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Abstract
Among the different phases of complex design processes, early design is the most dynamic
and unpredictable stage since it involves a great deal of uncertainty, concurrency of activity
streams, collaborative design iterations, and distributed and adaptive decision-making
behaviour in response to both organizational commitments and to the occurrence of
unforeseen events. This paper argues that current activity-based modelling approaches
have limited ability to capture the dynamics of complex early design processes and explores
novel modelling approaches. The development of an Agent Model for Planning and
rEsearch of eaRly dEsign (AMPERE) aiming to capture various facets of uncertainty,
iteration, collaboration and adaptation is described. The model was developed to
tackle early design phases of complex systems, with the ability to deal with changes in
requirements coming in and affecting the subsequent design evolution while design tasks
are on-going. Initial results from agent-based simulations are presented, showing how the
agent-based approach can support industrial organizations evaluating likely early design
project performance and understanding complex cause–effect relationships thatmay affect
project outcomes. Early design planning support from the agent model is demonstrated
through an investigation to the likely project performance for varying levels of externally
driven requirements change.

Key words: Complex design, early design phases, process modelling, agent-based
simulation, early design planning

1. Introduction
Among the different stages of the design and development process of large
technical systems such as cars, aircrafts or jet engines, the early design stage,
normally referred to as preliminary design, is known to be characterized by
particularly complex dynamics. Previous research performed to aircraft jet engine
design, for instance, reported that it is typical that early design phases involve
regular interactions between the customer of the complex system and the supplier
organization(s) capable of providing a design proposal (Fernandes et al. 2015).
Once a design proposal is requested, the potential supplier’s designer teams work
together to synthesize a design solution that canmeet the customer’s requirements
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and expectations, going along a process characterized by rapid design iterations
of exploration, convergence and solution refinement with concurrent design
activities, which involve system, sub-system and component designers (Fernandes
et al. 2014). Furthermore, large amounts of collaborative work takes place
through interactions between design teams and/or different domain experts
intending to resolve conflicting goals and perform solution trade-offs (Hoegl &
Weinkauf 2005). In addition, previous empirical studies also revealed that early
jet engine design typically involves large uncertainty levels. Changes in high-level
requirements are typical causes of uncertainty. These changes, subsequently flown
down to sub-system and component levels, affect activity realization and trigger
new collaborative design iterations (Fernandes et al. 2015) together with adaptive
behaviours in design actors which often need to balance technical risk and the
time available (schedule risk) to deliver the design proposal of the complex system
under development to the customer (Unger & Eppinger 2011; Fernandes et al.
2014).

1.1. Challenges in complex early design
Understanding and predicting the outcome of early stages of complex design
processes – such as duration, cost or design solution quality of preliminary jet
engine design – in order to support planning is a difficult task both for academia
and industry. This difficulty arises from the complex dynamics of early design,
which can be characterized by four interconnected dimensions:

• Uncertainty. Design processes are viewed as a ‘system of interrelated
activities’ (Wynn, Grebici & Clarkson 2011) performed with the purpose
of reducing uncertainties surrounding the design solution. There are many
sources of uncertainty that need to be resolved through the interrelation of
design activities during early design phases. de Weck, Eckert & Clarkson
(2007) mentioned both exogenous uncertainties, such as changes in the
operational environment or in the customer requirements, and endogenous
uncertainties resulting from the maturation of new product technologies
and imprecise corporate strategies. In addition, (Earl, Clarkson & Eckert
2005) identified lack of completeness and quality in data used by engineers
in activities and also ambiguity and lack of clarity in design descriptions as
sources of uncertainties known to be higher during early phases of design.
Other authors emphasize the uncertainty in the product requirements
(Liker & Morgan 2006) or in the design process (Huberman & Wilkinson
2005).

• Iteration. Design processes are often organized around different repetitive
patterns, commonly known as iterations. A comprehensive view reported
by some authors (Wynn, Eckert & Clarkson 2007; Wynn & Eckert 2017)
proposed six forms of iteration that can be found in early phases of complex
design: exploration, which consists in a repetitive but rough analysis of a
wide range of candidate solutions; convergence, iteration used to converge
upon one or a few satisfactory solutions; refinement, iteration aiming
to perform optimization and trade-offs; negotiation, which results from
changes in goals during system integration; rework, iteration arising from
changes in requirements or to correct design problems discovered; and
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repetition, viewed as iteration based on the recurrence of the same activities
to address different aspects of the design solution. In another perspective,
iterations can be classified into two main dimensions: repetitive versus
evolutionary (depending on the output of the design iteration preserving
the same design criteria or not) and intentional versus unintentional
(essentially related to the iteration planning condition) (Isaksson, Keski-
Seppala & Eppinger 2000). In a very recent and extensive work on iteration
in design processes,Wynn& Eckert (2017) propose a taxonomy to organize
iterations stereotypes according to the pursued purpose of an iteration
cycles. Three stereotypes are proposed. Tasks can be revisited to Progress,
and create knowledge and value, towards completion; to Correct errors
introduced earlier or to implement a changes that could have been avoided
at their source; and to help Coordinate actors, decisions, and work flows,
adding value by enabling secondary effects, such as enhanced control
of schedule, cost and risk. (Unger & Eppinger 2011) highlighted the
association between different forms of risk and design iterations. In fact,
the design process is essentially a risk reduction process in the sense that it
starts with partial knowledge of the problem and requires decision-making
which impact can only be fully assessed further downstream. As the process
progresses, knowledge accumulates, but degrees of freedom for making
choices diminish and the need to iterate arises (Karniel & Reich 2013).

• Collaboration.Early design can also be viewed as a ‘social and collaborative
process’ (Shai & Reich 2004) where several aspects of collaborative
behaviour can be found. Movahed-Khah, Ostrosi & Garro (2010) reported
that interactions between design agents occur initially to achieve an
‘organized comprehension’ of the design problem and a mutually accepted
‘lexicology or language’ in which to communicate during early activities.
When the problem has become clear, design progresses through concurrent
synthesis and problem-solving activities performed by distributed design
teams (Shai & Reich 2004). During early design, collaboration takes place
through interactions intending to resolve conflicting goals and perform
trade-offs in the design solution (Veeke, Lodewijks & Ottjes 2006).

• Adaptive behaviour. In addition, adaptive decision-making is also
observed during complex early design phases, because unforeseen events
and results inhibit its full planning in advance.Wynn et al. (2007) underline
that design is not a repeatable processes which can be defined a priori, since
uncertainty and complexity forces engineers to accommodate evolving
requirements, explore opportunities, master continuous changes, deal
with intricate trade-offs and solve design problems that always integrate
a certain level of uniqueness and novelty. Lévárdy & Browning (2006)
and Maier et al. (2014) stress also that the development of a complex
engineering system is essentially driven by continuous measurement and
control of process activities and frequent decision points, where teams
evaluate the actual state of the design and the project’s key performance
variables, such as time available, level of risk and cost, to make informed
decisions about the prioritization of activities and assignment of resources
throughout the design process. Adjusting resources, negotiating milestones
and re-organizing activities are examples of practical interventions of design
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actors to adapt to dynamic environments and mitigate project delays as
reported in literature (Wynn et al. 2007; Wynn & Eckert 2017).

1.2. Research motivation
Due to the interrelation between uncertainty, collaborative iteration and adaptive
organizational behaviour, this paper argues that capturing the dynamics of
complex early design processes constitutes a major challenge for design research.
Our past research experience with industrial organizations developing complex
systems has shown, for instance, that understanding and quantifying the effects of
uncertainty and change in projects during early phases is difficult and, because of
that, early project planning is very challenging in practice. There is thus the need
for support in understanding early design dynamics and capturing its effects in
project performance measures, such as development time, cost or process output
quality.

When aiming to investigate the effects of uncertainty, iteration, collaboration
or adaptation in early design performance, there are various difficulties in
application of ethnographic or empirical data-driven research approaches. For
instance, early development phases of complex systems occur seldom, spread over
several years and project data is normally limited and problematic to collect or its
disclosure must be controlled due to confidentiality.

