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Abstract

Let f = ( f1, . . . , fR) be a system of polynomials with integer coefficients in which the degrees
need not all be the same. We provide sufficient conditions for which the system of equations
f j (x1, . . . , xn) = 0 (1 6 j 6 R) satisfies a general local to global type statement, and has a
solution where each coordinate is prime. In fact we obtain the asymptotic formula for number
of such solutions, counted with a logarithmic weight, under these conditions. We prove the
statement via the Hardy–Littlewood circle method. This is a generalization of the work of Cook
and Magyar [‘Diophantine equations in the primes’, Invent. Math. 198 (2014), 701–737], where
they obtained the result when the polynomials of f all have the same degree. Hitherto, results of
this type for systems of polynomial equations involving different degrees have been restricted to the
diagonal case.

2010 Mathematics Subject Classification: 11P32, 11P55 (primary); 11D45, 11D72 (secondary)

1. Introduction

Let d > 1, and let f = (fd, . . . , f1) be a system of polynomials in Z[x1, . . . , xn],
where f` = ( f`,1, . . . , f`,r`) is the subsystem of degree ` polynomials of f (1 6
` 6 d). We are interested in finding prime solutions, which are solutions with
each coordinate a prime number, to the equations

f`,r (x1, . . . , xn) = 0 (1 6 ` 6 d, 1 6 r 6 r`). (1.1)

Let us denote Vf,0(C) to be the affine variety in Cn defined by the equations (1.1).
Solving diophantine equations in primes is a fundamental problem in number

theory. For example, the celebrated work of Green and Tao [10] on arithmetic
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progressions in primes can be phrased as the statement that given any n ∈ N the
system of linear equations

xi+2 − xi+1 = xi+1 − xi (1 6 i 6 n)

has a prime solution (x1, . . . , xn+2) = (p1, . . . , pn+2) where p1 < p2 < · · · <

pn+2. The modern results on the large scale distribution of prime solutions on
Vf,0(C) when f consists only of linear polynomials, for scenarios which do
not reduce to a binary problem, is mostly summed up in the work of Green
and Tao [12]. An example of a binary problem is bounding gaps between
primes, an area which Maynard [19], Tao (see [19, page 385]), and Zhang [24]
made significant progress in by building on the work of Goldston, Pintz, and
Yıldırım [9]. In particular, it was shown in [19] that at least one of the equations

x1 − x2 = 2 j (1 6 j 6 300)

has infinitely many prime solutions. Another binary problem of significance is the
Goldbach’s conjecture, which states that the equation

x1 + x2 = N

has a prime solution for every even integer N greater than 2. It was proved by
Vinogradov [21] that the equation

x1 + x2 + x3 = N (1.2)

has a prime solution for all sufficiently large odd N ∈ N. The ternary Goldbach
problem, which is the assertion that the equation (1.2) has a prime solution for all
odd N ∈ N greater than or equal to 7, was solved by Helfgott in [13].

The examples given thus far had been for systems of linear equations. The
scenario for systems involving higher degree polynomials is also complex, and
has not been well-understood yet. Indeed, even the problem of whether a system
of nonlinear polynomial equations has a solution over Q is ‘one of considerable
complexity’ [4].

For solving nonlinear equations in primes, there are results due to Hua [14] for
certain systems of homogeneous polynomials that are additive, for example on
the system of the shape x j

1 + · · ·+ x j
n = N j (1 6 j 6 d) where N j ∈ N. Hua also

has results on the Waring–Goldbach problem, which is regarding prime solutions
of the equation xd

1 + · · · + xd
n = N where N ∈ N. These results were established

via the Hardy–Littlewood circle method. We refer the reader to [16, 17] for recent
progress on the Waring–Goldbach problem due to Kumchev and Wooley. There
is also [5] by Chow regarding prime solutions of certain diagonal equations by a
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transference principle approach. For the case of quadratic forms, there is a result
due to Zhao [25].

The first result regarding prime solutions of general systems of nonlinear
polynomials is contained in the breakthrough of Cook and Magyar [6], which we
state in Theorem 1.1. Before we can state their result we need to introduce some
notations. We also note that there is a discussion in [6] on this topic from the point
of view of some recent results in sieve theory, which the list includes [2, 8, 18].
We refer the reader to [6] for more details on this discussion.

Let ` > 1. Let G = (G1, . . . ,Gr ′) be a system of degree ` forms in Q[x1, . . . ,

xn]. We define the Birch singular locus V ∗G to be the set of points in Cn given by

rank
(
∂Gr (x)
∂x j

)
16r6r ′
16 j6n

< r ′. (1.3)

Observe that this defines an affine variety in Cn . We define the Birch rank, B`(G),
to be the codimension of V ∗G. Given g = (g1, . . . , gr ′), a system of degree `
polynomials in Q[x1, . . . , xn], where Gr is the homogeneous degree ` portion
of gr (1 6 r 6 r ′), we extend the notion of the Birch rank to systems of degree `
polynomials by defining

B`(g) := B`(G).
When ` = 1, following [6] we define B1(g) to be the minimum number of nonzero
coefficients in a nontrivial linear combination

λ1G1 + · · · + λr ′Gr ′,

where λ = (λ1, . . . , λr ′) ∈ Qr ′
\{0}. Clearly B1(g) > 0 if and only if the linear

forms G1, . . . ,Gr ′ are linearly independent over Q. For any ` > 1, if r ′ = 0 then
we let B`(g) = +∞.

Let F = (Fd, . . . ,F1) be the system of homogeneous polynomials, where for
each 1 6 ` 6 d , F` = (F`,1, . . . , F`,r`) and F`,r is the homogeneous degree `
portion of f`,r in (1.1). We let VF,0(R) be the set of points in Rn satisfying

F`,r (x1, . . . , xn) = 0 (1 6 ` 6 d, 1 6 r 6 r`). (1.4)

Let Λ be the von Mangoldt function, where Λ(x) is log p if x is a power of
prime p, and 0 otherwise. Given x = (x1, . . . , xn), we let

Λ(x) = Λ(x1) · · ·Λ(xn). (1.5)

We define the following quantity

Mf(X) :=
∑

x∈[0,X ]n
Λ(x)1Vf,0(C)(x), (1.6)
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where 1Vf,0(C) is the characteristic function of the set Vf,0(C). Thus the quantity
Mf(X) is the number of solutions, counted with a logarithmic weight, of the
equations (1.1) in [0, X ]n whose coordinates are all prime powers.

We may now phrase the main result of Cook and Magyar in [6], which is for
the case when the polynomials of f in (1.1) all have the same degree.

THEOREM 1.1 [6, Theorem 1]. Let f = fd = ( fd,1, . . . , fd,rd ) be a system of
degree d polynomials in Z[x1, . . . , xn]. Suppose Bd(f) is sufficiently large with
respect to d and rd . Then there exist C(f), a constant which depends only on f,
and c > 0 such that

Mf(X) = C(f)X n−drd + O
(

X n−drd

(log X)c

)
.

In this paper, we generalize Theorem 1.1 to handle systems of polynomials in
which the degrees need not all be the same. The following is the main theorem of
this paper.

THEOREM 1.2. Let f = (fd, . . . , f1) be a system of polynomials in Z[x1, . . . , xn],
where f` = ( f`,1, . . . , f`,r`) is the subsystem of degree ` polynomials of f (1 6
` 6 d). For each 1 6 ` 6 d, suppose B`(f`) is sufficiently large with respect to
d and rd, . . . , r1. Then there exist C(f), a constant which depends only on f, and
c > 0 such that

Mf(X) = C(f)X n−
∑d
`=1 `r` + O

(
X n−

∑d
`=1 `r`

(log X)c

)
.

Note Theorem 1.2 recovers Theorem 1.1 when r1 = · · · = rd−1 = 0. We also
prove in Section 7 that if the equations (1.1) has a nonsingular solution in Z×p ,
the units of p-adic integers, for each prime p, and VF,0(R) has a nonsingular real
point in (0, 1)n , then

C(f) > 0.

We also present Theorem 8.1 in Section 8, where we obtain the asymptotic
formula for the number of prime solutions, counted with a logarithmic weight,
instead of solutions whose coordinates are all prime powers as in Theorem 1.2.
Hitherto, the only examples in the literature of results of this type, for systems
of polynomial equations involving different degrees, have been restricted to the
diagonal case similar to the aforementioned result of Hua.

Theorems 1.1 and 1.2 are both obtained via the Hardy–Littlewood circle
method. Circle method was pioneered by Hardy and Littlewood to give an
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asymptotic formula for the number of solutions to Waring’s problem, and it has
been quite effective at producing asymptotic formulas for the number of integer
points of bounded height on varieties when the number of variables is sufficiently
large. The results of this type on the distribution of integer points on varieties
are provided by Birch [1] and Schmidt [20]. In [3], Browning and Heath-Brown
succeeded in generalizing the seminal work of Birch [1], and showed ‘how forms
of unequal degrees can be handled in an efficient manner, so as to give the results
in the spirit of Birch for arbitrary systems.’ They obtained the following result.

THEOREM 1.3 [3, Theorem 1.2]. Let f = (fd, . . . , f1) be a system of polynomials
in Z[x1, . . . , xn], where f` = ( f`,1, . . . , f`,r`) is the subsystem of degree `

polynomials of f (1 6 ` 6 d). Let D j = r1 + 2r2 + · · · + jr j (1 6 j 6 d)
and D0 = 0. Let

s` =
d∑

k=`

2`−1(`− 1)r`
B`(f`)

(1 6 ` 6 d).

Let r1 = 0 and rd > 1, and suppose we have

D`

(
2`−1

B`(f`)
+ s`+1

)
+ s`+1 +

d∑
j=`+1

s jr j < 1

for ` = 0 and for every ` satisfying r` > 0. Then there exist C ′(f), a constant
which depends only on f, and δ > 0 such that∑

x∈[0,X ]n
1Vf,0(C)(x) = C ′(f)X n−

∑d
`=1 `r` + O(X n−

∑d
`=1 `r`−δ).

Note Theorem 1.3 recovers the main result of [1] when r1 = · · · = rd−1 = 0.
The constant C ′(f) is slightly different from C(f), and it is also positive assuming
f satisfies suitable local conditions. (These are slightly different from the local
conditions described in the paragraph after Theorem 1.2.) As stated in [3],
‘Birch’s original result needed the forms all to have the same degree, and there
is a significant technical problem in extending the method to the general case.’
It is required in Theorem 1.1 that the polynomials all have the same degree. As
in the case for integer points, there are significant challenges to be overcome in
generalizing the result on prime solutions of polynomial equations of equal degree
to handle arbitrary systems.

We follow the main strategy of Cook and Magyar [6] to achieve Theorem 1.2.
Let us briefly explain the idea of their approach using a very simple case.
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Let y = (x2, . . . , xm) and z = (xm+1, . . . , xn) for some 2 < m < n so that x = (x1,

y, z). Suppose the system in consideration consists of one degree d homogeneous
polynomial of the following shape

F(x) = xd
1 + F1(y)+ F2(z),

where F1(y) and F2(z) have sufficiently large Birch rank or h-invariant (defined in
Section 2). By the orthogonality relation, we have (using the notation (1.6) with
F in place of f)

MF(X) =
∫ 1

0

∑
x∈[0,X ]n

Λ(x)e(αF(x)) dα

=

∫
M(C)

∑
x∈[0,X ]n

Λ(x)e(αF(x)) dα

+

∫
m(C)

∑
x∈[0,X ]n

Λ(x)e(αF(x)) dα, (1.7)

where M(C) is the major arcs and m(C) is the minor arcs (defined in Section 4).
By a fairly standard approach, the following estimate for the integral over the
major arcs is obtained∫

M(C)

∑
x∈[0,X ]n

Λ(x)e(αF(x)) dα = C(F)X n−d
+ O

(
X n−d

(log X)c

)
for some c > 0. The challenge is over the minor arcs. By the Cauchy–Schwartz
inequality and the orthogonality relation, we have∣∣∣∣∣

∫
m(C)

∑
x∈[0,X ]n

Λ(x)e(αF(x)) dα

∣∣∣∣∣
6 N 1/2

1 N 1/2
2 (log X)n−1 sup

α∈m(C)

∣∣∣∣∣ ∑
x1∈[0,X ]

Λ(x1)e(αxd
1 )

∣∣∣∣∣ ,
where

N1 = #{(y, y′) ∈ [0, X ]2(m−1)
: F1(y) = F1(y′)}

and
N2 = #{(z, z′) ∈ [0, X ]2(n−m)

: F2(z) = F2(z′)}.

From our assumptions on F1(y) and F2(z), we have

N1 � X 2(m−1)−d and N2 � X 2(n−m)−d .
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Then a method known as Weyl differencing is used to obtain the following

sup
α∈m(C)

∣∣∣∣∣ ∑
x1∈[0,X ]

Λ(x1)e(αxd
1 )

∣∣∣∣∣� X
(log X)c′

for some c′ > n − 1. Therefore, we obtain∣∣∣∣∣
∫
m(C)

∑
x∈[0,X ]n

Λ(x)e(αF(x)) dα

∣∣∣∣∣� X n−d

(log X)c′−n+1
,

and the asymptotic formula for MF(X) holds. In this case, there were no terms
of F(x) involving variables from both y and z, which makes the analysis very
simple. Roughly speaking, the idea of [6] is that when such mixed terms are
present, by considering certain level sets where the portions of the polynomials
with these mixed terms are constant, the approach described above can be used.
Also these level sets have to be chosen in a way that it does not introduce any
unmanageable error terms. In order to generalize this argument of [6], we take
the following steps. First, by an inductive argument we generalize [6, Proposition
2], which decomposes systems of degree d forms by a partition of variables, to
handle systems involving forms of different degrees (Proposition 3.1). Next, using
Gröbner basis theory we reduce the polynomials, without changing the solution
set, to have suitable properties for the mentioned Weyl differencing argument to
work. These properties become useful in the major arcs analysis as well. We note
this reduction was not necessary in [6]. Here we also show that the reduction
works well with the h-invariant. In our minor arcs analysis, we decompose the
system of forms by Proposition 3.1 once and then we apply it again to one of
the resulting systems of forms; the second application was not necessary in [6].
In [6], there are only the degree d forms in consideration, and the forms arising
from the regularization process (Proposition 2.7) all have degrees strictly less
than d . On the other hand, in our case the system in consideration has forms of
degrees between 1 and d , and the forms arising from the regularization process
have degrees strictly less than d . Thus, the forms in consideration and the forms
arising from the regularization process are not as cleanly separated in our case. We
overcome this challenge by the repeated application of Proposition 3.1. Finally,
we treat the major arcs analysis in a similar manner as in [6]; however, the analysis
becomes more complicated due to the fact that the system involves polynomials
of differing degrees.

The organization of the rest of the paper is as follows. In Section 2, we collect
some definitions and results related to the regularization process, which is an
important part of the method in [6] and also of this paper. In Section 3, we prove
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Proposition 3.1 to decompose systems of forms. We prepare the initial setup
for the minor arcs analysis in Section 4; this is where we reduce the system of
polynomials as mentioned above. We then obtain the desired minor arcs estimate
in Section 5. In Section 6, we collect technical results that are necessary in
obtaining our major arcs estimates in Section 7. Finally, we state our conclusions
and further remarks in Section 8. We also have Appendix A, where we provide
proofs for the results presented in Section 6. The work here is based on [20], and
we chose to present these technical details at the end for an easier read of the
paper.

Throughout the paper we do not distinguish between the two terms
‘homogeneous polynomial’ and ‘form’, and we will be using these terms
interchangeably. By ‘rational form’ we mean it is a form with coefficients in
Q. By an affine variety we mean an algebraic set which is not necessarily
irreducible. We use � and � to denote Vinogradov’s well-known notation. We
also use the notation e(x) to denote e2π i x . For x = (x1, . . . , xn), the notation∑

x∈[0,X ]n

means we are summing over all x ∈ Zn with 0 6 xi 6 X (1 6 i 6 n). For q ∈ N,
we use the numbers from {0, 1, . . . , q − 1} to represent the residue classes of
Z/qZ. Finally, given x = (x1, . . . , xn) by |x| we mean |x| = n in Sections 3 and 5,
and |x| = max16i6n |xi | from Section 6 onwards. There should be no ambiguity
since we are defining these notations as they come up.

2. Regularization lemmas

In this section, we collect results from [6, 20] related to regular systems (see
Definition 2.3) and the regularization process. Given a system of rational forms
F, via the regularization process we obtain another system of forms which has at
most the expected number of integer points, its number of forms is ‘small’, and
partitions the level sets of F. This was an important component of the method
in [6] used to split the exponential sum in a controlled manner during the minor
arcs estimate.

Let ` > 1. Given a form G ∈ Q[x1, . . . , xn] of degree `, we define the h-
invariant (also referred to as the rational Schmidt rank in [6]), h`(G), to be the
least positive integer h such that G can be written identically as

G = Ũ1Ṽ1 + · · · + Ũh Ṽh, (2.1)

where Ũi and Ṽi are rational forms of positive degree (1 6 i 6 h). Let G =
(G1, . . . ,Gr ′) be a system of degree ` forms in Q[x1, . . . , xn]. We generalize the
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definition of the h-invariant, and define the h-invariant of G to be

h`(G) = min
µ∈Qr ′ \{0}

h`(µ1G1 + · · · + µr ′Gr ′). (2.2)

Let g = (g1, . . . , gr ′) be a system of degree ` polynomials in Q[x1, . . . , xn]. Let
Gr be the homogeneous degree ` portion of gr (1 6 r 6 r ′). We define

h`(g) := h`(G). (2.3)

The h-invariant satisfies the following property.

LEMMA 2.1 [22, Lemma 2.2]. Let ` > 1 and let G = (G1, . . . ,Gr ′) be a system
of degree ` forms in Q[x1, . . . , xn]. Suppose h`(G) > 1. Then for any 1 6 i 6 n,
we have

h`(G)− 1 6 h`(G|xi=0) 6 h`(G),

where G|xi=0 = (G1|xi=0, . . . ,Gr ′ |xi=0).

We have the following relation between the h-invariant and the Birch rank by
combining [20, Lemma 16.1, (10.3), (10.5), (17.1)].

LEMMA 2.2. Let ` > 1 and let G = (G1, . . . ,Gr ′) be a system of degree ` forms
in Q[x1, . . . , xn]. We have

h`(G) > 21−`B`(G). (2.4)

DEFINITION 2.3. Let d > 1. Let u = (ud, . . . ,u1) be a system of polynomials
in Q[x1, . . . , xn], where u` = (u`,1, . . . , u`,r`) is the subsystem of degree `
polynomials of u (1 6 ` 6 d). Let Du =

∑d
`=1 `r` and Ru =

∑d
`=1 r`. We denote

Vu,0(Z) to be the set of solutions in Zn to the equations

u`,r (x) = 0 (1 6 ` 6 d, 1 6 r 6 r`). (2.5)

Let us denote the equations (2.5) by u(x) = 0. We say the system u is regular if

|Vu,0(Z) ∩ [−X, X ]n| � X n−Du .

Similarly as above we also define Vu,0(R) to be the set of solutions in Rn of the
equations u(x) = 0. For a system of polynomials u as given in Definition 2.3, we
let U = (Ud, . . . ,U1) be the system of forms such that for each 1 6 ` 6 d , we
have U` = {U`,1, . . . ,U`,r`} where U`,r is the homogeneous degree ` portion of
u`,r (1 6 r 6 r`). The following theorem is one of the main results of [20] due to
Schmidt.
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THEOREM 2.4 [20, Theorem II]. Let d > 1. Let u = (ud, . . . ,u2) be a system of
rational polynomials with notations as in Definition 2.3, and also let U` be the
system of homogeneous degree ` portions of u` (2 6 ` 6 d). If we have

h`(U`) > d24`(`!)r`Ru (2 6 ` 6 d),

then the system u is regular.

Even though the statement of [20, Theorem II] is regarding systems of forms,
the above Theorem 2.4, which is the inhomogeneous polynomials version, also
holds by the explanation given in [20, Section 9] and ‘Remark on inhomogeneous
polynomials’ in [20, page 262].

Let us denote
ρd,`(t) = d24`(`!)t2 (2 6 ` 6 d). (2.6)

Then for each 2 6 ` 6 d, ρd,`(t) is an increasing function, and

ρd,`(Ru) > d24`(`!)r`Ru.

Note Theorem 2.4 is regarding systems of polynomials which do not contain
any linear polynomials. The following Corollary 2.5 is for systems that contain
linear forms as well. We refer the reader to [6, Corollary 3] or [22, Corollary 3.3]
for its proof.

COROLLARY 2.5. Let d > 1. Let u = (ud, . . . ,u1) be a system of rational
polynomials with notations as in Definition 2.3, and also let U` be the system
of homogeneous degree ` portions of u` (1 6 ` 6 d). Suppose u1 only contains
linear forms, in other words u1 = U1, and that they are linearly independent over
Q. For each 2 6 ` 6 d, let ρd,`(·) be as in (2.6). If we have

h(U`) > ρd,`(Ru − r1)+ r1 (2 6 ` 6 d),

then the system u is regular.

For x = (x1, . . . , xn), by a partition of variables x = (y, z) we mean that the set
of variables of y and z partition x1, . . . , xn . Let ` > 1. Given G = (G1, . . . ,Gr ′), a
system of degree ` forms in Q[x1, . . . , xn], and a partition of variables x = (y, z),
we denote G to be the system obtained by removing from G all forms which
depend only on the z variables. Clearly if we have the trivial partition x = (y, z),
where z = ∅, then G = G. Given a degree ` form G(x) in Q[x1, . . . , xn], we
define the h-invariant with respect to z, h`(G; z), to be the smallest number h0
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such that G(x) can be expressed as

G(x) = G(y, z) =
h0∑
j=1

Ũ j(y, z)Ṽ j(y, z)+W0(z),

where Ũ j and Ṽ j are rational forms of positive degree (1 6 j 6 h0), and W0(z) is
a rational form only in the z variables. We also define h`(G; z) to be

h`(G; z) = min
λ∈Qr ′ \{0}

h`(λ1G1 + · · · + λr ′Gr ′; z).

If we have the trivial partition, then clearly we have h`(G; ∅) = h`(G). From this
definition the following lemma holds.

LEMMA 2.6 [6, Lemma 2]. Let ` > 1. Let G = (G1, . . . ,Gr ′) be a system of
degree ` forms in Q[x1, . . . , xn], and suppose we have a partition of variables
x = (y, z). Let y′ be a set of variables with the same number of variables as y.
Then we have

h`(G(y, z),G(y′, z); z) = h`(G; z),

where the left hand side denotes the h-invariant with respect to z of the system

(G1(y, z), . . . ,Gr ′(y, z),G1(y′, z), . . . ,Gr ′(y′, z)).

In [6], the process in the following proposition is referred to as the
regularization of systems. We will be utilizing this proposition in Section 5
to obtain the minor arcs estimate. Let us remark that results of this type had been
obtained before for polynomials over finite fields [11, 15].

PROPOSITION 2.7 [6, Propositions 1 and 1′]. Let d > 1, and let F be any
collection of nondecreasing functions Fi : Z>0 → Z>0 (2 6 i 6 d). For a
collection of nonnegative integers r1, . . . , rd , there exist constants

C1(r1, . . . , rd,F), . . . ,Cd(r1, . . . , rd,F)

such that the following holds.
Given a system of forms U = (Ud, . . . ,U1) in Z[x1, . . . , xn], where U` = (U`,1,

. . . ,U`,r`) is the subsystem of degree ` forms of U (1 6 ` 6 d), and a partition
of variables x = (y, z), there exists a system of forms R(U) = (R(d)(U), . . . ,
R(1)(U)) in Q[x1, . . . , xn], where R(`)(U) is the subsystem of degree ` forms of
R(U), satisfying the following. For each 1 6 ` 6 d, let r ′` be the number of forms
in R(`)(U), and let R′ = r ′1 + · · · + r ′d .
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(1) Each form of the system U can be written as a rational polynomial expression
in the forms of the systemR(U). In particular, the level sets ofR(U) partition
those of U.

