A NOTE ON GREEN'S THEOREM

B. D. CRAVEN
(received 31 October 1963)

Green's theorem, for line integrals in the plane, is well known, but proofs of it are often complicated. Verblunsky [1] and Potts [2] have given elegant proofs, which depend on a lemma on the decomposition of the interior of a closed rectifiable Jordan curve into a finite collection of subregions of arbitrarily small diameter. The following proof, for the case of Riemann integration, avoids this requirement by making a construction closely analogous to Goursat's proof of Cauchy's theorem. The integrability of $Q_{x}-P_{v}$ is assumed, where $P(x, y)$ and $Q(x, y)$ are the functions involved, but not the integrability of the individual partial derivatives Q_{x} and P_{y}; this latter assumption being made by other authors. However, P and Q are assumed differentiable, at points interior to the curve.

Theorem. Let C be a closed rectifiable Jordan curve, enclosing a plane region R. Let the functions $P(x, y)$ and $Q(x, y)$ be differentiable at all points of R, and continuous on $W=C+R$. Let $Q_{\alpha}-P_{v}$ be Riemann-integrable on R. Then

$$
\begin{equation*}
\int_{C}(P d x+Q d y)=\iint_{R}\left(Q_{x}-P_{y}\right) d x d y \tag{1}
\end{equation*}
$$

Proof. Let C have finite positive length L. Then there is a square A of area L^{2}, with sides parallel to the axes, which contains W.

Choose any positive ε. In what follows, a neighbourhood of a point shall denote a square neighbourhood, with the point as its centre, and with sides parallel to the axes. Then, from the hypotheses, every point $\left(x_{0}, y_{0}\right)$ of R has a neighbourhood $N\left(x_{0}, y_{0}\right)$ such that, for every point (x, y) which lies in both N and W,

$$
\begin{gather*}
\left|P(x, y)-P\left(x_{0}, y_{0}\right)\right|<\frac{1}{2} \varepsilon / L \tag{2}\\
\left|Q(x, y)-Q\left(x_{0}, y_{0}\right)\right|<\frac{1}{2} \varepsilon / L \tag{3}\\
P(x, y)=P^{*}+P_{x}^{*}\left(x-x_{0}\right)+P_{*}^{*}\left(y-y_{0}\right)+\xi \tag{4}\\
Q(x, y)=Q^{*}+Q_{x}^{*}\left(x-x_{0}\right)+Q_{v}^{*}\left(y-y_{0}\right)+\eta \tag{5}
\end{gather*}
$$

where $P^{*}, P_{x}^{*}, P_{y}^{*}, Q^{*}, Q_{x}^{*}, Q_{v}^{*}$ denote the values of $P, P_{\alpha}, P_{v}, Q, Q_{\alpha}$, Q_{v} at $\left(x_{0}, y_{0}\right)$, and

$$
\begin{align*}
& |\xi|<\varepsilon r / L^{2} \tag{6}\\
& |\eta|<\varepsilon \gamma / L^{2} \tag{7}
\end{align*}
$$

where

$$
r^{2}=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}
$$

Divide A into four squares of side $\frac{1}{2} L$, by lines parallel to the axes. Repeat this procedure for each of the four squares, and so on indefinitely. Dencte by F the family of closed squares, with sides tending to zero, so obtained. Denote by $F(\delta)$ the subset of F consisting of squares each of side δ, for $\delta=\frac{1}{2} L, \frac{1}{4} L, \cdots$. In this notation, Lemma 2 of Potts [2] states that the number of squares of $F(\delta)$ necessary to cover C is less than $4(L / \delta)+4$. This follows, since an arc of C of length less than δ can have points in common with at most four such squares.

There exists, for some δ, a finite collection F_{1} of squares A_{i} of F, disjoint except for common boundaries, such that every point of W lies in some A_{i}, and such that if A_{i} lies wholly interior to R, and $\left(x_{0}, y_{0}\right)$ is its centre point, then every point (x, y) of A_{i} satisfies (2) to (7), whereas if A_{i} contains points of C, then A_{i} belongs to $F(\delta)$, and (2) and (3) hold for any two points $\left(x_{0}, y_{0}\right)$ and (x, y) which lie in both A_{i} and W. For if not, some region of W requires an infinite collection of squares. Then successive subdivision of this region produces a nested sequence of squares, to each of which the same statement applies. Since W is compact, the nested sequence defines a limit point in W, at which P or Q is discontinuous or not differentiable, contrary to hypothesis.

Let F^{\prime} denote any finite collection of squares of F, obtained by further subdividing the squares of F_{1}. The relation between F^{\prime} and F_{1} will be written $F^{\prime}<F_{1}$. Then if F_{1} has the property stated in the previous paragraph, the same statement applies to any $F^{\prime}<F_{1}$.

