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Abstract

Accurate estimations of ice thickness and volume are indispensable for ice flow modelling, hydro-
logical forecasts and sea-level rise projections. We present a new ice thickness estimation model
based on a mass-conserving forward model and a Bayesian inversion scheme. The forward model
calculates flux in an elevation-band flow-line model, and translates this into ice thickness and
surface ice speed using a shallow ice formulation. Both ice thickness and speed are then extrapo-
lated to the map plane. The model assimilates observations of ice thickness and speed using a
Bayesian scheme implemented with a Markov chain Monte Carlo method, which calculates esti-
mates of ice thickness and their error. We illustrate the model’s capabilities by applying it to a
mountain glacier, validate the model using 733 glaciers from four regions with ice thickness mea-
surements, and demonstrate that the model can be used for large-scale studies by fitting it to over
30 000 glaciers from five regions. The results show that the model performs best when a few
thickness observations are available; that the proposed scheme by which parameter-knowledge
from a set of glaciers is transferred to others works but has room for improvements; and that
the inferred regional ice volumes are consistent with recent estimates.

1. Introduction

Glacier volume and ice thickness distribution are highly important for various aspects of gla-
ciology, as well as for related sciences, such as hydrology (e.g. IPCC, 2013; Bahr and others,
2015). Ice thickness is a key factor determining the flow of glaciers, the potential water volume
contributing to local and regional runoff, and the amount of sea-level rise due to glacier wast-
age during climate change. However, even with the great efforts expended into conducting ice
thickness measurements with geophysical methods, these direct observations remain sparse
(Gärtner-Roer and others, 2014; GlaThiDa-Cons, 2019). It is therefore imperative to be able
to infer ice volume and thickness distribution of large glacier samples from readily available
data, such as glacier inventories and digital elevation models (DEMs). The development of
approaches capable of estimating ice thickness has recently become a relevant branch of gla-
ciological research and various models of different complexity and input data requirements
have been proposed (see Farinotti and others, 2017, for a review). The Ice Thickness
Models Intercomparison eXperiment (ITMIX) compared the performance of 17 different
approaches for a standardised set of glaciers (Farinotti and others, 2017). Considerable differ-
ences were found in the skill of the individual models to reproduce point ice thickness obser-
vations but even the best approaches were subject to large errors. This indicates a pressing need
to further develop the corresponding approaches.

The archetypal ice volume estimation technique is volume-area scaling (e.g. Chen and
Ohmura, 1990; Bahr and others, 1997; Grinsted, 2013; Bahr and others, 2015) which relates
ice volume to glacier area through a power law, for which the exponent is well constrained
by theory. This approach is both robust and straightforward but is unable to account for
the characteristics of individual glaciers, and does not deliver spatially distributed ice thickness.
The latter strongly limits the method’s applicability to modern glaciological studies as bedrock
topography is a requirement for physical models of ice flow, subglacial hydrology, transient
glacier retreat, future hydrology, etc. Furthermore, the validation of average ice thicknesses
estimated by volume-area scaling is inherently difficult as they cannot directly be compared
to point-based thickness measurements.

Models simulating ice thickness distribution typically rely on the principles of ice-flow
dynamics. Some approaches are based on the assumption of constant basal shear stress
along a central flowline (e.g. Li and others, 2012; Frey and others, 2014; Linsbauer and others,
2012). An important group of models hinges on considerations of mass conservation (in a
reduced, one-dimensional geometry) paired with ice physics (e.g. Farinotti and others,
2009; Huss and Farinotti, 2012; Clarke and others, 2013; Langhammer and others, 2019;
Maussion and others, 2019). The other important group of models makes use of observed
ice velocities within a two-dimensional, mass-conservation equation to infer ice thickness
(e.g. Morlighem and others, 2011; McNabb and others, 2012; Gantayat and others, 2014;
Brinkerhoff and others, 2016; Fürst and others, 2017). Other ice thickness models propose
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the inversion of full ice-dynamics models (Van Pelt and others,
2013), or are based on neural networks (Clarke and others, 2009).

Many approaches have been designed to infer the ice thickness
distribution of individual glaciers, other have the goal of being
applicable on a regional to global scale. Within the Global
Glacier Thickness Initiative (G2TI) (Farinotti and others, 2019)
up to five ice thickness models have been applied globally result-
ing in a consensus estimate relative to the version 6.0 of the
Randolph Glacier Inventory (RGI) (RGI-Consortium, 2017).

With the rapid progress in satellite-based Earth observation, new
large-scale datasets are becoming available at a fast pace. Most glo-
bal ice thickness models to date have relied on surface topography
and glacier inventories only. However, there is considerable poten-
tial in including information contained in ice velocity, expected to
soon become available globally from satellite products (e.g.
Fahnestock and others, 2016; Mouginot and others, 2017; Strozzi
and others, 2017; Gardner and others, 2018; Dehecq and others,
2019a). Furthermore, the optimal inclusion of direct ice thickness
observations via inversion techniques is a highly important aspect
as the number of these observations is increasing rapidly.

Inversion schemes, taking into account as much of the avail-
able information as possible, are thus required. Of interest here
is the publication by Brinkerhoff and others (2016) as it employs
a Bayesian inference method. Such methods allow combining
prior knowledge of the system with the fitting of a physical
model to observations. Furthermore, within such a framework,
numerical schemes are available to not only find the best-fit para-
meters and predictions but to also compute their probability dis-
tributions, thus making this type of inversion particularly
appealing. Regional- to global-scale applications and testing of
such an approach, however, is still lacking.

Here, we present the Bayesian Ice Thickness Estimation model
(BITE-model) which uses a novel, Bayesian approach making it
applicable at large scales. We considerably enhance an extensively
tested forward model for inferring ice thickness and volume based
on mass flux estimates (Huss and Farinotti, 2012). Furthermore,
we use comprehensive datasets of surface ice speed, surface
mass balance and elevation change, and a large sample of direct
ice thickness observations to apply Bayesian inference to produce
maps of ice thickness, including explicit estimates of the uncer-
tainty. The new approach is applied to glaciers and ice caps of
regions containing either a very large ice volume (Svalbard,
Arctic Canada), featuring a dense observational coverage
(European Alps) or consisting of many diverse and large moun-
tain glaciers (Karakoram). Results are compared with the recent
G2TI estimates of regional glacier ice volume.

2. Methods

The BITE-model consists of: (i) a forward model, which is a mass-
conserving, ice-physics-inspired ice thickness model based on
Farinotti and others (2009) and Huss and Farinotti (2012); and
(ii) an inverse model which uses Bayesian inference, taking into
account both prior knowledge and available measurements of
the system.

2.1 Forward model

The forward model computes an ice thickness and surface ice
speed map for given input maps and parameters. It is a
re-implementation and further development of Huss and
Farinotti (2012) and uses a mass-conservation approach com-
bined with ice-flow physics as given by the shallow ice approxi-
mation. The model complexity as well as its computational cost
is reduced considerably by performing most calculations in one
dimension (1D). The reduction to 1D is performed by binning

all required data into elevation bands. This is similar to flow-line
glacier models but using elevation-band averaged quantities, such
as average thickness. The 1D thickness and surface ice speed are
then extrapolated to obtain a spatial distribution of these vari-
ables. The forward model performs the following steps: (1) col-
lapse the two-dimensional (2D) input data onto elevation
bands, (2) calculate mass flux q through elevation bands, (3) cal-
culate ice thickness h and surface ice speed v on elevation bands,
and (4) extrapolate h and v to 2D. These steps are explained below
in detail and are illustrated with an example run of Unteraar
Glacier (Switzerland).

2.1.1 Collapse onto elevation bands (step 1)
The original approach of this type of model (Farinotti and others,
2009) required a manual selection of a flow line for each glacier
sub-catchment. Huss and Farinotti (2012) simplified this
approach by dividing the glacier into elevation bands and using
elevation-band averaged quantities for the 1D calculation. The
advantage of using elevation bands is that the collapse from 2D
to 1D is straightforward to automate.

This is also the approach used here: The elevation range of the
glacier is divided into N equal bands, each spanning an elevation
difference of Δz = 30 m. Each cell of the DEM is then assigned to a
band according to its elevation z. The area of each band ai is cal-
culated by summing the areas of all cells in the band. Notice that
this procedure discretises the problem and that the 1D equations
we present below are inherently discrete. This is reflected in our
notation: where 1D and 2D variables can be confused, we write
the 1D variables with subscript ‘i’ indicating the elevation band,
counted from the top (e.g. xi), and the 2D variables without
subscript (e.g. x).