Alternatively, and despite of inherent limitations, model-based approaches
provide ways to perform virtual experimentation from which quantitative and
qualitative insights can be gained about the behaviour of complex systems design
processes in a cost-effective manner. These insights include support to decision-
makers analysing various scenarios andmakingmore informed decisions through
simulation of the processes. Deeper understanding gained from analysing the
design process helps in developing insights into the particular process that is best
suited for a specific product, with the least impact in time, cost and lead time
(Isaksson et al. 2000).

The purpose of this paper is thus to explore novel model-based approaches to
capture the dynamics of early phases of complex design and develop new models
and tools that can support early project planning. Moreover, we specifically
aim to research models capable of integrating representations of uncertainty,
collaborative iteration and adaptive behaviour under a single framework. The
authors argue that such integration constitutes an opportunity for providing an
original contribution to engineering design research. The model was specifically
developed to accommodate the dynamics of the early design phases of complex
systems like jet engines. Although this is the intended application for the model,
the authors believe that it can be used in other contexts with other types of
products.

Section 2 begins by discussing various modelling approaches to capture the
dynamics of early stages of complex design and identifies current limitations.
Aiming to address these limitations, Section 3 presents an agent-based approach
that integrates models of uncertainty, collaborative iterations and adaptive
behaviour. In addition to an overview on previous experiences of agent-based
modelling in design environments, this section includes also the rational of
the preliminary design process found in a major jet engines manufacturer that
supports the subsequent description of the proposed agent-based approach
to model complex systems design processes. Section 4 subsequently presents
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results from exploratory simulations investigating the effects of high-level
requirements change in global early design project performance with the purpose
of demonstrating potential support to planning. Section 5 concludes with a
summary of our research findings.

2. Modelling the early phases of complex design
The central purpose of complex design modelling and simulation is to provide
planning support to organizations (Browning & Ramasesh 2007; Karniel & Reich
2013). Extensive reviews by Wynn (2007) and Browning & Ramasesh (2007)
showed that, among the existing model-based approaches, activity-based models
have been the most widely explored ones both by academia and in industrial
practice.

Activity-based models view the design process as an ‘information processing
system’ (Wynn 2007) and are based on a network representation of the design
process. A set of activity-based models rely on precedence relationships between
the design tasks, such as PERT (Wiest 1977), GERT (Pritsker 1966), Petri Nets
(Murata 1989), Signal Flow Graphs (Eppinger, Nukala & Whitney 1997) and
Applied Signposting (Wynn, Eckert & Clarkson 2006). These models typically
represent the design process as a pre-determined network of activities using a
node-arc type of representation and the process flow is captured according to the
chronological order observed in practice. Due to the strength of the precedence
relationship, an activity planned to occur at a later point in the process flow is
typically only allowed to begin after it has received all inputs from prior activities
it relates to.

Other activity-based models are based on dependency relationships between
tasks, which incorporate the coupling of information but do not encode from
the start how the sequence of activities should be executed. Dependency-based
models include the Design Structure Matrix (Steward 1965) and the Domain
Mapping Matrix (Danilovic & Sandkull 2005). These models rely on storing
the interdependencies in a matrix-like form and using algorithms to identify
structural patterns, such as blocks of activities that are tightly coupled and
feedback loops (Browning 2001), in order to search for improvements such
as reducing rework of upstream activities (Dong 2002) or perform process
simulation (Cho & Eppinger 2001).

In addition, a few activity-based models relying on adaptive task selection
principles have also been proposed, such as Signposting (Clarkson & Hamilton
2000), the Adaptive Test Process (Lévardy & Browning 2005) and multi-level
models that integrateDSMandPetri nets to dynamically consider the perspectives
of the process planning and of the process execution communities (Karniel &
Reich 2013). Thesemodels encode task selection upon the status of state variables,
normally related to design process conditions or decision-making properties of
the design process. Signposting, for instance, uses an activity selection scheme
that attempts to optimize the level of confidence in the design parameters used
as inputs in the next activity at each time step of the simulation (Clarkson &
Hamilton 2000). However, such models have not been extensively explored when
compared with the previous types of activity-based models.

The strength of activity-based models relying in precedence or dependency
relationships is their cost-effectiveness in capturing moderate size and well-
structured processes, due to the use of intuitive graphical notations based on
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the node-arc or matrix representation of the process network. Because of that,
they have been widely explored for design process visualization, planning and
execution control (Browning &Ramasesh 2007), particularly during design stages
where the sequence of tasks and patterns of iteration are well defined, such as in
the detailed design phases.

Nevertheless, there are several limitations in these activity-basedmodels when
the goal is capturing the dynamics of early stages of complex design:

• Difficult to capture early iteration. Activity-based models rely on
relatively rigid structural representations of the process which are suitable
for well-defined iteration patterns. However, the early design process flow
is loosely defined around cycles of exploration, convergence and refinement
involving multiple stakeholders, teams and design disciplines where task
selection is dynamic.

• Difficult to account for collaboration.Modelling collaboration requires a
representation of the social network found in design organizations and the
ability to allow frequent and concurrent information exchange across that
social structure of relationships. Both are absent or difficult to incorporate
in activity-based models.

• Difficult to capture adaptation. Since the process flow is normally rigid,
activity-based models cannot capture in situ decision-making typical of
early design where design actors evaluate the actual state of the design
solution against the time available and the perceived project risk/cost before
defining the next activities.

• Difficult to incorporate concurrency and decentralized control. Early
design is characterized by concurrent and frequent interactions between
design teams, which can involve asynchronous information exchange.
Modelling interactions between teams in activity-based models normally
results in the addition of a large number of decision nodes spanning
different process ‘lanes’ and process flows quickly become intractable, both
to use and to communicate.

System dynamics is another approach to model design processes. System
dynamics models decompose complex systems into a set of key stock and flow
elements (Sterman 2002). Stocks are elements which accumulate or consume
some system quantity over time while flow elements define the rate of change of
stocks. Causal diagrams defining the system’s elements, their interactions and the
main reinforcing and balancing feedback loops are typically used to represent the
dynamics that the model intends to study. Models require also the prescription
of mathematical equations governing the flow of quantities through stocks. The
overall dynamic behaviour of the system arises from simulations solving these
equations. A couple of implementations of system dynamics models are known
in product development literature. Cooper (1993) presented a revised model of
the ‘rework cycle’ based on a system dynamics. The model captured the amount
of undiscovered rework – design work reported as done but containing errors
that are discovered later – as a function of the work to be done, the resources
available, their productivity and the quality of outputs. Results from simulation
led Cooper to argue that undiscovered rework is the ‘single most important
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Table 1. Summary of strengths and limitations of product development process modelling approaches

Approach Strengths Limitations
Activity-based,
precedence

• User-friendly, cost-effective
• Provides good visualization, planning
and control support in well-defined
processes
•Models well refinement and repetition
iteration

• Difficult to model exploration, rework
and negotiation
• Difficult to account for the role of
collaboration
• Difficult to account for adaptive
behaviour
• Difficult to use large models, keeping
cost-effectiveness

Activity-based,
dependency

• User-friendly, cost-effective
• Provides good visualization, planning
and control support
• Dependency allows to capture more
types of iteration
•Multi-domain models allow linking
with social dimensions

•• Difficult to account for negotiation
and collaboration
• Difficult to account for adaptive
behaviour
• Difficult to use large models, keeping
cost-effectiveness

Activity-based,
adaptive

•• Allows to capture exploration,
convergence and rework
• Allows to capture adaptive
decision-making behaviour

• Not user-friendly
• Not cost-effective for well-defined
processes
• Difficult to visualize and implement
for planning and control purposes

System dynamics • Allows to account for dynamic effects
arising from feedback
• Provides planning and control
support in well-defined processes

• Difficult to account for various facets
of iteration
• Difficult to account for collaborative
behaviour
• Difficult to account for adaptive
behaviour

source of project cost and schedule risk’, since rework discovered by downstream
design effort requires additional staff for a time longer than initially expected. In
another research contribution, Ford & Sterman (1998) described a multi-phase
design project of semiconductor chip development accounting for processes and
resources also based on a system dynamics model. Each project phase contained a
stock model including the tasks to be iterated, completed, approved and released.
Although system dynamics has the potential to deal with some aspects of iteration
and concurrency, it will probably fail to tackle adaptation and collaboration due to
its very nature. These characteristics were found in both publications referenced
above: none was able to model adaptation or collaboration. Table 1 summarizes
the previous paragraphs and helps the reader grasp all the perceived strengths and
weaknesses of the various methods.

