GROWTH CONDITIONS AND DECOMPOSABLE OPERATORS

MEHDI RADJABALIPOUR

Throughout this paper T will denote a bounded linear operator which is defined on a Banach space \mathscr{X} and whose spectrum lies on a rectifiable Jordan curve J.

The operators having some growth conditions on their resolvents have been the subject of discussion for a long time. Many sufficient conditions have been found to ensure that such operators have invariant subspaces $[\mathbf{2} ; \mathbf{3} ; \mathbf{7} ; \mathbf{8} ; \mathbf{1 2}$; $13 ; 14 ; 21 ; 27 ; 28 ; 29$], are S-operators [14], are quasidecomposable [9], are decomposable $[\mathbf{4 ; 1 1}]$, are spectral $[\mathbf{7 1 0} ; \mathbf{1 5} ; \mathbf{1 7}]$, are similar to normal operators $[\mathbf{1 6} ; \mathbf{2 3} ; \mathbf{2 5} ; \mathbf{2 6}]$, or are normal $[\mathbf{1 5} ; \mathbf{1 8} ; \mathbf{2 2}]$. In this line we are going to show that many such operators are decomposable. More precisely we will prove among other things, that if J is a smooth Jordan curve with no singular point and if

$$
\left\|(z-T)^{-1}\right\| \leqq \exp \left(\exp \left([\operatorname{dist}(z, J)]^{-p}\right)\right)
$$

for $z \notin J$ and some $p \in(0,1)$ then T is a strongly decomposable operator.
I gratefully acknowledge stimulating conversations with Ali A. Jafarian.

1. Main theorems. Recall that since $\sigma(T)$ is a nowhere dense subset of the plane, the operator T has the single valued extension property [7], i.e., if $x(z)$ is an analytic function from an open subset of the plane into \mathscr{X} with

$$
(z-T) x(z) \equiv 0
$$

then $x(z) \equiv 0$.
For a closed subset F of the plane and an operator S in some Banach space Y define

$$
\begin{aligned}
& X_{s}(F)=\{x \in Y: \text { there exists an analytic function } \\
& \left.\qquad f_{x}: \mathbf{C} \backslash F \rightarrow Y \text { such that }(z-S) f_{x}(z) \equiv x\right\} .
\end{aligned}
$$

It is shown in [4] that if S has the single valued extension property and $X_{s}(F)$ is closed, then $X_{s}(F)$ is a maximal spectral subspace of S, i.e., $X_{s}(F)$ is an invariant subspace of S and if M is another invariant subspace of S with the property that $\sigma(S \mid M) \subseteq \sigma\left(S \mid X_{s}(F)\right)$ then $M \subseteq X_{s}(F)$. Moreover, $X_{s}(F)$ is a hyperinvariant subspace of S and $\sigma\left(S \mid X_{s}(F)\right) \subseteq \sigma(S) \cap F$. (See also [5, Lemma 5].)

For convenience, we allow singletons in the collection of closed arcs.

Lemma 1. Let $X_{T}(F)$ be closed for any closed subarc F of J. Let F_{1} and F_{2} be two disjoint closed subsets of the plane. Then $X_{T}\left(F_{1}\right), X_{T}\left(F_{2}\right)$ are closed and $X_{T}\left(F_{1} \cup F_{2}\right)=X_{T}\left(F_{1}\right) \oplus X_{T}\left(F_{2}\right)$.

Proof. Since every closed subset of J is the intersection of a countable set of closed subarcs of J, it follows that $X_{T}(F)=\left(X_{T}(F \cap J)\right)$ is closed for all closed subsets F of the plane. Therefore $X_{T}\left(F_{1} \cup F_{2}\right)$ is closed and thus by [1, Proposition I.2.3] we have

$$
X_{T}\left(F_{1} \cup F_{2}\right)=X_{T}\left(F_{1}\right) \oplus X_{T}\left(F_{2}\right)
$$

Lemma 2. Let S be a bounded linear operator defined on some Banach space Y. Let F be a closed subset of \mathbf{C}. Assume S has the single valued extension property and $X_{S}(F)$ is closed. Then $\sigma(S)=\sigma\left(S \mid X_{S}(F)\right) \cup \sigma\left(S^{F}\right)$ where S^{F} denotes the operator induced on the quotient $Y / X_{S}(F)$ by S. Moreover, $\sigma\left(S^{F}\right)$ cannot be the disjoint union of two non-empty closed sets E_{1} and E_{2} with $E_{1} \subseteq F$.