A representative slope angle for each band αi is needed for esti-
mating the ice flow. This calculation is also critical as it will deter-
mine the horizontal length of an elevation band (see Eqn (1)) and
hence the overall glacier length. We follow the empirical approach
of Huss and Farinotti (2012) who take αi as the mean of all cell
slopes over a certain quantile range: αi =mean{α′|Q5(α) < α′ <
Qx(α)} where x =min(max(2 Q20(α)/Q80(α), 0.55), 0.95) and Qx

denotes the xth percentile. This approach removes outliers and
returns a slope angle that is both representative of the main
trunk of the glacier and consistent with its flowline length.
Furthermore, we enforce 0.4° < αi < 60° (Huss and Farinotti,
2014); the lower bound is to avoid infinities that ensue when
the band length (Eqn (1)) becomes infinite and the driving stress
(Eqn (7)) becomes zero. With αi, the length Δχi and width wi of
each elevation band i can then be determined geometrically

Dxi =
Dz

tanai
, wi = ai

Dxi
. (1)

Note that the glacier length in 1D is l = ∑
Dxi and the corre-

sponding horizontal coordinate in 1D is denoted by χ.
An example result of this procedure is given in Fig. 2a which

shows the glacier surface and width in 1D against the horizontal
elevation-band coordinate χ.

2.1.2 Mass conservation (step 2)
The mass conservation equation in 1D (width and depth inte-
grated, discretised on elevation bands) is given by

∂hi
∂t

+ qi − qi−1

ai
= ḃi, (2)

where qi is the flux from band i to i + 1, ∂hi/∂t is the rate of ice
thickness change, and ḃi is the mass balance (in metres ice per
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year). Defining the apparent mass balance b̃ as

b̃i = ḃi − ∂hi
∂t

(3)

and summing the above equation gives

qi = q0 +
∑i

j=1

b̃jaj, (4)

with boundary condition at the top q0 = 0. Note that for land-
terminating glaciers the flux is zero at the terminus qN = 0,
whereas for calving glaciers qN > 0. Figure 2c illustrates the mass-
balance terms and fluxes in 1D for the example glacier.

2.1.3 Ice thickness (step 3)
Ice thickness can now be calculated from the ice flux. For this, a
partition of the flux due to internal deformation and due to slid-
ing is required. Given the ratio of surface speed to basal sliding
speed fsl, we can calculate the flux due to deformation as

qd,i = qi 1− fsl
(1− r)fsl + r

( )
, (5)

with r = (n + 1)/(n + 2) = 0.8 the ratio between depth-averaged
deformational flow speed and deformational surface flow speed
(assuming shallow ice flow; n = 3 is Glen’s exponent). Note

however, that calculating fsl would require using a basal sliding
law. We forgo this and will treat fsl as a tuning parameter.

The ice thickness h is then calculated from the deformational
ice flux by using a formula derived from the shallow ice approxi-
mation (Cuffey and Paterson, 2010)

hi = qd,i
2A

n+ 2
t̃ n
i

( )1/(n+2)

, (6)

with A the temperature-dependent ice flow factor (for which
we use the tabulated values of Cuffey and Paterson, 2010). The
driving stress divided by the ice thickness t̃ is given by

t̃i = 1
2k+ 1

∑i+k

j=i−k

fjrg sinaj, (7)

where fi =wi/(2hi +wi) is a shape factor for a parabolic valley (Nye,
1965). The above equation averages the local driving stress over 2k
+1 elevation bands, with k chosen such that the horizontal extent is
approximately six ice thicknesses. Kamb and Echelmeyer (1986)
recommend three to ten ice thicknesses for the averaging of τ.
Figure 2b illustrates the averaged and local driving stress, as well
as the employed basal sliding fraction fsl in 1D for the example
glacier.

Ice thickness at ice divides is predicted to be zero by Eqn (6) as
qd,0 = 0 and �t . 0. Nonetheless, to account for the non-zero ice
thickness found at those locations we set h0 = h1 for glaciers
and ice caps originating at divides. Note that whilst this is at
odds with the shallow ice formula (Eqn (6)) it is consistent
with mass conservation (Eqn (2)) as flux is zero there.

The elevation-band depth-averaged ice speed is calculated
using mass conservation as

�vi = qi
wihi

, (8)

which can be translated into a surface speed with

vi = �vi
(1− r)fsl + r

. (9)

2.1.4 Extrapolation to the map plane (step 4)
The extrapolation of h (as calculated by Eqn (6)) to 2D is done
such that the total volume V = ∑

i hiai is conserved. The ice vol-
ume of each band is distributed to the cells in 2D according to
their surface slope and their distance L to the next land-margin
of the glacier as

h/ ( sina)−n/(n+2)Ld , (10)

with the exponent 1≥ d > 0 being a tuning parameter, for which a
value of 1 corresponds to a V-shaped bed and values closer to 0 to
a more and more pronounced U-shape. The exponent of the sine
term is given by the shallow ice approximation (Eqn (6)). In this
equation, the minimum value of α is constrained to be 2.5° to
avoid infinities (Huss and Farinotti, 2014). The first factor of
this formula is inspired by the shallow ice approximation from
which also Eqn (6) is derived. For marine terminating glaciers,
any ice thicknesses larger than flotation level are reduced to flota-
tion. Finally, the resulting ice thickness field is smoothed with a
moving average filter using a window-width of approximately
the mean ice thickness (estimated by volume-area scaling).
These last two steps are not strictly volume-conserving but the

Fig. 1. Schematic of the BITE-model. The forward model transforms input data (DEM,
ḃ, ∂h/∂t, etc.) into output data (h,v), with the steps numbered as in the text. The
inverse model (prior, likelihood and posterior) is evaluated using a Markov chain
Monte Carlo (MCMC) scheme. For variable definitions, refer to Table 1 and Eqn (15).
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errors are very small in typical settings (Huss and Farinotti, 2014
state that on the Antarctic Peninsula less than 1.8% of the area is
affected by the former correction).

The extrapolation of the surface ice speed is mass conserving,
which is an improvement on Huss and Farinotti (2012). We first
assume that the depth-averaged ice speed �v has a certain across-
glacier distribution, namely that ice flows slower towards the mar-
gin and faster far from it. For this we use a formula inspired by
Nye (1965) (his Eqn (6))

�v/ 1− l−min (L, l)
l

( )dv

, (11)

where the length scale λ =min(wi/2, hi) is the minimum of half-
width and mean thickness and the exponent dv is a tuning factor
suggested to be n + 1 by Nye’s theory.

The flux from one elevation band to the next is known from
Eqn (4). This flux can be distributed along the 2D boundary
between the two elevation bands honouring both Eqn (11) and
conservation of volume. Finally, surface speed is calculated with

v = �v
(1− r)fsl + r

. (12)

Of note is that this modulates the surface speed by at most 125%
and, thus, the ice thickness given by volume-conservation
(Eqn (6)) has in general a larger impact on v.

Figure 2d shows the ice thickness mapped back to 2D and
Fig. 2e shows the ice speed across elevation-band boundaries.
Note that ice speed could be interpolated between the elevation

bands. However, the model error is calculated at elevation
bands only and thus we display this output for illustration.

2.1.5 Forward model inputs and parameters
The forward model needs several input parameters and fields in
the form of measurements, outputs of other models or guesses
(Table 1). Using these inputs, the model computes maps of ice
thickness h and surface ice speed v. The next section discusses
how these, often poorly known parameters can be inferred from
available observations by using an inverse model, and how their
uncertainty can be quantified.

2.2 Inverse model

The inverse model, i.e. the model which estimates some of the for-
ward model parameters and input fields, is based on a Bayesian
inference approach (e.g. Tarantola, 2005). This improves on
Huss and Farinotti (2014) who used an ad-hoc parameter fitting
scheme.