Based on the previous analysis of strengths and limitations of activity-
based and system dynamics approaches, this paper explores the potential of
another class ofmodelling approaches: agent-basedmodels.Agent-basedmodels
view complex systems as an aggregation of autonomous agents, each with
individual behaviours and decision-making rules, capable of sensing the status
of a surrounding environment and interacting with other agents contained in
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the system (Macal & North 2010). A bottom-up approach is thus used, where
the overall system behaviour emerges from the individual agent behaviours and
interactions prescribed. The requirements for such an approach will then become:
to enable capturing the dynamics of early design through the integration ofmodels
of uncertainty, iteration, collaboration and adaptation under a single framework.

We advocate that these models have inherent strengths which make them
appealing for capturing the dynamics of early design processes. Firstly, they
are built upon entities which can represent individuals or teams: this enables
the replication of social structures observed in product development. Secondly,
agent models are based on social interaction and communication through
message exchange. Capturing organizational structures and social interactions
thus facilitates the representation of collaborative processes found in complex
early design. Thirdly, agent models are naturally distributed and have concurrent
decentralized control: individual agents have their own internal decision-making
functions working simultaneously and can continuously ‘sense’ the state of the
environment before deciding on the next action. Agent-based models thus allow
capturing distributed, concurrent and in situ decision-making. They hold the
potential for a more comprehensive representation of early design iteration
involving concurrent iterations between multiple design teams and adaptation.

3. An agent model of early design
The comparative analysis of the different approaches for design processmodelling
done in the previous section led to the exploration of an agent-based approach
for modelling the dynamics of complex early design processes. This section
presents previous attempts at using agent-based modelling for early design and
also the seminal work on developing the tools with which the A gent Model for
Planning and rE search of eaRly dE sign (AMPERE) developed by the authors was
built. The AMPERE is specifically developed to integrate models of uncertainty,
iteration, collaboration and adaptation.

3.1. Previous agent-based models of design
A considerable body of knowledge has been developed over time on modelling
with agents. This paper will cover some of the work made on agent models
specifically directed at the design process. Design is a process by which knowledge
is transferred and synthesized. However, the constant evolution of standards,
technologies, and a dynamicmarketplace demands a high degree of adaptability in
both design expertise and in the process of applying that expertise (Lander 1997).
As researchers apply multi-agent technologies to design domains, challenges
include supporting interoperability among heterogeneous agents on diverse
platforms, coordinating the design process, and managing conflict.

McGuire et al. (1993) developed a system to enable effective information
sharing and decision coordination in collaborative product development and
integrated manufacturing. To that end, the SHADE (SHAred Dependency
Engineering) project strikes a balance between two undesirable extremes – typical
special-purpose CAE systems tend to isolate information at tool boundaries, and
typical integrated CAE systems tend to limit flexibility and process innovation
– by streamlining communication exchange among special-purpose CAE
systems. SHADE’s approach has three main components: a shared knowledge
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representation (language and domain-specific vocabulary), protocols supporting
information exchange for change notification and subscription, and facilitation
services for content-directed routing and intelligent matching of information
on consumers and producers. With this system, they hoped to support
coordination among numerous heterogeneous agents. The work focused mainly
on communication and translation across several platforms, and it was not
aimed at the early design phase, nor at the particular problems of iteration
and adaptation, although it can be argued that the problems of uncertainty and
collaboration are dealt with.

Dai & Drogemuller (1999) developed a collaborative framework specification
where agent technologies can be effectively incorporated. The framework
encourages modular software components interaction, accommodating various
software technologies tailored to users’ requirements. They used the domain
activities of compliance checking and cost analysis to demonstrate how
collaborative building design may be achieved with software agents as
autonomous decision-making systems. Although the system was developed
specifically for building design and targets the communication across different
software platforms, the aspect of collaboration is highlighted. Perhaps due to the
particular setting of the problem (building design) the problems of iteration and
adaptation have not been tackled.

In the area of product design there is a constant need for integration of design,
manufacturability and process planning, often performed by dispersed teams
in a concurrent way. Sun, Zhang & Nee (2001) proposed a model considering
constraints and requirements from the different product development cycles
in the early development phases in order to support the concept of design
for manufacturability. This model uses conflict resolution techniques and
design-improvement suggestions to refine the initial product design, comprising
a facilitator agent, a console agent and six service agents. Each service agent is
used to model different product development phases, and the console agent acts
as an interacting interface between designers and the system, while the facilitator
is responsible for the decomposition and dispatch of tasks, and resolving conflicts.
A prototype system was implemented and the authors concluded that it could be
extended to include other service agents to become a comprehensive distributed
concurrent engineering system for geographically dispersed customers and
suppliers. This system tackles iteration, uncertainty and collaboration but
adaptation is dealt with through a console agent. In a sense, the system is trying
to mimic a context in which there is an agent that resolves conflict and distributes
tasks, which means that the system cannot do it on its own just through the
definition of the other agents’ behaviour.

Cao et al. (2008) used an agent-based approach to guide the conceptual
design phase of a mechanical product, with the aim of reducing lifecycle costs.
The framework uses functional parameters and design variables extracted
from the mechanical product design requirements. An agent-based framework
is subsequently established with multiple agents for solving the functional
requirements and proposing a design solution. The proposed model seems to
handle collaboration in a sequential way, neglecting iteration, adaptation and
uncertainty as a consequence.

Complex design involves trade-offs and teamwork, which implies social
interaction of some kind (Crowder et al. 2003). To make collaborative design

9/34

https://doi.org/10.1017/dsj.2017.17 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.17


decisions, designers must negotiate with each other by exploring the design
space, generating new ideas and compromising for agreement. Jin & Lu (2004)
built on contemporary advances in negotiation research in the area of social
psychology, distributed artificial intelligence, and decision theory and applied
that to design via an agent-based negotiation framework to support collaborative
design decision-making. The system is particularly concerned with negotiation,
which in the context of the present work translates into collaboration and
adaptation. As a consequence, iteration and uncertainty are neglected in this agent
model.

Multidisciplinary team working is becoming increasingly important in
modern organizations, and it is characterized by complex interactions between its
individual members, related to communication and dynamics between members,
the working environment, and the team’s work tasks. Crowder et al. (2012)
proposed an agent-based modelling approach for simulating team work within
an engineering environment. The model includes a number of variables at
an individual level (competency, motivation, availability, response rate), team
level (communication, shared mental models, trust), and task level (difficulty,
workflow), which jointly determine team performance (quality, time to complete
the task, time spent working on the task). Crowder et al. (2012) further report the
results of various simulation runs thatwere conducted in response to realistic team
working scenarios, together with its validation, and discuss the model’s practical
applications as a tool for facilitating organizational decision-making with respect
to optimizing teamworking. Themodel seems to deal well with collaboration and
adaptation, but not with uncertainty and iteration.

Multiple and concurrent iterations during the design phase of aircraft
structural parts significantly increase the lead time and cost of new aircraft
products’ development. Effective communication, collaboration and coordination
of designers and software tools used by them are key mechanisms to address
this challenge. Wang et al. (2012) presented an agent-based collaborative design
framework to facilitate the collaboration of feature-based aircraft structural
parts design and analysis tools, including detailed design, machining feature
recognition, feature-based manufacturability evaluation and cost estimation. A
prototype system has been implemented using JADE (Java Agent Development
system) and demonstrated through a case study in collaboration with a major
aircraft manufacturer in China. This work is the closest to the present work, in
the sense that it tackles the four main characteristics of the early design phase. It
was, however, specifically developed to solve the problem of feature-based design
for aircraft structures, rendering its generalization to other problems difficult.

