard module
for G/L. �
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Proposition 6.10. The group T/Z(G) is abelian.

Proof. Assume otherwise. Recall that Z = Z(T ) and, by Proposition 6.6, T/Z is
abelian. Let C and D be subgroups of T containing Z such that

C/Z = CT/Z(L) and D/Z = [T, L]Z/Z.

Then C, D � G. By Proposition 6.8,

T/Z = (C/Z) × (D/Z). (6.16)

So T = CD.
Let Y = Z(G). By Theorem 3.1,

G/L ∼= SL(2, q), Z/Y is a standard module for G/L (6.17)

and K/L = Z(G/L). Hence, Z/Y is irreducible under G/L. As T/Z is abelian, T ′ � Z.
Thus, T ′Y/Y � Z/Y and

if T/Y is not abelian, then (T/Y )′ = T ′Y/Y = Z/Y. (6.18)

In any case, since T has nilpotence class 2, the commutator mapping T ×T → Z induces
a bi-additive mapping of abelian groups

T/Z × T/Z → Z/Y

that takes (xZ, yZ) to [x, y]Y .
We consider the action of G on its chief factors induced by conjugation. By Proposi-

tion 6.6,

CX(A) = (A ∩ U)V/V and X = CX(A) × CX(B) (6.19)

whenever U, V � G and Z � V < U � T and X = U/V . Since B = Af , (6.19) also gives

|U/V | = |CU/V (A)|2 (6.20)

in this situation.
We prove the result in three steps:

1. C/Y is abelian;

2. D/Y is abelian;

3. D/Y centralizes C/Y .

Since T = CD, this suffices.
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Step 1. C/Y is abelian.

Proof. Assume first that p is odd. Then SL(2, q) contains a unique element of order 2.
Therefore, by (6.17), there exists a 2-element g of G such that gL is the unique element
of order 2 in G/L.

Now g2 is a p′-element of L. So g2 centralizes C/Z. By (6.17), g2 centralizes Z/Y .
Hence, by Lemma 2.1, g2 centralizes C/Y , and g induces an automorphism of order 2 on
C/Y .

By (6.17), g acts as the −1 transformation of Z/Y . So CZ/Y (g) = 1, and CZ(g) � Y .
Similarly, by Proposition 6.9,

CU/V (g) = 1

whenever U/V is a chief factor of G and Z � U < V � C. Therefore, g induces an
automorphism of order 2 on C/Y that fixes only the identity element. By an elementary
result, C/Y is an abelian group inverted by g.

Next, assume that p = 2. Then, by (6.17) and Theorem 3.1 (h),

K/L = Z(G/L) ∼= Z(SL(2, q)) = 1 and K = L.

Now, SL(2, q) contains a subgroup H/L isomorphic to the symmetric group of degree 3.
Since S is a Sylow 2-subgroup of G, we may replace H by a conjugate, if necessary, so that
H ∩S is a Sylow 2-subgroup of H. Let g be a 3-element of H such that gL is an element
of order 3 in H/L. Then g does not normalize S because gL does not normalize SL/L.

We chose f (at the beginning of § 4) to be an arbitrary p′-element of G\NG(SK). Since
SL = SK, we may assume for this part of the proof that f = g. Hence, B = Af = Ag.

By an argument similar to our argument above for p odd,

CC/Z(g) = 1 and CZ/Y (g) = 1. (6.21)

We write C/Z and Z/Y as additive groups and let

φ : (C/Z) × (C/Z) → Z/Y

be the bi-additive mapping induced by the commutator mapping. For any x in C/Z, g

centralizes x + xg + xg2
, so that x + xg + xg2

= 0, by (6.21); and similarly for x in Z/Y .
By Proposition 4.5 and the definitions at the beginning of § 6,

G = G∗ = 〈Z(Q0), Z(R0)〉 = 〈A, B〉. (6.22)

By (6.19) and (6.20) with U = C and V = Z,

CC/Z(A) = (A ∩ C)Z/Z and |C/Z| = |CC/Z(A)|2

and
C/Z = CC/Z(A) × CC/Z(B). (6.23)

Therefore,
φ(a, a′) = 0 whenever a, a′ lie in CC/Z(A). (6.24)
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Take any a in CC/Z(A) and b′ = CC/Z(B). Let b = ag and a′ = b′g2
. Then a′ ∈ CC/Z(A)

and b′ ∈ CC/Z(B). By (6.24),

φ(a, a′) = 0, φ(b, b′) = φ(ag, a′g) = φ(a, a′)g = 0

and

0 = φ(ag2
, a′g2

)

= φ(−a − ag,−a′ − a′g)

= φ(ag, a′) + φ(a, a′g)

= φ(b, a′) + φ(a, b′).

Therefore,

φ(a, b′)g = φ(b, a′g2
) = φ(b, −a′ − b′) = −φ(b, a′) = φ(a, b′).

However, CZ/Y (g) = 1, by (6.21). Thus, φ(a, b′) = 0. As [b′, a] = −[a, b′], φ(b′, a) =
−φ(a, b′) = 0. Since a and b′ are arbitrary elements of CC/Z(A) and CC/Z(B), (6.23)
and (6.24) and the argument above show that φ is identically zero. By (6.18), we are
done. �

Step 2. The group D/Y is abelian.

Proof. Assume that D/Y is not abelian. We work towards a contradiction.
Recall that D = [T, L]Z. Since Z/Y is abelian, [T, L] is not contained in Z. Since

T ′ � Z and L � T , we have L > T . By Proposition 6.8, q is 2 or 3.
Consider a chief series for G that contains the series

1 � Y < Z < D < G.

