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UNITS OF INTEGRAL GROUP RINGS 
OF SOME METACYCLIC GROUPS 

ERIC JESPERS, GUILHERME LEAL AND C. POLCINO MILIES 

ABSTRACT. In this paper, we consider all metacyclic groups of the type {a,b \ 
a" - 1, b2 = 1, ba = alb) and give a concrete description of their rational group algebras. 
As a consequence we obtain, in a natural way, units which generate a subgroup of finite 
index in the full unit group, for almost all such groups. 

1. Introduction. Let U = U(ZG) denote the group of units of the integral group ring 
of a finite group G, and set V = V(ZG) = {u G U | e(u) = 1}, where e: ZG —• Z denotes 
the augmentation mapping. A natural question is to describe this group constructively, 
by giving a set of generators. Since this is a difficult problem, it has been a general trend 
to look for sets of generators of subgroups of finite index in V. This was first done in a 
paper by H. Bass [1]. Given an element a G G of order d, if we set </>(|G|) = m, where <f> 
denotes the Euler function, the element 

1 — im 

w = (1 +a + • • • +al~l)m + (1 +a + • • • +ad~l) 
d 

is integral when im = 1 (mod d) and belongs to V. Moreover, all these elements, called 
the Bass cyclic units of ZG, generate a subgroup which is of finite index in V in the case 
where G is abelian. 

When G is not abelian more units are needed to generate a subgroup of finite index. 
J. Ritter and S. K. Sehgal [13] introduced the units 

\ia,b = 1 + (a - l)fe(l + a + . . . + ao(a)-{), 

a,b G G, and called these elements the bicyclic units of ZG. They have shown that the 
Bass cyclic units together with all the bicyclics generate a subgroup of finite index in 
V(ZG) when G is either a dihedral group of order In (denoted D2„) or a nilpotent group— 
except for a few cases, which concern groups G having certain types of Wedderburn 
components in QG. In [14] Ritter and Sehgal showed that the same result holds for some 
metacyclic groups, including those of the type (a,b\ ap = 1, b2 = 1, ba = alb), p an odd 
prime. For a survey of these and related results, the reader may consult the surveys by 
J. Ritter [11] or S. K. Sehgal [15]. 
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In this paper, we shall consider all metacyclic groups of the type: 

G = (a,b\an = l,b2 = l1ba = aib). 

First, we shall give a description of the rational group algebra QG. In the case of 
the dihedral group, this was done by E. Kleinert in [8], however even in this case our 
description contains more information in the sense that we completely determine the 
Wedderburn decomposition by giving the elements that are mapped to the matrix units. 
Also our methods are more elementary since we need no representation theory. 

As a consequence we obtain, in a natural way, units which generate a subgroup of 
finite index in the full unit group, for almost all groups G in this family. 

2. Rational group algebras. Throughout the paper G is a metacyclic group with 
presentation 

G=(a,b\an = l,b2 = l,ba = aib). 

Note, it follows that i2 = 1 (mod n). Examples of such groups are dihedral groups. 
For a subgroup H of G we denote H = TL T,heH K and for an element g G G w e set 

Clearly 

QG = QGG'©QG(1-G' ) 

* Q(G/G')®A(G:G'). 

where A(G : G') denotes the kernel of the natural homomorphism QG —* Q(G/G'). As 
shown in [2, Lemma 1.2], A(G : G') contains no commutative simple component. Also, 
it is easy to see that A(G : G') = QG(1 - G'). 

Set d = gcd(«71 - 1). We have that Z(G) = (a*), G' = (a1'1), and the non-central 
conjugacy classes are either of the form dbG\ 0 < j < d — 1, or of the form {ar, an} 
with ar £ Z(G). So the number of conjugacy classes of G is [Z(QG) : Q] = 2d + ^ . 

Write: 
QG * Q(G/G') ® Ax © • • • ® At 

where A/ is simple and [A,- : Z(At)] > 4, 1 < i < t. 
It follows from [3, §47] that all these simple components are four dimensional over 

their respective centers. We give an elementary proof of this fact. 
As 

Z(QG) *f Q(G/G') 0 Z(Ai) 0 • • • 0 Z(At) 

we obtain In - 2d = [A(G : G') : Q] = E^fA, : Q] > 4J^=1[Z(AI-) : Q] = 
4[(2J+ ~ ^ ) — 2d\ Hence, all simple components of A(G : G') are four-dimensional 
over their centers. 