Bayesian inference is based on Bayes’ rule relating two condi-
tional probability density functions. They are written as p(a|b),
indicating the probability density of a given b. Using this nota-
tion, Bayes’ rule is

p(u | d) = p(d |u)p(u)
p(d)

, (13)

where θ are the model parameters and d is a vector of observa-
tions to which the forward-model is fitted. The model parameters
θ, which are to be fitted (Table 1), are all inputs to either

Fig. 2. Best-fit forward model output for test case Unteraar Glacier (from ITMIX, Farinotti and others, 2017), Switzerland. The left panels show 1D-model inputs and
results, the right panels results extrapolated to 2D. (c) Glacier surface and bed elevation (left axis) and width (right axis); (b) driving stress (left axis) and basal
sliding fraction fsl (right axis); (c) observed and fitted apparent mass balance b̃ (left axis), total flux q and deformational flux qd (right axis); (d) calculated ice thick-
ness overlain by thickness along radar profiles (white-bordered); (e) surface ice speed at elevation-band boundaries.
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the forward-model or the stochastic error model (see below).
In prose, the above rule reads: the posterior probability density
p(θ|d) of a set of parameters θ given a set of measurements
d (and given our forward model) is proportional to the probabil-
ity density p(d|θ) (called likelihood) that d is observed for a given
θ times the prior probability density p(θ) of those parameters. The
marginal likelihood p(d) in the denominator ensures that the pos-
terior is normalised, however, computing p(d) is usually intract-
able. We avoid this complication by generating samples from
the posterior distribution using a Markov chain Monte Carlo
(MCMC) method, which only requires evaluation of the prior
and likelihood distributions.

The likelihood p(d|θ) combines the deterministic forward
model with a stochastic error model taking into account the
error of both the measurement process and the forward model
(see Section 2.2.3). The prior probability p(θ) contains our knowl-
edge about the parameters prior to taking the measurement d into
account; for instance, that the ice temperature must obey T≤ 0
(see section below on priors).

2.2.1 Fitting target and fitting parameters
The model can be fitted to observations of ice thickness h′, glacier
length l′ and surface ice speed v′. The Bayesian inversion frame-
work is adaptable to use all, some or none of the above observa-
tions. Our data vector is thus

d = [h′(x, y), v′(x, y), l′], (14)

where h′ and v′ are themselves vectors of observations at the
coordinate (x, y).

We chose to fit the following model parameters: apparent mass
balance b̃ (Eqn (3)), basal sliding fraction fsl (Eqn (5)), ice tem-
perature T (Eqn (6) via the temperature dependence of A) and
extrapolation exponents for both thickness d (Eqn (10)) and
speed dv (Eqn (11)). We also fit shm and svm , which are the
model-error standard deviations for h and v (defined below in
the section on the likelihood). Other parameters, such as para-
meters relating to the collapse onto elevation bands or smoothing
windows, could be fitted additionally. This would, however, sig-
nificantly increase the computational cost. Hence, our parameter
vector is given by

u = [b̃, fsl, T, d, dv, shm , svm ] (15)

with the bold-face indicating that those fitting parameters are dis-
tinct from the forward model parameters. This is because the
elevation-band spacing will in general differ from the one used
in the forward model (see next section for details).

The choice of the parameters included in θ also means that the
other model inputs – most importantly the surface DEM and gla-
cier outline – are assumed to be error-free and, thus, constant
throughout the fitting procedure. Although not true, this decision
is motivated by computational limitations. If the DEM was not
constant, then the most expensive forward model steps (1 and 4)
would need to be performed for each forward model evaluation.
Using a varying outline would have an even higher perform-
ance impact due to the necessity to re-calculate glacier and
land-masks at every evaluation. Although we recognise this
limitation, we note that – with the exception of Brinkerhoff
and others (2016), who take the DEM error into account – all
currently existing ice thickness models also assume DEM and
outline to be error-free.

Many others of our model parameters, such as for instance the
ice bulk density, are also assumed error-free, and we thus neglect
various other processes, such as for instance heavy crevassing
(Colgan and others, 2012, state a 20% reduced density for parts
of Columbia glacier). However, we posit that we have captured
the main sources of errors with our assessment.

2.2.2 Priors p(θ).
The model parameters θ can be measurements, outputs from
other models or just ‘expert’ guesses. Their prior distribution
encodes our knowledge of their values and error. The priors are
summarised in Table 2.

The fitting parameters have an elevation dependence, except
for shm and svm . Here we let b̃ and fsl have three components,
and let T, d and dv be constant over all bands, i.e. the vectors
have only one component. The three components of b̃ and fsl
are spaced evenly over the glacier’s elevation. The values at the
elevation-band locations used in the forward model are then cal-
culated using linear interpolation. Thus, the spacing of the para-
meters implicitly sets their correlation length scale.

Unlike the other parameters, the parameters b̃ encode an offset
to a b̃ field given by external models, measurementsor our expert
guess. Figure 3 illustrates this procedure for the Unteraar test-case.
This allows us to retain the shape of b̃ given by the observations
whilst encoding the fitting parameters with fewer degrees of free-
dom than there are elevation bands. This same procedure could
also be used for the other parameters but as there are no observa-
tions or external model results for them (Table 1), there is no
necessity to adopt this scheme.

Brinkerhoff and others (2016) approached the spatial variation
of θ in a more sophisticated manner by sampling a Gaussian pro-
cess to get a smooth realisation of a possible 1D field. This con-
trasts with our method, where the sampled 1D fields will not
have any such smoothness (for instance, this is illustrated by
the spikes of the green curve at x = 1 km and 10 km in Fig. 3).
They also investigated the impact of the correlation length of
their Gaussian processes. We did not conduct such a systematic
analysis to determine the optimal number of components for
each parameter (which implicitly sets the correlation length).
Instead, simple trials paired with computational limitations
(more parameters need more computational time) were used to
select the numbers of components.

All the fitting parameters are given a prior distribution which
is encoded as either a (i) uniform distribution given by a range,
(ii) normal distribution given by a mean and standard deviation,
or (iii) truncated normal distribution by combining the two
(Table 2).

For fsl and T, there are essentially no measurements available
and we limit their distribution to a plausible range. The fraction
of basal sliding to surface speed must lie in the range 0≤ fsl≤ 1
as sliding speed cannot be negative and cannot be larger than
surface speed. Here, we assume a uniform distribution. We

Table 1. Key input parameters and fields of the forward model which are used
in the inversion and model output (last two parameters). The third column
states whether the data need to be in 2D or whether a lower-dimensional
input is possible. The last column indicates whether there are observations
or model outputs available on a regional/global scale

Description (units) var. 2D obs.

Surface DEM (m a.s.l.) y y
Glacier outline y y
Apparent mass balance (m a−1) b̃ n some
Basal sliding fraction fsl n n
Ice temperature (°C) T n n
Land distance exponent forh d n n
Land distance exponent forv dv n n
Ice thickness (m) h some
Surface ice speed (m a−1) v some
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assume the ice temperature to have a truncated normal distribu-
tion with μ =−0.5°C, σ = 1°C and range −20°C < T < 0°C. This
favours temperate glaciers, which we justify with the observation
that the ice at depth of most larger glaciers (which contribute
most of the volume, Farinotti and others, 2019) will be at or
close to the melting point. The thickness extrapolation parameter
d is given a uniform prior in the range [0.1, 1], covering both
U- and V-shaped valleys. The speed extrapolation parameter
dv is a truncated normal distribution with μ = 4 (as Nye, 1965
suggests), σ = 1/2 and range [0, 20].

As stated above, the expected value of the apparent mass bal-
ance is given by measurements, external models or guesses. For
example, ∂h/∂t may be from remote sensing and ḃ from a mass-
balance model; these inputs will be discussed in Section 3. We can
also put two constraints on the flux q, which is the integral of b̃
(corresponding to a b̃) (Eqn (4)). First, we require that the glacier
is continuous, which means that the flux is only allowed to go to
zero at the top and at the computed terminus; in between we
require qi > 0, otherwise the prior is set to zero. Second, for calv-
ing glaciers, the flux at the terminus qN will be non-zero. The dis-
tribution of qN(θ) is assumed normal with m = 0.5Ḃacc and
s = 0.1Ḃacc, where Ḃacc is the total accumulation. This is incorpo-
rated into the prior, assuming independence, by multiplying with
the density p(qN(θ)) of this normal distribution. The chosen
values of μ and σ are consistent with two estimates of calving
flux that are available for two of the largest ice masses considered
here (measurements or estimates of calving fluxes are not avail-
able on a global scale): Dowdeswell and others (2008) state that
for Austfonna ice cap, Svalbard, 44% of mass loss is through calv-
ing; similarly, Burgess and others (2005) state 40% for Devon Ice
Cap, Arctic Canada.

We assume that all priors are independent of each other and,
thus, the full prior p(θ) is the product of the individual ones.