(2) For each 1 6 ` 6 d, r ′` is at most C`(r1, . . . , rd,F).

(3) For each 2 6 ` 6 d, we have h`(R(`)(U)) > F`(R′). Moreover, the linear
forms of R(1)(U) are linearly independent over Q.

(4) Let R(`)
(U) be the system obtained by removing from R(`)(U) all forms

which depend only on the z variables (1 6 ` 6 d). Then for each 2 6 ` 6 d,
we have h`(R

(`)
(U); z) > F`(R′). Furthermore, we may assume that the

linear forms of R(1)
(U) depend only on the y variables, and that they are

linearly independent over Q.

We note that the last assertion in (4) regarding the linear forms of R(1)
(U) is not

stated in [6, Proposition 1′]. However, it is easy to deduce that this is indeed the
case from [6, Proposition 1′] at the expense of possibly slightly larger constants
Ci(r1, . . . , rd,F) (1 6 i 6 d) than in [6, Proposition 1′]. We also note that with
this assertion, it follows that every linear form of R(1)(U) is either only in the y
variables, or only in the z variables.

3. Decomposition of forms

In this section, we decompose a system of forms into two parts in a way that
both parts have large Birch rank. Let d, n ∈ N, and let F be a system of forms
in Q[x1, . . . , xn] of degrees less than or equal to d . We use a slightly different
notation in this section compared to the previous sections in order to make the
argument as clear as possible. We denote F = (F(d), . . . ,F(1)), where F(`) is the
subsystem of degree ` forms of F (1 6 ` 6 d). For each 1 6 ` 6 d , we denote
the elements of F(`) by

F(`) = (F (`)

1 , . . . , F (`)
r` ),

where r` is the number of forms in F(`). Suppose we have a partition of variables
x = (y, z). We define F(`)y,z(y, z) to be the following system of forms

F(`)y,z(y, z) = (F (`)

1 (y, z)− F (`)

1 (0, z), . . . , F (`)
r` (y, z)− F (`)

r` (0, z)). (3.1)

Note for each 1 6 r 6 r`, we have

F (`)
r (y, z)− F (`)

r (0, z) = F (`)
r (y, 0)+ (F (`)

r (y, z)− F (`)
r (y, 0)− F (`)

r (0, z)),
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and every monomial with nonzero coefficient in (F (`)
r (y, z) − F (`)

r (y, 0) −
F (`)

r (0, z)) involves both the y variables and the z variables, in other words it
cannot be in terms of only the y variables or only the z variables. For each
1 6 ` 6 d, we also define

F(`)z (z) = (F
(`)

1 (0, z), . . . , F (`)
r` (0, z)). (3.2)

It should be clear from the context which partition of variables is being used when
the notations (3.1) and (3.2) come up in this section. We now give an example of
how these notations may be used. Let us consider F(`) with ` > 1. Suppose we
have partitions of variables x = (v, z) and z = (y, z′), and let us denote x = (v, (y,
z′)). From the first partition of variables, we have F(`)v,z(v, z) and F(`)z (z) as above.
Since F(`)z (z) is in terms of the z variables, we can consider (3.1) and (3.2) of this
system with respect to the partition z = (y, z′). We then have

(F(`)z )y,z′(y, z′)

= (F (`)

1 (0, (y, z′))− F (`)

1 (0, (0, z′)), . . . , F (`)
r` (0, (y, z′))− F (`)

r` (0, (0, z′)))

and
(F(`)z )z′(z

′) = (F (`)

1 (0, (0, z′)), . . . , F (`)
r` (0, (0, z′)).

Given a set of variables y, we denote |y| to be the number of variables of y.
The following proposition for a system of forms of equal degree is proved in [6].
We will be using this proposition as the base case in induction to generalize it in
Proposition 3.4.

PROPOSITION 3.1 [6, Proposition 2]. Let C1 and C2 be some positive integers.
Let d > 1 and F = F(d) = (F (d)

1 , . . . , F (d)
rd
) be a system of degree d forms in Q[x1,

. . . , xn], where Bd(F) is sufficiently large with respect to C1, C2, rd and d. Then
there exists a partition of variables x = (y, z) such that

|y| 6 C1rd,

Bd(Fy,z(y, z)) > C1, and Bd(Fz(z)) > C2.

The following lemma and its corollary are also proved in [6].

LEMMA 3.2 [6, Lemma 3]. Let ` > 1 and let G = (G1, . . . ,Gr ′) be a system of
degree ` forms in Q[x1, . . . , xn]. Given any 1 6 j 6 n, we have

B`(G) > B`(G|x j=0) > B`(G)− r ′ − 1, (3.3)

where G|x j=0 = (G1|x j=0, . . . ,Gr ′ |x j=0). When ` = 1, we in fact have

B1(G) > B1(G|x j=0) > B1(G)− 1.
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Proof. The lower bounds are provided in [6, Lemma 3], so we only provide the
argument for the upper bounds here. We remark that due to a minor oversight the
lower bound is stated to be B`(G)−r ′ in [6, Lemma 3] instead of the lower bound
given in (3.3). However, by following through their argument it can be seen that
in fact (3.3) is the correct lower bound. We begin by considering the case ` > 1.
Let us denote

G′ = (G ′1, . . . ,G ′r ′),

where G ′r = Gr |x j=0 for each 1 6 r 6 r ′. It follows from the definition of the
Birch singular locus given in (1.3) that

V ∗G ∩ {x ∈ Cn
: x j = 0} ⊆ V ∗G′ .

Since the dimension of V ∗G ∩ {x ∈ Cn
: x j = 0} is either dim(V ∗G)− 1 or dim(V ∗G),

we have
dim(V ∗G)− 1 6 dim(V ∗G′),

and equivalently,

B`(G) = n − dim(V ∗G) > n − 1− dim(V ∗G′) = B`(G|x j=0).

For the case ` = 1, it follows immediately from the definition.

COROLLARY 3.3 [6, Corollary 4]. Let ` > 1 and let G = (G1, . . . ,Gr ′) be
a system of degree ` forms in Q[x1, . . . , xn]. If H is an affine linear space
of codimension m, then the restriction of G to H has Birch rank at least
(B`(G)−m(r ′ + 1)). When ` = 1, we in fact have that it is at least (B1(G)−m).

We obtain the following technical result for a system of forms that is more
general than in Proposition 3.1.

PROPOSITION 3.4. Let d, n ∈ N. Let F = (F(d), . . . ,F(1)) be a system of forms in
Q[x1, . . . , xn], where F(i)

= (F (i)
1 , . . . , F (i)

ri
) is the subsystem of degree i forms of

F (1 6 i 6 d). Let Ci,1,Ci,2 (1 6 i 6 d) be positive integers. For each 1 6 i 6 d,
suppose Bi(F(i)) is sufficiently large with respect to C1,1, . . . ,Cd,1, C1,2, . . . ,Cd,2,
rd, . . . , r1, and d. Then there exists a partition of variables x = (y, z) such that

|y| 6
d∑

i=1

Ci,1ri ,

and for each 1 6 i 6 d, we have

Bi(F(i)y,z(y, z)) > Ci,1 − (ri + 1)
i−1∑
`=1

C`,1r`,
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and

Bi(F(i)z (z)) > Ci,2 − (ri + 1)
i−1∑
`=1

C`,1r`.

Proof. We prove by induction the following statement: Given 2 6 j 6 d , there
exists a partition of variables x = (v j , z j), where v j = (yd, . . . , y j), such that for
each j 6 i 6 d we have

|yi | 6 Ci,1ri ,

Bi(F(i)v j ,z j
(v j , z j)) > Ci,1 − (ri + 1)

i−1∑
`= j

C`,1r`,

and

Bi(F(i)z j
(z j)) > Ci,2 − (ri + 1)

i−1∑
`= j

C`,1r`.

We begin with the base case j = d . We know from Proposition 3.1 that there
exists a partition of variables x = (yd, zd) such that

|yd | 6 Cd,1rd,

Bd(F(d)yd ,zd
(yd, zd)) > Cd,1, and Bd(F(d)zd

(zd)) > Cd,2.

This concludes our base case.
Suppose the statement holds for j + 1, in other words there exists a partition

of variables x = (v j+1, z j+1), where v j+1 = (yd, . . . , y j+1), such that for each
j + 1 6 i 6 d we have

|yi | 6 Ci,1ri ,

Bi(F(i)v j+1,z j+1
(v j+1, z j+1)) > Ci,1 − (ri + 1)

i−1∑
`= j+1

C`,1r`, (3.4)

and

Bi(F(i)z j+1
(z j+1)) > Ci,2 − (ri + 1)

i−1∑
`= j+1

C`,1r`. (3.5)

First we observe that by Lemma 3.2 the following holds

B j(F( j)
z j+1
(z j+1)) = B j(F( j)(x)|vj+1=0) > B j(F( j)(x))− (r j + 1)|v j+1|

> B j(F( j)(x))− (r j + 1)
d∑

i= j+1

Ci,1ri .
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Since B j(F( j)(x)) is sufficiently large with respect to d , r j , . . . , rd , C j,1, . . . ,Cd,1,
and C j,2, we obtain from Proposition 3.1 a partition of variables z j+1 = (y j , z j)

such that

|y j | 6 C j,1r j , (3.6)
B j((F( j)

z j+1
)

y j ,z j
(y j , z j)) > C j,1, (3.7)

and
B j((F( j)

z j+1
)

z j
(z j)) > C j,2. (3.8)

We denote v j = (v j+1, y j) = (yd, . . . , y j), and consider the partition of variables
x = (v j , z j).

Since v j+1 ⊆ v j , we have

Fr
( j)(x)|v j=0 = (Fr

( j)(x)|v j+1=0)|v j=0 (1 6 r 6 r j)

and consequently,
F( j)

z j
(z j) = (F( j)

z j+1
)

z j
(z j). (3.9)

Therefore, we obtain by (3.8) that

B j(F( j)
z j
(z j)) > C j,2. (3.10)

We have the following two decompositions for F( j)(x),

F( j)
v j ,z j

(v j , z j)+ F( j)
z j
(z j)

= F( j)
v j+1,z j+1

(v j+1, z j+1)+ (F( j)
z j+1
)

y j ,z j
(y j , z j)+ (F( j)

z j+1
)

z j
(z j),

where the first decomposition is via the partition x = (v j , z j), and the second via
the partitions x = (v j+1, z j+1) and z j+1 = (y j , z j). It follows from (3.9) that

F( j)
v j ,z j

(v j , z j) = F( j)
v j+1,z j+1

(v j+1, z j+1)+ (F( j)
z j+1
)

y j ,z j
(y j , z j). (3.11)

Since v j+1 ∩ (y j , z j) = ∅, we obtain from (3.11)

(F( j)
v j ,z j

(v j , z j))|v j+1=0 = ((F( j)
z j+1
)

y j ,z j
(y j , z j))|v j+1=0

= (F( j)
z j+1
)

y j ,z j
(y j , z j). (3.12)

Also see the sentence after (3.1) for the explanation of F( j)
v j+1,z j+1

(v j+1,

z j+1)|v j+1=0 = 0. Consequently, we obtain from Lemma 3.2, (3.12), and (3.7),

B j(F( j)
v j ,z j

(v j , z j)) > B j(F( j)
v j ,z j

(v j , z j)|v j+1=0)

= B j((F( j)
z j+1
)

y j ,z j
(y j , z j))

> C j,1. (3.13)
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Let j + 1 6 i 6 d . Recall we have partitions x = (v j+1, z j+1), x = (v j , z j),
and z j+1 = (y j , z j). Since v j = (v j+1, y j), it follows that

(F (i)
r (x)|v j+1=0)|y j=0 = F (i)

r (x)|v j=0 (1 6 r 6 ri)

and consequently,

(F(i)z j+1
)z j (z j) = F(i)z j+1

(z j+1)|y j=0 = F(i)z j
(z j). (3.14)

Therefore, we obtain from (3.14), Lemma 3.2, (3.5), and (3.6),

Bi(F(i)z j
(z j)) > Bi(F(i)z j+1

(z j+1))− (ri + 1)|y j |

>

(
Ci,2 − (ri + 1)

i−1∑
`= j+1

C`,1r`

)
− (ri + 1)|y j |

> Ci,2 − (ri + 1)
i−1∑
`= j

C`,1r`.

Also we have the following two decompositions for F(i)(x),

F(i)v j ,z j
(v j , z j)+ F(i)z j

(z j)

= F(i)v j+1,z j+1
(v j+1, z j+1)+ (F(i)z j+1

)y j ,z j (y j , z j)+ (F(i)z j+1
)z j (z j), (3.15)

where the first decomposition is via the partition x = (v j , z j), and the second
via the partitions x = (v j+1, z j+1) and z j+1 = (y j , z j). Therefore, it follows from
(3.14) and (3.15) that

F(i)v j ,z j
(v j , z j)|y j=0

= (F(i)v j+1,z j+1
(v j+1, z j+1)+ (F(i)z j+1

)y j ,z j (y j , z j))|y j=0

= F(i)v j+1,z j+1
(v j+1, z j+1)|y j=0. (3.16)

Consequently, we have by Lemma 3.2, (3.16), (3.4), and (3.6),

Bi(F(i)v j ,z j
(v j , z j)) > Bi(F(i)v j ,z j

(v j , z j)|y j=0)

> Bi(F(i)v j+1,z j+1
(v j+1, z j+1))− (ri + 1)|y j |

>

(
Ci,1 − (ri + 1)

i−1∑
`= j+1

C`,1r`

)
− (ri + 1)C j,1r j

> Ci,1 − (ri + 1)
i−1∑
`= j

C`,1r`. (3.17)
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Hence, from (3.6), (3.10), (3.13), (3.15), and (3.17), we see that we have
completed induction. From the j = 2 case with v2 = (yd, yd−1, . . . , y2) and z2, we
can proceed in the exact same manner as above to deal with the linear forms even
though the definition of the Birch rank, B1, is slightly different than that for the
higher degrees. We can do so because Proposition 3.1 is still applicable withB1 for
systems of linear forms. By letting the resulting variables v1 = (yd, yd−1, . . . , y2,

y1) and z1 be y and z, respectively, we complete the proof of Proposition 3.4.

4. Initial setup to prove Theorem 1.2

Let f = (fd, . . . , f1) be a system of polynomials in Z[x1, . . . , xn], where f` =
( f`,1, . . . , f`,r`) is the subsystem of degree ` polynomials of f (1 6 ` 6 d). We
let F = (Fd, . . . ,F1) be the system of forms such that for each 1 6 ` 6 d , we
have F` = (F`,1, . . . , F`,r`)where F`,r is the homogeneous degree ` portion of f`,r
(1 6 r 6 r`). Recall in Theorem 1.2 we consider the system of equations

f`,r (x) = 0 (1 6 ` 6 d, 1 6 r 6 r`), (4.1)

where for each 1 6 ` 6 d , B`(f`) is sufficiently large with respect to d and rd,

. . . , r1. Also recall we denote the integer solutions of these equations by Vf,0(Z).
In order to prove Theorem 1.2, we begin by simplifying the polynomials in (4.1)
to satisfy more properties suitable for our purposes without changing the solution
set Vf,0(Z).

By reducing the polynomials in (4.1) without changing the solution set, we
transform system (4.1) into the following system:

f`,r (x) = 0 (1 6 ` 6 d, 1 6 r 6 r`), (4.2)

where for 2 6 ` 6 d ,

f`,r (x) = c`,r wj`,r + χ`,r (x)+ f̃`,r (x) (1 6 r 6 r`)

and
f1,r (x) = c1,r wj1,r + f̃1,r (x) (1 6 r 6 r1)

with the following properties. Here w is a subset of the variables x = (x1, . . . , xn),
and for each 1 6 ` 6 d, 1 6 r 6 r`, wj`,r is a degree ` monomial in w.

(1) For each 1 6 ` 6 d, 1 6 r 6 r`, we have c`,r ∈ Z\{0}, and wj`,r is the leading
monomial of f`,r (x) with respect to a graded lexicographic ordering.

(2) The monomials wj`,r are distinct, and given 1 6 ` 6 d, 1 6 r 6 r`, wj`,r is
not divisible by any one of wj`′,r ′ (1 6 `′ < `, 1 6 r ′ 6 r`′).

https://doi.org/10.1017/fms.2018.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.21


Prime solutions to polynomial equations 19

(3) For each 2 6 ` 6 d, 1 6 r 6 r`, the polynomial χ`,r (x) has degree less
than or equal to ` with coefficients in Z. Also χ`,r (x) does not contain any
monomial divisible by any one of wj`′,r ′ (1 6 `′ 6 `, 1 6 r ′ 6 r`′).

(4) For each 1 6 ` 6 d, 1 6 r 6 r`, the polynomial f̃`,r (x) has degree ` with
coefficients in Z. Also f̃`,r (x) does not contain any monomial divisible by
any one of wj`′,r ′ (1 6 `′ 6 `, 1 6 r ′ 6 r`′).

(5) For each 2 6 ` 6 d, 1 6 r 6 r`, we have

h`(χ`,r ) 6 C ′′0 ,

where C ′′0 is a constant depending only on d and rd, . . . , r1.

(6) For each 1 6 ` 6 d , B`({ f̃`,r : 1 6 r 6 r`}) is sufficiently large with respect
to d and rd, . . . , r1.

(7) For each 2 6 ` 6 d , h`(f`) is sufficiently large with respect to d and rd, . . . ,

r1, and B1(f1) is sufficiently large with respect to d and rd, . . . , r1.

These conditions system (4.2) satisfies become crucial during our minor arcs
estimate. Before we describe this reduction process, first we note basic properties
of the Birch rank which will be utilized in this section. Let ` > 1 and G = {G1,

. . . ,Gr ′′} be a system of degree ` forms in Q[x1, . . . , xn]. Let κ1, . . . , κr ′′ ∈ Q\{0}.
Then it follows from the definition of the Birch rank that

B`({κr Gr : 1 6 r 6 r ′′}) = B`(G).

Let κ ∈ Q and 1 6 i, j 6 r ′′. Let G ′r = Gr if r 6= i , and G ′i = G i + κG j . It also
follows from the definition of the Birch rank that

B`({G ′r : 1 6 r 6 r ′′}) = B`(G).

We now transform system (4.1) into system (4.2) beginning with ` = 1. By
considering the reduced row echelon form of the matrix formed by the coefficients
of F1,1, . . . , F1,r1 , and relabeling the variables if necessary, we reduce the linear
polynomials in (4.1) without changing the solution set to be of the shape

f1,r (x) = xn−r+1 + f̃1,r (x1, . . . , xn−r1) (1 6 r 6 r1),

where f̃1,r (x1, . . . , xn−r1) is a linear polynomial in variables x1, . . . , xn−r1 with
rational coefficients. Then by substituting xn−r+1 = − f̃1,r (x1, . . . , xn−r1) into each
equation in (4.1) with ` > 1, we may further reduce without changing the solution
set such that for ` > 1 the polynomials f`,r do not involve any of the variables
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xn−r1+1, . . . , xn . Let us label wr = xn−r+1 (1 6 r 6 r1). By multiplying each of
the resulting equation by an integer constant if necessary, we replace system (4.1)
with the following system of equations

f`,r (x) = 0 (1 6 ` 6 d, 1 6 r 6 r`), (4.3)

where
f`,r (x) ∈ Z[x1, . . . , xn−r1] (1 < ` 6 d, 1 6 r 6 r`),

and for each 1 6 r 6 r1, we have

f1,r (x) = c1,rwr + f̃1,r (x1, . . . , xn−r1)

with c1,r ∈ Z\{0} and f̃1,r (x1, . . . , xn−r1) ∈ Z[x1, . . . , xn−r1]. From the definition
of the Birch rank, we have that B1(f1) remains the same under these changes.
Therefore, it follows by Lemma 3.2 that B1({ f̃1,r : 1 6 r 6 r1}) is sufficiently
large with respect to d and rd, . . . , r1. For 1 < ` 6 d , we can deduce from
Corollary 3.3 that we still have B`(f`) sufficiently large with respect to d and
rd, . . . , r1. Let us put a graded lexicographic ordering on the monomials formed
by x1, . . . , xn−r1, w1, . . . , wr1 such that wr is the leading coefficient of f1,r .
By denoting wj1,r = wr (1 6 r 6 r1), we see that the linear polynomials in
(4.3) satisfy the conditions of system (4.2). We note that for us this graded
lexicographic ordering is essentially on the monomials formed by x1, . . . , xn−r1

as w1, . . . , wr do not appear in f`,r with ` > 1.
Let us denote B2 := B2(f2) for the Birch rank of f2 in (4.3). We consider F2 =

(F2,1, . . . , F2,r2), the system of homogeneous degree 2 portions of f2. From each
F2,1, . . . , F2,r2 , we collect the coefficient of the monomial xi1 xi2 and turn it into
a vector in Qr2 . We do this for every degree 2 monomial. We then form a matrix
by putting these vectors in columns from left to right in the decreasing order of
the degree 2 monomials. Since B2 = B2(F2) > 0, this matrix has full rank. We
row reduce this matrix, and we denote the r2 monomials where the leading 1’s
occur to be wj2,r (1 6 r 6 r2), and label the distinct variables involved in these r2

monomials to be w2 = (wr1+1, . . . , wr1+K2). Clearly we have K2 6 2r2.
From the row reduction operations done on the coefficient matrix of F2, without

changing the solution set we can reduce f2 to

f2,r (x) = c2,r wj2,r + f̃2,r (x) (1 6 r 6 r2), (4.4)

where wj2,r is the leading monomial of f2,r (x), with respect to the graded
lexicographic ordering, and none of the monomials of f̃2,r (x) is divisible by any
one of wj`′,r ′ (1 6 `′ 6 2, 1 6 r 6 r`′). We have that c2,r wj2,r+ f̃2,r (x) is a Q-linear
combination of f2,1, . . . , f2,r2 in (4.3), where the Q-linear combination comes
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from the row reduction operations applied on the coefficient matrix described
above. Thus by the basic properties of the Birch rank, it follows that

B2({c2,r wj2,r + f̃2,r (x) : 1 6 r 6 r2}) = B2.

It then follows from (2.4) that the h-invariant of f2 in (4.4) satisfies

h2(f2) > 21−2 B2,

and hence h2(f2) is sufficiently large with respect to d and rd, . . . , r1. We also
have by Lemma 3.2,

B2({ f̃2,r (x) : 1 6 r 6 r2}) > B2({ f̃2,r (x)|w2=0 : 1 6 r 6 r2})

= B2({(c2,r wj2,r + f̃2,r (x))|w2=0 : 1 6 r 6 r2})

> B2({c2,r wj2,r + f̃2,r (x) : 1 6 r 6 r2})− (r2 + 1)K2

= B2 − (r2 + 1)K2.

Thus B2({ f̃2,r (x) : 1 6 r 6 r2}) is sufficiently large with respect to d and rd, . . . ,

r1. It is also clear that wj2,r is not divisible by any one of wj1,r ′ = wr ′ (1 6 r ′ 6
r1). Therefore, we have obtained that we can reduce the degree 2 polynomials of
system (4.3) without changing the solution set to satisfy the conditions of system
(4.2) with χ2,r (x) being the zero polynomial (1 6 r 6 r2).