We recall, from the proof of [5, Theorem (2.4)], that if we write n=pn
x
x • • •/?"', where 

Pj is a rational prime and rij > 1, 1 < j < t, then the primitive idempotents of Q{a) are 
all products of the form 

E\E2---Eh Ej=Kj-Hj or Ej = (anpJHj} 
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where Kj, Hj denote/?7-subgroups of (a) such that Kj Ç Hj and \Hj/Kj\ = pj, 1 <j<t. 
Let Lj = Kj if Ej = Kj — Hj and L7 = Ej otherwise. Then, each idempotent is uniquely 

determined by 
supp(Li) • supp(L2) • • • supp(Lr) = (am)1 

and hence, is completely determined by a divisor m of n. So we will denote an arbitrary 
primitive central idempotent by em, m \ n. Also it is easy to verify that Gem = G/(am). 
Hence \Gem\ = 2m, and if QGem is non-commutative then m>2. 

Since all the subgroups of (a) are normal in G, it follows that every idempotent of 
Q(a) is central in QG. Therefore, the primitive central idempotents of À(G : G1) are 
those idempotents em G Q(a) such that emG' = 0. Using the above notation, one can 
easily verify that this happens if and only if em has a factor of the form Kj — Hj, with 
Hj Ç G'. 

Let em G A(G : G'). As em G Q(a), it follows that em(l + b) ^ 0, em{\ - b) 4 0 
but (em(l + fr))(em(l — b)) = 0. Therefore any simple component QGem = Aj has zero 
divisors and thus is a two-by-two matrix ring over a field. 

Now, we shall give a constructive description of QGem, by exhibiting a basis of matrix 
units. 

PROPOSITION 2.1. Let em be a primitive central idempotent in A(G : G'). Then the 
following elements form a basis of matrix units ofQGem: 

en = (^)em e n = ( ^ ) a ( ^ ) e m 

e2\ = 4((a - al)em) ( - y - ) a \ 2~)em ei1 = \ Y~)m' 

PROOF. Let R- QGem. Write 

+ (—M—) + (—)*(—)• 
Since QGem is non-commutative it follows that bem ^ —em. Hence ( ̂ Y')em ^ 0. Because 

R is prime we therefore obtain (I±*)fl(I±*) J {0}. Similarly, (I=* )*(!=*) ^ {0}. 

Because [R : Z(rt)] = 4, we obtain 1 < [(I±*)fl(I±*) : Z(JR)] < 4. As (^R^-f) is a 

central simple algebra, this yields [(I±*)/?(I±*) : Z(R)] = 1. Similarly [ ( 1 ^ )/?(!=*) : 

Z(/?)] = 1. As (1j1)R(1jt) and ( 1 y^ )^ ( i ^ ) are isomorphic as additive groups, it also 

follows that ( ^ M 1 ^ ) a n d (VM1^) h a v e dimension 1 over Z(R). 

We now claim that (1^)«( Iy^)^m 4 °- F o r l f n o t > t h e n 

aem = [(I±*)fl(I±*) + ( ^ X ^ ) + (^M V)K 
Hence, for any r > 1, ( I ^ ) « r ( i r ) ^ m = 0. Consequently ( ^ ^ ( ^ r ) = {0}, a 
contradiction. Similarly, (1Y1)a(^r)em ^ 0. 
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Next we claim 

(a-a1)2 (\-b\ \f\-b\ / l + & \ n / l + f c > 

231 

For if not, then, because ( I ^ ) / ? ( 1 ^ ) and ( I ^ ) / ? ( i ^ ) are one dimensional over Z(R) 
and because of the previous claim, 

a 
l+b H l-b l-b\„/l-b 

X = {0}, 

where a = ( ^ ) ^ ( ^ ) - So a / ? ( ^ ) = {0}, a contradiction as R is a simple ring and 

Since (a — al)2em is central, the second claim yields that (a — al)2em has an inverse 
in Z(QGem). The result now follows by verifying the identities en + 2̂2 = ^m and 

Now, we wish to compute the centers of the simple components of A(G : G'). Let 
em G A(G : G') be a primitive central idempotent. Note that Z(QGem) is generated as 
a vector space over Q by the elements of {(ar + an)em \ 0 < r < n}. By [10], write 
Q{a) = ®m\n Q(«)^m *= ©m|n Q(£m), where £m denotes a primitive root of unity of 
order m. Since a corresponds with (£m)mi„ under this isomorphism, we see that 

Z (QGO = Q ( ^ + C ^ + ^ . . . ) . 