2.2.3 Likelihood p(d|θ).
The forward model produces fields for the ice thickness h and
surface speed v which need to be fitted to the measurements h′

and v′. In case of land-terminating glaciers, also the 1D glacier
length l′ is fitted. This ensures that the 1D glacier reaches the
end of the lowest elevation band but not further. The comparison
between data and model is done with a simple stochastic model of
the errors. As an approximation, it assumes that all errors are

independent and have a normal distribution

p(d | u)/ 1
sh

e−
∑

(h(u)−h′)2/2s2
h

1
sv

e−
∑

(v(u)−v′)2/2s2
v

1
sl

e−(l(u)−l′)2/2s2
l ,

(16)

where the forward model output h(θ) and the observations h′ are
vectors of values at the coordinates (x′, y′) of the observation,
whereas for v and v′ the vector components are at grid locations
on the boundary of two elevation bands (see Section 2.1, step 4).
For the comparison, the thickness result is interpolated to the
measurement location (x′, y′) and vice versa for the speed.
Note, if no observations are available for a variable, the corre-
sponding term in Eqn (16) becomes one. The standard deviation

of the error in h is sh =
�����������
s2
hm

+ s2
ho

√
, combining the model-error

standard deviation shm and the observational-error standard devi-
ation sho ; the error of v and l are treated identically with a com-
bined standard deviation σv and σl. The values of the
observational-σ are a combination of the stated or estimated
uncertainty of the data (see next section) and of the uncertainty
stemming from non-simultaneous observations (Brinkerhoff
and others, 2016). The model-σ is fitted (using a uniform prior
with range [0, 200] m and [0, 200] m a−1 for σh and σv). The σ
are assumed constant for all locations (x, y).

Equation (16) assumes independent errors. The errors of h and
v, however, are spatially correlated, which is true for both the
measurement and the model errors. To reduce this correlation,
we adopted the simple strategy to thin out the points at which
observations are compared to the model. For the thickness obser-
vations we achieved this by thinning the data such that the dis-
tance between observations is ∼1/100th of the glacier length.
For the ice speed, the model results are thinned instead, by a fac-
tor of ten in both coordinate directions resulting in a distance
between comparison points of 250–2000 m (depending on
DEM resolution).

Note that the calculation of the likelihood for a set of para-
meters θ involves the evaluation of the forward model using the
θ-parameters to produce h(x, y, θ), v(x, y, θ) and l(θ). When

Table 2. Fitting parameters of the inverse model with their prior distributions.
The column ‘c.’ provides the number of elevation-band components that are
used for a given parameter. The distributions are either a (i) uniform
distribution given by a range, (ii) normal distribution given by a mean μ and
standard deviation σ or (iii) truncated normal distribution. The prior of b̃ is
given as an offset to a given, mean field (mass-balance model results,
observations or an assumed elevation dependence). Furthermore, there are
two further constraints on the integral of b̃, i.e. the flux.

Name var. c. range μ σ

Basal sliding fraction fsl 3 [0,1)
Ice temperature (°C) T 1 [−20,0] −0.5 1
Land distance exponent d 1 [0.1,1]
Ice speed exponent dv 1 (0,20] 4 0.5
App. mass balance (m a−1) b̃ 3 0 *
- continuous glacier qi – (0, ∞)
- calving flux(Ḃacc)

† qN – 0.5 0.1
Model error thickness (m) shm – [0,200]
Model error speed (m a−1) svm – [0,200]

*When elevation change measurements are available 1.4 m a−1, otherwise 2.2 m a−1; for the
Unteraar test-case 0.3 m a−1 as available data are more accurate. †Note that qN is given as a
fraction of Ḃacc.

Fig. 3. Illustration of the method to sample b̃ according to the components of the
fitting parameters b̃. The blue line corresponds to the measurements, i.e. the
expected value. The red dots represent a sample b̃ = [−2.5, 0.7, 0] at locations:
top elevation (χ = 0 km), mid-elevation (χ≈ 2.5 km) and terminus elevation
(χ≈ 10 km). The green curve is the apparent mass-balance field corresponding to
b̃, which is the subtraction of the linear interpolation of b̃ from the expected value.
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fitting only to l′, just the 1D part of the forward model needs
evaluating, which is ∼200 times faster than evaluating the full
2D model.

With both the prior p(θ) and the likelihood p(d|θ) specified,
the posterior can be evaluated (up to a normalisation factor,
Eqn (13)).

2.2.4 Sampling from the posterior
We are interested in characterising the posterior p(θ|v′, h′), a
high-dimensional probability distribution, which is best done
using samples from it.

We use a MCMC method to draw the samples, a widely used
approach for this type of analysis. We employ an affine-invariant
ensemble sampler (Goodman and Weare, 2010; Foreman-Mackey
and others, 2013). MCMC methods require many model evalua-
tions to draw enough samples to characterise the posterior. For
our application, around 105 samples are necessary to obtain con-
verged results. We analyse convergence using visual inspection of
the MCMC traces as well as the potential scale reduction factor R̂
(Gelman and others, 2014), which we calculate from MCMC
chains from independent runs of the affine-invariant sampler
(see Section S4 of the Supplementary Material).

An example inversion for Unteraar Glacier data is shown in
Figure 4, with panel D displaying the distribution of samples
from seven of the 11 θ components.

2.2.5 Predictions for h and v.
Whilst having the distribution of the parameters θ is useful, here
we are primarily interested in the distribution of h and v, so-called
predictions. During the MCMC procedure, the calculated h and v
fields indeed represent samples from their posterior distributions

and, thus, characterise them. This allows us to give both their
expected values (the mean) as well as their distribution.

Predictions with associated uncertainty for the Unteraar test-
case are displayed in Fig. 4. A comparison of the 2D predictions
with thickness measurements along radar lines is displayed in
Fig. 5.

2.3 Regional-scale applications

When applying our model to many glaciers, the typical situation
will be that a few glaciers have ice thickness measurements but the
vast majority do not. In that case, the few glaciers with thickness
data can be fitted well whereas the others cannot be fitted, at least
not to ice thickness. In this situation, we aim to transfer the
knowledge gained from fitting the few glaciers to the majority
of glaciers. We do so by using a representation of the posterior
distributions obtained for glaciers with measurements as an update
to the prior distribution for glaciers without measurements.

We first fit each glacier with thickness measurements individu-
ally (henceforth termed Mode-1) and thus obtain samples from
their posterior distributions. We then translate these θ samples
into a probability density function which can be used as part of
a prior. We approximate this multidimensional density function
by assuming that the parameters have independent normal distri-
butions with (i) the central parameter given by the median (which
we prefer over the mean to reduce the impact of outliers) of all
Mode-1 expected values of θ, and (ii) the variance given by the
variance of the combined posterior samples of all Mode-1 gla-
ciers. The density function of this multivariate, uncorrelated nor-
mal distribution of θ is then multiplied with the density function

Fig. 4. Inverse model output for test-case Unteraar from fitting the model to three radar lines (see Fig. 5f), glacier length and surface ice speed. (a) 1D glacier
surface and predicted bed (mean, minimum and maximum); (b) predicted speed; (c) distribution of inferred mean ice thickness; and (d) distribution of a selection
of fitting parameters. The diagonal shows the sample histograms for each, and the scatter plots the distribution between two variables.
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of the usual prior (Section 2.2.2) to form the new prior for
Mode-2 glaciers.

The new prior is then used for the rest of the glaciers, which
are only fitted to their length (or only to the prior in case of calv-
ing glaciers), or to surface ice speed as well. Henceforth, we term
this step Mode-2 fitting. The strategy is evaluated in the Results
section.

2.4 Implementation

The BITE-model implementation1, whose code is open source
(see Section S2 of Supplementary Material), focuses on good
computational performance as the MCMC scheme requires 104

to 105 forward model evaluations to fit one glacier. We use the
Julia programming language (Bezanson and others, 2017),
which achieves computational speeds on par with Fortran and
C. As many calculations as possible are performed during glacier
initialisation and then re-used during the MCMC computation;
for instance the spatial smoothing, a linear operation, is pre-
calculated and stored as a sparse matrix.