Let
Y = W0 < W1 < · · · < Wk = D

be the portion of the chief series from Y to D.
Take i maximal such that 1 � i � k and Wi/Y is contained in the centre of D/Y .

Since D/Y is not abelian, 1 � i � k − 1.
Now, Wi+1/Y is not contained in the centre of D/Y . Take j maximal such that

0 � j � k and Wj/Y centralizes Wi+1/Y . Then j � k − 1 and Wj+1/Y does not
centralize Wi+1/Y . To summarize:

Y contains [Wi, D] (and hence [Wi, Wj+1]) and [Wi+1, Wj ], but not [Wi+1, Wj+1].

By (6.17) and (6.18), [D, D]Z/Z = Y/Z. The previous paragraph shows that the bi-
additive mapping (T/Z) × (T/Z) → Y/Z induced by the commutator mapping restricts
to a bi-additive surjective mapping

f : (Wi+1/Wi) × (Wj+1/Wj) → Y/Z
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such that

f(ug, vg) = f(u, v)g for all u in Wi+1/Wi, v in Wj+1/Wj and g in G.

Let M1 = Wi+1/Wi, M2 = Wj+1/Wj and M = Y/Z. Since T centralizes every chief
p-factor of G, conjugation induces action of G/T on M1, M2 and M . By Proposition 6.8
and (6.17), L/T acts non-trivially on M1 and M2 and trivially on M . By (6.19) and (6.20)
applied to U/V = Mk for k = 1, 2,

|Mk| = |CMk
(A)|2 = |CMk

(S)|2,
CM1(A) = (Wi+1 ∩ A)Wi/Wi,

CM2(A) = (Wj+1 ∩ A)Wj/Wj .

Therefore,
f(u, v) = 0 for all u in CM1(A) and v in CM2(A),

and, by Theorem 3.1, the hypothesis of Lemma 2.18 is satisfied with G/T , K/T and
L/T in place of G, K and L. Therefore, G/T centralizes the image of f . However, f is a
surjective mapping onto Z/Y , which is a standard module for G/L. This contradiction
shows that D/Y is abelian. �

Step 3. D/Y centralizes C/Y .

Proof. Since L/T is a p′-group, there exists a complement, L0, to T in L, by the
Schur–Zassenhaus Theorem. Then L = L0T . As L = CG(Z) and L centralizes C/Z, L0

centralizes C/Z and Z. By Lemma 2.1, L0 centralizes C.
Clearly, C � G and L0 � CG(C) � G. Therefore,

[T, L0] � CG(C) � CG(C/Y ).

As T/Z is abelian and Z = Z(T ),

CG(C/Y ) � [T, L0]Z � [T, L0T ]Z = [T, L]Z = D.

Thus, D/Y centralizes C/Y , as desired. �

As mentioned at the beginning of the proof, Steps 1–3 complete the proof of the
proposition. �

Corollary 6.11. The group S satisfies

(a) S′ � (A ∩ T )Z = A� and

(b) γ3(S) � [Z, A]T ′ � Z(S) and γ4(S) = 1.
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Proof. Take x in A ∩ T , y in T , and a in A. By Proposition 6.10, T ′ � Z(G). Hence,

[x, y] = [x, y]a = [xa, ya] = [x, ya] and [x, y−1ya] = [x, y]−1[x, ya] = 1.

Thus, [y, a] = y−1ya ∈ CT (A ∩ T ) = CT ((A ∩ T )Z) = CT (A�) = A�. Since y and a were
chosen arbitrarily, [T, A] � A�.

Now, [T, A]�AT = S. So [T, A]Z(G)�S. As T ′ � Z(G) and A is abelian, S/[T, A]Z(G)
is abelian. Therefore, since Z(G) � Z � A�,

S′ � [T, A]Z(G) � A�,

which proves (a).
By Lemma 3.2, [Z, S] � Z(S). Hence, by (a),

γ3(S) = [S′, S] � [(A ∩ T )Z, AT ] � T ′[Z, A] � Z(G)Z(S) = Z(S).

Then γ4(S) � [Z(S), S] = 1. This proves (b). �

Proposition 6.12. The subgroup L contains T and satisfies the following conditions.

(a) G/L � SL(2, q).

(b) If q > 2, then L = T .

(c) If q = 2, then G/T is a dihedral group of order 2 · 3k for some positive integer k.

(d) Z/Z(G) is a standard module for G/L.

Proof. By (E0), CG(T ) � T . By Proposition 6.10, T/Z(G) is abelian, and thus is the
centre of itself. Therefore, the group W1 in Theorem 3.1 is equal to T , and all of this
proposition follows from Theorem 3.1. �

Proposition 6.13. Let H = Op(G), P = H ∩ S and R = H ∩ T . Then

(a) T/Z is elementary abelian,

(b) if p is odd, then T/Z(G) is elementary abelian,

(c) [R, H] = R,

(d) if p is odd, then R has exponent p, and

(e) if p � 5, then P has exponent p and S = PZ(G).
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Proof. Recall that Z(G) < Z(S) < Z, by Lemma 3.2. Let Y = Z(G).

(a) Let T̄ = T/Z. By Proposition 6.6, T̄ is abelian. Let T1/Z = Ω1(T̄ ). Then T1 � G.
Take any element a of A and let α be the automorphism of T̄ induced by conjugation

by a. We regard the operation of T̄ as addition, and α as an invertible element of the
endomorphism ring of T̄ . Let δ = α − 1. Since

[T, A, A] � γ3(S) � Z(S) < Z,

by Corollary 6.11, δ2 = (α − 1)2 = 0.
As S/T is elementary abelian, ap lies in T and hence centralizes T/Z. Therefore,

1 = αp = (1 + δ)p = 1 + pδ,

whence pδ = 0. Thus, [T, a]p � Z and [T, a] � T1. This shows that A centralizes T/T1.
Since T ′ � Z � T1 and S = AT ,

S centralizes T/T1.

