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Abstract. Let A be a domain over an algebraically closed field with Gelfand–
Kirillov dimension in the interval [2, 3). We prove that if A has two locally nilpotent
skew derivations satisfying some natural conditions, then A must be one of five
algebras. All five algebras are Noetherian, finitely generated, and have Gelfand–Kirillov
dimension equal to 2. We also obtain some results comparing the Gelfand–Kirillov
dimension of an algebra to its subring of invariants under a locally nilpotent skew
derivation.
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1. Introduction. There have been several recent papers analysing the structure
and Gelfand–Kirillov dimension of noncommutative domains with a locally nilpotent
derivation [1, 2]. The main result of this paper, Theorem 7, classifies domains with
Gelfand–Kirillov dimension in the interval [2, 3) having two locally nilpotent skew
derivations satisfying certain compatibility conditions. We now state Theorem 7
without listing all the compatibility conditions.

THEOREM. Let A be a domain over an algebraically closed field F with 2 ≤
GKdim(A) < 3. Suppose, for i = 1, 2, δi �= 0 are locally nilpotent qi-skew σi-derivations
satisfying the compatibility conditions in Theorem 7. If either A is finitely generated or
both σ1 and σ2 are locally algebraic, then A must be one of the following five algebras:

1. the commutative polynomial ring F [x, y],
2. the Weyl algebra F [x, y | xy − yx = 1],
3. the enveloping algebra F [x, y | xy − yx = x],
4. the quantum plane F [x, y | xy = qyx] with q �= 1,
5. the quantum Weyl algebra F [x, y | xy − qyx = 1] with q �= 1.

In particular, all five algebras are Noetherian, finitely generated, and have GK dimension
equal to 2.
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In order to prove Theorem 7, we will first need to prove

THEOREM 2. Let A be a domain with GKdim(A) < ∞ and let δ �= 0 be a locally
nilpotent q-skew σ -derivation where charq = 0. If either A is finitely generated or σ is
locally algebraic, then GKdim(A) − GKdim(Aδ) ≥ 1.

We then conclude this paper with two results on ordinary derivations. The
first, Theorem 10, extends a well-known result on commutative domains to finitely
generated semiprime algebras satisfying a polynomial identity.

THEOREM 10. Let δ be a locally nilpotent derivation of a finitely generated semiprime
algebra A of characteristic 0 satisfying a polynomial identity and having finite GK
dimension.

(1) If δ is nilpotent on an ideal with the same GK dimension as A, then GKdim(A) =
GKdim(Aδ).

(2) If δ is not nilpotent on every ideal with the same GK dimension as A, then
GKdim(A) = GKdim(Aδ) + 1.

Finally, in Theorem 11, we show that the characteristic 0 assumption in Theorem
10 is necessary by proving that, for every derivation of a finitely generated semiprime
algebra of characteristic p > 0, the invariants have the same GK dimension as the
entire algebra.

We will now introduce the results from the literature and the terminology that
will be used throughout this paper. Many of these results, as well as the definition of
Gelfand–Kirillov dimension, can be found in the excellent book of Krause–Lenagan
[8].

Throughout, we will let A be an algebra over a field F . We will let GKdim(A) denote
the Gelfand–Kirillov dimension of A as an algebra over F . Observe that GKdim(A) = 0
is equivalent to A being locally finite dimensional over F , meaning that every finitely
generated subalgebra of A is finite dimensional. At various points, we may refer to
GKdim(B), where B is an ideal of A. Since the definition of Gelfand–Kirillov dimension
requires the algebra have a unit, if necessary, we can think of GKdim(B) as being a
shorthand for GKdim(F + B).

For any set subset S of a ring, we will let S∗ denote its nonzero elements. If h is a
function such that h(S) ⊆ S, we say that S is h-stable. When q ∈ F∗ and σ is an F-linear
automorphism of A, then an F-linear function δ : A → A is called a q-skew derivation
if

δ(rs) = δ(r)s + σ (r)δ(s) and δ(σ (r)) = qσ (δ(r)),

for all r, s ∈ A. Sometimes δ may simply be referred to as a skew derivation. If σ is the
identity map, then δ is an ordinary derivation. We say that σ is locally algebraic if every
finite dimensional F-subspace is contained in a finite dimensional σ -stable F-subspace.