One forward model evaluation completes in ∼0.01–0.1 s on a
single core of a modern CPU (Intel Xeon E5-2687W), leading to
Mode-1 fitting of one glacier completing in ∼1 h. When not fit-
ting to ice speed, Mode-2 runs complete in less than 1 min, as
only the 1D part of the forward model needs to be evaluated to
compute the glacier length. The regional fitting is an ‘embarrass-
ingly parallel’ problem as different glaciers can be run at the same
time and thus the work can trivially be distributed among several
computers. The regional fitting for Svalbard, consisting of 170
Mode-1 and 1545 Mode-2 inversions (not fitting to ice speed),

completes in ∼10 h on a server with 12 physical cores (Intel
Xeon E5-2687W, hyperthreaded), with ∼80% of the time spent
for the Mode-1 inversions.

As stated above, computational efficiency is one of the reasons
to keep the DEM and outline constant. Changing them would
necessitate the re-evaluation of most pre-processed computations,
leading to an increase in forward model execution time – and thus
Mode-1 fitting time – by a factor of ∼50–200. Mode-2 runs would
require an even higher increase in computational time.

The used affine invariant MCMC sampler is implemented in
the package KissMCMC.jl2. When generating the predictions
of the 2D ice thickness and speed, not all samples can be retained
due to their large memory footprint. Instead we only store the
mean, standard deviation and extrema of the sampled h and v
fields. We do this by using online statistical methods through
the package OnlineStats.jl3.

3. Study sites and data

Our study sites include Arctic Canada North (RGIv6.0 region 3)
and South (region 4), Svalbard (region 7), Central Europe (region
11) and the Karakoram (region 14, subregion 2). The selected
regions are depicted in Fig. 6 and contain about one-sixth
(∼30 000) of all glaciers worldwide by number and ∼30% of the
global glacier volume (Farinotti and others, 2019). The selection
of these regions was largely driven by data availability, i.e. mea-
surements of ice thickness, elevation changes and/or surface ice
speed. We consider this a globally-representative glacier sample
suitable for demonstrating our model’s applicability to large
scales.

Fig. 5. Comparison of ice thickness measurements based on ground-penetrating radar along profiles to inverted ice thickness for test-case Unteraar (a–e).
(f) Glacier outline and radar tracks. The thick black lines are the fitting tracks, and the thick red lines are the ones displayed in a–e.

1https://github.com/mauro3/BITEmodel.jl

2https://github.com/mauro3/KissMCMC.jl
3https://github.com/joshday/OnlineStats.jl
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3.1 Data

The necessary inputs for our forward model are summarised in
Table 1. For all glaciers we use outlines from the RGIv6.0
(RGI-Consortium, 2017) and glacier mass balances from the
Global Glacier Evolution Model (GloGEM) (Huss and Hock,
2015). As DEMs we use the ArcticDEM (Porter and others,
2018) and the SRTM (Space shuttle Radar Topography
Mission) DEM (Jarvis and others, 2008). The elevation change
datasets are more diverse and not available for all regions. The
output of our model is ice thickness and surface speed
(Table 1) which we compare to the Glacier Thickness Database
(GlaThiDa) v3.0 (GlaThiDa-Cons, 2019) and a heterogeneous
set of ice speed data. Note that most available datasets provide
ice velocity, i.e. speed and azimuth, however our model only
uses speed; therefore we use the word speed throughout except
when the azimuth is important. Table 3 gives an overview over
the used data.

The RGIv6.0 dataset includes outlines of all glaciers worldwide
as well as additional information on each glacier. The reference

year for the outlines is included in the RGI attributes and more
than 90% of the glaciers we consider lie in the time-span 1999–
2010. We use the outline to delineate the glacier catchment in
the map plane. It also determines the 1D glacier length for
which we set an observational uncertainty slo of 3%; most of
this uncertainty is due to non-simultaneous observations
(Brinkerhoff and others, 2016). Furthermore, the outlines of adja-
cent glaciers determine the land mask which is used to calculate
the distance-to-land L (Eqns (10) and (11)). From the additional
RGI information, the attributes ‘Form’ and ‘TermType’ are used.
‘Form’ indicates whether the considered entity is a glacier or an
ice cap (if un-assigned, we assume that it is a glacier), determining
whether the 1D ice thickness at the top is set to zero or to the
same as one elevation band below. ‘TermType’ distinguishes
between land-terminating and calving glaciers, which determines
whether the glacier length is fitted (Eqn (16)) or whether a
terminus-flux prior is used. Note, however, that the classification
is not very accurate, at least for Svalbard, and many calving gla-
ciers are mis-labelled as land-terminating.

Fig. 6. World map showing the considered RGI-regions, and examples ice thickness maps for each region: (3) Clarence Head N&S glaciers (76.74°N, 78.07°W); (4)
Barnes Ice Cap (70.0°N, 73.5°W); (7) southern Spitsbergen around Vestre Torellbreen (77.3°N, 15.1°E); (11) Grosser Aletschgletscher (46.44°N, 8.08°E); (14) Biafo
Glacier (75.59°N, 36.00°E).
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The ArcticDEM is a high-resolution (2 m) DEM of the Arctic
using WorldView-1, 2 and 3 satellite data from the years 2007–
2018. It is used for the regions Svalbard and Arctic Canada
North and South. The SRTM DEM is available up to 60° North
at a resolution of 30 m and was acquired in February 2000. It is
used for the regions Central Europe and Karakoram. For each gla-
cier the DEM is pre-processed by projecting it into the appropri-
ate UTM zone, cropping it to fit the glacier outline, and
re-sampling it to 25, 50, 100 or 200 m depending on the glacier
size. The last step ensures that all DEMs have a similar resolution
relative to the glacier size. The grid of the DEM is then also used
as the computational and output grid for the forward model. Our
model approach cannot take errors of DEMs into account
(see Section 2.2). However, the study of Huss and
Farinotti (2012) (using almost the same forward model) estimated
the errors associated with using the SRTM for Central Europe and
Karakoram to be ∼1% of the regional ice volume and thus these
errors are negligible compared to others.

The GloGEM computes past mass-balance components and
their altitudinal distribution for all glaciers globally based on cli-
mate re-analysis data (see Huss and Hock, 2015 for details).
Results for each individual glacier have been calibrated to match
the regional average mass balance between 2003 and 2009
(Gardner and others, 2013) and computed mass-balance gradi-
ents with elevation have been validated against a global dataset
of direct observations (WGMS, 2012). Uncertainties for local
mass-balance estimates are ∼±1 m a−1. For each individual gla-
cier, we use the average of GloGEM mass balances over the period
1980–2016.

The elevation change dataset for Svalbard is a difference
between the Norwegian National DEM of 1990 and the SPOT5
DEM of 2008 (Nuth and others, 2015). The resolution is 40 m
and the dataset covers most of the Spitsbergen south of
Longyearbyen. For the rest of Svalbard we have no data. For the
Karakoram, we use an elevation change dataset derived from dif-
ferencing SRTM (from 2000) and TanDEM-X (from about 2013)
DEMs with a posting of 90 m. Both DEMs have been horizontally
and vertically co-registered before subtraction. As the radar pene-
tration of the C and X band into snow and (dry) firn can be dif-
ferent and reach several metres, we have also analysed elevation
differences over stable terrain. This revealed only small (a few
metres) vertical and largely unsystematic differences. Given the
large elevation changes over many glaciers (>100 m) and the ver-
tical uncertainties of both DEMs (several metres), we consider dif-
ferences in the radar penetration (i.e. not the individual absolute

values) as negligible and have not further corrected them. For the
Alps, elevation changes have been derived by differencing the
SRTM C Band DEM from 2000 from the TanDEM-X DEM
from about 2014, also with 90 m posting. Both datasets are pro-
vided by the ESA project Glaciers_CCI (Climate Change
Initiative) (Glaciers_CCI-Cons, 2018). For all elevation change
data we assume a normal error with standard deviation 1 m a−1

(e.g. Nuth and others, 2010). We have no elevation change data
for Arctic Canada North and South. For glaciers without elevation
change data available, or when testing the impact of using eleva-
tion change data, we use a synthetic, elevation-dependent rate

∂h
∂t

(z) = c1 if z ≥ zELA
c1 + c2(z − zELA) otherwise,

{
(17)

where zELA is the equilibrium line altitude provided by GloGEM,
and c1 and c2 are constants adjusted such that the flux at the ter-
minus is as specified. For glaciers where zELA is above the top or
below the terminus, a constant elevation-change rate is assumed.
As an uncertainty we assume 2 m a−1.