The first part of Lemma 2 is proved in [1, Lemma I.3.1] (or in [6, Proposition 1]) ; the second part follows from the Riesz decomposition theorem, [1, Lemma I.3.1 and Proposition I.3.2(1)], and the maximality of the spectral subspace $X_{S}(F)$. (See also Step II of the proof of Proposition 1 below.)

Proposition 1. Assume that for any closed subarc F of J
(1) $X_{T}(F)$ is closed, and
(2) $\sigma\left(T^{F}\right) \subseteq J \backslash F$ where T^{F} denotes the operator induced on $\mathscr{X} / X_{T}(F)$ by T.

Let F_{1} and F_{2} be two closed subarcs of J with the property that $F_{1} \cap F_{2}$ contains no isolated point. Then $X_{T}\left(F_{1} \cup F_{2}\right)=X_{T}\left(F_{1}\right)+X_{T}\left(F_{2}\right)$.

Proof. In view of Lemma 1 we may and shall assume without loss of generality that $F_{1} \cup F_{2}$ is connected. By Lemma 1, $X_{T}(F)$ is closed for all closed subsets F of \mathbf{C}. In particular $L=X_{T}\left(F_{1} \cup F_{2}\right)$ is a closed invariant subspace of T and the operator $S=T \mid L$ is a bounded operator defined on L. Obviously, $X_{S}(F)=X_{T}\left(F \cap\left(F_{1} \cup F_{2}\right)\right)$ which is closed for all closed subsets F of \mathbf{G}. We continue the proof of the proposition in three steps.

Step I. We show that if E is the disjoint union of two closed subarcs E_{1} and E_{2} of J then $\sigma\left(T^{E}\right) \subseteq \overline{J \backslash E}$. Let $A_{j}=T \mid X_{T}\left(E_{j}\right), B_{j}$ be the operator induced on $X_{T}(E) / X_{T}\left(E_{j}\right)$ by $T \mid X_{T}(E), C_{j}$ be the operator induced on $\mathscr{X} / X_{T}\left(E_{j}\right)$ by T, and let $D=T^{E}$. (To make the proof clearer note that if \mathscr{X} is a Hilbert space then

$$
T=\left[\begin{array}{ccc}
A_{j} & * & * \\
0 & B_{j} & * \\
0 & 0 & D
\end{array}\right] \begin{aligned}
& X_{T}\left(E_{j}\right) \\
& X_{T}(E) / X_{T}\left(E_{j}\right) \\
& \mathscr{X} / X_{T}(E)
\end{aligned}
$$

for $j=1,2$.) Since $X_{T}\left(E_{j}\right)$ is a maximal spectral subspace of $T \mid X_{T}(E)$ [1, Proposition I.3.2(1)] and $X_{T}(E)$ is a maximal spectral subspace of T, it follows that $X_{T}(E) / X_{T}\left(E_{j}\right)$ is a maximal spectral subspace of $C_{j}[\mathbf{1}$, Proposition I.3.2(3)] and thus $\sigma\left(B_{j}\right) \cup \sigma(D)=\sigma\left(C_{j}\right) \subseteq \overline{J \backslash E}_{j}, j=1,2$ (see Lemma 2 and the paragraph preceding Step I). Hence $\sigma(D) \subseteq \overline{J \backslash E}$ because $E_{1} \cap E_{2}=\emptyset$.