We shall denote this field by Qm. Further, since 

Q(a) = Q(a)G'®Q(l-G') 

* Qiia)/^-1)) 0 (Q(fl) PI A(G : G'j) 

and \(a)/(al~l)\ = d, we have that 

Q((«)/(a/-1))^©Q(U, 
m\d 

and thus 

Q(a)flA(G:G,)= 0 Q ( g . 

So we have shown: 

THEOREM 2.2. Let G be a group as above, and d = gcd(n, / — 1). Then 

Q G ^ Q ( G / G , ) e ( © M 2 ( Q m ) ) . 
m\n 
m/d 
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3. Subgroups of finite index. The concrete description of the rational group algebra 
by means of matrix units allows one to compute explicitly the unit group of integral group 
rings of some dihedral group rings. This was done by E. Jespers and M. M. Parmenter in 
[6] for De, and by E. Jespers and G. Leal in [4] for Dg. In both cases it was shown that 
the bicyclic units generate a free normal complement of rank 3. 

In this section we show that the explicit description of the rational group algebra also 
allows us to determine generators of a subgroup of finite index in V(ZG), for almost all 
groups in this family. We need the following result of L. N. Vaserstein [17] which we 
quote from [12]. 

LEMMA 3.1. Let K be a number field which is not rational or imaginary quadratic, 
and let O be the ring of integers. Then 

[SL(2, O) : £(/)] < oo, 

where I is a non-zero ideal of O and E(I) is the group generated by the matrices 
"1 0 
x 1 1 

"1 x~ 
0 1 

Our next lemma shows precisely when the exceptions above occur. 

LEMMA 3.2. Let em £ À(G : G') be a primitive central idempotent, i.e. m \ n but 
mid. 

1. QGem = Af2(Q) if and only if m = 3, m = 4 or m = 6. Furthermore, ifm = 3 
(respevtively 4), then Gem = D^ (respectively D^). 

2. QGem is a simple component which is a two-by-two matrix ring over a quadratic 
imaginary extension ofQ if and only if one of the following conditions hold: 

(a) m = 8 and i = 3 or 5 (mod 8); 
(b) m =12 and i = 5orl (mod 12). 

PROOF. By Theorem 2.2, QGem = M2(Qm), Qm = Q(£m + à , H + & • • •)• Because 
of the non-commutativity of QGem, babem = £?mem ^ £mem = aem. 

PROOF OF (1). Clearly Qm = Q implies gm = im
x or Çm = - £ m . We consider these 

two cases separately. 
If à ^ C 1 , since [Q(U : Q(£m + £m

1)] = 2, we obtain that [Q(£w + Ç"1) : Q] = 
^m) ^ pa (P~1\ where / |m,/?a prime. Hence m = 3, m = 4orm = 6 and it is clear 
that Gei (respectively Ge4) is isomorphic with D6 (respectively D8). 

Clearly the converse also holds, i.e. Q3 = Q4 = Q as (/, m) = 1. 
On the other hand, if Çm = —£m then ^ + gj£ = 2^2

m G Q. So m = 4, and as (m, 1) = 1, 
we obtain that / = — 1 (mod 4). Consequently Gem = Dg, and (1) follows. 

PROOF OF (2). Assume Qm is quadratic imaginary. Let p be a prime divisor of m. 
Clearly Qm contains the field 

where £p is a primitive p-th root of unity. 
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We now first show that/? < 5. If not, then F has the Frobenius automorphism defined 
by £p i—»- £2. As [F : Q] < 2, the square of this automorphism is the identity mapping. 
Hence 

However this is impossible since {1, £ p , . . . , ip
p~

x} are linearly independent, and because, 
by assumption p > 5. 

If p = 5, then one can see that / = — 1 (mod 5). So, Qm contains a real field of 
degree 2, and therefore is not quadratic imaginary; a contradiction. 

If p = 3 and 9 | m, then Qm contains the subfield F = Q(£Q + £9), £9 a 9-th root of 
unity. Since i2 = 1 (mod h) it follows that / = — 1 (mod 9). So F is a real field and 
by (1) is different from Q. Hence in this case Qm is not quadratic imaginary; again a 
contradiction. 

So far we have shown that m = 2* or m = 2*3 for some k > 1. We now claim that 
k > 2. For if not, then, because of (1), m = 6. Therefore i2 = 1 (mod 6), and thus 
£l

m - £~*. In particular, Qm is real, a contradicition. This proves the claim. 
Let us now deal with the remaining cases, i.e. m - 2k or m = 2*3, k > 2. Assume 

m = 2k. Let H = (c, d | c2 = 1, d2 = 1, dc = cld). Then it is easily seen that QGem is a 
homomorphic image of 

Qtf S Q(tf/(c2'-')) 0 Q f f ( i z ^ _ ) . 