For a skew derivation δ, we let

Aδ = {r ∈ A | δ(r) = 0},

denote the rings of invariants of A under δ. Observe that since δ is q-skew, σ restricts
to an automorphism of Aδ. We say that δ is locally nilpotent if, for every r ∈ A, there
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exists n = n(r) ≥ 1 such that δn(r) = 0. Another important algebra in examining A, δ

and σ will be the skew polynomial ring A[x; σ, δ].
If T is a right Ore set of regular elements of A, we let AT−1 denote the right Ore

localization obtained by inverting the elements of T . Every element of AT−1 can be
written in the form at−1, where a ∈ A and t ∈ T . When A is an Ore domain, we let
Q(A) denote the division ring obtained from A be inverting all the nonzero elements
in A∗. We will Z(A) denote the centre of A.

If q ∈ F∗, we say that the charq = 0, if 1 + q + · · · + qn−1 �= 0, for all n ∈ �. When
q = 1, charq = 0 is the same as the ordinary characteristic of F being 0. When q �= 1,
charq = 0 is the same as q not being a root of 1. If a, b belong to some F-algebra, then
[a, b]q = ab − qba is called the q-commutator of a and b. When [a, b]q = 0, we say that
a and b q-commute.

The following facts will be used frequently throughout this paper.

(1) There is no algebra A such that 0 < GKdim(A) < 1 or 1 < GKdim(A) < 2.
(2) If B is a subalgebra or homomorphic image of A, then GKdim(B) ≤ GKdim(A).
(3) If A = A1 ⊕ · · · ⊕ An, then GKdim(A) = max

i
GKdim(Ai).

(4) If I1, . . . , In are ideals of A and I = ⋂n
i=1 Ii, then GKdim(A/I) =

max
i

GKdim(A/Ii).

(5) If T is a multiplicatively closed set of regular elements in Z(A), then
GKdim(AT−1) = GKdim(A).

(6) If B is a subalgebra of a finitely generated domain A such that GKdim(A) <

GKdim(B) + 1 < ∞, then B∗ is a left and right Ore set in A such that Q(B) is
both the left and right Ore localization of B at B∗, Q(A) is both the left and
right Ore localization of A at B∗, and Q(A) is finite dimensional as both a right
and left vector space over Q(B).

(7) If B is a subalgebra of A such that A is finitely generated as a left or right
B-module, then GKdim(A) = GKdim(B).

(8) If GKdim(A) = 1, then every finitely generated subalgebra of A satisfies a
polynomial identity. In addition, if A is a domain and the base field is
algebraically closed, then A is commutative.

(9) If GKdim(A) < ∞ then GKdim(A[x]) = GKdim(A) + 1.
(10) If δ is a σ -derivation of A, then GKdim(A[x; σ, δ]) ≥ GKdim(A) + 1.

Item (1) is frequently referred to as the Bergman gap theorem (G. M. Bergman,
A note on growth functions of algebras and semigroups, Research Note, University
of California, Berkeley, 1978, unpublished mimeographed notes (unpublished data).).
Item (6) is due to Borho–Kraft [4]. The first part of item (8) is due to Small–Warfield
[10]. Tsen’s theorem asserts that if F is algebraically closed and F(x) is a rational
function field over F , then any division ring which has centre F(x) and is finite
dimensional over F(x) is equal to F(x). The second part of (8) follows by applying
the first part of (8) along with Tsen’s theorem. Item (10) is due to Huh and Kim [6].

2. Locally nilpotent skew derivations. We will use the following lemma several
times to guarantee that various locally nilpotent q-skew derivations are not nilpotent.

LEMMA 1. Let A be a domain and δ �= 0 a q-skew derivation where charq = 0. Then
δ is not nilpotent
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Proof. By way of contradiction, suppose δ is nilpotent and let n be the index of
nilpotence of δ. If n > 1 and r, s ∈ A consider

0 = δn(rδn−2(s)) = (1 + q + · · · + qn−1)σ (δn−1(r))δn−1(s).