Using the ` = 2 case as the base case, we prove our statement by induction. Let
`0 > 3. Suppose we have reduced the polynomials f` in (4.3) for each 2 6 ` 6
`0 − 1, without changing the solution set, to satisfy the conditions of (4.2). First
we take the distinct variables involved in the monomials wj3,r (1 6 r 6 r3) that
have not yet appeared in w2, and label them as wr1+K2+1, . . . , wr1+K2+K3 . Clearly
we have K3 6 3r3. We adjoin these variables to w2, and let w3 = (wr1+1, . . . ,

wr1+K2+K3). Then we take the distinct variables involved in the monomials wj4,r

(1 6 r 6 r4) that have not yet appeared in w3, and label them as wr1+K2+K3+1,

. . . , wr1+K2+K3+K4 . Clearly we have K4 6 4r4. We adjoin these variables to w3,
and let w4 = (wr1+1, . . . , wr1+K2+K3+K4). We continue in this manner until we
obtain

w`0−1 = (wr1+1, . . . , wr1+K2+···+K`0−1),

where K j 6 jr j (2 6 j 6 `0 − 1).
For each 1 6 r 6 r`0 , we let

f`0,r (x) = χ
′′

`0,r (x)+ f ′′`0,r (x), (4.5)

where every monomial of χ ′′`0,r (x) is divisible by one of wj`,r (2 6 ` < `0, 1 6
r 6 r`), and none of the monomials of f ′′`0,r (x) is divisible by any one of wj`,r

(2 6 ` < `0, 1 6 r 6 r`). Since

f`0,r (x)|w`0−1=0 = f ′′`0,r (x)|w`0−1=0 (1 6 r 6 r`0),
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we have by Lemma 3.2 that

B`0({ f ′′`0,r (x) : 1 6 r 6 r`0}) > B`0({ f ′′`0,r (x)|w`0−1=0 : 1 6 r 6 r`0})

= B`0({ f`0,r (x)|w`0−1=0 : 1 6 r 6 r`0})

> B`0(f`0)− (r`0 + 1)(K2 + · · · + K`0−1).

Consequently, we have that B`0({ f ′′`0,r : 1 6 r 6 r`0}) is sufficiently large with
respect to d and rd, . . . , r1. Also it follows by basic facts about reduction in
Gröbner basis theory that we may write

χ ′′`0,r (x) = χ
′

`0,r (x)+
∑

26`′<`0

∑
16r ′6r`′

ζ`0,r :`′,r ′(x) f`′,r (x), (4.6)

where χ ′`0,r (x) is a polynomial which does not contain any monomial divisible by
any one of wj`,r (2 6 ` < `0, 1 6 r 6 r`). Furthermore, χ ′`0,r (x) is a polynomial
of degree less than or equal to `0, and ζ`0,r :`′,r ′(x) is a polynomial of degree less
than or equal to `0 − `

′. We obtain by the definition of the h-invariant that

h`0(χ
′

`0,r ) 6 h`0(χ
′′

`0,r (x))+ h`0

 ∑
26`′<`0

∑
16r ′6r`′

ζ`0,r :`′,r ′(x) f`′,r (x)


6

`0−1∑
`=2

r` +
`0−1∑
`=2

r` (4.7)

for each 1 6 r 6 r`0 . Also, via (4.6) we can reduce f`0 of (4.5) without changing
the solution set, and assume it is of the shape

f`0,r (x) = χ
′

`0,r (x)+ f ′′`0,r (x) (1 6 r 6 r`0), (4.8)

where none of the monomials of f ′′`0,r (x) or χ ′`0,r (x) is divisible by any one of wj`,r

(2 6 ` < `0, 1 6 r 6 r`).
We then consider F`0 = (F`0,1, . . . , F`0,r`0

) where F`0,r is the homogeneous
degree `0 portion of f`0,r in (4.8). From each F`0,1, . . . , F`0,r`0

, we collect the
coefficient of the monomial xi1 · · · xi`0

and turn it into a vector in Qr`0 . We do this
for every degree `0 monomial. We then form a matrix by putting these vectors
in columns from left to right in the decreasing order of the degree `0 monomials.
From the definition of the h-invariant, we can deduce

h`0(F`0)+

r`0∑
r=1

h`0(χ
′

`0,r (x)) > h`0({ f ′′`0,r (x) : 1 6 r 6 r`0}).
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Consequently, we obtain from (2.4) and (4.7) that

h`0(F`0) > 21−`0B`0({ f ′′`0,r (x) : 1 6 r 6 r`0})− 2r`0

`0−1∑
`=2

r`.

Thus it follows that h`0(F`0) is sufficiently large with respect to d and rd, . . . , r1.
In particular, since we have h`0(F`0) > 0, the coefficient matrix of F`0 above has
full rank. We row reduce this matrix, and we denote the r`0 monomials where the
leading 1’s occur to be wj`0,r (1 6 r 6 r`0). We then take the distinct variables
involved in these r`0 monomials that have not yet appeared in w`0−1, and label
them as

wr1+K2+···+K`0−1+1, . . . , wr1+K2+···+K`0−1+K`0
.

Clearly we have K`0 6 `0r`0 . We adjoin these variables to w`0−1, and let w`0 =

(wr1+1, . . . , wr1+K2+···+K`0
).

From the row reduction operations done on the coefficient matrix, without
changing the solution set we can reduce f`0 to

f`0,r (x) = c`0,r wj`0,r + χ`0,r (x)+ f̃`0,r (x) (1 6 r 6 r`0), (4.9)

where wj`0,r is the leading monomial of f`0,r , with respect to the graded
lexicographic ordering, and none of the monomials of f̃`0,r (x) or χ`0,r (x) is
divisible by any one of wj`′,r ′ (1 6 `′ 6 `0, 1 6 r ′ 6 r`). Also χ`0,r (x)+ c(1)`0,r wj`0,r

is a Q-linear combination of χ ′`0,1, . . . , χ
′

`0,r`0
, and similarly f̃`0,r (x) + c(2)`0,r wj`0,r

is a Q-linear combination of f ′′`0,1, . . . , f ′′`0,r`0
for some appropriate rational

coefficients c(1)`0,r and c(2)`0,r , where c(1)`0,r + c(2)`0,r = c`0,r . It then follows by the
definition of the h-invariant and (4.7) that

h(χ`0,r ) 6 1+
r`0∑
r=1

h`0(χ
′

`0,r ) 6 1+ 2r`0

`0−1∑
`=2

r` (1 6 r 6 r`0).

We obtained f̃`0,r (x) + c(2)`0,r wj`0,r as a Q-linear combination of f ′′`0,1, . . . , f ′′`0,r`0
,

where the Q-linear combination came from the row reduction operations applied
to the coefficient matrix of F`0 . Thus by the basic properties of the Birch rank, it
follows that

B`0({ f̃`0,r (x)+ c(2)`0,r wj`0,r : 1 6 r 6 r`0}) = B`0({ f ′′`0,r : 1 6 r 6 r`0}).
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Therefore, we obtain by Lemma 3.2 that

B`0({ f̃`0,r (x) : 1 6 r 6 r`0})

> B`0({ f̃`0,r (x)|w`0=0 : 1 6 r 6 r`0})

= B`0({( f̃`0,r (x)+ c(2)`0,r wj`0,r )|w`0=0 : 1 6 r 6 r`0})

> B`0({ f̃`0,r (x)+ c(2)`0,r wj`0,r : 1 6 r 6 r`0})− (r`0 + 1)(K2 + · · · + K`0)

= B`0({ f ′′`0,r : 1 6 r 6 r`0})− (r`0 + 1)(K2 + · · · + K`0).

Thus we have that B`0({ f̃`0,r (x) : 1 6 r 6 r`0}) is sufficiently large with respect
to d and rd, . . . , r1. It then follows by a similar argument given above, to show
the h-invariant of f`0 in (4.8) is sufficiently large, that the h-invariant of f`0 in
(4.9) is sufficiently large with respect to d and rd, . . . , r1. Finally, we also have
by the construction that for each 1 6 r 6 r`0 , the monomial wj`0,r is not divisible
by any one of wj`,r (1 6 ` < `0, 1 6 r 6 r`). Thus we have completed induction.
Therefore, we obtain that we can transform system (4.1) into system (4.2) without
changing the solution set. Let us adjoin wd to (w1, . . . , wr1) and denote the
resulting set of variables to be w = (w1, . . . , wK ), where

K = r1 + K2 + · · · + Kd 6
d∑
`=1

`r`. (4.10)

We also add that if there are any ` with r` = 0, we simply skip these cases in the
above argument.

Let α`,r ∈ R (1 6 ` 6 d, 1 6 r 6 r`), and consider∑
16`6d

∑
16r6r`

α`,r f`,r (x)

as a polynomial in x1, . . . , xn with real coefficients, where f is the system of
polynomials in (4.2). Given any 1 6 ` 6 d and 1 6 r 6 r`, it follows from
the construction that the coefficient of wj`,r of the above polynomial is c`,rα`,r .
Let x = (w, x′). Let us also fix x′ = x′0 ∈ Zn−K . It is clear that if we consider∑

16`6d

∑
16r6r`

α`,r f`,r (w, x′0) (4.11)

as a polynomial in w with real coefficients, then given 1 6 ` 6 d, 1 6 r 6 r` we
still have that the coefficient of wj`,r of this polynomial is c`,rα`,r . Furthermore,
this polynomial does not contain any monomial divisible by wj`,r other than itself.

We set R = rd + · · · + r1. Let α = (αd, . . . ,α1) ∈ RR where α` = (α`,1, . . . ,
α`,r`) ∈ Rr` (1 6 ` 6 d). Similarly, we denote a = (ad, . . . , a1) ∈ (Z/qZ)R ,
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where q ∈ N and a` = (a`,1, . . . , a`,r`) ∈ (Z/qZ)r` (1 6 ` 6 d). Let T = R/Z
and ‖β‖ denote the distance from β ∈ R to the nearest integer, which induces a
metric on T via d(α, β) = ‖α − β‖. For a given value of C > 0 and an integer
1 6 q 6 (log X)C , we define

Ma,q(C) =
{
α ∈ TR

: max
16r6r`

‖α`,r − a`,r/q‖ 6 X−`(log X)C (1 6 ` 6 d)
}

for each a ∈ (Z/qZ)R with gcd(a, q) = 1 (by which we mean that the greatest
common divisor of the numbers ad,1, . . . , a1,r1 and q is 1). These arcs are disjoint
for X sufficiently large.

We define the major arcs to be

M(C) =
⋃

q6(log X)C

⋃
a∈(Z/qZ)R

gcd(a,q)=1

Ma,q(C),

and define the minor arcs to be

m(C) = TR
\M(C).

In other words, the major arcs is a collection of elements in TR that can be
simultaneously ‘well approximated’ by rational numbers of the same denominator
q , where q is ‘small’.

For a system of polynomials f, we define

T (f;α) :=
∑

x∈[0,X ]n
Λ(x)e

(
d∑
`=1

r∑̀
r=1

f`,r (x) · α`,r

)
, (4.12)

where we defined Λ(x) in (1.5). By the orthogonality relation, we have

Mf(X) =
∑

x∈[0,X ]n
Λ(x)1Vf,0(C)(x)

=

∫
T
· · ·

∫
T

T (f;α)dα

=

∫
M(C)

T (f;α)dα +
∫
m(C)

T (f;α)dα. (4.13)

For the system of polynomials f in (4.2), we prove the following results on the
minor arcs and the major arcs.
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PROPOSITION 4.1. Let f be the polynomials in (4.2). Given any c > 0, for
sufficiently large C > 0 we have∫

m(C)
T (f;α)dα �

X n−
∑d
`=1 `r`

(log X)c
.

PROPOSITION 4.2. Let f be the polynomials in (4.2). Given any c > 0, for
sufficiently large C > 0 we have∫

M(C)
T (f;α)dα = C(f)X n−

∑d
`=1 `r` + O

(
X n−

∑d
`=1 `r`

(log X)c

)
,

where C(f) is a constant that depends only on f.

We prove Proposition 4.1 in Section 5, and Proposition 4.2 in Section 7.

5. Hardy–Littlewood circle method: minor arcs

Proof of Proposition 4.1. We consider the system of polynomials f in (4.2)
constructed in the previous section, which satisfies all the conditions described
below (4.2). Recall we denote w = (w1, . . . , wK ), where K 6 d R and R =∑d

`=1 r`. We let F̃ = (̃Fd, . . . , F̃1) be the system of forms such that for each
1 6 ` 6 d , F̃` = (F̃`,1, . . . , F̃`,r`) and F̃`,r is the homogeneous degree ` portion of
f̃`,r (1 6 r 6 r`). For each 1 6 ` 6 d , we know that B`(̃F`) is sufficiently large

with respect to d and rd, . . . , r1. Thus we apply Proposition 3.4 to the system

(̃Fd |w=0, . . . , F̃1|w=0),

and denote the partition of variables of x\w we obtain by (y, z) so that x = (w,
y, z). Let

Q̃`,r (y, z) = F̃`,r (0, y, z)− F̃`,r (0, 0, z) (2 6 ` 6 d, 1 6 r 6 r`).

Then the partition of variables x = (w, y, z) satisfies

|y| = M 6
d∑
`=1

r`C•`,1, (5.1)

and also

B`({Q̃`,r (y, z) : 1 6 r 6 r`}) > C•`,1 − r`
`−1∑
j=1

C•j,1r j (2 6 ` 6 d), (5.2)

B1({F̃1,r (0, y, 0) : 1 6 r 6 r1}) > C•1,1, (5.3)
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and

B`({F̃`,r (0, 0, z) : 1 6 r 6 r`}) > C•`,2 − r`
`−1∑
j=1

C•j,1r j (1 6 ` 6 d), (5.4)

where C•`,1 and C•`,2 (1 6 ` 6 d) are positive integer constants depending only
on d and rd, . . . , r1 to be chosen later. In particular, we will make sure that the
right hand side of (5.4) for 2 6 ` 6 d is sufficiently large with respect to d and
rd, . . . , r1. For notational convenience, we label y = (y1, . . . , yM) and z = (z1,

. . . , zn−M−K ).
We then apply Proposition 3.4 (with C1,1 = C1,2 = C2,2 = · · · = Cd,2 = 1) to

the system of forms (̃Fd(0, 0, z), . . . , F̃2(0, 0, z)), where F̃`(0, 0, z) = (F̃`,1(0, 0,
z), . . . , F̃`,r`(0, 0, z)) for each 2 6 ` 6 d . Let the partition of variables we obtain
to be z = (a,b), which satisfies

|a| = M ′ 6
d∑
`=2

r`C?
`,1, (5.5)

and

B`({P̃`,r (a,b) : 1 6 r 6 r`}) > C?
`,1 − r`

`−1∑
j=2

C?
j,1r j (2 6 ` < d, 1 6 r 6 r`),

(5.6)

where

P̃`,r (a,b) = F̃`,r (0, 0, z)− F̃`,r (0, 0, (0,b)) (2 6 ` < d, 1 6 r 6 r`).

Note we are only mentioning the statement (5.6) for 2 6 ` < d , because we will
not be needing it for the case ` = d . Recall from (4.2) we have for 2 6 ` 6 d,
1 6 r 6 r`,

f`,r (x) = c`,r wj`,r + χ`,r (x)+ f̃`,r (x),

where
h`(χ`,r ) 6 C ′′0

for some constant C ′′0 dependent only on d and rd, . . . , r1. Let χ (`)`,r (x) denote the
homogeneous degree ` portion of χ`,r (x). Then it is easy to deduce from the
definition of the h-invariant that the quantities

h`(χ
(`)

`,r (0, y, z)− χ (`)`,r (0, 0, z)), h`(χ
(`)

`,r (0, 0, z)− χ (`)`,r (0, 0, (0,b))),

h`(χ
(`)

`,r (0, 0, z))
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are all bounded by 2C ′′0 . We then let

Q`,r (y, z) = Q̃`,r (y, z)+ χ (`)`,r (0, y, z)− χ (`)`,r (0, 0, z) (5.7)

and
P`,r (a,b) = P̃`,r (a,b)+ χ (`)`,r (0, 0, z)− χ (`)`,r (0, 0, (0,b)). (5.8)

We remark that from the definition it follows that Q`,r (y, z) is precisely the
homogeneous degree ` portion of the polynomial f`,r (0, y, z) − f`,r (0, 0, z).
Clearly every monomial of Q`,r (y, z) with nonzero coefficient contains at least
one of the y variables, and hence h`(Q`,r (y, z)) 6 |y|. Similarly, P`,r (a,b) is
precisely the homogeneous degree ` portion of the polynomial f`,r (0, 0, z) −
f`,r (0, 0, (0,b)). Clearly every monomial of P`,r (a,b) with nonzero coefficient
contains at least one of the a variables, and hence h`(P`,r (a,b)) 6 |a|.

We obtain the following three inequalities from (5.2), (5.6), and (5.4),
respectively, by applying (2.4) and the definition of the h-invariant with the
comment before (5.7),

h`({Q`,r (y, z) : 1 6 r 6 r`})

> 21−`

(
C•`,1 − r`

`−1∑
j=1

C•j,1r j

)
− 2r`C ′′0 (2 6 ` 6 d), (5.9)

h`({P`,r (a,b) : 1 6 r 6 r`})

> 21−`

(
C?
`,1 − r`

`−1∑
j=2

C?
j,1r j

)
− 2r`C ′′0 (2 6 ` < d), (5.10)

and

hd({F̃d,r (0, 0, z)+ χ (d)d,r (0, 0, z) : 1 6 r 6 rd})

> 21−d

(
C•d,2 − rd

d−1∑
j=1

C•j,1r j

)
− 2rdC ′′0 . (5.11)

It is clear from the definition that the homogeneous degree d portion of fd,r (0, 0,
z) is precisely F̃d,r (0, 0, z)+ χ (d)d,r (0, 0, z) for each 1 6 r 6 rd . Thus we have

Fd,r (0, 0, z) = F̃d,r (0, 0, z)+ χ (d)d,r (0, 0, z) (1 6 r 6 rd),

and we also let

Fd(0, 0, z) = (Fd,1(0, 0, z), . . . , Fd,rd (0, 0, z)). (5.12)
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With the notations we have defined so far, we have

Fd,r (0, y, z) = Qd,r (y, z)+ Fd,r (0, 0, z) (1 6 r 6 rd),

and for each 2 6 ` 6 d ,

F`,r (0, y, z) = Q`,r (y, z)+ P`,r (a,b)+ F`,r (0, 0, (0,b)) (1 6 r 6 r`),

where

F`,r (0, 0, z) = P`,r (a,b)+ F`,r (0, 0, (0,b)) (1 6 r 6 r`).

Let 2 6 ` 6 d. For each 1 6 r 6 r`, the partition of variables x = (w, y, z)
gives the decomposition of the following shape

f`,r (w, y, z)

= f`,r (w, 0, 0)+
`−1∑
j=1

∑
16i16···6i j6K

(
`− j∑
k=1

Φ
(k)
`,r :i1,...,i j

(y, z)

)
wi1 · · ·wi j

+

`−1∑
j=1

∑
16t16···6t j6M

(
`− j∑
k=0

Ψ
(k)
`,r :t1,...,t j

(z)

)
yt1 · · · yt j + F`,r (0, y, 0)

+ F`,r (0, 0, z)+
`−1∑
k=1

G(k)
`,r (z), (5.13)

which we describe below. We note thatΦ(k)
`,r :i1,...,i j

(y, z) and Ψ (k)
`,r :t1,...,t j

(z) are forms
of degree k. The above decomposition establishes the following. The term

f`,r (w, 0, 0)+
`−1∑
j=1

∑
16i16···6i j6K

(
`− j∑
k=1

Φ
(k)
`,r :i1,...,i j

(y, z)

)
wi1 · · ·wi j

consists of all the monomials of f`,r (x)which involve any variables of w, and also
the constant term. The term

`−1∑
j=1

∑
16t16···6t j6M

(
`− j∑
k=0

Ψ
(k)
`,r :t1,...,t j

(z)

)
yt1 · · · yt j + F`,r (0, y, 0) (5.14)

consists of all the monomials of f`,r (x) which involve any variables of y and
do not involve any of the w variables. In other words, it is precisely f`,r (0, y, z)
− f`,r (0, 0, z). Finally, we have the terms which only involve the z variables

F`,r (0, 0, z)+
`−1∑
k=1

G(k)
`,r (z),

where G(k)
`,r (z) is the homogeneous degree k portion of f`,r (0, 0, z).
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We denote

Φ = {Φ
(k)
`,r :i1,...,i j

: 2 6 ` 6 d, 1 6 r 6 r`, 1 6 j 6 `− 1,
1 6 i1 6 · · · 6 i j 6 K , 1 6 k 6 `− j}.

Note every form of Φ has degree strictly less than d , and involves only the y
variables and the z variables. We shall use the notation |Φ| to denote the number
of forms in Φ, and other instances of notation of this type should be interpreted
in a similar manner. Clearly we have

|Φ| 6
d∑
`=2

r``2 K ` 6
d∑
`=2

R`2(d R)` 6 dd+3 Rd+1.

Recall the function ρd,` defined in (2.6). We apply Proposition 2.7 to the system
Φ with respect to the partition of variables (y, z) and the functions F = {F2, . . . ,

Fd−1}, where

Fi(t) = ρd,d(2R + 2t)+ 2t + 4r1

+ 2R(d R(R2
+ 1)d−22d(ρd,d(2R + 2t)+ 2t + 4r1 + 2RC ′′0 )

+ d R3(R2
+ 1)d−2(2t + 1)),

for each 2 6 i 6 d − 1, and obtain R(Φ) = (R(d−1)(Φ), . . . ,R(1)(Φ)). For each
1 6 s 6 d − 1,

R(s)(Φ) = {A(s)i : 1 6 i 6 |R(s)(Φ)|}

is precisely all the degree s forms of R(Φ). For each form A(s)i ∈ R(s)(Φ) (1 6
s 6 d − 1, 1 6 i 6 |R(s)(Φ)|), we write

A(s)i (y, z) =
s∑

k=0

∑
16i16···6ik6M

Ψ̃
(s−k)

s,i :i1,...,ik
(z)yi1 · · · yik , (5.15)

where each Ψ̃ (s−k)
s,i :i1,...,ik

(z) is a form of degree s− k. Thus each form A(s)i introduces
at most (s + 1)M s 6 d Md forms in z. Also for each 1 6 s 6 d − 1, we denote
R(s)

(Φ) to be the system obtained by removing from R(s)(Φ) all forms which
depend only on the z variables. Let R(Φ) = (R(d−1)

(Φ), . . . ,R(1)
(Φ)), R2 =∑d−1

s=1 |R
(s)
(Φ)|, and D2 =

∑d−1
s=1 s |R(s)

(Φ)|. By relabeling if necessary, for

each 1 6 s 6 d − 1 we denote the elements of R(s)
(Φ) by

R(s)
(Φ) = {A(s)i : 1 6 i 6 |R(s)

(Φ)|}. (5.16)
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Let

Ψ = {F`,r (0, 0, (0,b)) : 2 6 ` < d, 1 6 r 6 r`}
∪{G(k)

`,r (z) : 2 6 ` 6 d, 1 6 r 6 r`, 1 6 k 6 `− 1}

∪{Ψ
(k)
`,r :t1,...,t j

(z) : 2 6 ` 6 d, 1 6 r 6 r`, 1 6 j 6 `− 1,
1 6 t1 6 · · · 6 t j 6 M, 1 6 k 6 `− j}

∪{Ψ̃
(s−k)

s,i :i1,...,ik
(z) : 1 6 s 6 d − 1, 1 6 i 6 |R(s)(Φ)|, 0 6 k < s,

1 6 i1 6 · · · 6 ik 6 M}.

In other words, Ψ is the collection of all G(k)
`,r (z), Ψ

(k)
`,r :t1,...,t j

(z), Ψ̃ (s−k)
s,i :i1,...,ik

(z) except
the constants, and all F`,r (0, 0, (0,b)) but not Fd,r (0, 0, (0,b)). In particular,
every form of Ψ has degree strictly less than d. We can see that

|Ψ | 6 R + d R + Rd2 Md
+ |R(Φ)|d Md .

Furthermore, every form of Ψ is only in terms of the z variables.
We let R(Ψ ) = (R(d−1)(Ψ ), . . . ,R(1)(Ψ )) be a regularization of Ψ with

respect to the functions F ′ = {F ′2, . . . ,F ′d−1}, where

F ′i (t) = ρd,d(2R + 2t)+ 2t + 4r1

+ 2R(d R(R2
+ 1)d−22d(ρd,d(2R + 2t)+ 2t + 4r1 + 2RC ′′0 ))

for each 2 6 i 6 d − 1. For each 1 6 s 6 d − 1,

R(s)(Ψ ) = {V (s)
i : 1 6 i 6 |R(s)(Ψ )|}

is precisely all the degree s forms of R(Ψ ). Let R1 =
∑d−1

s=1 |R(s)(Ψ )| and D1 =∑d−1
s=1 s|R(s)(Ψ )|.
Let Φ( j) denote the degree j forms of Φ. It follows from Proposition 2.7 that

each |R(i)(Φ)| is bounded by some constant dependent only on F and |Φ(d−1)
|,

. . . , |Φ(1)
|. Thus we see that |R(Φ)| and R2 are bounded by a constant dependent

only on d and rd, . . . , r1. It also follows from Proposition 2.7 that each |R(i)(Ψ )|

is bounded by some constant dependent only on F ′, d , R, M , and |R(Φ)|. Thus
we obtain that R1 is bounded by a constant dependent only on M , d and rd, . . . , r1.