Since ( - ^ — ) is a primitive central idempotent of Q//, and because |///(c2* ') | = 2*, 

( i— 2* - 1 \ -1—^—J is isomorphic with a two-by-two matrix ring over a field 

of degree 2k+l~2k = 2k~2. Since 2k~2 > 2 if k > 4, we obtain, by induction, that 
QGem is a homomorphic image of the rational group algebra QC where C = (c,d \ 
c8 = 1, d2 = 1, dc = c'd). Since 12 = 1 (mod 8) it follows that i = 3, 5 or 7 (mod 8). If 
Ï = 7 (mod 8), then C = D\6, and it is well-known that QD16 has no simple component 
which is a two-by-two matrix ring over a quadratic imaginary extension of Q. On the 
other hand if / = 3 (mod 8) (respectively 5 (mod 8)), then C is isomorphic with group 
D^6 (respectively D|"6, cf. [12]). It is well-known (see for example [4, 7]) that in both 
cases QC has a simple component which is a two-by-two matrix ring over a quadratic 
imaginary extension of Q. 

Finally we deal with m - 2*3. Let J = (c, d \ c2*3 = 1, d2 = 1, dc - cld). Again it is 
easily seen that QGem is a homomorphic image of 

V«0/( i ip)eO/(^p) 

eo/(i-?)('~f ') 
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= QC//(c2"'3)) © Q(7/(c2t))(1 ( f 2 t " ) 

®QJ{ ^ ) d - ^ ) -

Either Q/( —^—)(1 — c2*) is a field, or otherwise it is a two-by-two matrix ring over a 
field extension of Q which, by calculating dimensions of the above terms, is of degree 

2 f c + 13-2*3-(2*+ 1 - 2* ) _ k_x 

4 ' 

If A: > 3 then this degree is larger than 2, and hence QGem is not this simple component. 
Also, as \J J (c2 ) | is not divisible by three, it follows that QGem is not a simple component 

of Q ( / / ( c 2 * ) ) ( ^ — ) . So, by induction, we obtain that k = 2, and thus m = 12. 
So assume now that m = 12 and 7 = (c, J | c12 = 1, J2 = 1, dc = cld), and QGem 

is a simple component of Q7. Now /2 = 1 (mod 12) yields / = 5, 7 or 11 modulo 12. 
The case / = 11 (mod 12) gives that Z(QGem) is a real field, a contradiction. If / = 7 
(mod 12) then 

J=(c\d)x (c4) = D8x C3, 

where C3 denotes the cyclic group of order 3. Since QDg has a simple component 
Af2(Q) and because QC3 has simple component Q(A/—3) it follows that Q7 has simple 
component A^QCA/—3)). Actually this is the only simple component of Q7 which is a 
two-by-two matrix ring over a quadratic imaginary extension. Finally if / = 5 (mod 12) 
then 

J=(c3) x (c\d) = C4xD6. 

So, Q/ has exactly one simple component which is a two-by-two matrix ring over a 
quadratic imaginary field. The result follows. • 

The next lemma, due to Ritter and Sehgal [14, Lemma 2.4 and Lemma 2.5] will be 
needed in the proof of Theorem 3.4. 

For every m \ n with m / J, we have that QGem = Af2(Qm). Let Om denote the ring of 
integers of the field Qm defined earlier. Further let 7rm: QG —> QGem = M2(Qm) denote 
the natural projection. 

LEMMA 3.3. Let S be a subgroup of £/(ZG) containing the subgroup generated by 
the Bass cyclic units. If for every m \ n, with m / d, the projection irm(S) contains a 
subgroup of finite index in SL(2, Om), then S is of finite index in 1Z(ZG). 

We now give generators of a subgroup of finite index of UÇLG) for many of the 
metacyclic groups of our class. Because of Lemma 3.1, the groups which cause problems 
are those which have a two-by-two matrix ring over the rationals or an imaginary 
quadratic extension of the rationals as a simple component in QG. Lemma 3.2 tells us 
that the former case occurs when D§ or Dg is a homomorphic image of G. It turns out 
that the D$ case poses no difficulty, nor does the case where all elements of order 2 in 
Dg have a preimage of order 2 in G. 
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THEOREM 3.4. Let G - (a,b \ an = \,b2 = l,ba = db) and suppose that the 
following conditions are satisfied : 

1. if S \nandS / d then i = 7 (mod 8); 
2. i/12 | n and 12 / d then i = 11 (mod 12). 