We combine the uncertainty of the elevation-change data and
GloGEM data assuming independence to get an uncertainty of
the apparent mass balance on elevation bands. For the case of
synthetic elevation change, this neglects that through the use of
zELA in Eqn (17) there will be some correlation of the errors.
However, we expect this to be of minor importance and neglect
it. The uncertainty is thus 1.4 m a−1 when elevation-change
data are available and 2.2 m a−1 otherwise.

Ice thickness data, which are generally collected with ground
penetrating radar, are available through GlaThiDa v3.0
(GlaThiDa-Cons, 2019) for 1084 of the 31 235 considered gla-
ciers. However, we manually rejected 333 glaciers either due to all-
zero thickness measurements within the area of the glacier outline
or due to only marginal coverage of the glacier. The ratio between
the number of glaciers with usable radar tracks and total for each
region is: Svalbard 170/1615 (22 glaciers rejected), Arctic Canada
North 315/4556 (150), Arctic Canada South 130/7416 (121),
European Alps 136/3892 (30) and Karakoram 0/13757. The spa-
tial density of observations is variable and dense observations are
thinned such that the distance between them is ∼1/100th of the
glacier length (this thinning is also used to avoid spatial correla-
tions in the likelihood, Section 2.2.3). Some data in GlaThiDa
have an associated error, but we simply set the standard deviation
to sho = 10 m.

Surface ice speed for all regions but the Alps are from the
Glaciers_CCI project. For Svalbard we use a dataset derived from
feature tracking of Sentinel-1 images between January 2015 and
January 2017 (Strozzi and others, 2017). For the Karakoram a data-
set derived from Sentinel-1 SAR images acquired in 2015 using
offset-tracking is used (Glaciers_CCI-Cons, 2018). The data for
Arctic Canada North and South are derived from winter
Sentinel-1 SAR images acquired in 2015 (Strozzi and others,
2017). For the European Alps, glacier surface speeds were generated
by tracking surface features in Landsat 7 panchromatic images
(15 m spatial resolution). Displacement fields were generated at
30 m resolution from all images separated by approximately one
year over the period 1999–2003 and the median value for the
whole period was retained in each pixel (Dehecq and others,
2015, 2019b). This dataset is limited to the Western Alps including
the area between Rhone Glacier and Mont Blanc. For the error of
all ice speed data, we use a standard deviation svo = 10 m a−1 (e.g.
Dehecq and others, 2015). Note, however, that we fit svm and shm ,
which means that the values of svo and sho are not critical.

Table 3. Used data listed by RGI region and associated variable

Reg. var. Name Citation

All outline RGIv6.0 RGI-Consortium (2017)
ḃ GloGEM Huss and Hock (2015)
h GlaThiDa* GlaThiDa-Cons (2019)

07 DEM ArcticDEM Porter and others (2018)
∂h/∂t Nuth Nuth and others (2015)
v Glaciers_CCI Strozzi and others (2017)

03 & DEM ArcticDEM Porter and others (2018)
04 ∂h/∂t n/a

v Glaciers_CCI Strozzi and others (2017)

11 DEM SRTM Jarvis and others (2008)
∂h/∂t Glaciers_CCI Glaciers_CCI-Cons (2018)
v Dehecq and others (2015)

14 DEM SRTM Jarvis and others (2008)
∂h/∂t Glaciers_CCI Glaciers_CCI-Cons (2018)
v Glaciers_CCI Glaciers_CCI-Cons (2018)

*No data available for region 14.
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4. Results

We present the results of our model for three different setups: (i)
we revisit the test glacier Unteraar, used in the Methods section,
to illustrate various aspects of the model; (ii) we calibrate and val-
idate the model using glaciers with ice thickness data from four
RGI regions, with a focus on our method for regional-scale appli-
cation; and (iii) we demonstrate the large-scale applicability of the
BITE-model by applying it to 30 000 glaciers in five RGI regions.
The results of the latter are compared to the G2TI initiative
(Farinotti and others, 2019).

4.1 Unteraar test case

The Unteraar Glacier test-case is taken from the ITMIX project
(Farinotti and others, 2017) which provides the following data:
outline and surface DEM (year 2003), mass balance (1997–
2003), elevation change (1997–2003), ice speed (1997, Vogel
and others, 2012) and ice thickness along 45 radar tracks
(Bauder and others, 2003) (Fig. 5f). All data but the outline
and ice thickness measurements are provided on the same grid
with a posting of 25 m, which is also the grid used for the
model run. We use the priors as given in Table 2, with σ =
0.3 m a−1 for the apparent mass balance. For the ice thickness
we assume an observational error of sho = 27 m (Bauder and
others, 2003), for ice speed svo = 4 m a−1 (Vogel and others,
2012) and for the glacier length slo = 300 m (Unteraar Glacier
retreated 400 m 1997–2004, GLAMOS, 2018). Of note is that
Unteraar Glacier is debris-covered downstream of the confluence
area.

For this test case, the model was fitted to the length of the gla-
cier, the ice speed and to three radar tracks, one located in the
upper accumulation area, one on the middle of the tongue and
one close to the snout (Fig. 5f, thick black lines). Figure 2
shows the output of the forward model for the best fit parameters
(i.e. the parameters with maximum posterior density), showing
that visually the fit to observed ice thickness is very good
(Fig. 2d). Ice speed in 2D is displayed at elevation-band boundar-
ies which is where the error (Eqn (16)) is evaluated when fitting to
ice speed.

The distributions of the fitting parameters are well approxi-
mated by the 105 samples taken (Fig. 4d). The distribution of
b̃2 illustrates how the fitting procedure modifies its prior distribu-
tion with mean 0 m a−1 to a distribution with mean ∼0.5 m a−1,
i.e. the model needed to increase b̃ around mid elevation to get a
good fit. This can also be seen in Fig. 2c, where the fitted b̃ is
above the observed one at mid elevation (around χ = 2.5 km),
whereas at the top and terminus the b̃ was barely modified. The
displayed parameters (Fig. 4d) are largely independent except
for the negatively correlated fsl2 and T. This means that the inver-
sion compensates slower flow due to stiffer ice with increased
sliding.

The fitted model error for the ice thickness shm is 3 m, result-
ing in an effective σh≈ 27 m. This is essentially unmodified from
sho . The mean ice thickness is ∼157 m with a narrow spread
of ±7 m (Fig. 4c) which is also reflected in the narrow band of
predicted 1D bedrock elevations (Fig. 4a). Thus, the fitted σh
amounts to 17% of mean ice thickness. For the ice speed, the
effective σv is ∼22 m a−1 (most of it due to model error as the
observation has svo = 4 m a−1) which is larger than the mean
flow speed of ∼16 m a−1 (Fig. 4b). This means that the model
error is larger than the signal for many locations on the glacier.
Thus, the model has very little predictive capability for surface
speed, at least for this test case.

Figure 5 compares the thickness results against measurements
along five radar tracks. The V-shaped valley profile along track C

is matched best; indeed the d parameter, which controls the valley
shape, is close to 1 thus indicating a V-shape. As d is constant for
the whole glacier, track B, located in a U-shaped section of the
glacier, is less well matched. At the two profiles A and D, the sur-
face is sloping sideways or is undulating due to supraglacial debris
coverage. This impacts the ice thickness extrapolation through the
surface slope (Eqn (10)) in a partly unrealistic pattern. This could
probably be alleviated by employing surface smoothing techni-
ques that preferentially smooth across-flow rather than along-
flow. However, the large mismatch of profile A at distance 0 m
is likely caused by erroneous input data: the radar profile shows
zero thickness whereas the outline is still further out. The longi-
tudinal profile shows that the thickness is matched well except
underestimating ice thickness at χ≈ 2000 m and overestimating
near the terminus. The latter is likely due to the strongly undulat-
ing surface there, as seen in profile D, located in this region.

Summarising, the BITE-model can predict the ice thickness of
Unteraar Glacier well when fitted to three radar profiles, with the
estimated ice thickness error at 17% of the mean ice thickness.
However, the ice speed is not well matched, and its predicted
errors are 137% of the mean speed.

4.2 Model validation against thickness measurements

We validate the BITE-model using test glaciers with available
thickness measurements from RGI regions Arctic Canada North
and South (regions 3 and 4), Svalbard (7) and Central Europe
(11). The test focuses on (I) the relative importance of fitting indi-
vidual variables for obtaining accurate glacier-scale ice thickness
and (II) the performance of our proposed scheme for
regional-scale applications (Section 2.3). To assess the latter we
split the test glaciers of each region into a calibration and a valid-
ation set of equal cardinality and similar glacier-size distribution.