We first set C•1,1 = 2R2 + 1. We now set the values of C•`,1 (2 6 ` 6 d) such
that they satisfy

21−`

(
C•`,1 − r`

`−1∑
j=1

C•j,1r j

)
− 2r`C ′′0 > ρd,`(2R + 2R2)+ 2R2 + 4r1. (5.17)
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Since (5.17) is equivalent to

C•`,1 > 2`−1(ρd,`(2R + 2R2)+ 2R2 + 4r1 + 2r`C ′′0 )+ r`
`−1∑
j=1

C•j,1r j ,

we can also make sure C•`,1 satisfies the additional constraint

C•`,1 6 2d(ρd,d(2R + 2R2)+ 2R2 + 4r1 + 2RC ′′0 )+ R2
`−1∑
j=1

C•j,1.

It is then not difficult to show by induction that

C•`,1 6 (R2
+ 1)`−22d(ρd,d(2R + 2R2)+ 2R2 + 4r1 + 2RC ′′0 )

+ R2(R2
+ 1)`−2C•1,1.

In particular, C•`,1 is bounded by a constant dependent only on d and rd, . . . , r1.
Therefore, it follows from (5.1) that

M 6 R
d∑
`=1

C•`,1

6 d R(R2
+ 1)d−22d(ρd,d(2R + 2R2)+ 2R2 + 4r1 + 2RC ′′0 )

+ d R3(R2
+ 1)d−2(2R2 + 1). (5.18)

Thus it follows that R1 is bounded by a constant dependent only on d and
rd, . . . , r1.

We then set the values for C?
`,1 (2 6 ` 6 d) to satisfy

21−`

(
C?
`,1 − r`

`−1∑
j=2

C?
j,1r j

)
− 2r`C ′′0 > ρd,`(2R + 2R1)+ 2R1 + 4r1. (5.19)

By a similar argument as for the C•`,1 above, we can also make sure that C?
`,1

satisfies

C?
`,1 6 (R2

+ 1)`−22d(ρd,d(2R + 2R1)+ 2R1 + 4r1 + 2RC ′′0 ),

and it follows from (5.5) that

M ′ 6 d R(R2
+ 1)d−22d(ρd,d(2R + 2R1)+ 2R1 + 4r1 + 2RC ′′0 ). (5.20)

In particular, each C?
`,1 and M ′ are bounded by constants dependent only on d and

rd, . . . , r1. Let us set C•1,2 = 2R1+ 1. We then make sure that for each 2 6 ` 6 d,
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C•`,2 is sufficiently large with respect to C?
2,1, . . . ,C?

d,1, C•1,1, . . . ,C•d−1,1, rd, . . . , r1,
and d , and also that C•d,2 satisfies

21−d

(
C•d,2 − rd

d−1∑
j=1

C•j,1r j

)
− 2rdC ′′0 > ρd,d(2R + 2R1)+ 2R1 + 4r1. (5.21)

We note that the three inequalities (5.17), (5.19) and (5.21) provide lower bounds
for the h-invariants in (5.9), (5.10), and (5.11), respectively.

We now decompose the linear polynomials. From Proposition 2.7, we know
that every linear form of R(1)(Φ) is either only in the y variables, or only in the
z variables. First we consider the linear forms of R(1)

(Φ) = {A(1)i (y) : 1 6 i 6

|R(1)
(Φ)|}, which we know to be linearly independent over Q and involve only

the y variables. By considering their linear combinations, we may assume without
loss of generality that these linear forms are of the shape

A(1)i (y) = yi + A′i(y|R(1)
(Φ)|+1, . . . , yM) (1 6 i 6 |R(1)

(Φ)|),

where A′i(y|R(1)
(Φ)|+1, . . . , yM) is a linear form in the variables y

|R(1)
(Φ)|+1, . . . , yM

with coefficients in Q. By (5.3) and Lemma 3.2, we have

B1({F̃1,r (0, y, 0)|yi=0 (16i6|R(1)
(Φ)|)
: 1 6 r 6 r1})> C•1,1−|R

(1)
(Φ)|> R2+1> 0.

Therefore, we can find r1 variables from y
|R(1)

(Φ)|+1, . . . , yM such that the r1 × r1

matrix, where the r th row consists of the coefficients of F̃1,r (0, y, 0) of these
r1 variables, is invertible. Let us denote these variables by ỹ1, . . . , ỹr1 , and let
ỹ = (ỹ1, . . . , ỹr1). We can then write

F̃1,r (0, y, 0) = gr,1 ỹ1 + · · · + gr,r1 ỹr1 + F̃1,r (0, y, 0)|̃y=0,

where gr,1, . . . , gr,r1 ∈ Z. Let R(1)
+ (Φ) be a maximal linearly independent (over

Q) subset of

R(1)(Φ) ∪ {F̃1,1(0, y, 0)|̃y=0, . . . , F̃1,r1(0, y, 0)|̃y=0}.

The important thing to note is that by our construction, we have that the set of
linear forms

{gr,1 ỹ1 + · · · + gr,r1 ỹr1 : 1 6 r 6 r1} ∪R
(1)
+
(Φ)

is linearly independent over Q. Here R(1)
+
(Φ) is the set of forms obtained by

removing from R(1)
+ (Φ) all forms that depend only on the z variables. Note we

also have |R(1)
+
(Φ)| 6 |R(1)

(Φ)| + r1.
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We also decompose the linear forms F̃1,r (0, 0, z) in a similar manner. First we
consider the linear forms of R(1)(Ψ ) = {V (1)

i (z) : 1 6 i 6 |R(1)(Ψ )|}, which
we know to be linearly independent over Q and involve only the z variables. By
considering their linear combinations, we may assume without loss of generality
that these linear forms are of the shape

V (1)
i (z) = zi + V ′i (z|R(1)(Ψ )|+1, . . . , zn−M−K ) (1 6 i 6 |R(1)(Ψ )|),

where V ′i (z|R(1)(Ψ )|+1, . . . , zn−M−K ) is a linear form in the variables z|R(1)(Ψ )|+1,

. . . , zn−M−K with coefficients in Q. By (5.4) and Lemma 3.2, we have

B1({F̃1,r (0, 0, z)|zi=0 (16i6|R(1)(Ψ )|) : 1 6 r 6 r1})> C•1,2−|R(1)(Ψ )|> R1+1> 0.

Therefore, we can find r1 variables from z|R(1)(Ψ )|+1, . . . , zn−M−K such that the
r1 × r1 matrix, where the r th row consists of the coefficients of F̃1,r (0, 0, z) of
these r1 variables, is invertible. Let us denote these variables by z̃1, . . . , z̃r1 , and
let z̃ = (̃z1, . . . , z̃r1). We can then write

F̃1,r (0, 0, z) = g′r,1̃z1 + · · · + g′r,r1̃
zr1 + F̃1,r (0, 0, z)|̃z=0,

where g′r,1, . . . , g′r,r1
∈ Z. Let R(1)

+ (Ψ ) be a maximal linearly independent (over
Q) subset of

R(1)(Ψ ) ∪ {F̃1,1(0, 0, z)|̃z=0, . . . , F̃1,r1(0, 0, z)|̃z=0}.

The important thing to note is that by our construction, we have that the set of
linear forms

{g′r,1̃z1 + · · · + g′r,r1̃
zr1 : 1 6 r 6 r1} ∪R(1)

+
(Ψ )

is linearly independent over Q. We also have that |R(1)
+ (Ψ )| 6 |R(1)(Ψ )| + r1.

We replace R(1)(Φ) of R(Φ) with R(1)
+ (Φ) and refer to the resulting set of

forms as R+(Φ). It follows easily from the construction that the linear forms of
R(1)
+ (Φ) are either only in the y variables, or only in the z variables. We denote

R+(Φ) = (R(d−1)(Φ), . . . ,R(2)(Φ),R(1)
+
(Φ)),

and by abusing notation slightly let

R(1)
+
(Φ) = {A(1)i : 1 6 i 6 |R(1)

+
(Φ)|} and

R(1)
+
(Φ) = {A(1)i (y) : 1 6 i 6 |R(1)

+
(Φ)|}.
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We then define R+(Φ), R′2, and D′2 for R+(Φ) in an analogous manner as R(Φ),
R2, and D2 for R(Φ), respectively. Similarly, we replace R(1)(Ψ ) of R(Ψ ) with
R(1)
+ (Ψ ) and refer to the resulting set of forms as R+(Ψ ). We denote

R+(Ψ ) = (R(d−1)(Ψ ), . . . ,R(2)(Ψ ),R(1)
+
(Ψ )),

and by abusing notation slightly let

R(1)
+
(Ψ ) = {V (1)

i (z) : 1 6 i 6 |R(1)
+
(Ψ )|}.

We also define R′1 and D′1 for R+(Ψ ) in an analogous manner as R1 and D1 for
R(Ψ ), respectively. It then follows that we have R′2 6 R2 + r1 and R′1 6 R1 + r1.

For each H ∈ ZR′1 , we define the following set

Z(H) = {z ∈ [0, X ]n−M−K
∩ Zn−M−K

: R+(Ψ )(z) = H}.

By R+(Ψ )(z) = H, we mean that V (s)
i (z) = Hs,i , where Hs,i is the corresponding

term of H, for every V (s)
i ∈R+(Ψ ). Other instances of notation of this type should

be interpreted in a similar manner. By Proposition 2.7, we know that each of the
polynomials F`,r (0, 0, (0,b)) (2 6 ` < d, 1 6 r 6 r`) and G(k)

`,r (z) in (5.13) can
be expressed as a rational polynomial in the forms of R+(Ψ ). Let us denote

F`,r (0, 0, (0,b)) = c]`,r (R+(Ψ )),

and
G(k)
`,r (z) = c[`,r :k(R+(Ψ )),

where c]`,r and c[`,r :k are rational polynomials in R′1 variables. Therefore, for any
z0 = (a0,b0) ∈ Z(H) we have

F`,r (0, 0, (0,b0)) = c]`,r (H) and G(k)
`,r (z0) = c[`,r :k(H).

We also know that F̃1,r (0, 0, z)|̃z=0 is constant on Z(H), and we denote this
constant value by c]1,r (H).

Similarly, we know that each of the polynomials Ψ (k)
`,r :t1,...,t j

(z) in (5.13) can be
expressed as a rational polynomial in the forms of R+(Ψ ). Let us denote

Ψ
(k)
`,r :t1,...,t j

(z) = ĉ(k)`,r :t1,...,t j
(R+(Ψ )), (5.22)

where ĉ(k)`,r :t1,...,t j
is a rational polynomial in R′1 variables. Therefore, for any z0 ∈

Z(H) we have
Ψ
(k)
`,r :t1,...,t j

(z0) = ĉ(k)`,r :t1,...,t j
(H).
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Since each of the forms Ψ̃ (s−k)
s,i :i1,...,ik

(z) in (5.15) can be expressed as a rational
polynomial in the forms of R+(Ψ ), let us denote

Ψ̃
(s−k)

s,i :i1,...,ik
(z) = c̃ (s−k)

s,i :i1,...,ik
(R+(Ψ )),

where each c̃ (s−k)
s,i :i1,...,ik

is a rational polynomial in R′1 variables. Therefore, for each
A(s)i with 1 < s 6 d − 1 and 1 6 i 6 |R(s)(Φ)|, we can write

A(s)i (y, z) =
s∑

k=0

∑
16i16···6ik6M

c̃ (s−k)
s,i :i1,...,ik

(R+(Ψ ))yi1 · · · yik . (5.23)

Consequently, we can define the following polynomial for each 1 < s 6 d − 1
and 1 6 i 6 |R(s)(Φ)|,

A(s)i (y, Z(H)) =
s∑

k=0

∑
16i16···6ik6M

c̃ (s−k)
s,i :i1,...,ik

(H)yi1 · · · yik , (5.24)

so that given any z0 ∈ Z(H) we have

A(s)i (y, z0) = A(s)i (y, Z(H)).

We then define

R+(Φ)(y, Z(H)) = {A(s)i (y, Z(H)) : 2 6 s 6 d − 1, 1 6 i 6 |R(s)
(Φ)|}

∪R(1)
+
(Φ),

which is a system consisting of R′2 polynomials (with possible repetitions).
For each G ∈ ZR′2 , we let

Y (G;H) = {y ∈ [0, X ]M ∩ ZM
: R+(Φ)(y, Z(H)) = G}.

It follows from the definition of R(1)
+
(Φ) that for each 1 6 r 6 r1 the polynomial

F̃1,r (0, y, 0)|̃y=0 is constant on Y (G;H), and we denote this constant value by
c′1,r (G,H).

Recall Φ is the collection of all Φ(k)
`,r :i1,...,i j

(y, z) in (5.13), and that each
Φ
(k)
`,r :i1,...,i j

(y, z) can be expressed as a rational polynomial in the forms of R+(Φ).
It follows from our definition that the forms of R+(Φ) which depend only on the
z variables are constant on Z(H), and the remaining forms, which are precisely
the forms of R+(Φ), are constant on Y (G;H)× Z(H). Thus eachΦ(k)

`,r :i1,...,i j
(y, z)
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is constant on Y (G;H)×Z(H), and we denote this constant value by c(k)`,r :i1,...,i j
(G,

H). Let 2 6 ` < d and 1 6 r 6 r`. Therefore, for any choice of z = (a,b) ∈ Z(H)
and y ∈ Y (G;H), the polynomial f`,r (x) takes the following shape

f`,r (w, y, z)

= f`,r (w, 0, 0)+
`−1∑
j=1

∑
16i16···6i j6K

(
`− j∑
k=1

c(k)`,r :i1,...,i j
(G,H)

)
wi1 · · ·wi j

+

`−1∑
j=1

∑
16t16···6t j6M

(
`− j∑
k=0

ĉ(k)`,r :t1,...,t j
(H)

)
yt1 · · · yt j + F`,r (0, y, 0)

+ P`,r (a,b)+ c]`,r (H)+
`−1∑
k=1

c[`,r :k(H). (5.25)

When ` = d , we replace the term P`,r (a,b)+ c]`,r (H) in (5.25) with Fd,r (0, 0, z).
Similarly, when ` = 1 and 1 6 r 6 r1, for any choice of z = (a,b) ∈ Z(H) and
y ∈ Y (G;H), the polynomial f1,r (x) takes the following shape

f1,r (x) = c1,rwr + f̃1,r (w, 0, 0)+ (gr,1 ỹ1 + · · · + gr,r1 ỹr1)

+ c′1,r (G,H)+ (g′r,1̃z1 + · · · + g′r,r1̃
zr1)+ c]1,r (H)

where f̃1,r is defined in (4.2).
For each 2 6 ` 6 d, 1 6 r 6 r`, we label

C`,r (w,G,H) = f`,r (w, 0, 0)

+

`−1∑
j=1

∑
16i16···6i j6K

(
`− j∑
k=1

c(k)`,r :i1,...,i j
(G,H)

)
wi1 · · ·wi j ,

and

U`,r (y,H) =
`−1∑
j=1

∑
16t16···6t j6M

(
`− j∑
k=0

ĉ(k)`,r :t1,...,t j
(H)

)
yt1 · · · yt j + F`,r (0, y, 0).

(5.26)
We let

X`,r (a,b,H) = P`,r (a,b)+ c]`,r (H)+
`−1∑
k=1

c[`,r :k(H) (2 6 ` < d, 1 6 r 6 r`),

and also

Xd,r (a,b,H) = Fd,r (0, 0, z)+
d−1∑
k=1

c[d,r :k(H) (1 6 r 6 rd).
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Then for z = (a,b) ∈ Z(H) and y ∈ Y (G;H), we have

f`,r (w, y, z) = C`,r (w,G,H)+ U`,r (y,H)+ X`,r (a,b,H)
(2 6 ` 6 d, 1 6 r 6 r`).

We define the following three exponential sums,

S0(α,G,H) =
∑

w∈[0,X ]K

Λ(w)e

( ∑
16r6r1

α1,r (c1,rwr + f̃1,r (w, 0, 0))

+

∑
26`6d

∑
16r6r`

α`,r · C`,r (w,G,H)

)
,

S1(α,G,H) =
∑

y∈Y (G;H)

Λ(y)e

( ∑
16r6r1

α1,r (gr,1 ỹ1 + · · · + gr,r1 ỹr1 + c′1,r (G,H))

+

∑
26`6d

∑
16r6r`

α`,r · U`,r (y,H)

)
,

and

S2(α,H) =
∑

z=(a,b)∈Z(H)

Λ(z)e

( ∑
16r6r1

α1,r (g′r,1̃z1 + · · · + g′r,r1̃
zr1 + c]1,r (H))

+

∑
26`6d

∑
16r6r`

α`,r · X`,r (a,b,H)

)
.

Let

L1(X) = {H ∈ ZR′1 : Z(H) 6= ∅},

and for each H ∈ L1(X), let

L2(X;H) = {G ∈ ZR′2 : Y (G,H) 6= ∅}.

We have the following bounds on the cardinalities of these sets,

|L1(X)| � X D′1 and |L2(X;H)| � X D′2 .

It is not difficult to deduce the first inequality. The implicit constant in the second
inequality is independent of H, and to see this we note that given A(s)i with 1 <
s 6 d − 1 and 1 6 i 6 |R(s)

(Φ)|, we have

|A(s)i (y, z)| =

∣∣∣∣∣
s∑

k=0

∑
16i16···6ik6M

Ψ̃
(s−k)

s,i :i1,...,ik
(z)yi1 · · · yik

∣∣∣∣∣� X s
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for any (y, z) ∈ [0, X ]n−K
∩ Zn−K , and similarly for the linear forms of R(1)

+
(Φ).

Therefore, we obtain by applying the Cauchy–Schwarz inequality

∣∣∣∣∫
m(C)

T (f;α)dα
∣∣∣∣2

6

∣∣∣∣∣∣∣∣∣∣
∑

H∈L1(X)

∑
G∈L2(X;H)

∫
m(C)

∑
w∈[0,X ]K
y∈Y (G;H)

z=(a,b)∈Z(H)

Λ(w)Λ(y)Λ(z)

· e

( ∑
16r6r1

α1,r (c1,rwr + f̃1,r (w, 0, 0)+ (gr,1 ỹ1 + · · · + gr,r1 ỹr1)

+ c′1,r (G,H)

+ (g′r,1̃z1 + · · · + g′r,r1̃
zr1)+ c]1,r (H))

)

· e

( ∑
26`6d

∑
16r6r`

α`,r · (C`,r (w,G,H)+ U`,r (y,H)+ X`,r (a,b,H))

)
dα

∣∣∣∣∣∣∣∣∣∣

2

� X D′1+D′2
∑

H∈L1(X)

∑
G∈L2(X;H)

∣∣∣∣∫
m(C)

S0(α,G,H)S1(α,G,H)S2(α,H)dα
∣∣∣∣2

� X D′1+D′2

 sup
H∈L1(X)

G∈L2(X;H)

sup
α∈m(C)

|S0(α,G,H)|2


·

∑
H∈L1(X)

∑
G∈L2(X;H)

‖S1(·,G,H)‖2
2‖S2(·,H)‖2

2, (5.27)

where ‖ · ‖2 denotes the L2-norm on [0, 1]R .
By the orthogonality relation, it follows that

‖S1(·,G,H)‖2
2‖S2(·,H)‖2

2 6 (log X)2n−2KN1(G;H)N2(H),
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where

N1(G;H) = |{(y, y′) ∈ Y (G;H)× Y (G;H) : U`,r (y,H)
= U`,r (y′,H) (2 6 ` 6 d, 1 6 r 6 r`),

gr,1 ỹ1 + · · · + gr,r1 ỹr1 = gr,1 ỹ′1 + · · · + gr,r1 ỹ′r1
(1 6 r 6 r1)}|,

and with z = (a,b) and z′ = (a′,b′),

N2(H) = |{(z, z′) ∈ Z(H)× Z(H) : X`,r (a,b,H)
= X`,r (a′,b′,H) (2 6 ` 6 d, 1 6 r 6 r`),

g′r,1̃z1 + · · · + g′r,r1̃
zr1 = g′r,1̃z′1 + · · · + g′r,r1̃

z′r1
(1 6 r 6 r1)}|.

Here ỹ′i (1 6 i 6 r1) are r1 of the y′ variables in the exact same way ỹi (1 6 i 6 r1)

are r1 of the y variables. Similarly, z̃′i (1 6 i 6 r1) are r1 of the z′ variables in the
exact same way z̃i (1 6 i 6 r1) are r1 of the z variables. Other instances of
notation of this type should be interpreted in a similar manner.

With these notations, we may further bound (5.27) as follows∣∣∣∣∫
m(C)

T (f;α)dα
∣∣∣∣2

� (log X)2n−2K X D′1+D′2

 sup
H∈L1(X)

G∈L2(X;H)

sup
α∈m(C)

|S0(α,G,H)|2
W, (5.28)

where
W =

∑
H∈L1(X)

∑
G∈L2(X;H)

N1(G;H)N2(H).

We can express W as the number of solutions y, y′ ∈ [0, X ]M ∩ ZM and z =
(a,b), z′ = (a′,b′) ∈ [0, X ]n−M−K

∩ Zn−M−K of the system

R+(Ψ )(z) = R+(Ψ )(z′) = H (5.29)
R+(Φ)(y, Z(H)) = R+(Φ)(y′, Z(H)) = G

U`,r (y,H) = U`,r (y′,H) (2 6 ` 6 d, 1 6 r 6 r`)
gr,1 ỹ1 + · · · + gr,r1 ỹr1 = gr,1 ỹ′1 + · · · + gr,r1 ỹ′r1

(1 6 r 6 r1)

X`,r (a,b,H) = X`,r (a′,b′,H) (2 6 ` 6 d, 1 6 r 6 r`)
g′r,1̃z1 + · · · + g′r,r1̃

zr1 = g′r,1̃z′1 + · · · + g′r,r1̃
z′r1

(1 6 r 6 r1)

for any H ∈ L1(X) and G ∈ L2(X;H). By R+(Ψ )(z) = R+(Ψ )(z′) = H, we
mean that V (s)

i (z)= V (s)
i (z′)= Hs,i , where Hs,i is the corresponding term of H, for
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every V (s)
i ∈ R+(Ψ ). The second set of equations in (5.29) should be interpreted

in a similar manner.
We know that the system of polynomials R+(Φ)(y, Z(H)) is identical to

R+(Φ)(y, z0) for any choice of z0 ∈ Z(H). Similarly, it follows from (5.14),
(5.22), and (5.26) that the polynomial U`,r (y,H) is identical to f`,r (0, y, z0) −

f`,r (0, 0, z0) for any choice of z0 ∈ Z(H). Furthermore, for 2 6 ` < d we
know that each term of X`,r (a,b,H) except for P`,r (a,b) is constant on z = (a,
b) ∈ Z(H). Therefore, since R+(Ψ )(z) = H implies z ∈ Z(H), we can rearrange
the system (5.29) and deduce that W is the number of solutions y, y′ ∈ [0,
X ]M ∩ ZM and z, z′ ∈ [0, X ]n−M−K

∩ Zn−M−K of the following system

R+(Ψ )(z) = R+(Ψ )(z′) (5.30)
R+(Φ)(y, z) = R+(Φ)(y′, z)

f`,r (0, y, z)− f`,r (0, 0, z) = f`,r (0, y′, z)− f`,r (0, 0, z)
(2 6 ` 6 d, 1 6 r 6 r`)

gr,1 ỹ1 + · · · + gr,r1 ỹr1 = gr,1 ỹ′1 + · · · + gr,r1 ỹ′r1
(1 6 r 6 r1)

Fd,r (0, 0, z) = Fd,r (0, 0, z′) (1 6 r 6 rd)

P`,r (a,b) = P`,r (a′,b′) (2 6 ` < d, 1 6 r 6 r`)
g′r,1̃z1 + · · · + g′r,r1̃

zr1 = g′r,1̃z′1 + · · · + g′r,r1̃
z′r1

(1 6 r 6 r1).