Since charq = 0, we have 1 + q + · · · + qn−1 �= 0, and it follows that

σ (δn−1(A))δn−1(A) = δn−1(σ (A))δn−1(A) = δn−1(A)δn−1(A) = 0.

Therefore δn−1 = 0 which immediately leads to the contradiction δ = 0. �

Our first main result relies heavily on item (6) which is a result of Borho–Kraft [4].

THEOREM 2. Let A be a domain with GKdim(A) < ∞ and let δ �= 0 be a locally
nilpotent q-skew σ -derivation where charq = 0. If either A is finitely generated or σ is
locally algebraic, then GKdim(A) − GKdim(Aδ) ≥ 1.

Proof. Suppose not; then GKdim(A) − GKdim(Aδ) < 1. Since δ �= 0, there exists
a ∈ A such that δ(a) �= 0 and δ2(a) = 0. We first consider the case where A is not finitely
generated. Observe that GKdim(A) − GKdim(Aδ) = 1 − ε, for some ε > 0. Since σ

is locally algebraic, there exists a finitely generated σ -stable subalgebra B contained
in Aδ such that GKdim(Aδ) − GKdim(B) < ε

2 . Hence, GKdim(A) − GKdim(B) < 1.
Furthermore, B and a are contained in a finitely generated subalgebra C of A which is
stable under both σ and δ. Thus GKdim(C) − GKdim(B) < 1.

By the result of Borho–Kraft [4], Q(C) is obtained from C by inverting the nonzero
elements of B and Q(C) is finite dimensional as both a left and right vector space over
Q(B). Since B is σ -stable, we can extend δ and σ uniquely to Q(C) by letting σ (t−1) =
σ (t)−1 and δ(t−1) = −σ (t)−1δ(t)t−1, for all 0 �= t ∈ B. The elements of B belong to the
kernel of δ, therefore the extension of δ to Q(C) remains locally nilpotent.

For any i ≥ 1, δi is a right Q(B)-module map of Q(C). However, since Q(C) is
finite dimensional over Q(B), the powers of δ are linearly dependent over Q(B) on
the left. Therefore, there exists as, . . . , at ∈ Q(B), with s ≤ t and as �= 0, such that
asδ

s + · · · + atδ
t = 0.

Since δ(a) �= 0, we know that δ �= 0 on Q(C). Although δ is locally nilpotent,
Lemma 1 asserts that δ is not nilpotent, Therefore there exists c ∈ Q(C) such that
δs(c) �= 0 but δs+1(c) = 0. As a result,

0 = (asδ
s + · · · + atδ

t)(c) = asδ
s(c).

But this is a contradiction as both as and δs(c) are nonzero.
In the argument above, since A was not necessarily finitely generated, it was

necessary to construct C and B in order to apply the Borho–Kraft result. If A is
finitely generated, we can immediately apply the Borho–Kraft result and localize A
and Aδ at (Aδ)∗ to obtain Q(A) and Q(Aδ). The powers of δ are now linearly dependent
over Q(Aδ) and this leads to the same contradiction as above. �

We now begin the work necessary to prove Theorem 7.

LEMMA 3. Let A be a domain and let δi �= 0 be qi-skew σi-skew derivations, for
i = 1, 2 such that σ1σ2 = σ2σ1 and Aδ1 �= Aδ2 . If q ∈ F∗ and σ = σ1σ2, then [δ1, δ2]q is a
σ -derivation if and only if [δ1, σ2]q = [σ1, δ2]q = 0.
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Proof. If r, s ∈ A, we have

(δ1δ2)(rs) = δ1(δ2(r)s + σ2(r)δ2(s))

= δ1(δ2(r))s + σ1(δ2(r))δ1(s) + δ1(σ2(r))δ2(s) + σ1(σ2(r))δ1(δ2(s)) (1)

and

(δ2δ1)(rs) = δ2(δ1(r)s + σ1(r)δ1(s))

= δ2(δ1(r))s + σ2(δ1(r))δ2(s) + δ2(σ1(r))δ1(s) + σ2(σ1(r))δ2(δ1(s)). (2)

If we let σ replace σ1σ2 and σ2σ1 and then subtract q times the second equation
from the first, we obtain

[δ1, δ2]q(rs) = [δ1, δ2]q(r)s + σ (r)[δ1, δ2]q(s) + [σ1, δ2]q(r)δ1(s) + [δ1, σ2]q(r)δ2(s). (3)

In one direction, if [δ1, σ2]q = [σ1, δ2]q = 0, then equation (1) reduces to

[δ1, δ2]q(rs) = [δ1, δ2]q(r)s + σ (r)[δ1, δ2]q(s).

