INTEGRALS INVOLVING E-FUNCTIONS

by T. M. MACROBERT
(Received 7 March, 1962)

1. Introductory. The following two integrals will be established in $\S 2$.

If m is a positive integer, if $p \geqq q+1$ and if $R\left(\alpha_{r}+k_{t}\right)>0 \quad(r=1,2, \ldots, p, t=1,2, \ldots, m)$,

$$
\begin{gather*}
\int_{0}^{\infty} e^{-\lambda_{1} \lambda_{1}^{k_{1}-1} d \lambda_{1} \int_{0}^{\infty} \ldots \int_{0}^{\infty} e^{-\lambda_{m} \lambda_{m}^{k_{m}-1} E\binom{p ; \alpha_{r}: \lambda_{1} \lambda_{2} \ldots \lambda_{m} z}{q ; \rho_{s}} d \lambda_{m}}} \begin{array}{c}
: \omega z \\
\sin k_{1} \pi \ldots \sin k_{m} \pi
\end{array}\binom{p ; \alpha_{r}}{\rho_{1}, \ldots, \rho_{q}, 1-k_{1}, \ldots, 1-k_{m}} \\
-\sum_{t=1}^{m} \frac{\pi^{m}}{\sin k_{t} \pi \prod_{u=1}^{m} \sin \left(k_{u}-k_{t}\right) \pi} E\binom{p ; \alpha_{r}+k_{t}}{1+k_{t}, \rho_{1}+k_{t}, \ldots, \rho_{q}+k_{t}, k_{t}-k_{1}+1, \ldots * \ldots, k_{t}-k_{m}+1} ;
\end{gather*}
$$

where ω is 1 or $e^{ \pm i \pi}$ according as m is even or odd, the dash denotes that the factor $\sin \left(k_{t}-k_{t}\right) \pi$ does not appear and the asterisk that the parameter $k_{t}-k_{t}+1$ is omitted. If $p \leqq q$ the result holds if the integral is convergent.

If m is a positive integer, if $p \geqq q+1$, and if $R\left(k+m \alpha_{r}\right)>0 \quad(r=1,2, \ldots, m)$,

$$
\begin{align*}
& \int_{0}^{\infty} e^{-\lambda} \lambda^{k-1} E\left(p ; \alpha_{r}: q ; \rho_{s}: z \lambda^{m}\right) d \lambda \\
& =2^{\frac{1}{m-\frac{1}{2}} m^{k-\frac{1}{2}} \pi^{\frac{1 m+1}{t}}, ~} \\
& \times\left[\begin{array}{l}
\frac{1}{\sin k \pi} E\left\{\begin{array}{l}
p ; \alpha_{r} \\
\rho_{1}, \rho_{2}, \ldots, \rho_{q}, \Delta(m ; 1-k)
\end{array}\right\} \\
-\sum_{t=1}^{m} \frac{(-1)^{m+t_{z}(t-k) / m-1}}{m \sin \left(\frac{t-k}{m} \pi\right)} E\left\{\begin{array}{c}
p ; \alpha_{r}-\frac{t-k}{m}+1: \omega m^{m} z \\
\frac{t-k}{2-\frac{t-k}{m}, \rho_{1}-\frac{t-k}{m}+1, \ldots, \rho_{q}-\frac{t-k}{m}+1} \\
1+\frac{1-t}{m}, 1+\frac{2-t}{m}, \ldots * \ldots, 1+\frac{m-t}{m}
\end{array}\right]
\end{array}\right], \tag{2}
\end{align*}
$$

where ω is 1 or $e^{ \pm i \pi}$ according as m is even or odd, $\Delta(m ; \alpha)$ denotes the set of parameters

$$
\frac{\alpha}{m}, \frac{\alpha+1}{m}, \ldots, \frac{\alpha+m-1}{m},
$$

and the asterisk indicates that the parameter $1+\frac{t-t}{m}$ is omitted. If $p \leqq q$ the result holds if the integral is convergent.

When $m=1$ each of these integrals reduces to an integral previously given by Ragab [2, p. 408, 3, p. 192].

The proof depends on the expression in terms of E-functions of the generalised E-function

$$
\begin{equation*}
E\binom{p ; \alpha_{r} \mid m ; \rho_{q+s}: z}{q ; \rho_{s} \mid l ; \alpha_{p+r}} \equiv \frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \prod_{r=1}^{p} \Gamma\left(\alpha_{r}-\zeta\right) \prod_{s=1}^{m} \Gamma\left(\zeta-\rho_{q+s}+1\right)}{\prod_{s=1}^{q} \Gamma\left(\rho_{s}-\zeta\right) \prod_{r=1}^{l} \Gamma\left(\zeta-\alpha_{p+r}+1\right)} z^{\zeta} d \zeta \tag{3}
\end{equation*}
$$

where l and m are positive integers; and the contour passes up the η-axis from $-\infty$ to $+\infty$, with loops, if necessary, to ensure that the poles of the integrand at the origin and at $\rho_{q+1}-1, \ldots, \rho_{q+m}-1$ lie to the left and the poles at $\alpha_{1}, \ldots, \alpha_{p}$ to the right of the contour; when necessary the contour is bent to the left or the right at both ends till it is parallel to the ξ-axis.