Our result then follows from the following two claims.

CLAIM 1. Given any c > 0, for sufficiently large C > 0 we have

sup
H∈L1(X)

G∈L2(X;H)

sup
α∈m(C)

|S0(α,G,H)| �
X K

(log X)c
.

CLAIM 2. We have the following bound on W ,

W � X 2n−2K−2
∑d
`=1 `r`−D′1−D′2 .

Let c > 0. By substituting the bounds from the two claims above into (5.28),
we obtain that for sufficiently large C > 0 we have∫

m(C)
T (f;α)dα �

X n−
∑d
`=1 `r`

(log X)c
,

which is the bound in the statement of this proposition. Therefore, we are only left
to prove Claims 1 and 2 to establish our proposition. We now present the proof of
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Claim 2. Claim 1 is obtained via Weyl differencing, which is a technique based
on the Cauchy–Schwarz inequality, and we prove it in Section 5.3 after the proof
of Claim 2.

From (5.30), we can write

W =
∑

z=(a,b)∈[0,X ]n−M−K

W ′

1(z) ·W ′

2(z),

where W ′

1(z) is the number of solutions y, y′ ∈ [0, X ]M ∩ ZM to the system

R+(Φ)(y, z) = R+(Φ)(y′, z),
f`,r (0, y, z)− f`,r (0, 0, z) = f`,r (0, y′, z)− f`,r (0, 0, z)

(2 6 ` 6 d, 1 6 r 6 r`)
gr,1 ỹ1 + · · · + gr,r1 ỹr1 = gr,1 ỹ′1 + · · · + gr,r1 ỹ′r1

(1 6 r 6 r1),

and W ′

2(z) is the number of solutions z′ = (a′,b′) ∈ [0, X ]n−M−K
∩ Zn−M−K to

the system

R+(Ψ )(z) = R+(Ψ )(z′)
Fd,r (0, 0, z) = Fd,r (0, 0, z′) (1 6 r 6 rd)

P`,r (a,b) = P`,r (a′,b′) (2 6 ` < d, 1 6 r 6 r`)
g′r,1̃z1 + · · · + g′r,r1̃

zr1 = g′r,1̃z′1 + · · · + g′r,r1̃
z′r1

(1 6 r 6 r1).

Define Wi :=
∑

z W ′

i (z)2 (i = 1, 2) so that we have W2 6W1W2 by the Cauchy–
Schwarz inequality. We estimate W1 and W2 in Sections 5.1 and 5.2, respectively.
In Section 5.1, we prove W1 � X n+3M−K−2

∑d
`=1 `r`−2D′2 , and in Section 5.2 we

prove W2 � X 3(n−M−K )−2
∑d
`=1 `r`−2D′1 . Combining these bounds for W1 and W2,

we obtain
W 6 W1/2

1 W1/2
2 � X 2n−2K−2

∑d
`=1 `r`−D′1−D′2,

which proves Claim 2.

5.1. Estimate for W1. We first estimate W1, which we can deduce to be the
number of solutions y, y′, v, v′ ∈ [0, X ]M ∩ ZM and z ∈ [0, X ]n−M−K

∩ Zn−M−K

satisfying the equations

f`,r (0, y, z)− f`,r (0, y′, z) = 0 (2 6 ` 6 d, 1 6 r 6 r`) (5.31)
f`,r (0, v, z)− f`,r (0, v′, z) = 0 (2 6 ` 6 d, 1 6 r 6 r`)

r1∑
i=1

gr,i ỹi −

r1∑
i=1

gr,i ỹ′i = 0 (1 6 r 6 r1)
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r1∑
i=1

gr,i ṽi −

r1∑
i=1

gr,i ṽ
′

i = 0 (1 6 r 6 r1)

R+(Φ)(y, z)−R+(Φ)(y′, z) = 0
R+(Φ)(v, z)−R+(Φ)(v′, z) = 0.

Let R(i)
+
(Φ) denote the degree i forms of R+(Φ) (1 6 i < d). By R+(Φ)(y, z)

−R+(Φ)(y′, z), we mean the system of forms where its degree i forms are

R(i)
+
(Φ)(y, z)−R(i)

+
(Φ)(y′, z) = {A(i)j (y, z)− A(i)j (y

′, z) : 1 6 j 6 |R(i)
+
(Φ)|},

for each 1 6 i 6 d − 1. Recall we have R(i)
+
(Φ) = R(i)

(Φ) for 2 6 i 6 d − 1.
We also define

R+(Φ)(v, z)−R+(Φ)(v′, z)

in a similar manner.
We consider the h-invariant of the system of polynomials on the left hand side

of (5.31), and show that it is a regular system. Recall we defined Q`,r (y, z) in (5.7)
and also remarked that it is the homogeneous degree ` portion of the polynomial
f`,r (0, y, z) − f`,r (0, 0, z). Therefore, the homogeneous degree ` portion of the
polynomial f`,r (0, y, z) − f`,r (0, y′, z) is precisely Q`,r (y, z) − Q`,r (y′, z). Thus
the homogeneous degree d portions of the degree d polynomials of the system
(5.31) are Qd,r (y, z) − Qd,r (y′, z), Qd,r (v, z) − Qd,r (v′, z) (1 6 r 6 rd). We let
hd be the h-invariant of these degree d forms. Suppose for some λ,µ ∈ Qrd , not
both 0, we have

rd∑
r=1

λr · (Qd,r (y, z)− Qd,r (y′, z))+ µr · (Qd,r (v, z)− Qd,r (v′, z))

=

hd∑
j=1

Ũ j · Ṽ j , (5.32)

where Ũ j = Ũ j(y, y′, v, v′, z) and Ṽ j = Ṽ j(y, y′, v, v′, z) are rational forms of
positive degree (1 6 j 6 hd). Without loss of generality, suppose λ 6= 0. If we
set v = v′ = y′ = 0, then the above equation (5.32) becomes

rd∑
r=1

λr · Qd,r (y, z) =
hd∑
j=1

Ũ j(y, 0, 0, 0, z) · Ṽ j(y, 0, 0, 0, z).
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Therefore, we obtain from (5.9) and (5.17) that

hd > hd({Qd,r (y, z) : 1 6 r 6 rd})

> ρd,d(2R + 2R2)+ 2R2 + 4r1

> ρd,d(2R + 2R′2 − 2|R(1)
+
(Φ)| − 2r1)+ 2|R(1)

+
(Φ)| + 2r1.

We now estimate the h-invariant of the degree ` polynomials of the
system (5.31) for each 2 6 ` 6 d − 1. The homogeneous degree ` portion of the
degree ` polynomials of the system (5.31) is precisely Q`,r (y, z) − Q`,r (y′, z),
Q`,r (v, z)−Q`,r (v′, z) (1 6 r 6 r`), and the forms of R(`)

+
(Φ)(y, z)−R(`)

+
(Φ)(y′,

z) and R(`)

+
(Φ)(v, z)−R(`)

+
(Φ)(v′, z). We let h` be the h-invariant of these degree

` forms. Suppose for some λ,µ ∈ Qr` and γ , γ ′ ∈ Q|R
(`)
(Φ)|, not all zero vectors,

we have

r∑̀
r=1

λr · (Q`,r (y, z)− Q`,r (y′, z))+ µr · (Q`,r (v, z)− Q`,r (v′, z))

+

∑
16 j6|R(`)

(Φ)|

γ j(A
(`)

j (y, z)− A(`)j (y
′, z))+ γ ′j(A

(`)

j (v, z)− A(`)j (v
′, z))

=

h∑̀
j=1

Ũ j · Ṽ j , (5.33)

where Ũ j = Ũ j(y, y′, v, v′, z) and Ṽ j = Ṽ j(y, y′, v, v′, z) are rational forms of
positive degree (1 6 j 6 h`). We must consider two cases, γ = γ ′ = 0 and at
least one of γ and γ ′ not being a zero vector. If γ = γ ′ = 0, then at least one of
λ or µ is not a zero vector. Without loss of generality, suppose λ 6= 0. Then by
setting v = v′ = y′ = 0, we have

r∑̀
r=1

λr Q`,r (y, z) =
h∑̀

j=1

Ũ j(y, 0, 0, 0, z) · Ṽ j(y, 0, 0, 0, z).

Consequently, we obtain from (5.9) and (5.17) that

h` > h`({Q`,r (y, z) : 1 6 r 6 r`}) > ρd,`(2R + 2R2)+ 2R2 + 4r1.

For the second case, suppose without loss of generality that γ 6= 0. First we set
v = v′ = 0 and simplify the equation (5.33) to
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r∑̀
r=1

λr · (Q`,r (y, z)− Q`,r (y′, z))+
∑

16 j6|R(`)
(Φ)|

γ j(A
(`)

j (y, z)− A(`)j (y
′, z))

=

h∑̀
j=1

Ũ j(y, y′, 0, 0, z) · Ṽ j(y, y′, 0, 0, z). (5.34)

Recall every monomial of Q`,r (y, z) contains at least one of the y variables. Thus
it follows from the definition of the h-invariant, (5.1), and (5.18) that

h`(Q`,r (y, z))
6 M
6 d R(R2

+ 1)d−22d(ρd,d(2R + 2R2)+ 2R2 + 4r1 + 2RC ′′0 )
+ d R3(R2

+ 1)d−2(2R2 + 1).

Therefore, by moving the term
∑r`

r=1 λr ·(Q`,r (y, z)−Q`,r (y′, z)) to the right hand
side of the equation (5.34), we obtain via Lemma 2.6 and (4) of Proposition 2.7
that

h` + 2r`M

> h`(R
(`)

+
(Φ)(y, z)−R(`)

+
(Φ)(y′, z))

> h`(R
(`)

+
(Φ)(y, z)−R(`)

+
(Φ)(y′, z); z)

> h`(R
(`)

+
(Φ)(y, z),R(`)

+
(Φ)(y′, z); z)

= h`(R
(`)
(Φ)(y, z),R(`)

(Φ)(y′, z); z)

= h`(R
(`)
(Φ)(y, z); z)

> F`(R2)

= ρd,d(2R + 2R2)+ 2R2 + 4r1

+ 2R(d R(R2
+ 1)d−22d(ρd,d(2R + 2R2)+ 2R2 + 4r1 + 2RC ′′0 )

+ d R3(R2
+ 1)d−2(2R2 + 1)). (5.35)

Thus it follows that

h` > ρd,d(2R + 2R2)+ 2R2 + 4r1 > ρd,`(2R + 2R2)+ 2R2 + 4r1.

Therefore, in either case we obtain

h` > ρd,`(2R + 2R2)+ 2R2 + 4r1 > ρd,`(2R + 2R′2 − 2|R(1)
+
(Φ)| − 2r1)

+ 2|R(1)
+
(Φ)| + 2r1.
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Finally, we also have to show that the linear forms of the system (5.31) are
linearly independent over Q. Recall the linear forms of{

r1∑
i=1

gr,i ỹi : 1 6 r 6 r1

}⋃
R(1)
+
(Φ)(y, z)

are linearly independent over Q, and by construction they are only in the y
variables. It is then a basic exercise in linear algebra to verify that the linear forms
of

R(1)
+
(Φ)(y, z)−R(1)

+
(Φ)(y′, z)

⋃
R(1)
+
(Φ)(v, z)−R(1)

+
(Φ)(v′, z)⋃ {

r1∑
i=1

gr,i ỹi −

r1∑
i=1

gr,i ỹ′i : 1 6 r 6 r1

}
⋃ {

r1∑
i=1

gr,i ṽi −

r1∑
i=1

gr,i ṽ
′

i : 1 6 r 6 r1

}
(5.36)

are linearly independent over Q.
Therefore, we obtain from Corollary 2.5 that

W1 � X n+3M−K−2
∑d
`=1 `r`−2D′2 .

5.2. Estimate for W2. We now estimate W2, which we can deduce to be the
number of solutions z, z′, z′′ ∈ [0, X ]n−M−K

∩ Zn−M−K satisfying the equations

Fd,r (0, 0, z)− Fd,r (0, 0, z′) = 0 (1 6 r 6 rd) (5.37)
Fd,r (0, 0, z)− Fd,r (0, 0, z′′) = 0 (1 6 r 6 rd)

P`,r (a,b)− P`,r (a′,b′) = 0 (2 6 ` < d, 1 6 r 6 r`)
P`,r (a,b)− P`,r (a′′,b′′) = 0 (2 6 ` < d, 1 6 r 6 r`)

r1∑
i=1

g′r,i z̃i −

r1∑
i=1

g′r,i z̃
′

i = 0 (1 6 r 6 r1)

r1∑
i=1

g′r,i z̃i −

r1∑
i=1

g′r,i z̃
′′

i = 0 (1 6 r 6 r1)

R+(Ψ )(z)−R+(Ψ )(z′) = 0
R+(Ψ )(z)−R+(Ψ )(z′′) = 0,

where z = (a,b), z′ = (a′,b′), and z′′ = (a′′,b′′). Here the notations R+(Ψ )(z)−
R+(Ψ )(z′) and R+(Ψ )(z)−R+(Ψ )(z′′) should be interpreted in a similar manner
as in Section 5.1.
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We consider the h-invariant of the system of forms on the left hand side
of (5.37), and show that it is a regular system. The degree d forms of the
system (5.37) are precisely Fd,r (0, 0, z)− Fd,r (0, 0, z′) and Fd,r (0, 0, z)− Fd,r (0,
0, z′′) (1 6 r 6 rd), and we let hd be the h-invariant of these degree d forms.
Suppose for some λ,µ ∈ Qrd , not both 0, we have

rd∑
r=1

λr · (Fd,r (0, 0, z)− Fd,r (0, 0, z′))+
rd∑

r=1

µr · (Fd,r (0, 0, z)− Fd,r (0, 0, z′′))

=

hd∑
j=1

Ũ j · Ṽ j , (5.38)

where Ũ j = Ũ j(z, z′, z′′) and Ṽ j = Ṽ j(z, z′, z′′) are rational forms of positive
degree (1 6 j 6 hd). We consider two cases, (λ + µ) 6= 0 and (λ + µ) = 0.
Suppose (λ + µ) 6= 0. If we set z′ = z′′ = 0, then the above equation (5.38)
becomes

rd∑
r=1

(λr + µr ) · Fd,r (0, 0, z) =
hd∑
j=1

Ũ j(z, 0, 0) · Ṽ j(z, 0, 0).

Thus we obtain
hd > hd(Fd(0, 0, z)).

On the other hand, suppose (λ+µ) = 0, then the above equation (5.38) simplifies
to

−

rd∑
r=1

λr · (Fd,r (0, 0, z′)− Fd,r (0, 0, z′′)) =
hd∑
j=1

Ũ j · Ṽ j .

From this equation, by setting z′′ = 0 we obtain

hd > hd(Fd(0, 0, z)).

Therefore, in either case we obtain from (5.11), (5.12), and (5.21) that

hd > hd(Fd(0, 0, z))
> ρd,d(2R + 2R1)+ 2R1 + 4r1

> ρd,d(2R + 2R′1 − 2|R(1)
+
(Ψ )| − 2r1)+ 2|R(1)

+
(Ψ )| + 2r1.

We now estimate the h-invariant of the degree ` forms of the system (5.37) for
each 2 6 ` < d . Recall we have R+(Ψ ) = (R(d−1)(Ψ ), . . . ,R(2)(Ψ ),R(1)

+ (Ψ )).
The degree ` forms of the system (5.37) are precisely P`,r (a,b) − P`,r (a′,b′),
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P`,r (a,b)− P`,r (a′′,b′′) (1 6 r 6 r`), and the forms of R(`)(Ψ )(z)−R(`)(Ψ )(z′)
and R(`)(Ψ )(z) − R(`)(Ψ )(z′′). We let h` be the h-invariant of these degree `
forms. Then for some λ,µ ∈ Qr` and γ , γ ′ ∈ Q|R(`)(Ψ )|, not all zero vectors, we
have

r∑̀
r=1

λr (P`,r (a,b)− P`,r (a′,b′)+ µr (P`,r (a,b)− P`,r (a′′,b′′))

+

|R(`)(Ψ )|∑
j=1

γ j · (V
(`)

j (z)− V (`)

j (z
′))+ γ ′j · (V

(`)

j (z)− V (`)

j (z
′′))

=

h∑̀
j=1

Ũ j · Ṽ j , (5.39)

where Ũ j = Ũ j(z, z′, z′′) and Ṽ j = Ṽ j(z, z′, z′′) are rational forms of positive
degree (1 6 j 6 h`). We consider two cases, γ = γ ′ = 0 and at least one of γ
and γ ′ is not a zero vector.

First we suppose that γ = γ ′ = 0. In this case, at least one of λ and µ is not
a zero vector. Without loss of generality, suppose λ 6= 0. Then by setting z = z′′
and z′ = 0, the equation (5.39) becomes

∑
16r6r`

λr P`,r (a,b) =
h∑̀

j=1

Ũ j(z, 0, z) · Ṽ j(z, 0, z).

Therefore, it follows from (5.10) and (5.19) that

h` > h`({P`,r (a,b) : 1 6 r 6 r`})
> ρd,`(2R + 2R1)+ 2R1 + 4r1

> ρd,`(2R + 2R′1 − 2|R(1)
+
(Ψ )| − 2r1)+ 2|R(1)

+
(Ψ )| + 2r1.

Next we suppose at least one of γ and γ ′ is not a zero vector. Without loss of
generality, suppose γ 6= 0. We consider two further subcases, (γ + γ ′) 6= 0 and
(γ + γ ′) = 0.

Suppose (γ + γ ′) 6= 0. In this case, we set z′ = z′′ = 0, and the equation (5.39)
simplifies to

∑
16r6r`

(λr + µr )P`,r (a,b)+
|R(`)(Ψ )|∑

j=1

(γ j + γ
′

j) · V
(`)

j (z)

=

h∑̀
j=1

Ũ j(z, 0, 0) · Ṽ j(z, 0, 0). (5.40)
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Recall every monomial of P`,r (a,b) contains at least one of the a variables. Thus
it follows from the definition of the h-invariant, (5.5), and (5.20) that

h`(P`,r (a,b)) 6 M ′ 6 d R(R2
+ 1)d−22d(ρd,d(2R + 2R1)+ 2R1 + 4r1 + 2RC ′′0 ).

Therefore, by moving the term
∑

16r6r`(λr + µr )P`,r (a,b) to the right hand side
of the equation (5.40), we obtain via (3) of Proposition 2.7 that

h` + M ′r` > h`(R(`)(Ψ ))

> F ′`(R1)

= ρd,d(2R + 2R1)+ 2R1 + 4r1

+ 2R(d R(R2
+ 1)d−22d(ρd,d(2R + 2R1)+ 2R1 + 4r1 + 2RC ′′0 )).

Thus we obtain

h` > ρd,d(2R + 2R1)+ 2R1 + 4r1

> ρd,`(2R + 2R′1 − 2|R(1)
+
(Ψ )| − 2r1)+ 2|R(1)

+
(Ψ )| + 2r1. (5.41)

On the other hand, we now suppose (γ + γ ′) = 0. By setting z = z′′ = 0, the
equation (5.39) simplifies to

−

r∑̀
r=1

λr · P`,r (a′,b′)−
|R(`)(Ψ )|∑

j=1

γ j · V
(`)

j (z
′) =

h∑̀
j=1

Ũ j(0, z′, 0) · Ṽ j(0, z′, 0).

Then by a similar argument as above, we have

h` + M ′r` > h`(R(`)(Ψ ))

> F ′`(R1)

= ρd,d(2R + 2R1)+ 2R1 + 4r1

+ 2R(d R(R2
+ 1)d−22d(ρd,d(2R + 2R1)+ 2R1 + 4r1 + 2RC ′′0 )).

Therefore, we also obtain

h` > ρd,d(2R + 2R1)+ 2R1 + 4r1

> ρd,`(2R + 2R′1 − 2|R(1)
+
(Ψ )| − 2r1)+ 2|R(1)

+
(Ψ )| + 2r1 (5.42)

in this case.
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We also have to show that the linear forms of the system (5.37),

{R(1)
+
(Ψ )(z)−R(1)

+
(Ψ )(z′)}

⋃
{R(1)
+
(Ψ )(z)−R(1)

+
(Ψ )(z′′)}⋃ {

r1∑
i=1

g′r,i z̃i −

r1∑
i=1

g′r,i z̃
′

i : 1 6 r 6 r1

}
⋃ {

r1∑
i=1

g′r,i z̃i −

r1∑
i=1

g′r,i z̃
′′

i : 1 6 r 6 r1

}
, (5.43)

are linearly independent over Q. Recall the linear forms of

R(1)
+
(Ψ )(z)

⋃{
r1∑

i=1

g′r,i z̃i : 1 6 r 6 r1

}
are linearly independent over Q. Using this fact, the verification of linear
independence over Q of the system of linear forms (5.43) is a basic exercise in
linear algebra.

Therefore, we obtain by Corollary 2.5 that

W2 � X 3(n−M−K )−2
∑d
`=1 `r`−2D′1 .

5.3. Proof of Claim 1. Recall we defined

S0(α,G,H) =
∑

w∈[0,X ]K

Λ(w)e

( ∑
16r6r1

α1,r (c1,r wj1,r + f̃1,r (w, 0, 0))

+

∑
26`6d

∑
16r6r`

α`,r · C`,r (w,G,H)

)
, (5.44)

where

C`,r (w,G,H) = f`,r (w, 0, 0)

+

`−1∑
j=1

∑
16i16···6i j6K

(
`− j∑
k=1

c(k)`,r :i1,...,i j
(G,H)

)
wi1 · · ·wi j .

Also recall we defined the monomials wj`,r (1 6 ` 6 d, 1 6 r 6 r`) in (4.2). If
we consider the expression in the exponent of (5.44),∑

16r6r1

α1,r (c1,r wj1,r + f̃1,r (w, 0, 0))+
∑

26`6d

∑
16r6r`

α`,r · C`,r (w,G,H),
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as a polynomial in w with real coefficients, then it follows from the discussion
after (4.11) that the coefficient of wj`,r of this polynomial is c`,rα`,r . Furthermore,
this polynomial does not contain any monomial divisible by wj`,r other than itself.

We need to introduce few definitions and lemmas before we can begin with the
proof of Claim 1. Let 1 6 ` 6 d , q ∈ N, and a` ∈ Z/qZ. For q > 1 we define

N(`)
a`,q(C0) = {ξ` ∈ [0, 1) : |ξ` − a`/q| 6 (log X)C0 X−`},

and when q = 1 we let

N(`)

0,1(C0) = {ξ` ∈ [0, 1) : min{|ξ`|, |ξ` − 1|} 6 (log X)C0 X−`}.

We set

N(C0) =
⋃

q6(log X)C0

⋃
gcd(ad ,...,a1,q)=1

ad ,...,a1∈Z/qZ

N(d)
ad ,q(C0)× · · · ×N(1)

a1,q(C0),

and denote
n(C0) = [0, 1)d\N(C0).

Let Uq be the group of units in Z/qZ. When q = 1 we let U1 = {0}. Let us also
denote

n(`)(C0) = [0, 1)

∖ ⋃
q6(log X)C0

⋃
a`∈Uq

N(`)
a`,q(C0)

 .
Suppose ξ = (ξd, . . . , ξ1) ∈ [0, 1)d satisfies ξ` ∈ n(`)(C0) for some 1 6 ` 6 d .
Then it is clear that ξ ∈ n(C0).

We have the following lemma which is a special case of [14, Ch. VI, Section 1,
Theorem 10].