As T, T1�G, we see that CG(T/T1) is a normal subgroup of G that contains S and hence
〈SG〉, which is G, by Proposition 3.4. Thus, [T, G] � T1. However, by Proposition 6.6,

T = [T, H]Y = [T, G]Z. (6.25)

Since [T, G]Z � T1 � T , we obtain T1 = T , i.e.

T/Z is elementary abelian.

(b) Assume p is odd. We follow the proof of (a) with a few changes.
Recall that Y = Z(G). We take T̄ to be T/Y instead of T/Z. By Proposition 6.10, T̄

is abelian.
Take any element a of A. Define α and δ as in the proof of (a), but acting on T̄ instead

of T/Z. It is possible that δ2 �= 0. But since [T, A, A, A] = 1 by Corollary 6.11, δ3 = 0.
Let k = (p − 1)/2. Then

1 = αp = (1 + δ)p = 1 + pδ + pkδ2 and 0 = pδ + pkδ2 = pδ(1 + kδ).

Then 0 = 0(1 − kδ) = pδ(1 + kδ)(1 − kδ) = pδ(1 − k2δ2) = pδ because δ3 = 0.
As in the proof of (a), we obtain [T, G] � T1, where T1/T = Ω1(T/Y ). Then Propo-

sition 6.6 yields T = [T, H]Y � T1. Consequently, T = T1, and T/Y is elementary
abelian.

(c) Here, p is arbitrary. Let Q = [T, H]. Since T, H � G, we see that Q � G and
Q � T ∩ H = R � G, and P is a Sylow p-subgroup of H.

Let Ḡ = G/Q. For every subgroup X of G, let X̄ = XQ/Q. By (6.25), T = QY and
T̄ = Ȳ � Z(Ḡ). Since S = TA and A is abelian, S̄ is abelian and R̄ � Z(H̄).

As H is generated by p′-elements, so is H̄. So H̄/H̄ ′ is a p′-group, and P̄ � H̄ ′. By
Lemma 2.1,

R̄ � P̄ ∩ Z(H̄) = P̄ ∩ H̄ ′ = Z(H̄) � P̄ ′ = 1 and R = Q = [T, H].

By Proposition 6.6, T = [T, H]Y = RY . Hence, R = [T, H] = [RY, H] = [R, H], as
desired.
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(d) Assume p is odd. Since T has nilpotence class at most 2, Ω1(T ) has exponent p,
by Theorem 2.4.

Take any elements u of T and g of G. Let v = ug. By (b), up ∈ Y = Z(G). Hence,
vp = (ug)p = (up)g = up. By Theorem 2.4, (uv−1)p = 1, and uv−1 ∈ Ω1(T ). Thus,

[T, G] � Ω1(T ).

So R = [T, H] � Ω1(T ), and R has exponent p.

(e) Assume p � 5. Let W = H ∩ Y . By Corollary 6.11 and Theorem 2.4,

S has nilpotence class at most 3 and Ω1(S) has exponent p. (6.26)

Similarly,

S/W has nilpotence class at most 3 and Ω1(S/W ) has exponent p. (6.27)

By Proposition 6.12, L = T and G/L ∼= SL(2, q). Since q � p � 5, we may take x

and M as in Lemma 5.4. Then x lies in P \ T , M is a non-identity p′-subgroup of G

normalized by x, and xp lies in CT (M) ∩ H.
By Proposition 6.9, every chief factor U/V of G such that Y � V < U � T is a

standard module for G/L. Thus, CU/V (M) = 1 for every such chief factor. By arguing
as in Step 1 of the proof of Proposition 6.10, we see that CT (M) � Y . Hence,

xp ∈ CT (M) ∩ H � Y ∩ H = W. (6.28)

For each element g and subgroup G∗ of G, let ḡ and G� be the element gW and
subgroup G∗W/W of G/W . Let F = NH(P ). Since W � H ∩ T = R � P ,

F/R = NH/R(P/R) and F̄ /R̄ = NH̄/R̄(P̄ /R̄).

By (d) and (6.28),
Ω1(P̄ ) � 〈x̄, R̄〉 > R̄.

So Ω1(P̄ )/R̄ is a non-identity normal subgroup of F̄ /R̄ contained in P̄ /R̄. However, from
the structure of SL(2, q) for q � 4,

G/T = Op(G/T ) = Op(G)T/T = HT/T ∼= H/(H ∩ T ) = H/R ∼= H̄/R̄,

P̄ /R̄ is a minimal normal subgroup of F̄ /R̄,

P̄ /R̄ = [F̄ /R̄, P̄ /R̄]. (6.29)

Therefore, G = HT , S = PT , P̄ /R̄ = Ω1(P̄ )/R̄ and P̄ = Ω1(P̄ ). By (6.25) and (6.27),

S = PRY = PY and P̄ has exponent p. (6.30)

Since P is a normal Hall subgroup of F , it has a normal complement F0, which is a
Hall p′-subgroup of F . Then F = F0P . As P̄ /R̄ is abelian, (6.29) yields

P̄ /R̄ = [F̄ /R̄, P̄ /R̄] = [F̄ , P̄ ]R̄/R̄ = [F̄0, P̄ ]R̄/R̄,
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whence
P = [F0, P ]R. (6.31)