Step II. We prove that $\mathscr{X}=X_{T}\left(F_{1}\right)+X_{T}\left(F_{2}\right)$ if $F_{1} \cup F_{2} \supseteq \sigma(T)$. Let $F=F_{1} \cap F_{2}, A=T \mid X_{T}(F)$, and let $B=T^{F}$. It follows from Condition (2) and Step I that $\sigma(B) \subseteq \bar{J} \bar{F}$ and therefore $\sigma(B)$ is the disjoint union of two closed sets $E_{j} \subseteq \sigma(B) \cap F_{j}, j=1,2$. Thus by the Riesz decomposition theorem

$$
\mathscr{X} / X_{T}(F)=X_{B}\left(E_{1}\right) \oplus X_{B}\left(E_{2}\right) .
$$

Let $M_{j}=\phi^{-1}\left(X_{B}\left(E_{j}\right)\right)$ where ϕ is the canonical mapping from \mathscr{X} onto $\mathscr{X} / X_{T}(F)$. Obviously M_{j} is closed and thus $X_{T}(F)$ is a maximal spectral subspace of $T \mid M_{j}\left[\mathbf{1}\right.$, Proposition I.3.2 (1)]. Hence $\sigma\left(T \mid M_{j}\right)=\sigma(A) \cup E_{j} \subseteq F_{j}$ which implies that $M_{j} \subseteq X_{T}\left(F_{j}\right), j=1,2$. Now it is an easy matter to show that every element $x \in \mathscr{X}$ is of the (not necessarily unique) form $x=y+u+v$ where $y \in X_{T}(F), u \in X_{T}\left(F_{1}\right)$ and $v \in X_{T}\left(F_{2}\right)$. Thus $\mathscr{X} \subseteq X_{T}\left(F_{1}\right)+X_{T}\left(F_{2}\right)$ which completes the proof of Step II.

Step III. In view of Step II, the proof of the proposition is complete as soon as we prove $S(=T \mid L)$ satisfies the Conditions (1) and (2) of the proposition. Condition (1) is proved in the paragraph preceding Step I. Now we prove Condition (2) for S. Let $M=X_{S}(F), N=L / M, A=S \mid M(=T \mid M), B\left(=S^{F}\right)$ be the operator induced on N by S, and let C be the operator induced on \mathscr{X} / L by T, where F is a closed subarc of J. By a proof similar to the proof of Step I we see that $\sigma(A) \subseteq F \cap\left(F_{1} \cup F_{2}\right), \sigma(S)=\sigma(A) \cup \sigma(B) \subseteq F_{1} \cup F_{2}$ and $\sigma(B) \cup \sigma(C)=\sigma(D)$ where D is the operator induced on \mathscr{X} / M by T. In light of Condition (2) and Step I we have $\sigma(D) \subseteq \overline{J \backslash\left(F \cap\left(F_{1} \cup F_{2}\right)\right)}$ and thus $\sigma(B) \subseteq \overline{(J \backslash F)} \cup(\{a, b\} \cap F)$ where a, b are the endpoints of $F_{1} \cup F_{2}$ (assume $\left.F_{1} \cup F_{2} \neq J\right)$. But Lemma 2 implies that if a (respectively b) is an element of $\sigma(B)$ then a (respectively b) cannot be an interior point of F. Thus $\sigma(B) \subseteq \overline{J \backslash F}$ and hence the proof of the proposition is complete.

By induction we can prove the following corollary.
Corollary 1. Let T be as in Proposition 1. Let $F_{j} j=1,2, \ldots, n$, be n closed arcs on J with the property that $F_{i} \cap F_{j}$ contains no isolated point for all, i, j. Then $X_{T}\left(\cup F_{j}\right)=\sum X_{T}\left(F_{j}\right)$.