Denote by R^{*} the union of those squares of F_{1} which contain points of W. Let

$$
\begin{aligned}
\phi(x, y) & =Q_{x}(x, y)-P_{y}(x, y) \text { for }(x, y) \text { in } W \\
& =0 \text { elsewhere. }
\end{aligned}
$$

Then

$$
\iint_{R}\left(Q_{x}-P_{y}\right) d x d y=\iint_{R^{*}} \phi d x d y
$$

Since by hypothesis, this Riemann integral exists, there exists, for some $\delta<\varepsilon /(L+1)$, a finite collection F_{2} of squares of $F(\delta)$, with $F_{2}<F_{1}$, such that

$$
\begin{equation*}
\left|\iint_{R^{*}} \phi d x d y-\sum\left(Q_{x}^{*}-P_{y}^{*}\right)\right| A_{i}| |<\varepsilon \tag{8}
\end{equation*}
$$

where Q_{x}^{*} and P_{y}^{*} refer to the centre point of A_{i}, and $\left|A_{i}\right|$ is the area of A_{i}. The summation includes all squares A_{i}^{\prime} of F_{2} which lie wholly within R, and some (possibly all or none) of those squares $A_{i}^{\prime \prime}$ which include points of C. Let B denote an upper bound to ϕ, implied by its Riemann-integrability. Then

$$
\begin{equation*}
\left|\Sigma\left(Q_{x}^{*}-P_{y}^{*}\right)\right| A_{i}^{\prime \prime}| |<B \sum\left|A_{i}^{\prime \prime}\right| \tag{9}
\end{equation*}
$$

By Pott's Lemma,

$$
\begin{equation*}
\sum\left|A_{i}^{\prime \prime}\right| \leqq \delta^{2}[4(L / \delta)+4]<4 \varepsilon \tag{10}
\end{equation*}
$$

supposing $\varepsilon<1$. Therefore

$$
\begin{equation*}
\left|\iint_{R}\left(Q_{x}-P_{y}\right) d x d y-\sum\left(Q_{x}^{*}-P_{v}^{*}\right)\right| A_{i}^{\prime \prime}| |<(1+4 B) \varepsilon . \tag{11}
\end{equation*}
$$

Denote by ρ_{i}^{\prime} the boundary of A_{i}^{\prime}, and by $\rho_{i}^{\prime \prime}$ the boundary of that part of $A_{i}^{\prime \prime}$ which lies in W. Then if $\left|\rho_{i}^{\prime \prime}\right|$ denotes the length of $\rho_{i}^{\prime \prime}$,

$$
\begin{equation*}
\sum\left|\rho_{i}^{\prime \prime}\right|<L+(4 \delta)[4(L / \delta)+4]<17(L+1) \tag{12}
\end{equation*}
$$

again applying Potts' Lemma. Now

$$
\begin{equation*}
\int_{c}(P d x+Q d y)=\sum \int_{\rho_{i}^{\prime}}(P d x+Q d y)+\sum \int_{\rho_{i}^{\prime \prime}}(P d x+Q d y) \tag{13}
\end{equation*}
$$

with all paths traversed in the positive direction. From (4) and (5),

$$
\begin{equation*}
\int_{\rho_{i}^{\prime}}(P d x+Q d y)=\left(Q_{x}^{*}-P_{v}^{*}\right)\left|A_{i}\right|+\int_{\rho_{i}^{\prime}}(\xi d x+\eta d y) \tag{14}
\end{equation*}
$$

since for a square,

$$
-\int_{\rho_{i}^{\prime}} y d x=\left|A_{i}^{\prime}\right| \quad \text { and } \quad \int_{\rho_{i}^{\prime}} x d y=\left|A_{i}^{\prime}\right|
$$

By (6) and (7),

$$
\begin{equation*}
\Sigma\left|\int_{\rho_{i}^{\prime}}(\xi d x+\eta d y)\right| \leqq \sum\left(\varepsilon / L^{2}\right) \cdot 4 \sqrt{ } 2\left|A_{i}^{\prime}\right|<6 \varepsilon \tag{15}
\end{equation*}
$$

And from (2) and (3), and (12),

$$
\begin{equation*}
\Sigma\left|\int_{\rho_{i}^{\prime \prime}}(P d x+Q d y)\right|<(\varepsilon / L) \cdot 17(L+1)=B^{\prime} \varepsilon, \text { say. } \tag{16}
\end{equation*}
$$

Combining (11), (13), (14), (15), and (16),

$$
\left|\iint_{R}\left(Q_{x}-P_{y}\right) d x d y-\int_{C}(P d x+Q d y)\right|<\left(7+4 B+B^{\prime}\right) \varepsilon
$$

Since ε is arbitrary, (l) is proved.

Acknowledgement

Thanks are due to Professor E. R. Love, whose suggestion it was that Goursat's method might be applicable to Green's Theorem, and to the referees for several suggestions.

References

[1] Verblunsky, J., On Green's formula, J. Lond. Math. Soc., 24 (1949), 146 - 148.
[2] Potts, D. H., A note on Green's Theorem, J. Lond. Math. Soc., 26 (1951), 302-304.
Department of Mathematics, University of Melbourne.