LEMMA 5.1 [14, Ch. VI, Section 1, Theorem 10]. Let `> 1, α`−1, . . . , α1, α0 ∈ R,
and gcd(a, q) = 1 with (log X)σ < q 6 X `(log X)−σ . Suppose we have σ0 > 0
such that σ > 26`(σ0 + 1). Then we have∑

p6X
p prime

e
(

a
q

p` + α`−1 p`−1
+ · · · + α1 p + α0

)
�

X
(log X)σ0

,

where the implicit constant depends only on `.

From this lemma we can obtain the following, which is essentially a special case
of [14, Ch. X, Section 5, Lemma 10.8].

https://doi.org/10.1017/fms.2018.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.21


S. Yamagishi 52

LEMMA 5.2 [14, Ch. X, Section 5, Lemma 10.8]. Suppose ` > 1 and α`, . . . ,
α1 ∈ R. Let

T1(α`, . . . , α1) =
∑

x∈[0,X ]

Λ(x)e(α`x` + · · · + α1x).

Given any c0 > 0, for sufficiently large C0 > 0 we have

|T1(α`, . . . , α1)| �
X

(log X)c0

for any α`, . . . , α1 ∈ R with α` ∈ n(`)(C0). Here the implicit constant depends
only on `.

Proof. By Dirichlet’s theorem on diophantine approximation, there exist a, q ∈ Z
such that gcd(a, q) = 1, 1 6 q 6 X `(log X)−C0 , and

|qα` − a| <
(log X)C0

X `
. (5.45)

Since we have ∣∣∣∣α` − a
q

∣∣∣∣ < (log X)C0

q X `
6
(log X)C0

X `
, (5.46)

it follows from the definition of n(`)(C0) that q > (log X)C0 . Let β` = α` − a/q .
Then we obtain from (5.45) that

|β`| =

∣∣∣∣α` − a
q

∣∣∣∣ < (log X)C0

q X `
6

1
X `
.

We now have the setup to apply Lemma 5.1. Let us define

T0(α`, . . . , α1) =
∑

16p6X
p prime

e(α` p` + · · · + α1 p).

By following the argument in the proof of [14, Ch. X, Section 5, Lemma 10.8],
we obtain that given any c0 > 0, for C0 > 0 sufficiently large we have

|T0(α`, . . . , α1)| �
X

(log X)c0
,

where the implicit constant depends only on `. From here we obtain via partial
summation the required bound on T1(α`, . . . , α1).
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Recall ‖α‖ is the distance from α ∈ R to the closest integer. The following is a
special case of [20, Lemma 14.1].

LEMMA 5.3 [20, Lemma 14.1]. Suppose λ ∈ R, A > 1, and Z > 0. Let N (Z)
be the number of integers v such that

|v| 6 Z A and ‖λv‖ 6 Z A−1. (5.47)

Then for 0 < Z1 6 Z2 < 1 we have

N (Z1)� (Z1/Z2)N (Z2),

where the implicit constant is an absolute constant.

We now begin with the proof of Claim 1. Let M0 be the diagonal R × R
matrix where its diagonal entries from the top left corner to the right bottom
corner are cd,1, cd,2, . . . , cd,rd , cd−1,1, cd−1,2, . . . , cd−1,rd−1, . . . , c1,1, c1,2, . . . , c1,r1

in this order. Clearly M0 is an invertible matrix. Let γ`,r = α`,r c`,r . Consider the
polynomial in the exponent of (5.44) as a polynomial in the w variables. Then we
know that the coefficient of wj`,r of this polynomial is γ`,r . We also have

M0 ·

αd,1
...

α1,r1

 =
γd,1

...

γ1,r1

 ∈ RR.

Suppose γ ∈M(C ′) for some C ′ > 0, then there exist a ∈ ZR and q ∈ N such that
gcd(a, q) = 1, 0 < q 6 (log X)C

′ , and |γ`,r−a`,r/q| 6 (log X)C
′

/X ` (1 6 ` 6 d,
1 6 r 6 r`). Let us denote

M−1
0 ·

ad,1/q
...

a1,r1/q

 =
a′d,1/q

′

...

a′1,r1
/q ′

 and M−1
0 ·

 γd,1 − ad,1/q
...

γ1,r1 − a1,r1/q

 =
β

′

d,1
...

β ′1,r1

 .
It is easy to deduce that

q ′ 6 (log X)C
′
+1 and |β ′`,r | 6

(log X)C
′
+1

X `
(1 6 ` 6 d, 1 6 r 6 r`)

for X sufficiently large with respect to cd,1, . . . , c1,r1 . Since α`,r = a′`,r/q
′
+ β ′`,r ,

we see that α ∈M(C ′ + 1). Now since α ∈ m(C), it follows from this argument
that γ ∈ m(C − 1). Then there exist ` and r such that γ`,r ∈ n(`)(C ′′), where
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C ′′ = (C − 1)/R, by the following reason. Suppose γ`,r 6∈ n(`)(C ′′) (1 6 ` 6 d,
1 6 r 6 r`). Then for each 1 6 ` 6 d, 1 6 r 6 r` there exist q`,r ∈ N and a`,r ∈ Z
such that

q`,r 6 (log X)C
′′

and |γ`,r − a`,r/q`,r | 6
(log X)C

′′

X `
.

By taking q to be the appropriate factor of the lowest common multiple of qd,1,

. . . , q1,r1 , we see that γ ∈M(C − 1), which is a contradiction.
Throughout the remainder of this section, we fix ` and r to be such that γ`,r ∈

n(`)(C ′′). Following [6], we consider two cases depending on wj`,r : Case 1 is when
wj`,r contains only one distinct variable, and Case 2 is when it has more than one
distinct variable.

Case 1: Without loss of generality, suppose wj`,r = w`
1. We may bound

S0(α,G,H) as follows

S0(α,G,H) 6 (log X)K−1
·

∑
wK∈[0,X ]

. . .
∑

w2∈[0,X ]

∣∣∣∣∣ ∑
w1∈[0,X ]

Λ(w1)e(γ`,rw`
1

+ τ(w1, w2, . . . , wK ,G,H))

∣∣∣∣∣ , (5.48)

where τ(w1, w2, . . . , wK ,G,H) has degree strictly less than ` as a polynomial in
w1 with coefficients possibly dependent on w2, . . . , wK ,G,H. This follows from
the fact that the coefficient of w`

1 of the polynomial in the exponent of (5.44) is
γ`,r , and that there are no other monomials divisible by w`

1.
Therefore, since γ`,r ∈ n(`)(C ′′) we may apply Lemma 5.2 with c0 = c+ K − 1

to the inner sum of (5.48) and obtain

S0(α,G,H)� (log X)K−1 X K−1 X
(log X)c+K−1

=
X K

(log X)c
.

Case 2: We have that wj`,r contains at least two distinct variables. In particular, we
must have ` > 1. By relabeling if necessary, let wj`,r = w

j1
1 . . . w

jk
k where j1, . . . ,

jk > 0. We know that the coefficient of wj`,r of the polynomial in the exponent of
(5.44) is γ`,r . In this case, we may bound S0(α,G,H) as follows

|S0(α,G,H)| 6 (log X)K−k
·

∑
wK∈[0,X ]

· · ·

∑
wk+1∈[0,X ]

|S(w1, . . . , wK ,G,H)|,

(5.49)
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where

S(w1, . . . , wK ,G,H)
=

∑
w1∈[0,X ]

· · ·

∑
wk∈[0,X ]

Λ(w1) · · ·Λ(wk)e(γ`,r wj`,r +Θ(w1, . . . , wk)),

and Θ(w1, . . . , wk) = Θ(w1, . . . , wk : wk+1, . . . , wK ,G,H) is a polynomial
in w1, . . . , wk with coefficients possibly dependent on wk+1, . . . , wK ,G,H. By
construction, we also know that this polynomial does not have any monomial
divisible by wj`,r .

We now apply Weyl differencing ` times, where we apply it ji times to the
variablewi for each 1 6 i 6 k. The point is that with this process every monomial
of γ`,r wj`,r + Θ(w1, . . . , wk) for which at least one of wi has degree strictly less
than ji will vanish, in particular every monomial of Θ(w1, . . . , wk) will vanish.
Let c̃ = j1! . . . jk !. As a result, we obtain

|S(w1, . . . , wK ,G,H)|2`

� (log X)k2` X k2`−`
∑

vi∈[−X,X ]
16i6`−1

min{X, ‖̃cγ`,rv1 · · · v`−1‖
−1
}. (5.50)

Since this is a standard application of Weyl differencing, and also similar to the
argument in [6, pages 725–726], we leave the details to the reader.

Let

AX :=

{
(v1, . . . , v`−1) ∈ [−X, X ]`−1

∩ Z`−1
: ‖̃cγ`,rv1 · · · v`−1‖ 6

1
X

}
.

For any 1 6 X ′ < X , we define the set

AX,X ′ :=

{
(v1, . . . , v`−1) ∈ [−X/X ′, X/X ′]`−1

∩ Z`−1
:

‖̃cγ`,rv1 · · · v`−1‖ 6
1

X (X ′)`−1

}
.

By applying Lemma 5.3 successively in the variables v1, . . . , v`−1, we obtain

|AX | � (X ′)`−1
|AX,X ′ |.

Let X ′ = X (log X)−C ′′/d . Suppose there exists (v1, . . . , v`−1) ∈ AX,X ′ such that
(v1 · · · v`−1) 6= 0. Then we have

|̃cv1 · · · v`−1| 6 (log X)C
′′

and ‖̃cγ`,rv1 · · · v`−1‖ 6
(log X)C

′′

X `
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for X sufficiently large with respect to `, and this contradicts the fact that γ`,r ∈
n(`)(C ′′). Thus at least one of v1, . . . , v`−1 must be 0. Therefore, we have

|AX,X ′ | � (log X)(`−2)C ′′/d,

and consequently,

|AX | �

(
X

(log X)C ′′/d

)`−1

|AX,X ′ | �
X `−1

(log X)C ′′/d
. (5.51)

We now proceed in a similar manner as in [20, Lemma 13.2]. First let us deal
with the case ` > 2. Let N0(v

′

1, . . . , v
′

`−2) be the number of points v`−1 ∈ [−X,
X ] ∩ Z such that (v′1, . . . , v

′

`−2, v`−1) ∈ AX . Then we have

|AX | =
∑

v1∈[−X,X ]

· · ·

∑
v`−2∈[−X,X ]

N0(v1, . . . , v`−2), (5.52)

and let N0 = |AX | when ` = 2.
Let us write {α} for the fractional part of a real number α, that is, {α} = α −

maxz6α
z∈Z

z. Then for any set of integers v1, . . . , v`−2, and a ∈ Z with 0 6 a < X ,

the inequality
a
X

6 {̃cγ`,rv1 · · · v`−1} <
a + 1

X
(5.53)

cannot hold for more than N0(v1, . . . , v`−2) integer points v`−1 lying inside [−X,
X ] for the following reason. Suppose this is indeed the case, and let v`−1 ∈ [−X,
X ] be one integer which satisfies (5.53). If v`−1 and v′`−1 are two distinct points
that satisfy (5.53), then we have

‖̃cγ`,rv1 · · · v`−2(v`−1 − v
′

`−1)‖ <
1
X

and (v`−1 − v
′

`−1) ∈ [−X, X ] ∩ Z. Consequently, we have (v1, . . . , v`−2, v`−1 −

v′`−1) ∈ AX from which we can obtain contradiction. Therefore, we obtain the
following inequalities∑

v`−1∈[−X,X ]

min(X, ‖̃cγ`,rv1 · · · v`−1‖
−1)

� N0(v1, . . . , v`−2)
∑

06a6X

min
(

X,max
(

X
a
,

X
|X − a − 1|

))
� N0(v1, . . . , v`−2)X log X. (5.54)
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Thus via (5.51), (5.52), and (5.54), we have the following bound for (5.50),

|S(w1, . . . , wK ,G,H)|2`

6 (log X)2
`k X 2`k−`

∑
v1∈[−X,X ]

· · ·

∑
v`−1∈[−X,X ]

min(X, ‖̃cγ`,rv1 · · · v`−1‖
−1)

� (log X)2
`k X 2`k−`

∑
v1∈[−X,X ]

· · ·

∑
v`−2∈[−X,X ]

N0(v1, . . . , v`−2)X log X

= (log X)2
`k X 2`k−`

|AX |X log X

6 X 2`k(log X)2
`k+1−C ′′/d,

and hence
|S(w1, . . . , wK ,G,H)| � X k(log X)k+2−`(1−C ′′/d).

Therefore, we obtain from (5.49) that

|S0(α,G,H)| � (log X)K−k
·

∑
wK∈[0,X ]

· · ·

∑
wk+1∈[0,X ]

X k(log X)k+2−`(1−C ′′/d)

� (log X)K X K (log X)2
−`(1−C ′′/d).

The case ` = 2 can be dealt with in a similar and more simple manner. Recall
from above C ′′ = (C − 1)/R and K 6 d R. Thus we make sure C is sufficiently
large with respect to d and R. This completes the proof of Claim 1, and hence the
proof of Proposition 4.1 as well.

6. Technical estimates

In this section, we collect results related to Weyl differencing that are necessary
in obtaining estimates for the singular integral and the singular series defined in
(7.4) and (7.19), respectively.

Let us denote B0 = [0, 1]n . Let α = (αd, . . . ,α1) ∈ RR , where R = r1+· · ·+rd

and α` = (α`,1, . . . , α`,r`) ∈ Rr` (1 6 ` 6 d). We define

‖α‖ = max
16`6d
16r6r`

‖α`,r‖ and |α| = max
16`6d
16r6r`

|α`,r |.

Let u = (ud, . . . ,u1) be a system of polynomials in Q[x1, . . . , xn], where u` =
(u`,1, . . . , u`,r`) is the subsystem of degree ` polynomials of u (1 6 ` 6 d). We let
U = (Ud, . . . ,U1) be the system of forms, where for each 1 6 ` 6 d , U` = (U`,1,

. . . ,U`,r`) and U`,r is the homogeneous degree ` portion of u`,r (1 6 r 6 r`).
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We define the following exponential sum associated to u,

S(α) = S(u,B0;α) :=
∑

x∈PB0∩Zn

e

( ∑
16`6d

∑
16r6r`

α`,r · u`,r (x)

)
. (6.1)

Let xi = (xi,1, . . . , xi,n) for i > 1, and let

Γ`,U`,r (x1, . . . , x`) =
1∑

t1=0

· · ·

1∑
t`=0

(−1)t1+···+t`U`,r (t1x1 + · · · + t`x`).

Let e1, . . . , en be the standard basis vectors of Cn . Let 1 < ` 6 d and r` > 0. We
define M` = M`(U`) to be the set of (` − 1)-tuples (x1, . . . , x`−1) ∈ (Cn)`−1 for
which the matrix

[mri ] = [Γ`,U`,r (x1, . . . , x`−1, ei)] (1 6 r 6 r`, 1 6 i 6 n) (6.2)

has rank strictly less than r`. For P0 > 0, we denote zP0(M`) to be the number of
integer points (x1, . . . , x`−1) on M` such that

max
16i6`−1

max
16 j6n

|xi, j | 6 P0.

We define g`(U`) to be the largest real number such that

zP(M`)� Pn(`−1)−g`(U`)+ε (6.3)

holds for each ε > 0. It was proved in [20, page 280, Corollary] that

h`(U`) <
`!

(log 2)`
(g`(U`)+ (`− 1)r`(r` − 1)). (6.4)

Let

γ` =
2`−1(`− 1)r`

g`(U`)

when r` > 0 and g`(U`) > 0. We let γ` = 0 if r` = 0, and let γ` = +∞ if r` > 0
and g`(U`) = 0. For ` with r` > 0, we also define

γ ′` =
2`−1

g`(U`)
=

γ`

(`− 1)r`
. (6.5)

We need the following lemma to obtain estimates on the singular integral. Let

I(B0, τ ) =

∫
v∈B0

e

(
d∑
`=1

r∑̀
r=1

τ`,r ·U`,r (v)

)
dv.
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LEMMA 6.1 [23, Lemma 2.7]. Suppose u has coefficients in Z, and that B1(u1) is
sufficiently large with respect to rd, . . . , r1, and d. Furthermore, suppose γ2, . . . ,

γd are sufficiently small with respect to rd, . . . , r1, and d. Then we have

I(B0, τ )� min(1, |τ |−R−1), (6.6)

where the implicit constant depends at most on d, rd, . . . , r1, and U.

We refer the reader to [23] for a proof of this lemma. The proof in [23] is similar
to that of [20, Lemma 8.1], which is for systems without linear polynomials.
However, due to the presence of linear polynomials it requires some justification
not available in [20].

We also need to deal with certain situations where the coefficients of u may
depend on P (but not the coefficients of U). There are essentially two different
scenarios we have to consider, first of which we refer to as the following.

Condition (?′): The polynomials of u have coefficients in Z, and the coefficients
of U do not depend on P . However, for each u`,r (x) (1 6 ` 6 d, 1 6 r 6 r`) the
coefficients of its monomials whose degrees are strictly less than ` may depend
on P .

We have the following result when u satisfies Condition (?′).

COROLLARY 6.2. Suppose u satisfies Condition (?′). Let S(α) be the sum
associated to u as in (6.1). Suppose ε′ > 0 is sufficiently small and Q > 0 satisfies

Qγ ′d < 1.

Then one of the following alternatives must hold:

(i) |S(α)| 6 Pn−Q .

(ii) There exists n0 ∈ N such that

n0 � P Qγd+ε
′

and ‖n0αd‖ � P−d+Qγd+ε
′

.

The implicit constants depend only on n, d, rd, ε
′, Q, and Ud .

Next we present the result in our second scenario for when the coefficients
of u may depend on P . Let u( j)

`,r (x) be the homogeneous degree j portion of the
polynomial u`,r (x). In the following corollary, for j < ` the coefficients of u( j)

`,r (x)
may be in Q and also depend on P , but in a controlled manner. On the other hand,
the coefficients of U`,r (x) do not depend on P .
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COROLLARY 6.3. Suppose u has coefficients in Q, and further suppose U has
coefficients in Z. Let Q > 0 and ε > 0. Let 2 6 ` 6 d with r` > 0. If ` = d, then
let θ = 0 and q = 1. On the other hand, if 2 6 ` < d, then suppose 0 6 θ < 1/4
and that there is q ∈ N with

q 6 Pθ , qα j ∈ Zr j (` < j 6 d),

and
qα`′,r u( j)

`′,r (x) ∈ Z[x1, . . . , xn]

for every ` < `′ 6 d, 0 6 j < `′, 1 6 r 6 r`′ . Let S(α) be the sum associated to
u as in (6.1). Suppose

4θ + Qγ ′` < 1.

Then one of the following alternatives must hold:

(i) |S(α)| 6 Pn−Q .

(ii) There exists n0 ∈ N such that

n0 � P Qγ`+ε and ‖n0qα`‖ � P−`+4θ+Qγ`+ε.

The implicit constants depend at most on n, d, rd, . . . , r1, Q, ε, and U.

We present the details of the proofs of Corollaries 6.2 and 6.3 in Appendix A.

7. Hardy–Littlewood circle method: major arcs

For x = (x1, . . . , xn), let us denote x̂ = (x1, . . . , xn−r1). In this section, we
consider the system of equations

f`,r (x) = 0 (1 6 ` 6 d, 1 6 r 6 r`), (7.1)

where we assume f is of the shape

f`,r (x) = f`,r ( x̂ ) ∈ Z[x1, . . . , xn−r1] (2 6 ` 6 d, 1 6 r 6 r`),

and
f1,r (x) = c1,r xn−r1+r + f̃1,r ( x̂ ) (1 6 r 6 r1),

where c1,r ∈ Z\{0} and f̃1,r ( x̂ ) ∈ Z[x1, . . . , xn−r1]. We further assume f satisfies
the following: hd(fd), . . . , h2(f2), and B1(f1) are all sufficiently large with respect
to d and rd, . . . , r1. Clearly systems with these assumptions include the reduced
system f in (4.2) (see property (7) which was obtained using Lemma 2.2). Let us
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remark that in contrast to the major arcs analysis in [6], we have conditions on
the h-invariant instead of the Birch rank, and these conditions on the h-invariant
required in this section are ‘comparable’ to those in [20]. We also denote F`,r to
be the homogeneous degree ` portion of f`,r (1 6 ` 6 d, 1 6 r 6 r`), and let
F` = (F`,1, . . . , F`,r`) (1 6 ` 6 d).

Let B0 = [0, 1]n ⊆ Rn . Given b ∈ (Z/qZ)n , we define

ψb(t) = ψb1(t1) · · ·ψbn (tn),

where
ψb j (t j) =

∑
06v6t j

v≡b j (mod q)

Λ(v).

We use the notation x ≡ b (mod q) to mean xi ≡ bi (mod q) for each 1 6 i 6 n.
Suppose for α ∈ [0, 1)R , we have α = a/q + β where a ∈ (Z/qZ)R . Then we
have

T (f;α)

=

∑
x∈[0,X ]n

Λ(x)e

(
d∑
`=1

r∑̀
r=1

α`,r · f`,r (x)

)

=

∑
b∈(Z/qZ)n

∑
x∈[0,X ]n

x≡b(mod q)

Λ(x)e

(
d∑
`=1

r∑̀
r=1

a`,r · f`,r (b)/q

)

· e

(
d∑
`=1

r∑̀
r=1

β`,r · f`,r (x)

)

=

∑
b∈(Z/qZ)n

e

(
d∑
`=1

r∑̀
r=1

a`,r · f`,r (b)/q

)

·

∫
t∈XB0

e

(
d∑
`=1

r∑̀
r=1

β`,r · f`,r (t)

)
dψb(t), (7.2)

where dψb(t) denotes the product measure dψb1(t1)× · · · × dψbn (tn).

Let φ be Euler’s totient function. For a positive integer q , recall we put Uq for
the group of units in Z/qZ. Lemma 7.1 follows immediately from the proof of
[6, Lemma 6] as the proof does not depend on the fact that the polynomials of the
system all have the same degree.
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LEMMA 7.1. Let c > 0, C > 0, q 6 (log X)C , and b ∈ (Z/qZ)n . Suppose α =
a/q + β ∈Ma,q(C). Then we have∫

t∈XB0

e

(
d∑
`=1

r∑̀
r=1

β`,r · f`,r (t)

)
dψb(t)

= 1b∈(Uq )n
1

φ(q)n

∫
v∈XB0

e

(
d∑
`=1

r∑̀
r=1

β`,r · f`,r (v)

)
dv+ O(X n/(log X)c),

where 1b∈(Uq )n is 1 if b ∈ (Uq)
n and 0 otherwise.

Let ε > 0. We simplify the above integral by a change of variable as follows∫
v∈XB0

e

(
d∑
`=1

r∑̀
r=1

β`,r · f`,r (v)

)
dv

=

∫
v∈XB0

e

(
d∑
`=1

r∑̀
r=1

β`,r · F`,r (v)

)
dv+ O(X n−1+ε)

= X nI(B0,β
′)+ O(X n−1+ε), (7.3)

where
β ′`,r = X `β`,r (1 6 ` 6 d, 1 6 r 6 r`),

and

I(B0, τ ) =

∫
v∈B0

e

(
d∑
`=1

r∑̀
r=1

τ`,r · F`,r (v)

)
dv.

We define
J (L) =

∫
|τ |6L

I(B0, τ )dτ .

By our assumptions on f and (6.4), we know we can apply Lemma 6.1 and
obtain I(B0, τ ) � min(1, |τ |−R−1). With this estimate, it is an easy exercise to
show that

µ(∞) =

∫
τ∈RR

I(B0, τ )dτ , (7.4)

which is called the singular integral, exists, and that

|µ(∞)− J (L)| � L−1. (7.5)

We note that µ(∞) is the same as what is defined in [3, (2.3)], and we have

µ(∞) > 0 (7.6)
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provided that the system of equations

F`,r (x) = 0 (1 6 ` 6 d, 1 6 r 6 r`)

has a nonsingular real solution in (0, 1)n . The argument used to show this fact is
standard and we refer the reader to see for example [7, Ch. 16], or the explanation
in [3].