It is interesting to note that Proposition 1 is no longer true if $F_{1} \cap F_{2}$ has an isolated point. In [19] we have constructed a bounded operator T on a Hilbert space \mathscr{X} with the following properties:
(1) $\sigma(T)$ is a countable subset of $\left\{e^{i \theta}:-\pi / 2 \leqq \theta \leqq \pi / 2\right\}$,
(2) $\left|\left|(z-T)^{-1}\right|\right| \leqq g(|z|-1)^{2}$ for $|z| \neq 1$ and some $g>0$,
(3) T is decomposable (in fact in view of [4, Theorem 5.3.2] T is an \mathscr{U} unitary operator),
(4) $X_{T}\left(\left\{e^{i \theta}:-\pi / 2 \leqq \theta \leqq 0\right\}\right)+X_{T}\left(\left\{e^{i \theta}: 0 \leqq \theta \leqq \pi / 2\right\}\right)$ is not closed.

For convenience we accept the following definition of a decomposable operator [4, p. 57]:

Definition. An operator T is called decomposable if for every finite open covering $G_{i}(i=1,2, \ldots, n)$ of $\sigma(T)$ there exists a set of maximal spectral subspaces $Y_{\mathfrak{i}}$ of T such that
(1) $\sigma\left(T \mid Y_{i}\right) \subseteq \bar{G}_{i}, i=1,2, \ldots, n$, and
(2) $\mathscr{X}=Y_{1}+Y_{2}+\ldots+Y_{n}$.

Moreover, T is called strongly decomposable if its restriction to an arbitrary maximal spectral subspace is again decomposable [1].

Now we prove the following key theorem.
Theorem 1. Let T be as in Proposition 1. Then T is decomposable.
Proof. Let $G_{i}, i=1,2, \ldots, n$, be an arbitrary open covering of $\sigma(T)$. Since $\sigma(T)$ is compact and every open subset of J is a disjoint union of a (countable) set of open arcs, we may and shall assume without loss of generality that for each i the set $G_{i} \cap J$ is a finite union of a set of open $\operatorname{arcs}\left(a_{i j}, b_{i j}\right), j=$ $1,2, \ldots, n_{i}$, for some positive integer n_{i}. Also, assume that whenever necessary we have shortened the arc interval $\left(a_{i j}, b_{i j}\right)$ on one or both sides to ensure that

$$
\left(a_{i j}, b_{i j}\right) \cap\left(a_{k l}, b_{k l}\right)
$$

contains no isolated point for all i, j, k, l. (This is possible without violating the requirement that $\sigma(T) \subseteq \cup\left(a_{i j}, b_{i j}\right)$.)

Now let $\left.F_{i j}=\overline{\left(a_{i j}, b_{i j}\right.}\right)$ and $Y_{i}=X_{T}\left(\bar{G}_{i}\right)$. Then Y_{i} is closed, $\sigma\left(T \mid Y_{i}\right) \subseteq \bar{G}_{i}$, and $\sum Y_{i}=\sum X_{T}\left(F_{i j}\right)=X_{T}\left(\cup F_{i j}\right)=X_{T}(\sigma(T))=\mathscr{X}$ (see Lemma 1 and Corollary 1). Since each Y_{i} is a maximal spectral subspace of T, the proof of the theorem is complete.
The proof of the next lemma is essentially the same as the proof of its special cases given in $[\mathbf{1 2 ; ~ 1 4 ; 2 0] ~ w i t h ~ m i n o r ~ d i f f e r e n c e s . ~ W e ~ g i v e ~ a ~ p r o o f ~ f o r ~ c o m p l e t e - ~}$ ness.