The model is fitted to each glacier in the calibration set in three
different ways, using: (i) glacier length l, ice thickness h and ice
speed v (labelled with lhv); (ii) length and speed (l-v); (iii) gla-
cier length only (l--). In the Supplementary Material we also
show the results of fitting to length and thickness (lh-) which
are almost identical to the ones of lhv for all regions but
Central Europe (11) where lh- estimates the thickness slightly
better (see Supplementary Material, Figure S4). Note that
lhv and lh- correspond to Mode-1 fitting, whereas l-- and
l-v correspond to Mode-2 fitting without updated priors for
the calibration glaciers. The errors of the ice thickness estimates
of the calibration set are used to evaluate the relative importance
of fitting to glacier length, ice speed and ice thickness.

Each glacier of the validation set we fit to length only (l--’),
and length and speed (l-v’), using the priors updated from the
calibration run lhv, as proposed in our scheme for regional
model application (Section 2.3). This corresponds to Mode-2 fit-
ting, with and without using ice speed measurements. This is used
to assess the proposed scheme to transfer posterior knowledge to
the priors of other glaciers for the two typically encountered cases
of ‘no measurements available’ (apart from a glacier outline), and
‘ice speed measurements available from remote sensing’ (but no
thickness measurements).

To evaluate the runs, we use the median absolute deviation
(MAD), and the mean error (ME) of the ice thickness at the
measurement locations, both normalised by the region-wide
mean ice thickness (Section 4.3). The MAD gives an indication
of how well the model can fit the basal topography, penalising
both too shallow and too deep bed estimates. The ME will give
an indication of the model’s ability to estimate the total ice vol-
ume; in this case, too deep and too shallow local estimates can
cancel each other out. We display the distribution of the normal-
ised MADs and MEs of all test glaciers as box plots (Fig. 7). All
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the computed thickness maps are available for download (see
Supplementary Material S3).

4.2.1 Relative importance of fit variables
For all regions, the median and the third quartile of the normal-
ised MAD of the lhv calibration runs (Mode-1) are below 0.15
and 0.25, respectively (Figs 7a–d, blue boxes). This indicates
that the model is well capable of fitting the observed ice thickness
for Mode-1 runs. The calibration runs not fitted to thickness
(l-- and l-v) show a much higher normalised MAD. For
Arctic Canada most are still below 0.5 but for Svalbard and
Central Europe the third quartile is above 0.5; the cause of the dif-
ference in MAD between the regions is not clear. Furthermore,
the use of ice speed measurements does not improve the ice thick-
ness estimations at all (cf. l-v vs. l--; an interpretation follows
in the Discussion section).

The normalised ME shows a similar pattern (Figs 7e–h, blue
boxes): Thelhv runs have a ME very close to zero (medians
within ±0.015) with a very low spread (inter-quartile range
±0.07). Conversely, the l-- and l-v runs have a much larger
spread, and show a model bias towards overestimated ice thick-
ness in all regions. For Arctic Canada North and South, this
bias is low (median ME ≈ 0.1) but for Svalbard and Central
Europe it is large (median ME ≈ 0.5).

4.2.2 Evaluation of regional application scheme
The runs of the validation set, using the modified priors (Fig. 7,
red boxes), show a slight improvement over the ones of the cali-
bration set using the unmodified priors (corresponding blue
boxes). However, the improvement is below 0.1 for the median

of both MAD and ME, except for Svalbard where the improve-
ment is more marked (up to 0.2) and, thus, the errors in
Mode-2 glaciers remain about three times larger than for
Mode-1 glaciers with a bias for ice thickness overestimation.
Again, additionally fitting to ice speed measurements (l-v’)
does not improve ice thickness estimates versus fitting to length
only (l--′), except slightly for Central Europe (Fig. 7h).

Summarising, only ice thickness observations seem to help in
constraining our ice thickness estimates, whereas ice speed mea-
surements do not show the anticipated benefit. Our scheme for
regional model application – which aims at transferring posterior
knowledge from Mode-1 fitting to Mode-2 fitting – seems to work
in principle, albeit leading to modest improvements only.

4.3 Regional ice thickness and volume estimates

As a further test we apply our model to several RGI regions, and
compare the results to the consensus estimates of three to five
established ice thickness models (Huss and Farinotti, 2012; Frey
and others, 2014; Fürst and others, 2017; Ramsankaran and
others, 2018; Maussion and others, 2019) made in the frame of
the recent G2TI study (Farinotti and others, 2019).

In Mode-1, we fit the model to ice thickness measurements
and glacier length (lh-). We update the priors of the Mode-2 fit-
ting, for which we only fit glacier length (l--’), using the poster-
iors of the Mode-1 runs from the same region as described in
Section 2.3. For the Karakoram, no ice thickness measurements
are available and thus no Mode-1 runs are possible. In this
case, the priors for the Mode-2 runs are instead constructed
using the posteriors of the Mode-1 runs of the four other regions

Fig. 7. Distribution of ice thickness errors for various calibration (blue) and validation runs (red) for RGI regions 3 (panels a,e), 4 (b,f), 7 (c,g) and 11 (d,h). The first
row shows the distribution of median absolute deviations normalised with mean regional ice thickness (norm. MAD), and the second row normalised mean errors
(norm. ME). Positive ME values indicate that the model overestimates the ice thickness. The runs were fitted to the following observations: length l, ice thickness h
and surface ice speed v (lhv); l only (l--); and l and v (l-v). The calibration runs used unmodified priors whereas the validation runs used priors updated with
results from the lhv calibration run from the same region (see Section 2.3). Note that in the text the validation-run labels contain a prime (e.g. l--’ vs. l--),
however, the prime is not used in the plot-labels. The boxplots show the inter-quartile range (box), the median (horizontal line), the farthest data points within 1.5
times the inter-quartile range (whiskers), and individual outliers (dots). Arrows indicate that in D and H, one outlier at ∼8 is not shown, and that in E, two outliers at
∼−2 are not shown.
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(fitted to available observed elevation-change data). All those
Mode-1 runs are combined into one set and then used in the pro-
cedure described in Section 2.3.

The previous section showed that fitting to surface ice speed
does not improve the thickness estimates, thus, we do not use
ice speed in this section. Note that this omission, as a further
benefit, also greatly reduces the total simulation time. We run
two sets of simulations, one using observed and one using syn-
thetic elevation-change data (Eqn (17)). This will allow to quan-
tify the impact of using this type of data.

Figure 6 shows example maps of expected ice thickness for the
considered regions (ice thickness maps for all roughly 30 000
evaluated glaciers, including error estimates, are made available;
see Section S3 of Supplementary Material). A few glaciers show
some elevation-band related artefacts, for example, the lobes in
region 3. The model does not match ice thickness of separate
glaciers connected at ice divides, and thus some step changes in
thickness are visible, for instance at the divides of Barnes Ice
Cap (region 4). Otherwise the produced maps look plausible.

Figure 8 compares our estimates to the G2TI results. Using
measured versus synthetic elevation-change data (Eqn (17)) has
no significant impact on the results. All results fall within the
error bounds of the G2TI results, with our error bars being con-
siderably smaller than those of G2TI. We therefore suggest that
our model’s performance is comparable to that of other estab-
lished global ice thickness models.

5. Discussion

One of the main motivations for this work was to make better use
of surface ice speed measurements within the Huss and
Farinotti (2012) model. The depth-averaged speed is constrained
to lie within 80–100% of surface speed, according to the shallow
ice approximation (Cuffey and Paterson, 2010). Thus, these mea-
surements should be very valuable as they directly link to mass

flux and ice thickness. Indeed, several other modelling approaches
already make use of ice speed or velocity. However, unlike the pre-
sented model, these approaches either solve the mass-
conservation equation (an advection equation, e.g. Morlighem
and others, 2011; McNabb and others, 2012; Brinkerhoff and
others, 2016; Fürst and others, 2017), which critically depends
on measurements of ice velocity, or use a full-scale ice dynamics
model (e.g. Bueler and van Pelt, 2015), which is computationally
expensive; and therefore these models are not as suited as our
model for global-scale applications.