Let S\ be the subgroup of Ï1(ZG) generated by the Bass cyclic units and the units of the 
form 

l+(l+b)a\l-b) and 1 + (1 - b)a\\ + b), 

and let 52 be the subgroup generated by the Bass cyclic units and the units of the form 

1 + ( 1 + aub)a\ 1 - aub) and 1 + ( 1 - aub)a\ 1 + aub\ 

where 0 < w, v < n, andn | (i+\)u. If 6 \ d whenever6 \ n, then the following statements 
hold: 

1. If A / nor4\ d, then 
(a) if 3 X n or 3 \ d, then S\ is of finite index in 11(ZG); 
(b) if 3 I n and 3 / d, then 52 is of finite index in llÇLG). 
2.IfA\n and 4 / d, then if there exists u > 1 with 4 | (u — 1) and n \ u(i +1), then 

52 is of finite index in 11(ZG). 

PROOF. Since [(1 + b)av(l - b)]w = 0, for any v, w > 1, it follows that S\ contains 
the elements of the form 1 + (1 + b)a(l — b), with a G ZG. Let em be a central primitive 
idempotent in A(G : G') and let nm be a non-zero integer such that nmem E ZG. Further 
let R = Z[£m + ^ , i2

m + ^ , . . . ] = Z(ZG) H QGem and let dm be a non-zero integer such 
that dm Om Ç R. Clearly Im = 4(a — al)2dmnmem Om is a non-zero ideal of Om contained in 
R. Consequently, with notations as in Proposition 2.1,5*1 contains the subgroup generated 
by 1 + ae\2, oc e Im. Similarly S\ also contains the subgroup generated by the elements 
1 + ae2\, oc G Im. 

It therefore follows from Lemma 3.1, Lemma 3.2 and the assumptions that 7rm(5i) 
contains a subgroup of finite index in SL(2, Om) if m is different from 3 and 4. On 
the other hand if m = 3 (respectively 4) then by Lemma 3.2, QGem = M2(Q) is the 
non-commutative simple component of QZ>6 (respectively QDg). It was shown in [4, 6] 
that in each case the projection of the group generated by the bicyclic units of ZD6 

(respectively ZDg) is isomorphic with a free rank 3 subgroup of finite index in SL(2, Z). 
Note also that the bicyclic units for the groups D^ and Dg are of the type mentioned in 52. 
Now if the bicyclic units of the integral group ring Z(Gem) are images of bicyclic units 
of ZG (these are units of type 52), it follows that 7rm(52) contains a subgroup of finite 
index in SL(2, Om) for each m \ n with m / d. The result then follows from Lemma 3.3. 

Let us now show that we can lift the bicyclics. First assume that m - 3 with 3 / d. 
In this case, D6 = (a%,b) and QGe^ = M2(Q) is a simple component of QA3. Note 
that it follows that / = 2 (mod 3). So, we consider the map a \—> a*, b t—• b\ then the 
bicyclics (up to inverses) of ZZ>6 are 1 + (1 — b)a*(l +&), 1 +(1 — a^b)ai(l +a*b) and 
1 +(1 — a2^b)ai{\ +a2ib). So to lift these it is sufficient to show that the elements aSb 
and a2^b can be lifted to elements aub of order 2. Clearly aub is of order 2 if and only if 
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n | u(i + 1), and a^ub = a%b (respectively aSlub - a2^b) if and only if 3 | (/ — 1). Since 
/ = 2 (mod 3) we can therefore take u-i— 1. 

Finally the case m = 4 is proved similarly under the assumption that 4 | (/ — 1) and 
that there exists u > 1 with n | u(i + 1). This finishes the proof. • 

Let G=(a,b\ a16 = 1,b2 = 1, ba = a7b), that is n = 16 and i = 7. Then D8 = (a4,b) 
is a homomorphic image of G. The only elements of D% of order 2 which have a preimage 
in G of order 2 are b and a*b. Since G is a 2-group, it follows from Theorem 2 in [7] 
that the Bass cyclic units together with the bicyclic units do not generate a subgroup of 
finite index in ^i(ZG). For this group G it is easily verified that the image of S2 in ZD8 

conincides with the group generated by the bicyclic units. Hence it follows that S2 is not 
of finite index in îi(ZG). This example shows that without the assumptions in part two 
of the theorem the conclusion does not hold. 
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