Lemma 3. Let J be oriented. Suppose that for each point $a \in J$ there exists a pair of open piecewise smooth Jordan arcs $L_{a}, L_{a}{ }^{*}$, and a pair of non-zero functions f_{a} f_{a}^{*} with the following properties:
($\alpha) L_{a} \cap J=L_{a}{ }^{*} \cap J=\{a\}$, and L_{a} lies on the positive side of $L_{a}{ }^{*}$ (see figure).
(β) For each $b \in J, b \neq a$, there exists a piecewise smooth Jordan curve $J_{a b}$ (respectively $J_{a b}{ }^{*}$) such that $L_{a} \cup L_{b}{ }^{*} \subseteq J_{a b}\left(\right.$ respectively $\left.L_{a}{ }^{*} \cup L_{b} \subseteq J_{a b}{ }^{*}\right)$, the arc interval (a, b) (respectively (b, a)) on J lies inside $J_{a b}$ (respectively $\left.J_{a b}{ }^{*}\right)$, and $f_{a}\left(\right.$ respectively $\left.f_{a}{ }^{*}\right)$ is analytic inside $J_{a b}\left(\right.$ respectively $\left.J_{a b}{ }^{*}\right)$ and has a continuous extension to the boundary.
$(\gamma)\left\|f_{a}(z)(z-T)^{-1}\right\|+\left\|f_{a}{ }^{*}(z)(z-T)^{-1}\right\| \leqq M$ for $z \in\left(L_{a} \cup L_{a}{ }^{*}\right) \backslash\{a\}$ where M is a positive constant independent of z.
Then for any closed arc F on J we have
(i) $X_{T}(F)$ is closed,
(ii) $X_{T}(F) \neq\{0\}$ if $F^{0} \cap \sigma(T) \neq \emptyset$
where F^{0} is the open arc whose closure is F.
Note. The functions $f_{a}, f_{a}{ }^{*}$ need not be defined on an unbounded domain (cf. [14, Formula (2.2.13)]).

Proof of Lemma 3. Let $[a, b]$ be an arbitrary closed subarc of J in the complement of a given closed arc $F \subseteq J$. Assume without loss of generality that $J_{a b}=J_{b a}{ }^{*}$. Let x_{n} be an arbitrary Cauchy sequence in $X_{T}(F)$ with $\lim x_{n}=x$.

By imitating the proof of [7, Lemma XVI.5.4] we are able to show that $y(z)=\lim (z-a)(z-b) f_{a}(z) f_{b}^{*}(z) x_{n}(z)$ is analytic inside $J_{a b}$ and

$$
(z-T) \frac{y(z)}{(z-a)(z-b) f_{a}(z) f_{b}^{*}(z)} \equiv x
$$

for all z inside $J_{a b}$, where $x_{n}(z)$ is the analytic function satisfying $(z-T) x_{n}(z) \equiv x_{n}$ for $z \notin F$. This shows that $x \in X_{T}(J \backslash(a, b))$ for all open arcs (a, b) in the complement of F and thus $x \in X_{T}(F)$. Hence $X_{T}(F)$ is closed.

Now we show that $X_{T}(F) \neq\{0\}$ if $F^{0} \cap \sigma(T) \neq \emptyset$. Let $F=[a, b]$ and

$$
A=\int_{J_{a b}} f_{a}(z) f_{b}^{*}(z)(z-T)^{-1} d z
$$

By applying the techniques of Theorems 1 and 1^{\prime} of [24] we can show that $A x \neq 0$ for some $x \in \mathscr{X}$ and

$$
(\lambda-T) \int_{J_{a b}} \frac{f_{n}(z) f_{b}^{*}(z)}{\lambda-z}(z-T)^{-1} x d z \equiv A x
$$

for all λ outside $J_{a b}$. This shows that $A x \in X_{T}(F)$ and thus $X_{T}(F) \neq\{0\}$. The proof of the lemma is complete.

Theorem 2. Let T be as in Lemma 3. Then T is strongly decomposable.
Proof. In view of Lemmas 1 and $3, X_{T}(F)$ is a closed invariant subspace of T for all closed subsets F of \mathbf{C}. Therefore $\sigma\left(T \mid X_{T}(F)\right) \subseteq J$ and thus $T \mid X_{T}(F)$ also satisfies the hypotheses of Lemma 3. Hence it suffices to show that any operator satisfying these hypotheses is decomposable.