This section presented some previous attempts at using agents in the design
process. It can be seen that these have been few and far between. They have
either failed to address the common problems in the design process, especially
in early design phases or lack the ability to deal with problems other than those
to which they were specifically applied to. The current work will aim to address
these gaps. Section 3.2 will establish a system architecture to support the model,
explaining how the available tools can cater for the particularities of the early
design process. Section 3.3 will define the agents’ behaviour and how they interact
in themodel. Section 3.4 will present how themodel deals with design uncertainty
and design iteration, Finally, Section 3.5 will shed some light into the modelling
of collaboration and adaptation.
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3.2. Architecture of the design process model
As mentioned above the motivation for developing the early design process of
complex engineering systems arose from limitations of the modelling approaches
reported in the literature in capturing its dynamics together with the findings
of the empirical work performed at Rolls-Royce plc, a major manufacturer of
jet engines, related with the lack of understanding on how change on high-level
requirements, which are subject to change, impact project performancemeasures.
This section provides an overview on the observed design organization, followed
by a description of the architectural design of the agent-basedmodel of early phase
of design processes.

3.2.1. Early phases dynamics of complex design processes
The architecture of the proposed agent-based model and agents behaviour were
inspired by the empirical studies of complex early design processes done by
Fernandes et al. (2014, 2015) in a jet engines large manufacturer. In their
study a simplified, high-level representation of a gas turbine design process was
outlined to understand and quantify the typical levels of imprecision in design
variables to be expected during the preliminary design phase (Fernandes et al.
2014). They found that the engine’s preliminary design process is particularly
dynamic and is typically triggered by a request for a proposal or by a request
for information from a client interested in a new engine for a particular market
application (Figure 1). High-level client requirements such as thrust, specific fuel
consumption, weight, unit cost or reliability are captured from these requests and,
together with market research surveys of the needs of final users (the airlines)
and competitors’ strategies, trigger the start of system design activities to respond
to the client’s request. The set of requirements for design and development
emerges as a result of these interactions both with the customer and the market.
A team responsible for the early design of the whole system then performs the
design of the thermodynamic cycle at different operational points of the aircraft’s
mission (takeoff, climb, cruise, etc.). The enginemust be capable of generating the
required thrust within the allowable fuel consumption, weight and cost targets.
The turbomachinery’s preliminary mechanical arrangement is also selected.

When the system design team is satisfied with a design solution, the
thermodynamic cycle and the turbomachinery lay-out are sent as sub-system
functional requirements, under the formof a request for a bid, to all the sub-system
teams responsible for designing the fan, the compressors, the combustor, the
turbines and the remaining sub-systems. Design interactions are then established
involving both system and sub-system design teams.

When a satisfactory solution at sub-system level is achieved, each of the sub-
system teams engages in inner design loops encompassing the aerodynamic and
mechanical design of the sub-system and its key components, such as blades,
discs and casings. After the successful integration of component designs into a
sub-system solution that fulfils the functional requirements received, teams bid
the outcome of their design activities back to system design. Such bids contain the
design solution obtained and relevant parameters, such as component efficiencies
that have been estimated by the team designing the engine’s thermodynamic cycle
to meet customer requirements.

This process then restarts until reaching a solution that satisfies all the
participants involved and the needs of the customer and final users expressed
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Figure 1. High-level view of a gas turbine design process.

in the system requirements. Due to the time available, which is frequently
constrained by strict due dates imposed by the costumer, and depending on
the level of risk involved, some activities such as off-design performance or
component rig testing may be postponed for subsequent development stages.

It was observed that values assigned to design variables change along the way
to reflect updates in the preferences of the designers and engineers involved.
Moreover, participants meet regularly to collaborate, solve design challenges and
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to agree upon what is the best solution that can be technically achieved within the
time available and the level of risk that can be tolerated.

The final Proposal sent to the customer reflects the outcome of this
collaborative and iterative design process. Moreover, as customer and market
needs are uncertain and may change during the process, triggering adjustments
in high-level requirements, and trade-offs may be needed due to conflicted
requirements, designers are exposed to exogenous and endogenous uncertainties
and have to accommodate an adaptive decision-making behaviour to deal
with evolving requirements, master continuous changes, perform complicated
trade-offs and solve design problems which always exhibit, to some extent, a
certain degree of novelty. For instance, it was observed that designers involved in
the preliminary design phase often needed to choose and negotiate with project
lead an appropriate level of activity fidelity, which was dependent upon the level of
perceived technical risk and the time available to deliver a solution to the customer
(following the arrival of a Request for Information or a Request for Proposal). The
level of confidence about the accuracy of the results characterizing the behaviour
of the design solution can be increased with more complete design analysis and
tools used in aerodynamic or structural design activities. However, this is done at
the expense of different activity durations and cost. Adaptive behaviour could also
be observed on the optional realization of some activities according to evaluations
of risk and time available and subject to negotiation between designers and project
lead.

3.2.2. Structuring the design process model based on agents
AMPERE was designed taking advantage of the capabilities embedded in the
Smart Phython multi-Agent Development Environment (SPADE) created by
Gregori, Cámara & Bada (2006). SPADE provides an agent management system
and an agent communication channel which allows the agents to communicate
using FIPA-ACL performatives (Gregori et al. 2006). The SPADE agent class
incorporates the fundamental attributes and methods supporting the modeller to
set up the agent, add behaviours, register into the platform, and to run and shut
down the agent, among others. Moreover, the SPADE behaviour class supports
the creation of agent behaviours, including cyclic and periodic behaviours for
repetitive actions, one-shot and time-out behaviours for casual actions, the finite
state machine behaviour for internal state transitions, and the event behaviour for
actions in response to some event that the agent has perceived.

SPADE supports the development of any kind of agents based on several key
classes: (1) the SPADE agent class, which has fundamental methods supporting
the modeller to set up the agent, add behaviours, register into the platform and to
run and shut down the agent, among others; (2) the SPADE ACL Message class,
which allows the creation and dispatch of different types of agent communication
messages (according to the FIPA-ACL performatives) and the specification of
the messages’ content, sender and receiver information; (3) and the SPADE
behaviour class, which allows the specification of actions that an agent can
perform. Subclasses of the main behaviour class support the creation of different
kind of agent behaviours (inheriting all attributes and methods from the parent
class to implement variations of the same methods), namely cyclic and periodic
behaviours for repetitive actions, one-shot and time-out behaviours for casual
actions, the finite state machine behaviour for capabilities based on internal state
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Figure 2. High-level simplified view of the architectural design of AMPERE. Static
view based on UML containing some of the main classes and some of the key
relationships between them. Legend:∆ – relationship of inheritance;� – relationship
of composition.

transitions, and the event behaviour for actions in response to some event that the
agent has perceived from the environment at a particular time.

Building upon the SPADE framework, AMPERE includes specialized agents
inheriting from the general-purpose SPADE ‘parent’ agent, as illustrated in the
high-level simplified architectural representation based on Unified Modelling
Language (UML), shown in Figure 2. Each white box in Figure 2 represents a
class: the top part of the box contains the name, the middle part displays the
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class attributes and the bottom part communicates the classmethods (Rumbaugh,
Jacobson & Booch 1999).

The high-level architecture of the model shows that the model includes
specialized agents derived from the general-purpose SPADE ‘parent’ agent. One
of the child agents is the Design Agent, which was designed to construct further
specialized agents with a common internal practical reasoning structure. Practical
reasoning class uses the Belief–Desire–Intention (BDI) model of agency proposed
by Bratman, Israel & Pollack (1998), who defined beliefs, desires and intentions
as the three mental components used during rational reasoning directed towards
performing actions. Thus, a practical Reasoning class has internal data structures
representing and storing the status of beliefs, desires and intentions anddeliberates
what action to do using a cyclic algorithm (Wooldridge & Jennings 1995;
Wooldridge 2009) where the agent: (1)Observes the environment and updates his
beliefs (the information considered to be true); (2) Selects its desires based on an
options generation process; (3) Filters them to select the most appropriate option
to commit to; (4) Finds a plan among possible candidates to implement the option
selected; (5) and Executes the plan. In other words, the Design Agent class was
architectedwith attributes for storing the agent’s beliefs, desires and intentions and
incorporates a cyclic reasoning class, which is supported on the class methods for
observing, generating options, filtering, planning, executing and revising beliefs to
define the agent’s main behaviour. Furthermore, the Design Agent does planning
through searching into an internal library for aTask object, which has an execution
precondition that holds true and a post-condition that matches the goal the agent
desires to accomplish. This planning process is similar to the one proposed by
Georgeff & Lansky (1987).