We define the following sums:

Sa,q =
∑

k∈(Uq )n

e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/q

)
, (7.7)

B(q) =
∑

gcd(a,q)=1
a∈(Z/qZ)R

1
φ(q)n

Sa,q,

and
S(X) =

∑
q6(log X)C

B(q). (7.8)

By combining Lemma 7.1 with the definitions given above, we have the
following.

LEMMA 7.2 [6, Lemma 8]. Given any c > 0, C > 0, and q 6 (log X)C , we have∫
Ma,q (C)

T (f;α)dα =
X n−

∑d
`=1 `r`

φ(q)n
Sa,q J ((log X)C)+ O

(
X n−

∑d
`=1 `r`

(log X)c

)
.

Therefore, we obtain the following estimate as a consequence of the definition
of the major arcs, (7.5), and Lemma 7.2.

LEMMA 7.3. Given any c > 0 and C > 0, we have∫
M(C)

T (f;α)dα = S(X)µ(∞)X n−
∑d
`=1 `r`

+ O

(
S(X)

X n−
∑d
`=1 `r`

(log X)C
+

X n−
∑d
`=1 `r`

(log X)c

)
.

We still have to deal with the term S(X), and this is done in the following
section.
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7.1. Singular series. In order to estimate the term S(X), we begin by
obtaining estimates for the exponential sum Sa,q defined in (7.7). We define g`(F`)
as in (6.3). It then follows from (6.4) that

h`(F`) < (log 2)−` · `! · (g`(F`)+ (`− 1)r`(r` − 1))

for 2 6 ` 6 d with r` > 0. From this inequality, for 2 6 ` 6 d with r` > 0 we see
that we can assume g`(F`) to be sufficiently large with respect to d and rd, . . . , r1.

Let

Q = 1+max
{

1+ R(800d3
+ 2)

800d3 + 1
,

R + 1
1− 1/(800d3 + 1)

}
.

With our assumptions in this section, Q satisfies the following,

4
(
γ2 Q + γ3 Q + · · · + γd Q +

1
800d

)
<

1
100d

,

Q · r`(`− 1) · 2`−1

(
(log 2)`(h`(F`)− (800d3

+ 1)Q)
`!

− (`− 1)r`(r` − 1)
)−1

<
1

1600d3 + 2
(2 6 ` 6 d), (7.9)

and

0 < Q <
d − 1

d(r1 + 1)
(γ2 + 4γ3 + · · · + 4d−2γd)

−1, (7.10)

where γ` is defined (with respect to F` here) after (6.4). We fix this value of Q
throughout the remainder of this section. Also since B1(F1) is sufficiently large
with respect to d and rd, . . . , r1, we have B1(F1) > Q.

We consider two cases depending on a to bound Sa,q when q is a prime power.
These cases are treated separately in Lemmas 7.4 and 7.5.

LEMMA 7.4. Let p be a prime and let q = pt , t ∈ N. Let a = (ad, . . . , a1) ∈

(Z/qZ)R with gcd(a, q) = 1. Furthermore, suppose there exists ` ∈ {2, . . . , d}
such that gcd(a`, q) = 1. Then we have the following bounds

Sa,q �

{
qn−Q if t 6 800d3

+ 1,
pQqn−Q if t > 800d3

+ 1,

where the implicit constants are independent of p.

Proof. We consider the two cases t 6 800d3
+1 and t > 800d3

+1 separately. We
begin with the case t 6 800d3

+ 1. In this case, we apply the inclusion–exclusion
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principle to Sa,q . As a result, we obtain

Sa,q =
∑

k∈(Uq )n

e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/q

)

=

∑
k∈(Z/qZ)n

n∏
i=1

1−
∑

vi∈Z/pt−1Z

1ki=pvi

 e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/q

)

=

∑
I⊆{1,2,...,n}

(−1)|I |
∑

v∈(Z/pt−1Z)|I |

∑
k∈(Z/qZ)n

FI (k; v)e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/q

)
,

(7.11)

where

1ki=pvi =

{
1 if ki = pvi ,

0 if ki 6= pvi ,

and
FI (k; v) =

∏
i∈I

1ki=pvi

for v ∈ (Z/pt−1Z)|I |. In other words, FI (k; v) is the characteristic function of
the set HI,v = {k ∈ (Z/qZ)n : ki = pvi (i ∈ I )}. We now bound the summand
in the final expression of (7.11) by further considering two cases, |I | > t Q and
|I | < t Q. In the first case |I | > t Q, we use the following trivial estimate∣∣∣∣∣∣

∑
v∈(Z/pt−1Z)|I |

∑
k∈(Z/qZ)n

FI (k; v)e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/q

)∣∣∣∣∣∣ 6 p(t−1)|I |(pt)n−|I |

= qn−|I |/t

6 qn−Q .

On the other hand, suppose |I | < t Q. Let us label s = (s1, . . . , sn−|I |) to be the
remaining variables of x after setting xi = 0 for each i ∈ I . For each 1 6 ` 6 d,
1 6 r 6 r`, let

g`,r (s) = f`,r (x)|xi=pvi (i∈I ),

or equivalently the polynomial g`,r (s) is obtained by substituting xi = pvi (i ∈ I )
to the polynomial f`,r (x). Thus g`,r (s) is a polynomial in n − |I | variables whose
coefficients may depend on p. With these notations we have
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∑
k∈(Z/qZ)n

FI (k; v)e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/q

)

=

∑
s∈(Z/qZ)n−|I |

e

(
d∑
`=1

r∑̀
r=1

g`,r (s) · a`,r/q

)

=

∑
s∈[0,q−1]n−|I |

e

(
d∑
`=1

r∑̀
r=1

g`,r (s) · a`,r/q

)
.

We can also deduce easily that the homogeneous degree ` portion of the
polynomial g`,r (s), which we denote G`,r (s), is obtained by substituting xi =

0 (i ∈ I ) to F`,r (x). Hence, we have

G`,r (s) = F`,r (x)|xi=0 (i∈I ),

and in particular, it is independent of p. Thus the system of polynomials g`,r (s)
(1 6 ` 6 d, 1 6 r 6 r`) satisfies Condition (?′). It also follows by Lemma 2.1
that

h`({G`,r : 1 6 r 6 r`}) > h`(F`)− |I | > h`(F`)− (800d3
+ 1)Q (2 6 ` 6 d).

By our choice of Q, namely (7.9), and from (6.4), we have

Qγ ′` 6 Qγ` <
1

1600d3 + 2
< 1 (2 6 ` 6 d),

where γ ′` and γ` are defined with respect to {G`,r : 1 6 r 6 r`} here.
Take ε > 0 sufficiently small. Let us suppose that p and t are sufficiently large

with respect to the coefficients of F, n, d, rd, . . . , r1, ε, and Q, which implies that
q is sufficiently large with respect to the coefficients of G`,r`(s) (1 6 ` 6 d,
1 6 r 6 r`). Suppose we have

∑
s∈[0,q−1]n−|I |

e

(
d∑
`=1

r∑̀
r=1

g`,r (s) · a`,r/q

)
> (q − 1)n−|I |−Q . (7.12)

Then by Corollary 6.2 there must exist n0 ∈ N such that

n0 � q Qγd+ε and ‖n0(ad/q)‖ � q−d+Qγd+ε.

Since p and t are sufficiently large, we have n0 < q1/(1600d3
+2) and ‖n0(ad/q)‖ <

q−d+1/(1600d3
+2), because Qγd + ε < 1/(1600d3

+ 2). Then it follows that
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n0 < pt/(1600d3
+2) < p. Suppose now that not all entries of n0ad are divisible

by q . In this case, we obtain

1
q
6 ‖n0(ad/q)‖ <

1
qd−1/(1600d3+2)

,

which is a contradiction. Thus all of the entries of n0ad must be divisible by q = pt

and since gcd(n0, p)= 1, it follows that all of the entries of ad must be divisible by
q . Therefore, we can simplify the exponential sum in consideration since e(m) =
1 when m ∈ Z, and the inequality (7.12) becomes

∑
s∈[0,q−1]n−|I |

e

(
d∑
`=1

r∑̀
r=1

g`,r (s) · a`,r/q

)
=

∑
s∈[0,q−1]n−|I |

e

(
d−1∑
`=1

r∑̀
r=1

g`,r (s) · a`,r/q

)
> (q − 1)n−|I |−Q . (7.13)

We may repeat the argument as above, because we are now dealing with the
system of polynomials g`,r (s) (1 6 ` 6 d−1, 1 6 r 6 r`). Again by Corollary 6.2
there must exist n′0 ∈ N such that

n′0 � q Qγd−1+ε and ‖n′0(ad−1/q)‖ � q−(d−1)+Qγd−1+ε.

Since p and t are sufficiently large, we have n′0 < q1/(1600d3
+2) and ‖n′0(ad−1/q)‖<

q−(d−1)+1/(1600d3
+2), because Qγd−1 + ε < 1/(1600d3

+ 2). Then it follows that
n′0 < pt/(1600d3

+2) < p. Suppose now that not all entries of n′0ad−1 are divisible by
q . In this case, we obtain

1
q
6 ‖n′0(ad−1/q)‖ <

1
q (d−1)−1/(1600d3+2)

,

which is a contradiction. Thus all of the entries of n′0ad−1 must be divisible by
q = pt and since gcd(n′0, p) = 1, it follows that all of the entries of ad−1 must be
divisible by q . It is then clear that we can repeat the argument and keep reducing
until we obtain that all of the entries of a` must be divisible by q for each 2 6
` 6 d . We remark that if there exists `′ with r`′ = 0, then we simply skip the case
` = `′ during this process. Thus we have gcd(a`, q) > 1 for each 2 6 ` 6 d ,
which is a contradiction. As a result we must have

∑
s∈[0,q−1]n−|I |

e

(
d∑
`=1

r∑̀
r=1

g`,r (s) · a`,r/q

)
� qn−|I |−Q .
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Thus we obtain ∑
v∈(Z/pt−1Z)|I |

∑
k∈(Z/qZ)n

FI (k; v)e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/q

)
� (pt−1)|I |qn−|I |−Q

6 qn−Q .

Consequently, by combining the estimates for the two cases |I | > t Q and |I | <
t Q, we obtain

Sa,q � qn−Q

when t 6 800d2
+ 1.

We now consider the case t > 800d3
+ 1. By the definition of Sa,q , we have

Sa,q =
∑

k∈(Uq )n

e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/q

)

=

∑
k∈(Up)n

∑
y∈(Z/pt−1Z)n

e

(
d∑
`=1

r∑̀
r=1

f`,r (k+ py) · a`,r/q

)

=

∑
k∈(Up)n

∑
y∈[0,pt−1−1]n

e

(
d∑
`=1

r∑̀
r=1

f`,r (k+ py) · a`,r/q

)
. (7.14)

For each fixed k ∈ (Up)
n , we have

f`,r (k+ py) = p`F`,r (y)+ ω`,r :p,k(y) (1 6 ` 6 d, 1 6 r 6 r`),

where ω`,r :p,k(y) is a polynomial in y of degree at most ` − 1 and its coefficients
are integers which may depend on p and k. We let

u`,r (y) = F`,r (y)+
1
p`
ω`,r :p,k(y) (1 6 ` 6 d, 1 6 r 6 r`).

We can then express the inner sum of the last expression of (7.14) as∑
y∈[0,pt−1−1]n

e

(
d∑
`=1

r∑̀
r=1

u`,r (y) · a`,r/(q/p`)

)
.

We have that u has coefficients in Q, and U has coefficients in Z. Let α`,r =
a`,r/pt−` (1 6 ` 6 d, 1 6 r 6 r`), and P = (pt−1

− 1).
Recall we have set Q to satisfy

4
(
γ2 Q + γ3 Q + · · · + γd Q +

1
800d

)
<

1
100d

,
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where γ` is defined with respect to F` here. Suppose we have∣∣∣∣∣ ∑
y∈[0,P]n

e

(
d∑
`=1

r∑̀
r=1

u`,r (y) · α`,r

)∣∣∣∣∣ > Pn−Q .

Then by Corollary 6.3, there must exist nd ∈ N such that

nd � P Qγd+ε and ‖ndαd‖ � P−d+Qγd+ε.

For P = pt−1
− 1 sufficiently large, we have

nd < p(t−1)/(100d) and ‖nd(ad/pt−d)‖ < p(t−1)(−d+1/(100d)),

because Qγd + ε < 1/(100d). Suppose now that not all entries of ndad are
divisible by pt−d . In this case, we obtain

1
pt−d

6 ‖nd(ad/pt−d)‖ <
1

p(t−1)(d−1/(100d))
,

which is a contradiction. Thus all of the entries of ndad must be divisible by pt−d .
In particular,

ndαd = nd(ad/pt−d) ∈ Zrd ,

and we can assume without loss of generality that nd is a power of p satisfying
nd < p(t−1)/(100d). Since t − d > (t − 1)/(100d), it follows that every entry of ad

is divisible by p.
From the inequality t > 800d3

+ 1, we have pd < p(t−1)/(800d2). Thus we have

(nd pd)αd,r
1
pd
ωd,r :p,k(y) ∈ Z[y1, . . . , yn] (1 6 r 6 rd),

and
nd pd 6 P Qγd+2εP1/(800d2).

With this setup, we can apply Corollary 6.3 again with ` = d − 1 and

θ = Qγd +
1

800d2
+ εd <

1
100d

<
1
4
,

where εd > 0 is sufficiently small, and deduce that there must exist nd−1 ∈ N such
that

nd−1 � P Qγd−1+ε and ‖nd−1nd pdαd−1‖ � P−(d−1)+4θ+Qγd−1+ε.
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For P = pt−1
− 1 sufficiently large, we have

nd−1 < p(t−1)/(100d) and ‖nd−1nd pd(ad−1/pt−(d−1))‖ < p(t−1)(−(d−1)+1/(100d)),

because

Qγd−1 + 4θ + ε = Qγd−1 + 4
(

Qγd +
1

800d2
+ εd

)
+ ε <

1
100d

.

Suppose now that not all entries of (nd−1nd pdad−1) are divisible by pt−(d−1). In
this case, we obtain

1
pt−(d−1)

6 ‖nd−1nd pd(ad−1/pt−(d−1))‖ <
1

p(t−1)((d−1)−1/(100d))
,

which is a contradiction. Thus all of the entries of (nd−1nd pdad−1) must be
divisible by pt−(d−1). In particular,

nd−1nd pdαd−1 = nd−1nd pd(ad−1/pt−(d−1)) ∈ Zrd−1,

and we can assume without loss of generality that nd−1 is a power of p satisfying
nd−1 < p(t−1)/(100d). Since t− (d−1) > 2(t−1)/(100d)+d , it follows that every
entry of ad−1 is divisible by p.

We have

(nd−1nd pd+(d−1))αd,r
1
pd
ωd,r :p,k(y) ∈ Z[y1, . . . , yn] (1 6 r 6 rd),

(nd−1nd pd+(d−1))αd−1,r
1

pd−1
ωd−1,r :p,k(y) ∈ Z[y1, . . . , yn] (1 6 r 6 rd−1),

and
nd−1nd pd+(d−1) 6 P Qγd−1+2εP Qγd P2/(800d2).

With this setup, we can apply Corollary 6.3 again with ` = d − 2 and

θ = Qγd−1 + εd−1 + Qγd +
2

800d2

< Qγd−1 + εd−1 + Qγd +
d

800d2

<
1

100d

<
1
4
, (7.15)
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where εd−1 > 0 is sufficiently small. At this point it is clear that we can repeat the
process, in fact we continue in this manner until ` = 2. We remark that if there
exists `′ with r`′ = 0, then we simply skip the case ` = `′ during this process.
As a result, we obtain that every entry of ad, . . . , a2 is divisible by p. Thus we
have gcd(a`, q) > 1 for each 2 6 ` 6 d , which is a contradiction. Therefore,
we obtain ∣∣∣∣∣∣

∑
y∈[0,pt−1−1]n

e

(
d∑
`=1

r∑̀
r=1

f`,r (k+ py) · a`,r/q

)∣∣∣∣∣∣
=

∣∣∣∣∣ ∑
y∈[0,P]n

e

(
d∑
`=1

r∑̀
r=1

u`,r (y) · α`,r

)∣∣∣∣∣
� Pn−Q

� (pt−1)n−Q .

Thus we can bound (7.14) as follows

Sa,q 6
∑
k∈Un

p

∣∣∣∣∣∣
∑

y∈[0,pt−1−1]n

e

(
d∑
`=1

r∑̀
r=1

f`,r (k+ py) · a`,r/q

)∣∣∣∣∣∣
� pn(pt−1)n−Q

= pQqn−Q .

LEMMA 7.5. Let p be a prime and let q = pt , t ∈ N. Let a = (ad, . . . , a1) ∈

(Z/qZ)R with gcd(a, q) = 1. Furthermore, suppose gcd(a`, q) > 1 for 2 6 ` 6 d,
and gcd(a1, q) = 1. Then we have

Sa,q �

{
qn−Q if t 6 800d3

+ 1,
pQqn−Q if t > 800d3

+ 1,

where the implicit constants depend only on n and the coefficients of F1, and in
particular they are independent of p.

Proof. First we consider the case t > 1. Since gcd(a1, q) = 1, there exists 1 6
r ′ 6 r1 such that gcd(a1,r ′, p) = 1. By our assumption on f, we have
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Sa,q =
∑

k∈(Uq )n

e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/q

)

=

 ∏
16r6r1

∑
kn−r1+r∈Uq

e(c1,r kn−r1+r · a1,r/q)

 ∑
k̂∈(Uq )

n−r1

e

( ∑
16r6r1

f̃1,r (̂k) · a1,r/q

+

d∑
`=2

r∑̀
r=1

f`,r (̂k) · a`,r/q

)
.

If gcd(p, c1,r ′) = 1, then gcd(a1,r ′ · c1,r ′, q) = 1. Consequently, we have

∑
kn−r1+r ′∈Uq

e((a1,r ′ · c1,r ′)kn−r1+r ′/q) =
∑
k∈Uq

e(k/q) = 0,

because t > 1. In this case, it follows that

Sa,q = 0.

Otherwise, we have p|c1,r ′ . Let c1,r ′ = pi0 m0 where p - m0. By a similar argument,
we have

∑
kn−r1+r ′∈Uq

e((a1,r ′ · c1,r ′)kn−r1+r ′/q) =


0 if t > i0 + 1,
−pi0 if t = i0 + 1,
φ(q) if t 6 i0.

Therefore, for all but finite possibilities (depending only on c1,1, . . . , c1,r1 ) of q
we always have Sa,q = 0. Thus for t > 1 we see that we can obtain the bounds
in the statement of the lemma with the implicit constant depending only on c1,1,

. . . , c1,r1 .

In the case t = 1, since e(m) = 1 for m ∈ Z, we have by our hypothesis that

Sa,p =
∑

k∈(Up)n

e

(
r1∑

r=1

f1,r (k) · a1,r/p

)
.

We bound this sum in a similar manner as in Lemma 7.4. We apply the inclusion–
exclusion principle and obtain
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∑
k∈(Up)n

e

(
r1∑

r=1

f1,r (k) · a1,r/p

)

=

∑
k∈(Z/pZ)n

n∏
i=1

(
1− 1ki=0

)
e

(
r1∑

r=1

f1,r (k) · a1,r/p

)

=

∑
I⊆{1,2,...,n}

(−1)|I |
∑

k∈(Z/pZ)n
FI (k)e

(
r1∑

r=1

f1,r (k) · a1,r/p

)
, (7.16)

where

1ki=0 =

{
1 if ki = 0,
0 if ki 6= 0,

and

FI (k) =
∏
i∈I

1ki=0.

In other words, FI (k) is the characteristic function of the set HI = {k ∈ (Z/pZ)n :
ki = 0 (i ∈ I )}. We now bound the summand in the final expression of (7.16) by
further considering two cases, |I | > Q and |I | < Q. In the first case |I | > Q, we
use the following trivial estimate∣∣∣∣∣∣

∑
k∈(Z/pZ)n

FI (k)e

(
r1∑

r=1

f1,r (k) · a1,r/p

)∣∣∣∣∣∣ 6 pn−|I | 6 pn−Q .

On the other hand, suppose |I | < Q. Let us label s = (s1, . . . , sn−|I |) to be the
remaining variables of x after setting xi = 0 for each i ∈ I . For each 1 6 r 6 r1,
let

g1,r (s) = f1,r (x)|xi=0 (i∈I ),

or equivalently the polynomial g1,r (s) is obtained by substituting xi = 0 (i ∈ I )
to the polynomial f1,r (x). Thus g1,r (s) is a polynomial in n− |I | variables. Let us
denote

g1,r (s) =
n−|I |∑
i=1

c′r,i si + c′r,0 (1 6 r 6 r1).

With these notations, we have
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∑
k∈(Z/pZ)n

FI (k)e

(
r1∑

r=1

f1,r (k) · a1,r/p

)

=

∑
s∈[0,p−1]n−|I |

e

(
r1∑

r=1

g1,r (s) · a1,r/p

)

= e

(
r1∑

r=1

c′r,0 a1,r/p

) ∑
s∈[0,p−1]n−|I |

e

(
r1∑

r=1

n−|I |∑
i=1

c′r,i si · a1,r/p

)

= e

(
r1∑

r=1

c′r,0 a1,r/p

) ∑
s∈[0,p−1]n−|I |

e

(
n−|I |∑
i=1

si

p

(
r1∑

r=1

c′r,i · a1,r

))
. (7.17)

We can also deduce easily that the homogeneous linear portion of the polynomial
g1,r (s), which we denote G1,r (s) =

∑n−|I |
i=1 c′r,i si , is obtained by substituting xi =

0 (i ∈ I ) to F1,r (x). Hence, we have

G1,r (s) = F1,r (x)|xi=0 (i∈I ).

It then follows by Lemma 3.2 that

B1({G1,r : 1 6 r 6 r1}) > B1(F1)− |I | > B1(F1)− Q > 0.

In particular, it follows that G1,1(s), . . . ,G1,r1(s) are linearly independent over Q.
Thus for p sufficiently large with respect to the coefficients of F1, the coefficient
matrix of G1,1(s), . . . ,G1,r1(s) has full rank modulo p. Therefore, it follows that
if

r1∑
r=1

c′r,i · a1,r ≡ 0 (mod p)

for each 1 6 i 6 n−|I |, then it must be that a1,1 ≡ · · · ≡ a1,r1 ≡ 0 (mod p). Since
we have gcd(a1, p) = 1, this is a contradiction. Thus without loss of generality
suppose

ς =

r1∑
r=1

c′r,1 · a1,r 6≡ 0 (mod p).
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Then equation (7.17) becomes∣∣∣∣∣∣
∑

k∈(Z/pZ)n
FI (k)e

(
r1∑

r=1

f1,r (k) · a1,r/p

)∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
 ∑

06s16p−1

e(ςs1/p)

 ∑
06si6p−1
26i6n−|I |

e

(
n−|I |∑
i=2

si

p

(
r1∑

r=1

c′r,i · a1,r

))∣∣∣∣∣∣∣
= 0,

because ∑
06s16p−1

e(ςs1/p) =
∑

06s16p−1

e(s1/p) = 0.

Therefore, by combining the estimates for the two cases |I | > Q and |I | < Q, we
obtain

Sa,p � pn−Q,

where the implicit constant depends only on n and the coefficients of F1.

By a similar argument as in [14, Ch. VIII, Section 2, Lemma 8.1], one can
show that B(q) is a multiplicative function of q . We leave the proof of the
following lemma as a basic exercise involving the Chinese remainder theorem
and manipulating summations.

LEMMA 7.6. Suppose q, q ′ ∈ N and gcd(q, q ′) = 1. Then we have

B(qq ′) = B(q)B(q ′).

Recall we defined the term S(N ) in (7.8). For each prime p, we define

µ(p) = 1+
∞∑

t=1

B(pt), (7.18)

which converges absolutely under our assumptions on f. Furthermore, under our
assumptions on f the following limit exists

S(∞) := lim
N→∞

S(N ) =
∏

p prime

µ(p), (7.19)

which is called the singular series. We prove these statements in the following
Lemma 7.7.
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LEMMA 7.7. There exists δ1 > 0 such that for each prime p, we have

µ(p) = 1+ O(p−1−δ1),

where the implicit constant is independent of p. Furthermore, we have

|S(N )−S(∞)| � (log N )−Cδ2

for some δ2 > 0.