By (6.26), S has nilpotence class at most 3 and Ω1(S) has exponent p. Then, from (d),
(6.30), (6.31) and the method of proof of part (d), P = Ω1(P )R � Ω1(S). So P has
exponent p, as desired. �

Proof of Theorem C. Now we prove Theorem C. By Remark 5.6, we need to check
only (5.15), (5.16) and parts (a), (c) and (d) of the theorem when G = G∗. Recall that
we assumed G = G∗ before Lemma 6.1, and that we defined

Ĝ = Op(G), Ŝ = S ∩ Ĝ and T̂ = Op(Ĝ)

in Theorem C. Moreover, by Proposition 4.5, T ∗ = Op(G∗) = Op(G) = T .
As [Op′(G), T ] � Op′(G) ∩ Op(G) = 1, we have Op′(G) � CG(T ) � T . Therefore,

Op′(G) = 1.
Since Ĝ � G and S is a Sylow p-subgroup of G,

Ŝ is a Sylow p-subgroup of Ĝ and Op′(Z(Ĝ)) � Op′(Ĝ) � Op′(G) = 1.

So
Z(Ĝ) = Op′(Z(Ĝ)) × Op(Z(Ĝ)) = Op(Z(Ĝ)) � Op(Ĝ) = T̂ .

Hence,
Z(Ĝ) � Z(T̂ ). (6.32)

By Corollary 6.11, S has nilpotence class at most 3. As Ŝ is a subgroup of S, we obtain
part (a) of the theorem.

Recall that Z = Z(T ). As before, let Y = Z(G). In the proof of part (e) of Proposi-
tion 6.6, we obtained Z = [Z, H]Y , i.e. Z = [Z, Ĝ]Y . Clearly,

[Z, Ĝ] � Z ∩ T ∩ Ĝ = Z(T ) ∩ T̂ � Z(T̂ ).

Hence, Z � Z(T̂ )Z(G) and [Z, Ĝ] � [Z(T̂ )Z(G), Ĝ] = [Z(T̂ ), Ĝ]. By Proposition 6.12,
Z/Y is a standard module for G/L, and thus is not centralized by Op(G), i.e. Ĝ. So
1 < [Z, Ĝ] � [Z(T̂ ), Ĝ], and Z(T̂ ) is not contained in Z(Ĝ). Therefore, by (6.32),

Z(Ĝ) < Z(T̂ ). (6.33)

By Proposition 6.10 and 6.13, T/Z(G) is abelian, T/Z is elementary abelian, and
[T̂ , Ĝ] = T̂ . Since T̂ � T , we obtain

T̂ ′ � T ′ ∩ T̂ � Z(G) ∩ T̂ � Z(Ĝ).

By (6.33), Z(Ĝ) < Z(T̂ ) � T̂ . This proves part (c) of the theorem.
Parts (d) and (e) of Proposition 6.13 give part (d) of the theorem.
Now recall statements (5.15) and (5.16) in Remark 5.6. Since G = G∗, we may restate

them as follows.
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(5.15′) If U/V is a chief factor of G and Z(Ĝ) � V < U � T̂ , then U/V is not a central
chief factor.

(5.16′) If q > 2, then L = T , and every chief factor U/V of G as in (5.15′) is a standard
module for G/T .

Take a chief factor U/V of G as in (5.15′). Then Z(Ĝ) � V < U � T̂ and

V � U ∩ V Y = V (U ∩ Y ) = V (U ∩ Z(G)) � V Z(Ĝ) = V.

Thus, V = U ∩ V Y . We obtain an isomorphism of G-modules

UY/V Y = U(V Y )/V Y ∼= U/(U ∩ V Y ) = U/V.

Therefore, UY/V Y is a chief factor of G isomorphic to U/V .
Consider a chief series of G that contains the series

1 � Y < Z � T � G.

Since Y � V Y < UY � T , the proof of the Jordan–Hölder Theorem for chief series [16,
pp. 125–127] shows that some chief factor W/X from this chief series satisfies Y � X <

W � T and is isomorphic to UY/V Y , and hence to U/V .
Since Z/Y is a standard module for G/L (by Proposition 6.12), it is a non-central

chief factor of G, and we have

W/X = Z/Y or Z � X < W � T.

However, in the latter case, W/X is not central, by Proposition 6.6. Thus, in all cases,
W/X, and hence U/V , are not central. This proves (5.15′).

To prove (5.16′), assume that q > 2 and take a chief factor U/V as above. By Propo-
sition 6.12, L = T . Therefore, L centralizes U/V . By Proposition 6.9, U/V is a standard
module for G/T , as desired.

This completes the proof of Theorem C. �

7. Examples

As mentioned in § 1, the group SMCL in Theorem C has an advantage over the group S2

in the exceptional case of [12] in being defined more explicitly and having (like J(S))
the property that no other subgroup of S is isomorphic to it. But Theorem C has the
disadvantage of allowing a wider family of exceptions to specifying a characteristic sub-
group of S that is normal in G. We illustrate this in Examples 7.1–7.3, where S is ‘large’
enough that one of the groups S1 or S2 in the exceptional case of [12] is normal in G,
but ‘small’ enough that conditions (a)–(i) in Theorem C are satisfied and neither Z(S)
nor SMCL is normal. Examples 7.2 and 7.3 also show that some of the restrictions on p

and q in Theorem C are necessary.
In Theorem C, J̃(S) is not normal in G, while SMCL may be normal. In contrast, in

Examples 7.4 and 7.5, Z(J(S)) is normal, while Z(SMCL) is not. In Examples 7.6 and 7.7,
(E0) is satisfied, but no non-identity characteristic subgroup of S is normal in G.

https://doi.org/10.1017/S0013091512000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000089


A pair of characteristic subgroups for pushing-up. II 125

Example 7.1. Let Q be a quaternion group of order 8 if p = 2 and a non-abelian
group of order p3 and exponent p if p is odd. It is well known that the automorphism
group of Q contains a subgroup H isomorphic to SL(2, p) that centralizes Z(Q). (For
p = 2, take H as in Example 7.2.) Let E be a standard module for H.