In light of Theorem 1 and Lemma 3 we need only to show that $\sigma\left(T^{F}\right) \subseteq \overline{J \backslash F}$ for all closed subarcs F of J, where T^{F} as usual denotes the operator induced on $\mathscr{X} / X_{T}(F)$ by T. Let $M=X_{T}(F), A=T \mid M$, and let $C=T^{F}$. Here again since M is a maximal spectral subspace of T, we have $\sigma(A) \cup \sigma(C)=\sigma(T) \subseteq J$ and thus $\sigma(C) \subseteq J$. Also since $\left\|(z-C)^{-1}\right\| \leqq\left\|(z-T)^{-1}\right\|$, the operator C satisfies the conditions of Lemma 3. Now let $N=X_{C}(F)$. Then $\phi^{-1}(N)$ is a closed invariant subspace of T, where ϕ is the canonical mapping from \mathscr{X} onto \mathscr{X} / M. Since M is a maximal spectral subspace of $\phi^{-1}(N)$ [1, Proposition I.3.2], we have $\sigma\left(T \mid \phi^{-1}(N)\right)=\sigma(A) \cup \sigma\left(C \mid X_{C}(F)\right) \subseteq F$. Thus $\phi^{-1}(N)=M$ and $X_{C}(F)=\{0\}$. Hence $\sigma(C) \cap F^{0}=\emptyset$ and the proof of the theorem is complete.

Corollary 2. Let J be a smooth Jordan curve with no singular point. Assume there exist a positive number ϵ and a non-increasing function $M(t):(0, \epsilon) \rightarrow(0, \infty)$ such that

$$
\int_{0}^{\epsilon} \ln \ln M(t) d t<\infty
$$

and $\left\|(z-T)^{-1}\right\| \leqq M(\operatorname{dist}(z, J))$ for $z \notin J$. Then T is strongly decomposable.
Note. As an example, $M(t)=\exp \left(\exp t^{-p}\right), 0<p<1$.
Proof of Corollary 2. In view of [14, Lemma 2.2.1 and Theorem 5] the operator T satisfies the conditions of Lemma 3 and hence, by Theorem $2, T$ is strongly decomposable.

Remark. Corollary 2 is a generalization of [4, Theorems 5.3.6 and 5.4.3]. (See also [4, pp. 155, 159, 186].) The case $M(t)=t^{-n}$ and $J=R$ is essentially due to H. Tillmann [27, § 2].

Corollary 3. Let \mathscr{X} be a Hilbert space and let J be a C ${ }^{2}$ Jordan curve. Let A be a bounded linear operator in \mathscr{X} satisfying $\left\|(z-A)^{-1}\right\| \leqq K[\operatorname{dist}(z, J)]^{-n}$ for $z \notin J$, where K, n are positive constants. Assume $T=A+K$ where $K \in C_{p}$ (the Shatten p-class). Then T is strongly decomposable. (Note that $\sigma(T) \subseteq J$.)

Proof. In view of [2, proof of Theorem 3.5; 9, Theorem III.1.1] (see also [12] in case A is normal) for each $a \in J$ and each closed bounded line segment L with a as endpoint which is not tangent to J and satisfies $L \cap J=\{a\}$, there is a constant M such that $\left\|(z-T)^{-1}\right\| \leqq \exp \left\{M|z-a|^{-q}\right\}$ for $z \in L \backslash\{a\}$, where q is a positive constant independent of a. Let J be oriented. Let $0<\beta<\pi /(2 q)$ and let $\gamma=\gamma(a) \in[-\pi, \pi)$ be the angle between the x-axis and the tangent to
the positive direction of J. Let

$$
\begin{aligned}
L_{a} & =\{z:|\arg (z-a)-\gamma|=\beta\}, \\
L_{a}^{*} & =\{z:|\arg (z-a)-\gamma-\pi|=\beta\}, \\
f_{a}(z) & =\exp \left\{-e^{i s \gamma}(z-a)^{-s}\right\}, \text { and } \\
f_{a}^{*}(z) & =\exp \left\{-e^{i s(\gamma+\pi)}(z-a)^{-s}\right\}
\end{aligned}
$$

where $q<s<\pi /(2 \beta)$. By [23, Example 2] the functions f_{a}, f_{a}^{*} satisfy the conditions of Lemma 3 and thus, in view of Theorem $2, T$ is strongly decomposable.