In contrast, our model skirts around those two issues by using
a simple ice-flow model which algebraically relates ice thickness to
flux and surface slope (Eqn (6)). Unfortunately, surface ice speed
measurements do not improve our model results significantly.
This is true in both the Unteraar test case (Fig. 4) and the
model validation on four regions (Fig. 7). We speculate that this
might be caused by a limitation of our forward model, or of the
employed inversion procedure. One possible forward model limita-
tion is that the ice speed approximately obeys v∝ (1− fsl)

−1/(n+2)

(combining Eqns (5), (6), (8)). This is a highly non-linear depend-
ence with a singularity at fsl = 1 and implies that, for instance,
fsl = 0.97 is needed to double the ice speed for a given flux.
Combined with the uniform prior on fsl this could mean that
parameters leading to higher speeds may have too low a probability
to be selected. Thus, other sliding parameterisations should be
explored in future work. Another possibility is that the shallow
ice approximation formula (Eqn (6)) used in this study (and in
many others) is not suitable for this type of application.
Certainly, in steeper terrain (e.g. in Karakoram or Central
Europe) its application is expected to lead to noticeable errors.
Conversely, in flat terrain, such as dominating the large glaciers
and ice caps of Arctic Canada (which make up most of those
regions’ ice volume), Eqn (6) should yield satisfactory results.
However, our results for fitting ice speed (Fig. 7) are equally
poor for all regions. A future study of the accuracy of Eqn (6) in

Fig. 8. Total glacier ice volume (bars) and mean thickness (numbers) of the BITE-model in comparison to estimates of the G2TI study (Farinotti and others, 2019)
for the five considered RGI regions (note that RGI region 14 here only comprises subregion 2, i.e. the Karakoram). ‘BITE’ is our model using synthetic
elevation-change data (Eqn (16)), ‘BITE-dhdt’ is our model using observed elevation-change data, and ‘G2TI’ is the consensus estimate from Farinotti and others
(2019).
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ice thickness modelling applications is warranted, in particular as it
is so widely employed. Last, our relatively simple likelihood func-
tion (Eqn (16)), assuming independence of all errors, could be
the culprit. We do reduce spatial correlation of the errors by thin-
ning out the points at which the likelihood is evaluated. However, a
geostatistically more sophisticated error-model could make the
likelihood more accurate and capable of appropriately weighting
the ice speed and thickness errors and thus producing results
consistent with both types of observations.

Despite our model’s limitations regarding ice speed fitting, we
note that the estimated regional total ice volumes are consistent
with the G2TI consensus (Farinotti and others, 2019). This is
also the case for Svalbard, where the G2TI estimate is solely
based on Fürst and others (2018) who employed a model success-
fully using ice velocities (Fürst and others, 2017) (note also that
the dataset of measured ice thicknesses available for Svalbard is
very extensive). This finding is reminiscent of one of the conclu-
sions of the ITMIX study (Farinotti and others, 2017) which
states: ‘Somewhat surprisingly, models that include SMB, ∂h/∂t,
or surface flow velocity fields in addition to the glacier outline
and DEM did not perform better when compared to approaches
requiring less data, in particular for real-world cases’. The quote
further highlights another of our findings, namely that the inclu-
sion of elevation-change data does not significantly alter our
regional results (Fig. 8), thus suggesting that accurate estimates
of regional volumes also are possible with relatively scarce data
input.

Bayesian inference has previously been applied to ice thickness
estimation by Brinkerhoff and others (2016). Their forward model
is one of the above-mentioned models relying solely on the mass-
conservation equation, which they originally applied to a 1D flow
line, although within the framework of the ITMIX exercise it was
applied in 2D (Farinotti and others, 2017). Thus, their model is
dependent on the availability of surface ice speed measurements
whereas ours is reliant on the shallow-ice flow approximation
being accurate enough. Our model’s estimates of the thickness
error are in general relatively small, both for single glaciers
(e.g. Fig. 5) and at the regional scale (Fig. 8). Conversely, the
model of Brinkerhoff and others (2016) gives larger ice thickness
uncertainties which nicely reduce where observations are avail-
able. This is due to their usage of Gaussian processes to sample
bedrock elevations since they can incorporate observations more
closely. In general, their approach uses more sophisticated statis-
tical methods; for instance the usage of above-mentioned
Gaussian processes to model the unknown fields whereas we
just use a vector of parameters to modify given input fields
(Fig. 3). However, their approach has not been demonstrated to
be usable for large-scale applications – a main motivation for cre-
ating the BITE-model – which could in particular be hampered by
its higher reliance on surface speed measurements; for instance in
the ITMIX exercise the model was only applied to the synthetic
cases ‘as velocity fields provided for the real cases had either
insufficient spatial coverage or non-physical behaviour incompat-
ible with the assumed model physics’ (supplement S1.1 of
Farinotti and others, 2017).

Our method is flexible, as it can utilise measurements where
they are available and will fall back to prior assumptions in
areas devoid of them. However, we also found that when measure-
ments are of poor quality (which is often the case for small gla-
ciers due to resolution issues, for instance) these measurements
can adversely affect model performance. This is particularly
true for Mode-2 runs, and care must thus be taken with the
input data.

The model’s flexibility makes it usable for large-scale applica-
tions to thousands of glaciers with heterogeneous data availability.
Our basic setup uses the RGIv6.0 outlines, various DEM products

and mass-balance model results (GloGEM), all available at the
global scale. These data are enough to run the model and can
be supplemented with ice thickness, elevation change and surface
ice speed measurements where available. The application to five
test RGI-regions shows that our model performs just as well as
the ensemble of models in the G2TI-study (Farinotti and others,
2019). So far, the predicted errors of our model are very small,
and further investigation would be required to assess the reliabil-
ity of these values.

The validation exercise showed that our method to transfer the
knowledge gained from fitting glaciers with ice thickness mea-
surements (Mode-1) to the priors used for glaciers without ice
thickness measurements (Mode-2) works in principle. Yet, further
refinements could benefit model performance. It is possible, for
example, that other variables, for instance information about
frontal-type (calving or land terminating), or surge-type, etc.,
would improve such a knowledge transfer. This could potentially
also be achieved within a Bayesian framework. For instance, we
could formalise our transfer model and make it dependent on
variables such as frontal-type, and then fit this transfer model
using Bayesian techniques. However, our previous observation
also applies here: even though our transfer model might not be
perfect, we match the region-wide estimates of established global
thickness models. A possible reason is that the parameters of
those models are not more effective than our transferred ones.

6. Conclusions

We presented the BITE-model which estimates glacier ice thick-
ness distributions using a new inversion scheme based on
Bayesian inference. The scheme is applied to an improved version
of the forward model of Huss and Farinotti (2012). As input, the
forward model needs a DEM, a glacier outline, an estimate of
mass balance and elevation change. The outputs are an ice thick-
ness map and a surface ice speed map. The latter two can then be
fitted to observations during the inversion procedure. If there are
no observations available, the Bayesian inversion can be run by
using information gained from other glaciers.

The application of the model to individual glaciers, such as the
presented test case of Unteraar Glacier, shows that the model per-
forms well in such a setting, and that only a few radar profiles are
needed for a reasonable fit. However, in a regional application
where thickness measurements are only available for a few
glaciers, our validation exercise shows that the average errors
are larger. In such a case, the glaciers without thickness measure-
ments are fitted using only prior information updated with the
posteriors of the thickness-fitted glaciers, and this leads to an
about threefold increase in thickness errors.

Our model is applicable on a large scale, which we demon-
strate by applying it to five RGI regions with over 30 000 glaciers.
This multi-regional application produces results consistent with
the recent G2TI study (Farinotti and others, 2019), suggesting
that our model performance is comparable to that of an ensemble
of existing models.

Our forward model is computationally very cheap, with one
evaluation taking less than 0.1 s on a single core of a modern
CPU. This allowed us to use Markov chain Monte Carlo methods
for our Bayesian inference on a large number of glaciers. For the
results included in this study, we calculated ∼108 ice thickness
maps and ∼109 1D thickness fields. We think that this type of
fast model, trading some accuracy for speed, has its place in
large-scale applications where data availability and quality does
not warrant to employ more computationally-intensive models.
However, efforts are needed to extend this or similar frameworks
to effectively assimilate surface flow speeds, which are becoming
available at a fast rate. The other cornerstone of large-scale

150 Mauro A. Werder and others

https://doi.org/10.1017/jog.2019.93 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2019.93


applications is consistent global datasets, such as RGI, GlaThiDa
and various DEMs. Efforts are needed to extend and improve this
kind of readily accessible and usable data.

Supplementary Material. The supplementary material for this article,
which also contains the links/DOI-numbers to the model output data and
code, can be found at https://doi.org/10.1017/jog.2019.93.
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