Let m be a natural number and Q1, . . . , Qm be isomorphic copies of Q. We embed E,
Q1, . . . , Qm in their direct product T = E ×Q1 × · · ·×Qm and let H act on T by acting
on each component according to the action above. Let G be the semi-direct product of
T by H.

Let S be the product of T with a Sylow p-subgroup 〈σ〉 of H, and let K be the product
of T with the centre of H. It is easy to verify that T = Op(G) and that G satisfies (E0)
for pn = p. To verify the hypothesis of Theorem C, we must show that S = J̃(S).

Clearly,

Z(G) = Z(Q1) × · · · × Z(Qm), Z(S) = CE(σ) × Z(G), �1(Z(S)) = 1 (7.1)

and Z(T ) = E×Z(G). Then T/Z(S) is abelian and Z2(S)/Z(S) = Z(S/Z(S)) � T/Z(S).
So

Z2(S) � T < S. (7.2)

Consider first the case in which p is odd. Here, T has exponent p. It is well known
that σ centralizes a subgroup B of order p2 in Q. Let B1, . . . , Bm be the corresponding
subgroups of Q1, . . . , Qm. Let

B̃ = B1 × · · · × Bm, A∗ = E × B̃ and A = CE(σ) × B̃ × 〈σ〉.

It is easy to see that A and A∗ are large abelian subgroups of S and that

d(S) = d(T ) = p2m+2, J(T ) = T, J(S) = S and S′ = Φ(S) = CE(σ) × B̃. (7.3)

Next, consider the case in which p = 2. Then (see Example 7.2) Q contains elements
i, j, k such that

iσ = j, jσ = i, k = ij and kσ = k−1.

Let i1, . . . , im and j1, . . . , jm and k1, . . . , km be elements of Q1 × · · ·×Qm corresponding
to i, j and k, and let σ′ = i1i2 · · · imσ and

B̃ = 〈k1, . . . , km〉, A∗ = E × B̃ and A = CE(σ) × B̃〈σ′〉.

Then

σ′2 = (i1i2 · · · im)σ−1(i1i2 · · · im)σ = (i1i2 · · · im)(j1j2 · · · jm) = k1k2 · · · km.

Since σ′ centralizes σ′2, σ′ centralizes B̃. It is easy to see that A and A∗ are large
abelian subgroups of S, and (7.3) is still valid in this case.

Thus, (7.1)–(7.3) hold for all choices of p. Note that |S| = p|T | = p ·p2 · (p3)m = p3m+3

and, by (7.1), |Z(S)| = pm+1. Therefore,

|S| |Z(S)| = p3m+3 · pm+1 = p4m+4 = (p2m+2)2 = d(S)2.
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By Lemma 2.12, the minimal CL-subgroups of S are the large abelian subgroups of S,
and S = SCL = SMCL = J̃(S).

By (7.1) and (7.3), Z(S) �= Z(G) and J̃(S) = S. Since S = SMCL, it follows from
Lemma 2.19 that neither of the two subgroups Z(S) and SMCL of Theorem C is normal
in G, and G satisfies conditions (a)–(i) of Theorem C.

In contrast, (7.1)–(7.3) yield that J̃(S) = S, �1(Z(S)) = 1 and S′ is not contained in
Z(S). Hence, S has nilpotence class at least 3 (in fact, precisely 3). Therefore, if p �= 3,
then S satisfies the hypothesis of the exceptional case of [12] discussed in § 1 (i.e. case (c)
of Theorem D of [12]), and one of the pair of subgroups S1, S2 given in that case is normal
in G.

Actually, the proof of Theorem D of [12] (on p. 450 of [12], where Z2(G) in (7.1)
should be corrected to Z2(S)) shows a little more for p �= 3: S2 � G because we have the
conditions

J̃(S) = S, �1(Z(S)) = 1, Z(S) �= Z(G) and Ω1(Z2(S)) � Op(G).

As S = SMCL, our suspicion (in § 1) that S2 � SMCL is false. (Note that here we
obtained S2 �G without assuming that S1 is not normal in G. Indeed, one may calculate
that S1 = Z(G) � G here.)

Again, assume p �= 3. Since S2 is an intersection of subgroups Op(G∗) for groups G∗

that satisfy (E0), S2 � Φ(S) = CE(σ) × B̃ by (7.3). It is easy to see that the normal
closure of Φ(S) in G is equal to T . Since S2 � G, we have S2 = T .

This example illustrates another difference between Theorem C and the results of [12].
If p �= 3 and S is ‘too small’ to satisfy the hypothesis of [12], then, by Remark 1.2
of [12], a group G satisfying (E0) will have a unique non-central chief factor within
Op(G) (and this chief factor lies within Z(Op(G))). But for G in this example, G has
precisely m + 1 non-central chief factors within Op(G), since one occurs for each of E,
Q1/Z(Q1), . . . , Qm/Z(Qm).