Thus [δ1, δ2]q is a σ -derivation.
In the other direction, if [δ1, δ2]q is a σ -derivation, then equation (1) simplifies to

0 = [σ1, δ2]q(r)δ1(s) + [δ1, σ2]q(r)δ2(s). (4)

Since Aδ1 �= Aδ2 , either Aδ1 �⊂ Aδ2 or Aδ2 �⊂ Aδ1 . If Aδ1 �⊂ Aδ2 , let a ∈ A such that δ1(a) =
0 and δ2(a) �= 0. Replacing s by a in equation (2) give us

0 = [δ1, σ2]q(r)δ2(a).

Since δ2(a) �= 0 and A is a domain, it follows that [δ1, σ2]q = 0. Therefore equation (2)
becomes

0 = [σ1, δ2]q(r)δ2(s).

By choosing some s /∈ Aδ2 , we see that [σ1, δ2]q = 0.
An identical argument holds if we instead assume that Aδ2 �⊂ Aδ1 , concluding the

proof. �

The following result and its proof appear as part of Theorem 1 in [3].

LEMMA 4. Let R be an algebra with a q-skew σ -derivation δ which is locally nilpotent
such that δ(x) = 1, for some x ∈ R, and charq = 0. Then δ is surjective and R is the skew
polynomial ring Rδ[x; σ−1, d], where d is a σ−1-derivation of Rδ.

We continue with

LEMMA 5. Let A be a domain over an algebraically closed field F such that 2 ≤
GKdim(A) < 3. For i = 1, 2, let δi �= 0 be locally nilpotent qi-skew σi-derivations such
that

(1) δ1 and δ2 q-commute, for some q ∈ F∗,
(2) charqi = 0, for i = 1, 2,
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(3) σ1σ2 = σ2σ1, and
(4) Aδ1 �= Aδ2 .

If either A is finitely generated or both σi are locally algebraic, then

(1) GKdim(Aδ1 ) = GKdim(Aδ2 ) = 1,
(2) Aδ1 and Aδ2 are commutative, and
(3) Aδ1 ∩ Aδ2 = F.

Proof. Let δ be either δ1 or δ2 and let σ be the automorphism associated to δ.
Recall that both δ and σ are F-linear. By Theorem 2, GKdim(A) − GKdim(Aδ) ≥ 1,
therefore by the Bergman Gap Theorem, GKdim(Aδ) = 1 or GKdim(Aδ) = 0.

To show that GKdim(Aδ) = 1, by way of contradiction, let us suppose that
GKdim(Aδ) = 0; thus Aδ = F . Since F is a field, there exists x ∈ A such that
δ(x) = 1. We can now apply Lemma 4, to assert that A is the skew polynomial
ring F [x; σ−1, d], where d is a σ−1-derivation of F . However, F ⊆ Z(A), therefore
x commutes with F and we have A = F [x; σ−1, d] = F [x]. Item (9) now implies
that GKdim(A) = GKdim(F [x]) = GKdim(F) + 1 = 1, a contradiction. As a result,
GKdim(Aδ1 ) = GKdim(Aδ2 ) = 1. In addition, since F is algebraically closed, item (8)
implies that Aδ1 and Aδ2 are commutative.