The Task class has thus been designed to support the planning process and
encode something that a Design Agent is able to do on the environment. Once a
Task object is selected from the agent’s library as a result of the planning process,
its bodymethod is executed, resulting in an action performed on the environment,
and the agent remains busy during the time assigned to the duration attribute. The
minimum and maximum duration of a Task class are defined at its construction
but the Task class contains method’s supporting a dynamic specification of the
duration according to the status of other attributes, such as the number of times it
has been iterated.

Another key class in AMPERE is the Solution class which represents and
tracks the status of the design solution. The execution of Task objects representing
actual design activities, such as doing aerodynamic design or mechanical design
activities of a system, sub-systemor component, enables aDesignAgent to operate
and change the status of a design Solution object it has generated and continuously
improve the solution’s quality. This solution’s quality is one of the key attributes of
the Solution class, enabling a parametrization of the optimization level achieved
to its requirements through the Design Agent’s efforts.

The bottom of Figure 2 illustrates also the development of further specialized
child agents, having customized versions of the parent attributes and methods.
For instance, Figure 2 shows a simple Junior Designer Agent with a Task library to
generate an aerodynamic component design and update the solution status into
the environment, so that other agentsmay become aware of it. The JuniorDesigner
is also made aware of requirement changes arising from the environment,
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through an event behaviour. Creating additional and more sophisticated agents
in AMPERE can thus be realized following similar customization steps.

3.3. Agent definition, behaviours and interactions
Based on the observed behaviour and work structured of designers and design
teams during the preliminary design of jet engines and using the modelling
process flow sketched in Figure 2, four agent sub-types were realized in AMPERE
inheriting attributes and behaviours from the generic Design Agent architecture.
Replicating what was found in the design environment at the jet engines
manufacturer, these four sub-types have been incorporated in the model as: a
Customer agent; a projectLead agent; a SeniorDesigner agent; and a JuniorDesigner
agent (Figure 3).

The Customer Agent incorporates a client entity with privileged access to the
market environment: it observes how needs evolve over time, reacts to events
of change and is motivated to send requests for a design proposal to a supplier
organization (Figure 3). As observed during early design stages, the Customer is
also prone to trigger an update of requirements whenmarket needs have changed.

Conversely, market information is inaccessible to agents belonging to the
supplier organization, but the Lead, Senior Designer and Junior Designer agents
are keen to respond to requests and updates arriving from the Customer.
Replicating the type of hierarchical unit found in large organizations and,
particularly, observed in the jet engine manufacturer, the Lead, Senior Designer
and Junior Designer agents are the basic building blocks of a design team
(Figure 3). The Lead agent has the ability to dispatch directions to designer
agents in the team, which are normally predisposed to accept them. The supplier
organization can be composed of one or more design teams working together.

The distinction between Senior and Junior Designers captures the distinct
levels of experience found in the early design projects, which results in different
impact of actions performed. Senior Designers represent elements that have
completed many projects and normally work during early design across multiple
projects in a collaborative manner during short periods, but with the ability to
strongly influence and direct the course of the design solution. Conversely, the
Junior Designer represents elements far less experienced, fully committed to one
or a few projects and of much lower resource cost.

Each agent was modelled in AMPERE with the ability to observe its
environment and update its beliefs, and perform a finite number of actions on
the environment, including interactions with other agents. Actions appear as
the outcome of the practical reasoning Beliefs–Desire–Intention algorithm, which
consists of updating beliefs, generating options and filtering them to identify the
desired one, finding a plan that can implement the option selected and intentionally
executing it.

The structured mapping of the agents’ status of beliefs to desires selected for
implementation, summarized in Table 2, supports the specification of the overall
behaviour of the different sub-types of agents in the model. In practice, a desire
that has been selected among available options becomes an intention, i.e., an
action that the agent has committed to and is expected to have some desired
effect in the environment. For instance, the Customer according to its beliefs may
request a design proposal from the supplier, update requirements when it is aware
that the market has changed or evaluate the solution received. Depending on its
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Figure 3. Overview of the agent definition and behaviours (agent optional tasks,
interactions and communications) in AMPERE.

awareness on the arriving of new customer requirements, project Lead is able to
request a solution from the team, update arriving requirements, evaluate project
risks, direct resources according to the perceived risk level and submit a solution
to the Customer.

Designer Agents can either perform design activities or update the design
solution to its team (Figure 3). The realization and repetition of the design tasks
allows designer agents to generate or improve the status of the design solution’s
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Table 2. Summary of desire selection according to the status of the agent’s beliefs, which supports the
specification of agent behaviours in the model

Agent Beliefs Selected Desire
Customer Time to request solution arrived according

to policy
Update requirements to supplier

Market needs changed Evaluate solution proposal
Received new solution proposal from
supplier

Evaluate solution proposal

Lead Received new requirements Update requirements to team
Received new request for solution Request solution, evaluate risk, direct

resources
Time to replan arrived according to policy Evaluate risk, direct resources
Request deadline arrived Submit solution to customer, direct

resources
Junior
Designer

Lead requested solution and solution does
not meet requirements

Perform design activities

Lead requested solution and have a solution Update solution to team
Senior
Designer

Lead requested solution and solution does
not meet requirements

Support design activities

quality until requirements aremet, similarly to what is observed in practice during
early design phases. Furthermore, Senior Designers may collaborate with Junior
Designers belonging to the team, allowing a faster convergence or a better design
solution, or support other projects, since they are not dedicated to a single project.

As observed during the empirical studies some of the actions that can
be executed include multi-agent interactions. Multi-agent interactions were
modelled relying in the exchange of communication message instances, derived
from the SPADE message class indicated in Figure 2, which allow agents to find
each other and pass information through the environment. Table 3 summarizes
the type of messages exchanged between agents in the model using the FIPA-ACL
communication language and outlines its content. For instance, communication
messages are used by the Customer Agent to request a design solution to the
supplier organization and simultaneously specify two key variables: the deadline
for solution submission and the expected quality.

The previous definition of agents, behaviours and interactions are the
fundamentals of the agent-based model of early design developed by the author
with the purpose of investigating the effects of requirements change in project
performance. As previously stated, the model is inspired in empirical research
about the preliminary gas turbine design and aims to capture key dynamics of
early design. The subsequent sections present models of the effects of uncertainty,
iteration, collaboration and adaptation introduced in AMPERE to capture such
dynamics.
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Table 3. Summary of communication messages exchanged between agents in the model

Sender Receiver Performative Content
Customer Lead Call for Proposal Time of deadline, solution proposal quality

expectation
Inform Requirements update

Lead Customer Propose Design solution
Design Team Request Solution, time of deadline, solution quality

expectation
Inform Requirements update
Request Resources needed for project activities

Junior
Designer

Design Team Inform Design solution update

Senior
Designer

Junior Designer Inform Start and end of design support

3.4. Modelling uncertainty and iteration
Each subtype of Design Agent was built in AMPERE with a library of specialized
tasks that it can select to perform. For Junior and Senior Designer Agents,
planning and execution of tasks representing actual design activities enables the
agents to generate a design Solution instance or operate on its status after creation.
This allows designer agents to gradually improve their knowledge and thus the
quality attribute of the design solution object. While the solution’s quality is lower
than the required target, meaning that requirements have not yet been achieved,
the agents may choose to iterate the activities. The effect of the iteration on
the agent’s design Solution instance quality attribute was modelled in AMPERE
according to Equation (1):

Qn = Qs − (Qs − Qi )e−αn (1)

where Q is the solution instance quality attribute at iteration n; Qs is the standard
quality level the agent is able to achieve; Qi is the initial quality level; and α is
the quality progress rate coefficient. During simulation, Q, Qs , Qi and α take real
values between [0, 1] while n stores integers within the interval [0,+∞]. When Q
reaches a unitary value, this represents a fully optimized design solution. Similarly,
the effect of iteration on the agent’s design Task instance duration is modelled
according to Equation (2):

Dn = Ds + (Di − Ds)e−βn (2)

where Dn is the design task instance duration attribute at iteration n; Ds is the
standard duration the designer agent is capable; Di is the initial duration of the
task; and β is the duration progress rate coefficient. During simulation, D, Ds and
Di are defined as real numbers corresponding to time units, n as integers between
[0,+∞] and β takes real values within [0, 1].