Now assume that p � 5 and m = 1. Then S2 = T = E ×Q1 and T has exponent p. Let
x1 = σ. Take x2 in B1 \Z(G), x5 in E \CE(σ), and x6 in Q1 \B1, and take x3 = [x1, x5]
and x4 = [x2, x6]. Then

E = 〈x3, x5〉, Q1 = 〈x2, x4, x6〉, Z(Q) = 〈x4〉, T = 〈x2, x3, . . . , x6〉

and [xi, xj ] = 1 whenever 1 � i, j � 6 and |j − i| � 3. Since 〈x1, x5〉 is a non-abelian
group of order p3 generated by elements of order p, it has exponent p. Now

〈x1, . . . , x5〉 = 〈x1, x3, x5〉 × 〈x2, x4〉

and there exists an isomorphism φ of 〈x1, . . . , x5〉 onto T given by φ(xi) = xi+1 for
i = 1, 2, . . . , 5. (This example comes from Example 8.2 of [12] and § 9 of [10].)

We saw above that T does not contain SMCL. The isomorphism φ shows more generally
that T does not contain any non-identity subgroup S∗ satisfying the condition that every
subgroup of S isomorphic to S∗ is equal to S∗.
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Example 7.2. In Theorem C, part (d) yields that if T̂ /Z(Ĝ) is not elementary abelian
and p �= 2, then Z(S) or SMCL is normal in G. Here, we show that the assumption that
p �= 2 is necessary.

Let H be a group isomorphic to the symmetric group of order 3. Let U be the direct
product of two cyclic groups of order 4 with a quaternion group of order 8. Then

H = 〈σ, τ〉 and U = 〈a〉 × 〈b〉 × 〈i, j〉,

where σ2 = τ3 = 1, a4 = b4 = i4 = j4 = 1 and i2 = j2 = [i, j]. Let ij = k, as usual.
We let H act faithfully on U by defining

aσ = b, bσ = a, iσ = j, jσ = i, aτ = b, bτ = a−1b−1, iτ = j−1, jτ = k−1.

Inside U , let c = ai, d = bj and z = [i, j]. Note that Φ(U) = 〈a2, b2, z〉 = 〈c2, d2, z〉.
Let T = 〈c, d, Φ(U)〉. Then z = [c, d] and Φ(T ) = Φ(U) = Z(T ). Since

cσ = d, dσ = c, cτ = dz and dτ = c−1d−1z,

T is invariant under H. Let G be the semi-direct product of T by H.
Let S = 〈T, σ〉. Then S is a Sylow 2-subgroup of G,

|T | = 25, |S| = 26, Z(S) = CZ(T )(σ) = 〈c2d2, z〉 and Z(G) = 〈z〉. (7.4)

Moreover, T = Op(G) and G satisfies (E0) for pn = 2. Since 〈c, Z(T )〉 is an abelian
subgroup of T of order 24 and T is not abelian,

d(S) � d(T ) = 24.

We claim that d(S) = 24. Suppose A is an abelian subgroup of S. Then |A| � 24 if
A � T . So assume that A is not contained in T . Then

A ∩ Z(T ) � CZ(T )(σ) = Z(S) = 〈c2d2, z〉 < Z(T )

and (A ∩ T )Z(T ) is an abelian subgroup of T . Therefore,

T > (A ∩ T )Z(T ) > A ∩ T, |A ∩ T | � |T |/22 = 23 and |A| = 2|A ∩ T | � 24,

as desired. Thus, d(S) = 24.
Let A∗ = 〈σd, z〉. Since 〈c, Z(T )〉 and 〈d, Z(T )〉 are abelian subgroups of order 24 in T

that generate T , we have T = J(T ). Moreover,

(σd)2 = σ−1dσd = cd,

(σd)4 = (cd)2 = (aibj)2 = (ab)2k2

= a2b2z = c2zd2zz = c2d2z.

So σd has order 8, A∗ = 〈σd〉 × 〈z〉 and A∗ is abelian of order 16. Therefore, J(S) �
〈J(T ), A∗〉 = S and S = J(S).
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Here,
|S| |Z(S)| = 26 · 22 = 28 = d(S)2.

By Lemma 2.12, the minimal CL-subgroups of S are the large abelian subgroups of S,
and S = SCL = SMCL = J̃(S). By (7.4), Z(S) �= Z(G). Now, as in Example 7.1, neither
of the subgroups Z(S) and SMCL of Theorem C is normal in G, but one of the subgroups
S1, S2 for this case of [12] is normal in G. (In fact, S2 = T � G, as in Example 7.1.) So
G satisfies conditions (a)–(i) of Theorem C. However, it is easy to see that

Ĝ = Op(G) = T 〈z〉, T̂ = Op(Ĝ) = T, Z(Ĝ) = CZ(T )(z) = 〈z〉 = Z(G)

and T̂ /Z(Ĝ) is not elementary abelian, unlike the case when p is odd.
Further calculation shows that, for every large abelian subgroup A of S, |Ω1(Z(A))| =

|Ω1(A)| � 23 < d(S) because A is not elementary abelian. Since |Ω1(A)| = 23 for
A = 〈c, Z(T )〉, the parameter mz(S) in Theorem B is equal to 23 and we have

1 < SΦ = 〈Φ(A) | A is a large abelian subgroup of S and |Ω1(A)| = 23〉.

Since Z(S) �= Z(G), Lemma 2.19 and Theorem B yield that SΦ is a normal subgroup of
G. (In fact, SΦ = Φ(T ) = Z(T ) > 1.)

Example 7.3. In Theorem C, part (h) yields that if L > T and q > 2, then Z(S) or
SMCL is normal in G. Here, we show that the assumption that q > 2 is necessary.

Let F be the Galois field of order 26. Then the multiplicative group F× contains a
unique subgroup M of order 9, and the Galois group of F contains a unique element σ

of order 2, given by x �→ x8. We may regard σ and the elements of M as permutations
of F . Then σ normalizes M .