Therefore, the limit in (7.19) exists, and the product in (7.19) converges. We leave
the details that these two quantities are equal to the reader.

Proof. Let ε0 > 0 be sufficiently small and let Q̃ = Q − ε0. It follows from the
definition of Q that Q̃ satisfies

Q̃ >
1+ R(800d3

+ 2)
800d3 + 1

and Q̃ >
R + 1

1− 1
800d3+1

> R + 1.

We substitute Q = Q̃+ ε0 into the bounds in Lemmas 7.4 and 7.5. It is then clear
that we may assume the implicit constants in Lemmas 7.4 and 7.5 are 1 for p
sufficiently large with the cost of using Q̃ in place of Q. For any t ∈ N, we know
that φ(pt) = pt(1 − 1/p) > 1

2 pt . Therefore, by considering the two cases as in
the statements of Lemmas 7.4 and 7.5, we obtain

|µ(p)− 1|

6
∑

16t6800d3+1

∣∣∣∣∣∣∣∣
∑

gcd(a,pt )=1
a∈(Z/ptZ)R

1
φ(pt)n

Sa,pt

∣∣∣∣∣∣∣∣+
∑

t>800d3+1

∣∣∣∣∣∣∣∣
∑

gcd(a,pt )=1
a∈(Z/ptZ)R

1
φ(pt)n

Sa,pt

∣∣∣∣∣∣∣∣
�

∑
16t6800d3+1

pt R p−nt pnt−t Q̃
+

∑
t>800d3+1

pt R p−nt p Q̃+nt−t Q̃

� pR−Q̃
+ p Q̃ p−(800d3

+2)(Q̃−R)

� p−1−δ1,

for some δ1 > 0. We note that the implicit constants in � are independent of p
here.
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Let q = pt1
1 · · · p

tv
v be the prime factorization of q ∈ N. Without loss of

generality, suppose we have t j 6 800d3
+1 (1 6 j 6 v0) and t j > 800d3

+1 (v0 <

j 6 v). By a similar calculation as above and the multiplicativity of B(q), it
follows that

B(q) = B(pt1
1 ) · · · B(p

tv
v )

�

(
v0∏

j=1

pt j R
j p−nt j

j pt j (n−Q̃)
j

)
·

(
v∏

j=v0+1

pt j R
j p−nt j

j p Q̃
j pt j (n−Q̃)

j

)

= q R−Q̃
·

(
v∏

j=v0+1

p Q̃
j

)
6 q R−Q̃

· q Q̃/(800d3
+1)

6 q−1−δ2,

for some δ2 > 0. We note that the implicit constant in� is independent of q here,
because the implicit constants in Lemmas 7.4 and 7.5 are 1 for p sufficiently large
as mentioned above. Therefore, we obtain

|S(N )−S(∞)| 6
∑

q>(log N )C

|B(q)|

�

∑
q>(log N )C

q−1−δ2

� (log N )−Cδ2 .

Let νt(p) denote the number of solutions x ∈ (Upt )n to the congruence relations

f`,r (x) ≡ 0 (mod pt) (1 6 ` 6 d, 1 6 r 6 r`). (7.20)

Then using the fact that∑
a∈Z/ptZ

e
(
m · a/pt

)
=

{
pt if pt

|m,
0 otherwise,

we deduce

1+
t∑

j=1

B(p j)

= 1+
t∑

j=1

1
φ(p j)n

∑
k∈(Up j )n

∑
gcd(a,p j )=1
a∈(Z/p jZ)R

e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/p j

)
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=
1

φ(pt)n

∑
k∈(Upt )n

∑
a∈(Z/ptZ)R

e

(
d∑
`=1

r∑̀
r=1

f`,r (k) · a`,r/pt

)

=
pt R

φ(pt)n
νt(p).

Therefore, under our assumptions on f we obtain

µ(p) = lim
t→∞

pt Rνt(p)
φ(pt)n

.

We can then deduce by an application of Hensel’s lemma that

µ(p) > 0,

if the system (7.1) has a nonsingular solution in Z×p , the units of p-adic integers.
The details are left to the reader. From this it follows in combination with
Lemma 7.7 that if the system (7.1) has a nonsingular solution in Z×p for every
prime p, then

S(∞) =
∏

p prime

µ(p) > 0. (7.21)

By combining Lemmas 7.3 and 7.7, we obtain the following.

PROPOSITION 7.8. Let f be the polynomials in (7.1). Given any c > 0, for
sufficiently large C > 0 we have∫

M(C)
T (f;α)dα = S(∞)µ(∞)X n−

∑d
`=1 `r` + O

(
X n−

∑d
`=1 `r`

(log X)c

)
.

We note that this proposition contains Proposition 4.2 as a special case with

C(f) = S(∞)µ(∞). (7.22)

8. Conclusions and further remarks

Let us refer to the polynomials in (4.1) as f, and the polynomials in (4.2) as f
in this section. We let F and F be the systems of the highest degree homogeneous
portions of f and f, respectively.

As a consequence of Propositions 4.1 and 4.2, we obtain the following
asymptotic formula for the system of equations (4.2). We have that given any
c > 0, there exists C > 0 such that
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Mf(X) =
∫
TR

T (f;α)dα

=

∫
M(C)

T (f;α)dα +
∫
m(C)

T (f;α)dα

= C(f)X n−
∑d
`=1 `r` + O

(
X n−

∑d
`=1 `r`

(log X)c

)
, (8.1)

which proves Theorem 1.2 for f.
Recall from Section 4 that transforming the system f into f does not affect its

solution set, in other words Vf,0(Z) = Vf,0(Z). Therefore, we in fact have

Mf(X) =Mf(X) = C(f)X n−
∑d
`=1 `r` + O

(
X n−

∑d
`=1 `r`

(log N )c

)
.

Since C(f) is a constant dependent only on f, in turn it follows that it is a
constant which depends only on f. Thus by setting C(f) = C(f), we have obtained
Theorem 1.2.

We also remark that if VF,0(R) has a nonsingular real point in (0, 1)n , then so
does VF,0(R), and if the system of equations (4.1) has a nonsingular solution in
Z×p for every prime p, then so does the system (4.2). Under these conditions, it
follows from (7.6), (7.21), and (7.22) that C(f) = C(f) > 0. We leave the details
here to the reader.

Finally, we followed [6] and used the von Mangoldt function Λ as our weight
for the exponential sum. Consequently, Mf(X) counts the number of solutions,
with a logarithmic weight, to the equations f = 0 whose coordinates are all
prime powers. Let 1P denote the characteristic function of the set of prime
numbers. For x = (x1, . . . , xn), we let 1P(x) = 1P(x1) · · · 1P(xn) and log(x) =
log(x1) · · · log(xn). Let us define

M′

f(X) :=
∑

x∈[0,X ]n
log(x)1P(x)1Vf,0(C)(x)

with the convention that log(x)1P(x) = 0 if xi = 0 for some 1 6 i 6 n. The
quantity M′

f(X) counts the number of prime solutions, with a logarithmic weight,
to the equations f = 0. We record the following result for M′

f(X).

THEOREM 8.1. Under the same hypotheses as in Theorem 1.2, we have

M′

f(X) = C(f)X n−
∑d
`=1 `r` + O

(
X n−

∑d
`=1 `r`

(log N )c

)
,

where C(f) is the same constant as in the statement of Theorem 1.2.

https://doi.org/10.1017/fms.2018.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.21


S. Yamagishi 80

We can obtain this asymptotic formula by changing the weight from Λ(x) to
log(x)1P(x) in the proof of Theorem 1.2. Since the resulting changes in the proof
are minimal, we leave the details to the reader.
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Appendix A. Proofs of the results in Section 6

In this appendix, we provide proof for the results presented in Section 6. Let
us denote B1 = [−1, 1]n and B0 = [0, 1]n . Let x = (x1, . . . , xn) and x j = (x j,1,

. . . , x j,n) for j > 1. Given a function G(x), we define

Γ`,G(x1, . . . , x`) =
1∑

t1=0

· · ·

1∑
t`=0

(−1)t1+···+t`G(t1x1 + · · · + t`x`).

Then it follows that Γ`,G is symmetric in its ` arguments, and that Γ`,G(x1, . . . ,

x`−1, 0) = 0 [20, Section 11]. It is clear from the definition that if G ′(x) is another
function, then Γ`,G + Γ`,G ′ = Γ`,G+G ′ . We also have that if G is a form of degree
d and ` > d > 0, then Γ`,G = 0 [20, Lemma 11.2].

For α ∈ R, let ‖α‖ denote the distance from α to the closest integer. Let α =
(αd, . . . ,α1) ∈ RR , where R = r1 + · · · + rd and α` = (α`,1, . . . , α`,r`) ∈ Rr`

(1 6 ` 6 d). We define

‖α‖ = max
16`6d
16r6r`

‖α`,r‖ and |α| = max
16`6d
16r6r`

|α`,r |.

We have the following standard results related to Weyl differencing.

LEMMA A.1 [20, Lemma 13.1]. Suppose G(x) = G(0)
+G(1)(x)+ · · · +G(d)(x),

where G( j) is a form of degree j with real coefficients (1 6 j 6 d) and G(0)
∈ R.

Let P > 1, and put

S′ = S′(G, P,B0) :=
∑

x∈PB0∩Zn

e(G(x)).
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Let e1, . . . , en be the standard basis vectors of Rn . Let ε > 0 and 2 6 ` 6 d. If
` = d, then let θ = 0 and q = 1. On the other hand, if 2 6 ` < d, then suppose
0 6 θ < 1/4 and that there is q ∈ N with

q 6 Pθ and ‖qG( j)
‖ 6 cPθ− j (` < j 6 d).

Then we have

|S′|2
`−1
� P (2`−1

−`+2θ)n+ε
∑(

n∏
i=1

min(P1−2θ , ‖qΓ`,G(`)(x1, . . . , x`−1, ei)‖
−1)

)
,

where the sum
∑

is over (`−1)-tuples of integer points x1, . . . , x`−1 in PB1, and
the implicit constant in� depends only on n, d, c, and ε.

We remark that the term c which appears in the statement of Lemma A.1 is not
present in the statement of [20, Lemma 13.1]. However, it can be seen from the
proof of [20, Lemma 13.1] that this change does not affect the result, or see the
explanation given in [20, page 275, line 5].

LEMMA A.2 [20, Lemma 14.2]. Make all the assumptions of Lemma A.1.
Suppose further that

|S′| > Pn−Q

where Q > 0. Let η > 0 and η + 4θ 6 1. Then the number N (η) of integral
(`− 1)-tuples

x1, . . . , x`−1 ∈ PηB1

with
‖qΓ`,G(`)(x1, . . . , x`−1, ei)‖ < P−`+4θ+(`−1)η (i = 1, . . . , n)

satisfies
N (η)� Pn(`−1)η−2`−1 Q−ε,

where the implicit constant in� depends only on n, d, c, η, and ε.

Let u = (ud, . . . ,u1) be a system of polynomials in Q[x1, . . . , xn], where u` =
(u`,1, . . . , u`,r`) is the subsystem of degree ` polynomials of u (1 6 ` 6 d). We let
U = (Ud, . . . ,U1) be the system of forms, where for each 1 6 ` 6 d , U` = (U`,1,

. . . ,U`,r`) and U`,r is the homogeneous degree ` portion of u`,r (1 6 r 6 r`). We
define the following exponential sum associated to u,

S(α) = S(u,B0;α) :=
∑

x∈PB0∩Zn

e

( ∑
16`6d

∑
16r6r`

α`,r · u`,r (x)

)
. (A.1)
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Let e1, . . . , en be the standard basis vectors of Cn . Let 1 < ` 6 d . We define
M` = M`(U`) to be the set of (` − 1)-tuples (x1, . . . , x`−1) ∈ (Cn)`−1 for which
the matrix

[mri ] = [Γ`,U`,r (x1, . . . , x`−1, ei)] (1 6 r 6 r`, 1 6 i 6 n) (A.2)

has rank strictly less than r`. For P0 > 0, we denote zP0(M`) to be the number of
integer points (x1, . . . , x`−1) on M` such that

max
16i6`−1

max
16 j6n

|xi, j | 6 P0.

Given a degree ` polynomial

u(x) =
∑

i j∈N∪{0}(16 j6n)
06i1+···+in6`

Ai1,...,in x i1
1 . . . x

in
n

with real coefficients, we denote

|u| = max
i j∈N∪{0}(16 j6n)

06i1+···+in6`

|Ai1,...,in | and ‖u‖ = max
i j∈N∪{0}(16 j6n)

06i1+···+in6`

‖Ai1,...,in‖.

LEMMA A.3 [20, Lemma 11.3]. Suppose U (x) is a form of degree `. Then we
have

‖Γ`,U‖ 6 2``` ‖U‖.

By a similar proof as in [20, Lemma 11.3], we can also show that for a degree `
form U (x) the following holds

|Γ`,U | 6 2```|U |. (A.3)

Let 1 < ` 6 d and r` > 0. We define g`(U`) to be the largest real number such
that

zP(M`)� Pn(`−1)−g`(U`)+ε (A.4)

holds for each ε > 0. It was proved in [20, page 280, Corollary] that

h`(U`) <
`!

(log 2)`
(g`(U`)+ (`− 1)r`(r` − 1)). (A.5)

Let

γ` =
2`−1(`− 1)r`

g`(U`)
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when r` > 0 and g`(U`) > 0. We let γ` = 0 if r` = 0, and let γ` = +∞ if r` > 0
and g`(U`) = 0. For ` with r` > 0, we also define

γ ′` =
2`−1

g`(U`)
=

γ`

(`− 1)r`
. (A.6)

We have to deal with the cases when the coefficients of u may depend on P
(but not the coefficients of U). There are essentially two different scenarios we
have to consider, the first of which we refer to as follows.

Condition (?′): The polynomials of u have coefficients in Z, and the coefficients
of U do not depend on P . However, given u`,r (x) (1 6 ` 6 d, 1 6 r 6 r`) the
coefficients of its monomials whose degrees are strictly less than ` may depend
on P .

The following lemma is essentially [20, Lemma 15.1]. The point here is that if
we are only considering the case ` = d , then the implicit constants may depend
on Ud but not on u. (Note for the case ` < d the implicit constants may depend
on u, see [23, Lemma 2.2].)

LEMMA A.4 [20, Lemma 15.1]. Suppose u satisfies Condition (?′). Let Q > 0,
ε > 0, and let P be sufficiently large with respect to d and rd, . . . , r1. Let S(α) be
the sum associated to u as in (A.1). Given 0 < η 6 1, one of the following three
alternatives must hold:

(i) |S(α)| 6 Pn−Q .

(ii) There exists n0 ∈ N such that

n0 � Prd (d−1)η and ‖n0αd‖ � P−d+rd (d−1)η.

(iii) zP0(M`)� P (d−1)n−2d−1(Q/η)−ε
0 holds with P0 = Pη.

The implicit constants depend at most on n, d, rd, η, ε, and Ud .

Proof. We have α ∈ RR . Let us denote

d∑
`=1

r∑̀
r=1

α`,r u`,r (x) = G(0)
+ G(1)(x)+ · · · + G(d)(x),

where G( j) is a form of degree j (1 6 j 6 d) and G(0)
∈ R. Then it is clear

that G(d)(x) =
∑rd

r=1 αd,rUd,r (x), and it depends on Ud only, and not on u. With
this observation, by following through the proof of [20, Lemma 15.1] for the case
` = d while keeping track of the constant dependency, we obtain the result.
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From Lemma A.4, we obtain the following corollary in a similar manner as
in [20, page 276, Corollary].

COROLLARY A.5 [20, page 276, Corollary]. Suppose u satisfies Condition (?′).
Let S(α) be the sum associated to u as in (A.1). Suppose ε′ > 0 is sufficiently
small and Q > 0 satisfies

Qγ ′d < 1.

Then one of the following two alternatives must hold:

(i) |S(α)| 6 Pn−Q .

(ii) There exists n0 ∈ N such that

n0 � P Qγd+ε
′

and ‖n0αd‖ � P−d+Qγd+ε
′

.

The implicit constants depend at most on n, d, rd, ε
′, Q, and Ud .

Now we move on to our next scenario of when the coefficients of u may depend
on P . Let u( j)

`,r (x) be the homogeneous degree j portion of the polynomial u`,r (x).
In the following lemma, for j < ` the coefficients of u( j)

`,r (x)may be in Q and also
depend on P , but in a controlled manner. On the other hand, the coefficients of
U`,r (x) do not depend on P . We also note the implicit constants may depend on
U but not on u.

LEMMA A.6 [20, Lemma 15.1]. Suppose u has coefficients in Q, and further
suppose U has coefficients in Z. Let Q > 0 and ε > 0. Let 2 6 ` 6 d with r` > 0.
If ` = d, then let θ = 0 and q = 1. On the other hand, if 2 6 ` < d, then suppose
0 6 θ < 1/4 and that there is q ∈ N with

q 6 Pθ , qα`′ ∈ Zr`′ (` < `′ 6 d),

and
qα j,r u(`

′)

j,r (x) ∈ Z[x1, . . . , xn]

for every ` < j 6 d, 0 6 `′ < j, 1 6 r 6 r j .
Let S(α) be the sum associated to u as in (A.1). Given η > 0 with η + 4θ 6 1,

one of the following three alternatives must hold:

(i) |S(α)| 6 Pn−Q .

(ii) There exists n0 ∈ N such that

n0 � Pr`(`−1)η and ‖qn0α`‖ � P−`+4θ+r`(`−1)η.
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(iii) zP0(M`)� P (`−1)n−2`−1(Q/η)−ε
0 holds with P0 = Pη.

The implicit constants depend at most on n, d, rd, . . . , r1, η, ε, and U.

Proof. We have α ∈ RR . Let us denote

d∑
`=1

r∑̀
r=1

α`,r u`,r (x) = G(0)
+ G(1)(x)+ · · · + G(d)(x),

where G(`′) is a form of degree `′ (1 6 `′ 6 d) and G(0)
∈ R. Then it is clear that

G(d)(x) =
∑rd

r=1 αd,rUd,r (x). Recall we denote u(`
′)

j,r (x) to be the homogeneous
degree `′ portion of the polynomial u j,r (x). Then we have

G(`′)(x) =
r`′∑

r=1

α`′,rU`′,r (x)+
d∑

j=`′+1

r j∑
r=1

α j,r u(`
′)

j,r (x) (1 6 `′ < d).

If ` < d , then it is clear from our hypothesis that we have

‖qG(`′)
‖ = 0 6 Pθ−`′

for each ` < `′ 6 d .
Suppose the alternative (i) fails. In this case, we may apply Lemma A.2 and

obtain that the number N (η) of integral (`− 1)-tuples x1, . . . , x`−1 in PηB1 with

‖qΓ`,G(`)(x1, . . . , x`−1, ei)‖ < P−`+4θ+(`−1)η (i = 1, . . . , n) (A.7)

satisfies
N (η)� Pn(`−1)−2`−1(Q/η)−ε

0 ,

where P0 = Pη, and the implicit constant in � depends only on n, d, η, and ε.
We have

‖qΓ`,G(`)(x1, . . . , x`−1, ei)‖

=

∥∥∥∥∥
r∑̀

r=1

qα`,rΓ`,U`,r (x1, . . . , x`−1, ei)+

d∑
j=`+1

r j∑
r=1

qα j,rΓ`,u(`)j,r
(x1, . . . , x`−1, ei)

∥∥∥∥∥
=

∥∥∥∥∥
r∑̀

r=1

qα`,rΓ`,U`,r (x1, . . . , x`−1, ei)

∥∥∥∥∥ ,
because

qα j,rΓ`,u(`)j,r
(x1, . . . , x`−1, ei) ∈ Z (A.8)
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for each ` < j 6 d, 1 6 r 6 r j . Thus we see that (A.7) implies∥∥∥∥∥
r∑̀

r=1

qα`,rΓ`,U`,r (x1, . . . , x`−1, ei)

∥∥∥∥∥ < P−`+4θ+(`−1)η (i = 1, . . . , n). (A.9)

Given x1, . . . , x`−1 as above, we form a matrix

[mri ]x1,...,x`−1,

where its entries are

mri = Γ`,U`,r (x1, . . . , x`−1, ei) (1 6 r 6 r`, 1 6 i 6 n).

Now if this matrix [mri ]x1,...,x`−1 has rank strictly less than r` for each of the (`−1)-
tuples counted by N (η), then by the definition of zP0(M`) we have

zP0(M`) > N (η)� Pn(`−1)−2`−1(Q/η)−ε
0 ,

where the implicit constant in � depends only on n, d, η, and ε. Thus we have
the alternative (iii) in this case. Hence, we may suppose that at least one of
these matrices, which we denote by [mri ], has rank r`. Without loss of generality,
suppose the submatrix M0 formed by taking the first r` columns of [mri ] has rank
r`.

It follows from the definition of Γ`,U`,r that every monomial occurring in
Γ`,U`,r (z1, . . . , z`) has some component of zi = (zi,1, . . . , zi,n) as a factor for each
1 6 i 6 ` [20, Proof of Lemma 11.2]. Recall we also have

|Γ`,U`,r | 6 2```|U`,r |

from (A.3). Therefore, we have

mri = Γ`,U`,r (x1, . . . , x`−1, ei)� P`−1
0 ,

and also
n0 := det(M0)� Pr`(`−1)

0 = Pr`(`−1)η,

where the implicit constants in � depend only on n, `, r`, and U`. Hence,
from (A.9) we may write

q
r∑̀

r=1

α`,r mri = ci + β
′

i (1 6 i 6 n),

where ci are integers and β ′i are real numbers satisfying

|β ′i | < P−`+4θ+(`−1)η (1 6 i 6 n).
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Let v1, . . . , vr` be the solution to the system of linear equations

r∑̀
r=1

vr mri = n0ci (1 6 i 6 r`). (A.10)

Then we have
r∑̀

r=1

(qn0α`,r − vr )mri = n0β
′

i (1 6 i 6 r`). (A.11)

By applying Cramér’s rule to (A.10), it follows that vr ∈ Z (1 6 r 6 r`). Also by
applying Cramér’s rule to (A.11), we obtain

‖qn0α`,r‖ 6 |qn0α`,r − vr | � P (`−1)(r`−1)
0 P−`+4θ+(`−1)η

= P−`+4θ+r`(`−1)η,

(A.12)

where the implicit constant in� depends only on n, `, r`, and U`. This completes
the proof of Lemma A.6.

We then have the following corollary.

COROLLARY A.7 [20, page 276, Corollary]. Suppose u has coefficients in Q, and
further suppose U has coefficients in Z. Let Q > 0 and ε > 0. Let 2 6 ` 6 d with
r` > 0. If ` = d, then let θ = 0 and q = 1. On the other hand, if 2 6 ` < d, then
suppose 0 6 θ < 1/4 and that there is q ∈ N with

q 6 Pθ , qα j ∈ Zr j (` < j 6 d),

and
qα`′,r u( j)

`′,r (x) ∈ Z[x1, . . . , xn]

for every ` < `′ 6 d, 0 6 j < `′, 1 6 r 6 r`′ .
Let S(α) be the sum associated to u as in (A.1). Suppose

4θ + Qγ ′` < 1.

Then one of the following two alternatives must hold:

(i) |S(α)| 6 Pn−Q .

(ii) There exists n0 ∈ N such that

n0 � P Qγ`+ε and ‖n0qα`‖ � P−`+4θ+Qγ`+ε.
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The implicit constants depend at most on n, d, rd, . . . , r1, Q, ε, and U.

Proof. The proof is similar to that of [20, page 276, Corollary]. If we have

2`−1 Q/η < g`(U`),

then it is clear that the alternative (iii) of Lemma A.6 cannot occur for P
sufficiently large with respect to n, d, rd, . . . , r1, η, ε, and U. In particular, this
is the case with η = Qγ ′` + ε

′ where ε′ > 0 is sufficiently small. Note we also
have

η + 4θ < 1,

given 4θ + Qγ ′` < 1.
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