Equations (1) and (2) thus model the effect of iteration in the solution’s quality
and task’s duration through exponential learning curves (Leibowitz et al. 2010),
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Figure 4. Modelled effects in AMPERE of iteration according to design experience
(left) and uncertainty on solution quality in the presence of a change arrival (right).
Subscript i denotes initial quality level and subscript s denotes standard achievable
quality level.

which is a standard way of describing that, for a given level of fidelity1, further
iteration improves the performance achieved by the agent, but yields increasingly
lower gains (Hamade, Artail & Jaber 2005).

This allows AMPERE to incorporate two empirical notions of early design
iteration dynamics. The first is that design solution improves quickly in the
first iterations, normally corresponding to early stages of design exploration
and convergence. Then, as early design progresses to stages of refinement and
repetition, an increasingly higher iteration effort is required to continue design
optimization. This modelled effect of iteration is represented in Figure 4 (left).
Secondly, it incorporates also the empirical notion that designers learn from
experience accumulation, meaning that subsequent repetitions of activities are
performed faster than initial ones. AMPERE allows also Junior and Senior
Designers to have different improvement rates, according to their level of
expertise.

The previous behaviours have been incorporated in AMPERE through the
methods created for the Task and Solution classes. Moreover, in order to account
for the effect of day-to-day variability in individual performance of agents,
Equations (1) and (2) have been implemented with probability density functions
associated to the standard and the initial values and to the improvement rate
coefficient. Simple probability density functions, such as triangular functions,
were used to capture the effects of variability during simulation.

In addition to task variability, the effects of uncertainties typical of early design
phases, such as events of change arising from the external environment, have
also been captured in AMPERE. Figure 4 (right) illustrates that the arrival of
change has been modelled through a loss of design solution quality and work
efficiency that has been achieved by the agent until the event occurred. This
deterioration captures the concept that change events transport designers to a
state of lower knowledge, since goals have been modified and thus design space
has been repositioned relative to the current solution status. The deterioration in

1 Fidelity relates to precision in results and confidence in the knowledge generated from activities
about the solution’s behaviour. Increasing levels of fidelity arise from increasing sophistication in
methods and tools used by designers during design activities. An example of alternative levels of fidelity
is the use of 1D, 2D or 3D calculation methods in gas turbine aerodynamic or mechanical design
activities.
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quality and work efficiency has been modelled in AMPERE proportionally to the
magnitude of change perceived by the agent.

3.5. Modelling collaboration and adaption
In addition, facets of collaborative behaviour often observed during complex
early design phases have been also incorporated. One fundamental dimension of
collaboration is accounting for the traditional breakdown of large pieces of work
into separate and smaller parts, which are delivered by different actors. Through
the agents’ Task library, AMPERE allows the definition of specific responsibilities
to individual Senior or Junior Designers, such as component or discipline-related
design responsibilities. For instance, one agent may be made responsible for the
aerodynamic design of one component and to pass information to another agent
part of the team which may be responsible for the mechanical design of the same
component. Both work until they are satisfied with their individual solutions,
reacting to changes that are communicated from the external environment during
that process.

Since this facet of collaboration requires partial solutions to be integrated into
a more global solution, the quality of this global solution (the delivered design
solution for the whole system) is expected to reflect the relative importance of its
parts or sub-systems. In fact, as reported by Case & Lu (1996), the collaborative
behaviour during complex design was observed at the jet engine manufacturer,
including key aspects of conflict resolution, where designers work together to
achieve a better overall design, i.e., towards a globally ‘optimized’ solutionwhich is
not necessarily the sumof locally optimized sub-solutions. AMPERE includes thus
the Collaborative Solution class which allows agents to track and store the results
from collaborative and distributed design processes. The quality of aCollaborative
Solution instance is defined according to Equation (3):

C SQ =
n∑

j=1

w j Q j (3)

where C SQ is the collaborative solution instance quality attribute; w j is the
contribution weight of each part or discipline aspect for the global design solution
quality and Q j is the design solution instance quality attribute of each part or
aspect, being w j subject to the constraint:

n∑
j=1

w j = 1. (4)

During simulation, C SQ, Q j and w j take real values between [0, 1] and
Equations (3) and (4) capture the effects of early design collaboration based in
work decomposition.

Furthermore, taking advantage of the ease of implementation of concurrency
in agent-based models, AMPERE allows different Designer agents to be working
on alternative solutions for the same component or disciplinary aspect. This aims
to capture further aspects of early design collaborative iteration, where designers
typically work concurrently on several candidates for the solution in cycles of
exploration and convergence (Wynn et al. 2007; Wynn & Eckert 2017). The
Collaborative Solution class has been developed with methods allowing agents to
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screen among alternative solutions developed for the same goal and select the one
that achieved the most promising quality level.

Several facets of adaptive decision-making behaviour encountered during
complex early design have been also captured in AMPERE. The practical
reasoning behaviour used by agents to plan their actions state is, in essence, a
way of capturing in situ adaptive decision-making. This adaptation is in essence
the capacity of the Lead to evaluate risks and adapt its behaviour, deciding to either
direct the resources available in the design team to work on project activities or
allow them to remain available to work in other projects. Risk evaluation made
by the Lead Agent includes in situ estimation of the probability and impact of not
meeting the Customer’s expectations.

Probability and impact are estimated real numbers between [0, 1] and risk
is computed by the agent using the standard approach of Risk = Probability ×
Impact. The probability; Prob, of not meeting the Customer’s expectations has
been modelled in AMPERE as a function of the time available until the deadline
for design proposal submission and the gap in the status of the solution quality
relative to the Customer’s expected level:

Prob (t) = 1− e((c2(Tdeadline−t)/Tdeadline)−c1)×Qgap (5)

where Tdeadline is the time corresponding to the deadline defined by the Customer
agent and t is the present time, both defined as real numbers corresponding to time
units. Qgap , expressed as a real value between [0; 1], is the difference between the
current level of solution quality achieved by the team and the level expected by
the Customer agent, c1 and c2 are real constants adjusting the rate of change in
the probability function.

The impact of failing to deliver has been modelled as a linear function of the
gap in quality relative to the Customer’s expectations according to Equation (6):

I mpact =

m × Qgap i f Qgap 6 T ol

1 i f Qgap > T ol
(6)

where m is a real constant adjusting the rate of change in the impact function; and
Tol is a real number between [0, 1] defining a tolerance level belowwhich the agent
is no longer sensitive to the quality gap and the impact is minimum.

Based on this risk of failing to deliver on time and with the expected level
of quality, the Lead Agent continuously adjusts his design team’s resources.
Resources are adjusted by the Lead in a linear manner, based on the level of risk
perceived at that time. This behaviour essentially models adaptive planning to the
environment’s changes observed in the design organization during early design
phases.

4. Exploratory simulations
This section presents and evaluates results arising from simulation of an initial
AMPERE model conceptualizing a simple scenario: a single Customer agent
that regularly sends a request for a solution proposal to a single supplier
comprising a design team responsible for delivering a design proposal before
a specified deadline. Exploratory simulations from this simple model allow an
evaluation of the model’s potential for capturing key dynamics of early design
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phases. For instance, the cause–effect relationship between the level of change
arising in the environment and early design project performance has been
evaluated. Moreover, it reflects the authors’ empirical observations of complex
product development projects related with the dynamics at early design stages
triggered by customers’ requests: the lack of understanding on the effects of
requirements change in project performance results in difficulties in planning
taking into account expectable levels of requirements change. The section begins
by describing the setup of this simple model and subsequently presents and
discusses the results from exploratory simulations.

4.1. Simulation setup
The setup of this simple model for simulation was made intending to
conceptualize a simple scenario: a single customer which engages with a single
supplier organization comprising one design team responsible for delivering
a solution to the customer Input data and results from these simulations are
illustrative and provide essentially an exploratory evaluation of the potential of the
agent model to capture key dynamics of early design stages, investigate the effects
of expectable levels of change in project performance and support planning.