Let H = M〈σ〉. Then H is a dihedral group of order 18. Therefore, H/Ω1(M) is
isomorphic to the symmetric group of degree 3, so that H acts on a Klein 4-group E

with kernel Ω1(M).
Let R be the set of all triples (x, y, z) for x, y ∈ F and z ∈ GF(2). Define a bilinear

mapping of F × F into GF(2) by f(x, y) = T (xy8), where T denotes the trace function
from F to GF(2). Note that f(xα, yα) = f(x, y) whenever α ∈ M or α = σ, and hence
whenever α ∈ H.

We define multiplication on R by

(x, y, z)(x′, y′, z′) = (x + x′, y + y′, z + z′ + f(x′, y)),

and we let (x, y, z)α = (xα, yα, z) for (x, y, z) ∈ R and α ∈ H. Straightforward calculation
shows that R is a group and that

[(x, y, z), (x′, y′, z′)] = (0, 0, f(x′, y) + f(x, y′)).

Moreover, H acts faithfully on R by automorphisms. Finally, we embed E and R in their
direct product T , and we embed T and H in their semi-direct product G.

Let S = T 〈σ〉. Then S is a Sylow 2-subgroup of G and T = O2(G), and G satisfies
(E0) for pn = 2. It is easy to see that R is an extra-special group of order 213 and

|S| = 216, Z(T ) = E × Z(R), Z(S) = CE(σ) × Z(R) and |Z(S)| = 4.
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Let
R1 = {(x, y, z) | x, y ∈ GF(8) and z ∈ GF(2)}

and
A1 = E × R1.

Then R1 is an elementary abelian subgroup of R of order 27 that is centralized by σ. Let
A = CE(σ) × R1 × 〈σ〉. Easy calculation shows that

A1 and A are elementary abelian subgroups of order 29 in S, d(T ) = d(S) = 29,

T = J(T ) and S = J(S).

Therefore, |S| |Z(S)| = 216·22 = 218 = d(S)2. By Lemma 2.12, the minimal CL-subgroups
of S are the large abelian subgroups of S, and S = SCL = SMCL = J̃(S).

As in Examples 7.1 and 7.2, neither of the subgroups Z(S) and SMCL of Theorem C
is normal in G, but one of the subgroups S1, S2 for this case of [12] is normal in G. (As
in Examples 7.1 and 7.2, S2 = T � G.) Since

L = CG(Z(T )) = CG(EZ(R)) = TΩ1(M) > T,

we have L > T , unlike the case when q > 2.

Example 7.4. Here we verify a case of Thompson’s conjecture in § 1 when S = J(S)
and show that neither SΦ nor SMCL is normal in this case.

Assume p � 5. For convenience, we take q = p. Let G be the group denoted by G−a

in Example 8.1 of [12]. Then

G = 〈x ∈ P | x is a p-element〉

for a rank-1 parabolic subgroup P of the simple group G2(p), P/G is a cyclic p′-group,
and S is a Sylow p-subgroup of G, P and G2(p).

Let F be the field Fp. In the usual notation for simple groups of Lie type [4], S = U

and G = 〈x−a(F ), S〉 for the short root a in a fundamental root system {a, b} of type
G2. As usual, let T = Op(G). Then

|S| = p6, G/T ∼= SL(2, p), G satisfies (E0), d(S) = p3,

S = J(S) = J̃(S), |Z(S)| = p and Z(S) = Z(T ) � G.

Moreover, T is an extra-special group of order p5 and exponent p, and T/Z(T ) is a chief
factor of order p4 in G, and thus not a standard module for G/T .

In the usual notation, the Chevalley commutator formulae [4] give

Z(T ) = x3a+2b(F ), T = 〈xb(F ), xb+a(F ), xb+2a(F ), xb+3a(F )〉,
S′ = 〈xb+a(F ), xb+2a(F ), xb+3a(F ), Z(T )〉 (of order p4),

[S′, S] = 〈xb+2a(F ), xb+3a(F ), Z(T )〉 (of order p3),

[S′, S, S] = 〈xb+3a(F ), Z(T )〉 = Z2(S) (of order p2).
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Moreover, S = 〈xa(F ), T 〉 and Z2(S) = CT (xa(F )). Thus, S has nilpotence class 5, and
it is a p-group of maximal class.

By Proposition 2.8 and Theorem 2.9, SCL � J̃(S) = S and SCL is a CL-subgroup of S.
So S = SCL and f(S) = |S| |Z(S)| = p6 · p = p7. Let S∗ = CS(Z2(S)). Then calculation
shows that

S∗ = 〈S′, xa(F )〉, Z(S∗) = Z2(S), |S∗| = p5, |S∗| |Z(S∗)| = p5 · p2 = p7 = f(S)

and S∗ is the unique minimal CL-subgroup of S. Therefore,

SMCL = S∗ and SΦ = Φ(S∗) = (S∗)′ = [S′, S].

Hence, none of SΦ, Z(SMCL) or SMCL is normal in G.
Here, Z(J(S)) = Z(S) = Z(T ) � G, in accordance with Thompson’s conjecture in § 1.

Example 7.5. Assume p is odd. Let T be an extra-special group of order p7 and
exponent p, let H be PSL(2, p) and let σ be an element of order p in H. Let F be the
prime field Fp.

In Example 10.4 of [8] (where T , H and σ are denoted by H, L and x, respectively),
it is shown that there exists a semi-direct product, G, of T by H satisfying the following
conditions.

(a) H/Z(H) is the direct sum of two copies, V1 and V2, of a three-dimensional vector
space V over F on which H acts irreducibly as an orthogonal group.

(b) σ acts with cubic minimal polynomial on V1 and V2.