This expansion is [2, p. 419]

$$
\begin{align*}
& E\binom{p ; \alpha_{r} \mid m ; \rho_{q+s}: z}{q ; \rho_{s} \mid l ; \alpha_{p+r}}=\pi^{m-l} \prod_{r=1}^{l} \sin \left(\alpha_{p+r} \pi\right) \prod_{s=1}^{m} \operatorname{cosec}\left(\rho_{q+s} \pi\right) E\left(p+l ; \alpha_{r}: q+m ; \rho_{s}: \omega z\right) \\
& \left.-\sum_{s=1}^{m} \frac{\pi^{m-l} \prod_{r=1}^{l} \sin \left(\rho_{q+s} \pi\right) \prod_{i=1}^{m} \sin \left(\rho_{q+s}-\alpha_{p+r}\right) \pi z^{\rho_{q+s}-1}}{}-\rho_{q+t}\right) \pi \quad E\binom{p+l ; \alpha_{r}-\rho_{q+s}+1}{2-\rho_{q+s}, \rho_{1}-\rho_{q+s}+1, \ldots, * \ldots, \rho_{q+m}-\rho_{q+s}+1}, \tag{4}
\end{align*}
$$

where the dash and the asterisk denote that the factor $\sin \left(\rho_{q+s}-\rho_{q+s}\right) \pi$ and the parameter $\rho_{q+s}-\rho_{q+s}+1$ are omitted; and ω is equal to 1 or $e^{ \pm i \pi}$ according as $l+m$ is even or odd.

If in (3) m is replaced by $m-1$ and then ζ, α_{r} and ρ_{s} by $\zeta-\rho_{q+m}+1, \alpha_{r}-\rho_{q+m}+1$ and $\rho_{s}-\rho_{q+m}+1$ respectively, the function, on being multiplied by $z^{\rho_{q+m}-1}$, becomes Meijer's function [1, pp. 206-222]

$$
\begin{equation*}
G\binom{p ; \alpha_{r} \mid m ; \rho_{q+s}: z}{q ; \rho_{s} \mid l ; \alpha_{p+r}} \equiv \frac{1}{2 \pi i} \int \frac{\prod_{r=1}^{p} \Gamma\left(\alpha_{r}-\zeta\right) \prod_{s=1}^{m} \Gamma\left(\zeta-\rho_{q+s}+1\right)}{\prod_{r=1}^{q} \Gamma\left(\rho_{s}-\zeta\right) \prod_{s=1}^{l} \Gamma\left(\zeta-\alpha_{p+r}+1\right)} z^{\xi} d \zeta \tag{5}
\end{equation*}
$$

From (4) it follows that

$$
\begin{align*}
& G\binom{p ; \alpha_{r} \mid m ; \rho_{q+s}: z}{q ; \rho_{s} \mid l ; \alpha_{p+r}} \\
& =\pi^{m-l-1} \sum_{s=1}^{m} \frac{\prod_{r=1}^{m} \prod_{t=1}^{\prime} \sin \left(\rho_{q+s}-\rho_{q+r}\right) \pi}{l} \sin \left(\rho_{q+s}-\alpha_{p+t}\right) \pi r z^{\rho_{q+s}-1} E\left(\begin{array}{lr}
p+l ; \alpha_{r}-\rho_{q+s}+1 & : \omega z \\
\rho_{1}-\rho_{q+s}+1, \ldots * \ldots, \rho_{q+m}-\rho_{q+s}+1
\end{array}\right), \tag{6}
\end{align*}
$$

where ω is equal to $e^{ \pm i \pi}$ or 1 according as $l+m$ is even or odd. •

The following formulae will also be required.
If m is a positive integer,

$$
\begin{equation*}
\Gamma(m z)=(2 \pi)^{\frac{k}{-}-\frac{m}{m}} m^{m z-\frac{z}{2}} \prod_{s=0}^{m-1} \Gamma\left(z+\frac{s}{m}\right) \tag{7}
\end{equation*}
$$

If m is a positive integer,

$$
\begin{equation*}
\prod_{s=0}^{m-1} \sin \left(\frac{k+s}{m} \pi\right)=2^{1-m} \sin k \pi \tag{8}
\end{equation*}
$$

If $s=1,2, \ldots, m-1$,

$$
\begin{equation*}
\sin \frac{s \pi}{m} \sin \frac{(s-1) \pi}{m} \ldots \sin \frac{\pi}{m} \sin \frac{\pi}{m} \sin \frac{2 \pi}{m} \ldots \sin \frac{(m-s-1) \pi}{m}=2^{1-m} m . \tag{9}
\end{equation*}
$$

2. Proofs. On the left of (1) replace the E-function by

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\prod \Gamma\left(\rho_{s}-\zeta\right)}\left(\lambda_{1} \lambda_{2} \ldots \lambda_{m} z\right)^{\zeta} d \zeta .
$$

Then, on changing the order of integration and evaluating the integrals, the multiple integral becomes

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right) \prod \Gamma\left(\zeta+k_{t}\right)}{\prod \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} d \zeta
$$

and, on applying (4) with $l=0$ and $\rho_{q+t}=1-k_{t}(t=1,2, \ldots, m)$, the expression on the right of (1) is obtained.

Again, on substituting for the E-function on the left of (2) and changing the order of integration, the integral is found to be equal to

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right) \Gamma(m \zeta+k)}{\Pi \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} d \zeta
$$

Here apply (7) to $\Gamma(m \zeta+k)$, and the integral becomes

$$
\left.(2 \pi)^{i-i m} m^{k-\frac{i}{2}} \frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right) \prod_{s=1}^{m} \Gamma\left(\zeta-\frac{s-k}{m}+1\right)}{\prod \Gamma\left(\rho_{s}-\zeta\right)}\left(m^{m} z\right)^{\xi}\right\} d \zeta
$$

Hence, on applying (4), (8) and (9), formula (2) is obtained.

REFERENCES

1. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Vol. I (New York, 1953).
2. T. M. MacRobert, Functions of a complex variable, 5th edition (London, 1962).
3. F. M. Ragab, Integrals of E-functions expressed in terms"of E-functions, Proc. Glasgow Math. Assoc., 1 (1953), 192-195.

The University
 Glasgow