Remark. As an example, in Corollary 3 the operator A can be a spectral operator of finite type whose spectrum lies on J [7, p. 2162].

References

1. C. Apostol, Spectral decomposition and functional calculus, Rev. Roumaine Math. Pures Appl. 13 (1968), 1481-1528.
2. - On the growth of resolvent, perturbation and invariant subspaces, Rev. Roumaine Math. Pures Appl. 16 (1971), 161-172.
3. R. G. Bartle, Spectral localization of operators in Banach space, Math. Ann. 153 (1964), 261-269.
4. I. Colojoara and C. Foias, The theory of generalized spectral operators (Gordon Breach, Science Publ., New York, 1968).
5. ——Quasi-nilpotent equivalence of not necessarily commuting operators, J. Math. Mech. 15 (1965), 521-540.
6. Ch. Davis, Spectrum of an operator and of its restriction, Revised form 1972 (unpublished manuscript).
7. N. Dunford and J. Schwartz, Linear operators. III (Interscience, New York, 1971).
8. R. Godement, Theórème Taubériene et théorie spectrals, Ann. Sci. École Norm. Sup. 64 (1947), 119-138.
9. A. A. Jafarian, Spectral decomposition of operators on Banach spaces, Ph.D. Thesis, University of Toronto, 1973.
10. - On reductive operators, Indiana Univ. Math. J. (to appear).
11. __ Some results on \mathscr{U}-unitary, \mathscr{U}-self adjoint and decomposable operators, Indiana Univ. Math. J. (to appear).
12. K. Kitano, Invariant subspaces of some non-self adjoint operators, Tôhoku Math. J. 20 (1968), 313-322.
13. G. K. Leaf, A spectral theory for a class of linear operators, Pacific J. Math. 13 (1963), 141-155.
14. J. I. Ljubic and V. I. Macaev, Operators with separable spectrum, Trans. Amer. Math. Soc. 47 (1965), 89-129.
15. E. Nordgren, H. Radjavi, and P. Rosenthal, On operators with reducing invariant subspaces, Amer. J. Math. (to appear).
16. M. Radjabalipour, Some results on power bounded operators, Indiana Univ. Math. J. 22 (1973), 673-677.
17. -Growth conditions, spectral operators and reductive operators (to appear).
18. - On normality of operators, Indiana Univ. Math. J. (to appear).
19. - Operators with growth conditions, Ph.D. Thesis, University of Toronto, 1973.
20. H. Radjavi and P. Rosenthal, Invariant subspaces (Springer Verlog, Berlin, 1973).
21. J. Schwartz, Subdiagonalization of operators in Hilbert space with compact imaginary part, Comm. Pure. Appl. Math. 15 (1962), 159-172.
22. J. G. Stampfli, A local spectral theory for operators, J. Functional Analysis 4 (1969), 1-10.
23. - A local spectral theory for operators, III, Resolvents, spectral sets and similarity, Trans. Amer. Math. Soc. 168 (1972), 133-151.
24. - A local spectral theory for operators, IV; Invariant subspaces, Indiana Univ. Math. J. 22 (1972), 159-167.
25. B. Sz-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta. Sci. Math. (Szeged) 11 (1947), 152-157.
26. B. Sz-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space (North-Holland, Amsterdam, 1970).
27. H. G. Tillmann, Eine erweiterung des funktionalkalküls für lineare operatoren, Math. Ann. 151 (1963), 424-430.
28. J. Wermer, The existence of invariant subspaces, Duke Math. J. 19 (1952), 615-622.
29. F. Wolf, Operators in Banach space which admit a generalized spectral decomposition, Nederl. Akad. Wetensch. Proc. Ser A 60 = Indag. Math. 19 (1957), 302-311.

University of Toronto,
Toronto, Ontario;
Dalhousie University, Halifax, Nova Scotia