(c) For S = T 〈σ〉, S is a Sylow p-subgroup of G and d(S) = d(T ) = p4 and J(S) = S.

(d) CS(σ) is an elementary abelian subgroup of G of order p4.

Clearly, T = Op(G), Z(S) = Z(T ) and G satisfies (E0) for pn = p. Since S = J(S),
Proposition 2.8 and Theorem 2.9 yield that S = SCL = J̃(S) and f(S) = |S| |Z(S)| =
p8 · p = p9. Let S∗ = CS(Z2(S)).

This example is similar to Example 7.4. By similar methods, one sees that

|Z2(S)| = p3, |S∗| = p6 and Z(S∗) = Z2(S);

S∗ is the unique minimal CL-subgroup of S; and SMCL = S∗ and SΦ = Φ(S∗) = Z2(S).
Thus, none of SMCL, Z(SMCL) or SΦ is normal in G.

Since SL(2, p) is not involved in G, G is p-stable, by [13, Theorem 8.12].

Example 7.6. (Here, p is arbitrary.) Let H be SL(2, p), let V be a standard module
for H, and embed V and H in their semi-direct product G.

There exist elements u, v of V and w of H such that

V = 〈u, v〉, uw = uv and vw = v.
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Let S = 〈V, w〉, so that S is a Sylow p-subgroup of G. Then

up = vp = wp = 1, [u, w] = v, V = Op(G) and G satisfies (E0) for pn = p.

It is easy to see that V is the unique non-identity normal p-subgroup of G (because
H permutes the non-identity elements of V transitively) and that there exists a unique
automorphism α of S such that

uα = w, wα = u−1 and vα = v.

Thus, V is not characteristic in S, and no non-identity characteristic subgroup of S is
normal in G.

For an arbitrary power q of p, we may take H to be SL(2, q) instead of SL(2, p) and
then generalize the proof above to show that no non-identity characteristic subgroup of
S is normal in G. Alternatively, one may embed G in a rank-1 parabolic subgroup of
PSL(3, q) and use [4, pp. 200–202] and the method of Example 7.7.

Example 7.7. In Theorem A and several related results, S has nilpotence class 2 if
p �= 3. We show here that the assumption that p �= 3 is necessary.

Assume that p = 3. Let q = 3n for some natural number n. Take G and S to be the
subgroups of G2(q) analogous to the subgroups G and S of G2(p) for p as in Example 7.4.
(A different construction of G and S for q = 3 is given below.) Thus,

G = 〈x ∈ P | x is a 3-element〉

for a rank-1 parabolic subgroup P of the simple group G2(q), P/G is a cyclic 3′-group,
and S is a Sylow 3-subgroup of G, P and G2(q). As usual, let T = O3(G).

It is easy to see that G satisfies (E0). By [15, pp. 358–359], S has nilpotence class 3
if q = 3. Since G2(q) contains G2(3), S has nilpotence class at least 3 in general. We
will show that no non-identity characteristic subgroup of S is normal in G. Therefore, S

satisfies conditions (a)–(f) of Theorem A. In particular, S has nilpotence class precisely 3.
Suppose W is a characteristic subgroup of S that is normal in G. Then W �NP (S). By

the Frattini argument (Lemma 2.1), P = GNP (S). Hence, W � P . We must show that
W = 1.

Since q is a power of 3, there exists an automorphism α of G2(q) that preserves S and
takes P to the other rank-1 parabolic subgroup P ∗ of G2(q) that contains S [4, p. 206].
Then α preserves W , and W = Wα � Pα = P ∗. Hence, W � 〈P, P ∗〉 = G2(q). As G2(q)
is simple, W = 1, as desired.

Let F = Fq. The main reason that this example is very different from Example 7.4
(where Z(S) � G) is that here [4, pp. 206–210]

[xa(F ), x2a+b(F )] = [xa+b(F ), x2a+b(F )] = 1,

because F has characteristic 3. Indeed,

Z(S) = 〈x2a+b(F ), x3a+2b(F )〉, |Z(S)| = q2 and d(S) = q4.
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For the case when q = 3, one can also construct G without using the group G2(3). One
takes T to be a direct product

T = 〈x2, x6〉 × 〈x3, x5〉,

where 〈x2, x6〉 is a non-abelian group of order 33 and exponent 3, and 〈x3, x5〉 is an
elementary abelian group of order 9. Let x4 = [x2, x6], and define automorphisms x1 and
x7 of T by

xx1
2 = x2, xx1

3 = x3, xx1
5 = x−1

3 x5, xx1
6 = x2x3x4x5x6,

xx7
2 = x2x

−1
3 x−1

4 x5x
−1
6 , xx7

3 = x3x5, xx7
5 = x5, xx7

6 = x6.

Then x3
i = 1 for i = 1, . . . , 7. Let G be the semi-direct product of T by 〈x1, x7〉. Then

T = Op(G).
By § 9 of [10], 〈x1, x7〉 is isomorphic to SL(2, 3) and, for S = 〈x1, T 〉, there exists an

isomorphism φ of S onto 〈x7, T 〉 determined by

φ(xi) = xi+1 for i = 1, . . . , 6.

Clearly, 〈x1〉 and S are Sylow 3-subgroups of 〈x1, x7〉 and of G, and G satisfies (E0).
Let g be an element of SL(2, 3) such that 〈x7〉g = 〈x1〉. Then the mapping given by
x �→ φ(x)g is an automorphism of S.

Suppose W is a characteristic subgroup of S that is normal in G. Then

W = φ(W )g and φ(W ) = W g−1
= W.

From the definition of φ, we see that W = 1, as desired.
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