The setup essentially includes the definition of specific internal parameters
adjusting the behaviour of the environment and of the design agents previously
described. The environment was set up with a stochastic generation of market
changes perceived by the Customer Agent with a period uniformly distributed
between 10 and 20 working days, which generates events of requirements updates
from the Customer to the supplier organization.

The additional setup for agents is introduced in Table 4. It shows that the
Customer Agent was set up with an internal policy defining the desire to request
a new solution proposal every 4 working weeks. When a request is sent, the
Customer expects a response from the supplier one working day before the time
to request a new proposal has arrived. Table 4 shows also that the Customer
aims to get a certain number of solution proposals. After this number is reached,
the Customer Agent has achieved his goal and the simulation stops. This aims
to represent early design dynamics observed in Fernandes et al. (2014), where
the Customer drives the suppliers’ design process through regular requests for
proposals until it makes a decision about which solution is most promising.

Within the supplier organization, a single design team composed of a Lead
Agent and several Senior and Junior Designer Agents was set up for generating a
design solution proposal that meets the Customer’s expectations and respond to
the Customer before the specified deadline. In this simple model, the Lead Agent
has an available design team composed of five designer agents: two aerodynamic
Designers, one Junior and one Senior; and threemechanical Designers, where two
are Junior and one is Senior. The team is capable of adapting resources and execute
actions, including design activities, tackle the arrival of changes and deliver a
solution proposal to the Customer.

Table 4 shows that aerodynamic designers have the ability to assess the
requirements, generate a concept, compute the efficiency of the concept and
evaluate the solution created. Mechanical designers are also capable of assessing
new requirements and, in addition, assess updates of the aerodynamic solution
generated by fellowdesigners in order to compute loads acting on the system.After
computation, mechanical designers generate a model and compute the stress,
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Table 4. Summary of the specific setup of the agent model for exploratory simulations

Agent Agent Behaviour (optional actions) Characteristics
Customer Request solution to supplier • Policy: every 4 working weeks

• Deadline: 1 day before next request
• Expected quality level: 1.0

Lead Evaluate risk, direct resources • Policy: every working week
Junior Designer,
Aerodynamics

Perform design activities (1–6):
(1) Assess requirements
(2) Generate aero concept
(3) Generate aerodynamic model
(4) Compute efficiency
(5) Evaluate solution
(6) Update solution

Durations (Ds is the standard duration the
designer agent is capable; D1 is the task
duration in the first iteration):

(1) Ds = 1h; D1 = 4h
(2) Ds = 4h; D1 = 12h
(3) Ds = 2h; D1 = 6h
(4) Ds = 3h; D1 = 8h
(5) Ds = 1h; D1 = 4h
(6) Ds = 1h; D1 = 2h
Duration variability parameters
(triangular distribution):
• Tri (0.9; 1.4; 1.0)
Quality parameters (Qs is the standard
duration the designer agent is capable;
Q1 is the task duration in the first
iteration) (triangular distribution):
• Q1 = Tri(0.1; 0.4; 0.2);

Qs = 1.0
Progress rate coefficients (α stands for
the quality progress with iterations and
β for duration progress) (triangular
distribution):
• α = Tri(0.1, 0.3, 0.2);
• β = Tri(0.2; 0.6; 0.3)

Junior Designer,
Mechanical

Perform design activities (1–7):
(1) Assess requirements
(2) Assess aero concept
(3) Compute loads
(4) Generate structural model
(5) Compute stress, weight, cost
(6) Evaluate solution
(7) Update solution

Duration:
(1) Ds = 1h; D1 = 4h
(2) Ds = 2h; D1 = 6h
(3) Ds = 3h; D1 = 9h
(4) Ds = 2h; D1 = 7h
(5) Ds = 2h; D1 = 5h
(6) Ds = 1h; D1 = 4h
(7) Ds = 1h; D1 = 2h
Duration variability parameters:
• Tri (0.9; 1.4; 1.0)
Quality parameters:
• Q1 = Tri (0.1; 0.4; 0.2);

Qs = 1.0
Progress rate coefficients:
• α = Tri (0.1, 0.3, 0.2);
• β = Tri (0.2; 0.6; 0.3)

Senior Designer,
Aerodynamics/
Mechanical

Support design activities Collaboration coefficients (higher progress
rate coefficients):
• α = Tri (0.2, 0.4, 0.3);
• β = Tri (0.4, 0.7, 0.5)
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weight and cost of their solution. Each design taskwas set upwith specific duration
parameters and an associated variability. Activity durations reported in Table 4
refer to hours of working time2. In addition, each design task was set up with a
probability of rework equal to 10%. Triangular probability density functions were
assigned to the solution quality and duration progress rate coefficients according
to the agent’s level of experience (Table 4). The initial solution quality achieved by
agents after the first iteration was sampled from a triangular distribution.

Simulation begins with agents registering into the SPADE platform, which
allows them to be reachable and exchange messages through the platform’s
communication channel. Simulation is driven by an initial request for a solution
sent by the Customer to the supplier, which occurs at the simulation’s initial
time step. A time-stepped approach has been implemented and the internal clock
advances at constant time intervals. This clock was included in the architectural
design of AMPERE and ensures time-stepping synchronization to all agents
during simulation. Exploratory simulations required approximately 2500 lines of
code to run, including the classes and methods previously described as the heart
of AMPERE, and each simulation took 25–35 seconds to run on an Intel Core
i7-3517 CPU@1.9 GHz using a 64-bit operating system.

4.2. Visualization and performance evaluation
Process visualization is a key purpose of product development process modelling
since it provides support for group discussions within design organizations
(Browning & Ramasesh 2007). Because of that, exploratory simulations
investigated ways to picture the process output resulting from agent-based
simulation to provide the generation of a design process chart as a standard
post-processing feature. Figure 5 presents an annotated and detailed view over
part of a complete design process chart resulting from one simulation run with
the simple setup described inTable 3. The run resulted in a design process duration
of 12 weeks comprising three main interaction cycles between the Customer and
the supplier organization.

Several changes occurred in the market environment during the simulation,
which are visible through the requirements updates sent from the Customer agent
to the supplier organization. Directions arising from the Lead motivate Designers
to start their design work. Figure 5 shows also the patterns of risk evaluation and
adjustments in the number of resources allocated to the design process resulting
from the Lead agent’s planning activities. The request for additional resources
arising from the Lead’s risk evaluation triggers various Designers to engage in
concurrent design iterations.

Design activity repetition patterns appear as a result of the need for iteration to
improve the solution’s quality. For instance, Figure 5 reveals aerodynamic design
iterations, consisting of concept generation, calculations, solution evaluation and
update to other team members. Interruptions of the natural activity cycle are also
depicted, as a result of agent reaction to changes arriving from the environment.
Figure 5 shows in situ reassessment of requirements upon the perception of a
requirements change event and the repetition of previous activities as a result
of design updates arriving from other design disciplines. The design process
visualized thus emerges from concurrent streams of design activities shaped by

2 During simulation, themodel considers that agents work on average 22 days/month and 8 hours/day.
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Figure 5. View of 4 weeks of the design process chart arising from a single simulation.

frequent social interactions and adaptive behaviours. The ability of capturing these
dynamics typical of early design phases is a major strength of the agent-based
modelling approach explored.

4.3. Evolution of internal variables
In addition to process visualization, post-processing of AMPERE simulations
provides also the visualization of the evolution of internal agent variables which
have an important influence in the outcome of the simulation.

The evolution of the solution quality generated by Designer Agents and
perceived by the Lead during the course of one particular simulation run is
presented in Figure 6. The reader should recall that solution quality is calculated
using Equations (1) and (3). This evolution shows how the work performed
by aerodynamic and mechanical designer agents contributes to the overall
development of a collaborative solution for the system aiming to reach the level
of quality expected by the Customer Agent. The collaborative solution quality
level is perceived by the Lead Agent according to the weight assigned to each
solution component. In this particular setup, equal importance was given to both
disciplinary aspects of the design solution. Figure 6 makes also visible the effects
of uncertainty in the agent’s design efforts, showing how the quality level suffered
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Figure 6. Solution quality level evolution during the course of a single simulation
run, as computed from Equations (1) and (3).

Figure 7.Risk perception level evolution during the course of a single simulation run.

a deterioration – the ‘knock-downs’ visible around weeks 3, 6 and 9, for instance
– when events of requirements change arrived from the environment.

Figure 7 presents the evolution of the level of risk perceived by the Lead
agent during the course of the same simulation. The reader should recall that
perception of risk, as explained in Section 3.4 is computed in terms of probability
of not meeting the required solution quality times the impact of not meeting
it. Probability is a function of the time available until the deadline, whereas
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Figure 8. Cost evolution during the course of a single simulation run. Cost values are
presented in generic project cost units.

impact is a linear function of the gap in quality relative to the expected level of
quality (Equations (5) and (6)). This is an important internal decision-making
variable used for resource adjustments and arises from an in situ evaluation of
time left until the deadline and the current gap in quality relative to the Customer’s
expectation. Analysis shows that the level of risk perceived by the Lead Agent
decreases according to the rise in the solution’s quality. It is also relevant how
the perceived risk rises again around week 6 following an update of requirements
arriving from the Customer. The re-evaluation of risk at week 6 ultimately led the
Lead to request additional resources to perform design work.

4.4. Performance evaluation
As a result of the design team resources utilization, the cost evolution during
the course of the simulation time can be determined. Figure 8 shows how both
the hourly and cumulative cost evolve. Peak values of hourly cost consumed by
the project occurred between weeks 3 and 4 and also between weeks 6 and 7,
as a consequence of time periods where all resources available in the supplier
organization were performing design work in a concurrent manner (visible in
Figure 5). The accumulated cost incurred by the organization during the course
of 12 weeks to execute the project reached approximately 67 thousand cost units.
These exploratory simulations refer to arbitrary project cost units that the reader
can relate to its own monetary units.

Considering a simulation run as an individual experiment with the system,
performing a significant number of simulations is a standard approach to
understand and characterize in a statistical manner the effects of variability in
the system’s performance. Due to its importance, multi-run post-processing of
AMPERE simulations were also explored.

Figure 9 depicts two measures of project performance related to the solution
quality achieved by the design team and submitted to the Customer: (1) the
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Figure 9. Histogram of solution quality from 50 simulation runs.

average quality level of proposals submitted during each project; and (2) the
quality level of the last proposal submitted. The cumulative frequency of the
average and last proposal arise from 50 simulation runs (50 independent
experiments) with the setup described in Table 4. Figure 9 compares both
measures with the expected quality level that was set up for the Customer Agent
and shows that expectations were exceeded in approximately 10% of the cases.
Adopting a frequentist view, this enables an estimation of the probability of
satisfying the Customer with the last proposal issued for a particular model setup.
Based on this sample of 50 simulation runs the last proposal quality has a median
of 0.824, meaning that a confidence interval can be calculated as a measure of
how precisely the median based on this sample approximates the population
value. The 95% confidence interval, [0.812; 0.849], shows that the median result
can be trusted even for a small number of simulation runs.

Moreover, the frequency distribution of cumulative costs incurred by the
projects during multi-runs provides a second dimension for project performance
evaluation. Considering that organizations normally have budget constraints, this
analysis allows understanding the probability of meeting or exceeding the budget
available to realize early design phases. In this case, statistical treatment of 50
simulation runs resulted in a median project cost of respectively 76 thousand cost
units.

4.5. Effects of change in performance
One of the strengths of agent-based simulation is the possibility of investigating
complex cause–effect relationships in a cost-effective manner. Because of that,
exploratory simulations have also addressed an investigation to the relationship
between requirements change and its effects in the global project performance.
The study consisted essentially in varying the external environment’s time between
changes probability distribution – keeping all other setup variables constant
– and observe the response behaviour. The uniform distribution defining the
environment’s time between changes was varied in steps of one working week.

29/34

https://doi.org/10.1017/dsj.2017.17 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.17


Figure 10. Effects of change in project performance. Each performance data point
arises from 50 simulation runs of a particular environment setup and refers to
computed median values.

Fifty simulation runs of the model were performed with each modified setup.
The project’s performance was measured in terms of two key metrics: the solution
quality achieved in the last proposal delivered by the design team within the due
date; and the cumulative cost incurred by the project. Both were characterized
statistically for each set of 50 simulation runs using the median of quality and cost
values.

Results are presented in Figure 10. The design solution quality response
behaviour reveals that there is an interval or plateau – a change in requirements
triggered each 3 to 5 weeks – where variations in the time between changes in the
environment have little effect in the solution quality delivered to the Customer.
In addition, Figure 10 shows that further reductions in the change frequency
beyond 3 weeks produces a reduction of the last proposal’s solution quality with
increasing rates. On the other hand, project cost appears to behave rather linearly
and inversely to the increase in the time between changes in requirements arriving
from the environment. This behaviour arises from the fact that Designer Agents
spent less time looking for a new design solution due to updated requirements and
thus progress faster as the rate of arrival of changes decreases.

Looking to the design process as a system, Figure 10 suggests that there
is a stability region relative to the arrival rate of changes and an instability
point, which determines the transition to a state where changes arrive faster
than what the system can cope with. Such state should naturally be avoided
since project performance is significantly affected. The development of more
complex models of early design with a higher number of hierarchically organized
design teams, each responsible for sub-system and component design and capable
of communicating changes independently at different frequencies, is however
required for further investigating this hypothesis.
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Considering that these results arise from a very simple model, this paper
argues that agent-based models such as AMPERE are a promising approach
to investigate the behaviour of complex design systems and can support
industrial decision-makers planning projects during early stages. One example
of such planning support is the estimation of the most likely performance of
projects during early design, for an expected level of arriving changes from the
environment.

5. Conclusions
Based on a general-purpose agent development platform, we have synthesized an
Agent Model for Planning and rEsearch of eaRly dEsign (AMPERE) aiming to
capture key dynamics of early design phases of complex system development. This
agent model conceptualized key actors of early design stages, such as an external
Customer, a design Lead and Junior and Senior Designer agents belonging to
a design team. Agents were realized based on a practical reasoning algorithm
constructed with internal Belief–Desire–Intention data structures and with a
possible set of agent actions on the environment. During simulation, the design
agent’s actions are influenced by changes arising from the environment. Results
from AMPERE simulations include the level of solution quality achieved by the
design team and the project cost associated with the use of work resources.

This paper argues that exploratory simulations using a simpleAMPEREmodel
have demonstrated the potential of the agent-based approach in two different
dimensions. The first is that agent-based models offer significant advantages to
capture the dynamics of early design relatively to other modelling approaches,
such as activity-based models. Looking back to the results from a simple model,
this research demonstrated that agent models allow capturing under a single
modelling framework the effects of uncertainty and change, various facets
of iteration, concurrency of activity streams, frequent social interactions and
information exchange between teams, collaborative design efforts, and distributed
and adaptive decision-making in response both to organizational commitments
and to the occurrence of unforeseen events.

The second dimension is the potential of agent-based approaches such as
AMPERE to support industrial organizations understanding and evaluating
complex cause–effect relationships that affect the performance of complex
projects during early design. Results showed how the analysis of a considerable
number of agent simulations provides an estimate of the likely level of solution
quality achieved or cost that will be consumed by the project, in relation to
a certain expectation or budget available. Agent-based simulations can thus
support project planning activities during early design and allow more informed
decisions about the resources or budget to be made available by the organization.
For instance, this paper showed how the agent model may support early design
planning for an expectable level of change arising from the environment.

The authors’ belief is also that the development of AMPERE has opened
additional avenues for future research. The first involves its validation and a
deeper analysis of its efficiency and usefulness in an industrial environment based
on real data. The second relates to further development and application of agent
models to create more complete models of early design phases. For instance,
the introduction in agents of reconsideration capabilities during the planning
process in conjunction with more complex organizational models including
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various design teams in different hierarchical levels interacting during simulation
are aspects for further research and development. The third – andmost ambitious
– research avenue foreseen is the development of novel software platforms for
design process modelling using agent technology which can be made available for
the broader use of the academic and industrial product development community.
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