To conclude the proof and show that Aδ1 ∩ Aδ2 = F , it suffices to show that
GKdim(Aδ1 ∩ Aδ2 ) = 0. Since Aδ1 �= Aδ2 , either Aδ1 �⊂ Aδ2 or Aδ1 �⊂ Aδ2 . Without loss
of generality, we may assume that Aδ1 �⊂ Aδ2 . Since δ1 and δ2 q-commute, Aδ1 is stable
under δ2. Therefore there exists a ∈ Aδ1 such that 0 �= δ2(a) ∈ Aδ1 ∩ Aδ2 . If b = δ2(a),
we can let B and C be localizations of Aδ1 and Aδ1 ∩ Aδ2 , respectively, obtained by
inverting the powers of b. Since b ∈ Aδ2 , the extension of δ2 to B remains locally
nilpotent. However ab−1 ∈ B and δ2(ab−1) = 1. If we let x = ab−1, we can once again
apply Lemma 4 to now assert that B is the skew polynomial ring Bδ2 [x; σ−1

2 , d], where
d is a σ−1

2 -derivation of Bδ2 . As a result,

GKdim(B) = GKdim(Bδ2 [x; σ−1
2 , d]) ≥ GKdim(Bδ2 ) + 1.

However C = Bδ2 and both B and C are obtained by inverting central elements,
therefore

1 = GKdim(Aδ1 ) = GKdim(B) = GKdim(C[x; σ−1
2 , d])

≥ GKdim(C) + 1 = GKdim(Aδ1 ∩ Aδ2 ) + 1.

Thus GKdim(Aδ1 ∩ Aδ2 ) = 0. �
The next lemma is the final piece needed to complete the classification in

Theorem 7.

LEMMA 6. Let A be an algebra over a field F generated by x, y with the relation xy −
qyx = αx + βy + γ , where q, α, β, γ ∈ F and q �= 0. Then A must be a homomorphic
image one of the following five algebras:

(1) the commutative polynomial ring F [x, y],
(2) the Weyl algebra F [x, y | xy − yx = 1],
(3) the enveloping algebra F [x, y | xy − yx = x],
(4) the quantum plane F [x, y | xy = qyx] with q �= 1,
(5) the quantum Weyl algebra F [x, y | xy − qyx = 1] with q �= 1.
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Proof. We begin with the special case where α = β = 0; thus xy − qyx = γ . If γ =
0, then xy − qyx = 0. A may have additional relations, therefore A is the homomorphic
image of either the commutative polynomial ring in two variables or the quantum plane
depending upon whether q = 1 or q �= 1. If γ �= 0, then if we let y′ = yγ −1, we see that
A is generated by x, y′ with the relation xy′ − qy′x = 1. Next, if q �= 1 then, since A
may have other relations, A is a homomorphic image of the quantum Weyl algebra.
However, if q = 1 then, since x and y′ generate a simple algebra, A must be isomorphic
to the Weyl algebra.

Next, we consider the case where q �= 1. If we let x′ = x − β(1 − q)−1 and y′ =
y − α(1 − q)−1, then A is generated by x′, y′ with the relation x′y′ − qy′x′ = γ ′ ∈ F .
Therefore we have reduced to the cases covered in the previous paragraph.

Finally, we consider the case where q = 1 and at least one of α, β is nonzero.
Observe that we can rewrite xy − yx = αx + βy + γ as yx − xy = −βy − αx − γ ,
essentially switching the roles of x and y. Therefore, in order to determine the
structure of A, it suffices to consider the case where α �= 0. In this case, if we let
x′ = x + yβα−1 + γα−1 and y′ = yα−1, then A is generated by x′, y′ with the relation
x′y′ − y′x′ = x′. Since A may have other relations, A must be the homomorphic image
of the enveloping algebra of the two-dimensional non-nilpotent Lie algebra. �

We can now prove the main result of this paper.

THEOREM 7. Let A be a domain over an algebraically closed field F with 2 ≤
GKdim(A) < 3. Suppose, for i = 1, 2, δi �= 0 are locally nilpotent qi-skew σi-derivations
with the following properties:

(1) δ1 and δ2 q-commute, for some q ∈ F∗,
(2) charqi = 0, for i = 1, 2,
(3) σ1σ2 = σ2σ1, and
(4) Aδ1 �= Aδ2 .

If either A is finitely generated or both σ1 and σ2 are locally algebraic, then A must be
one of the following five algebras:

(1) the commutative polynomial ring F [x, y],
(2) the Weyl algebra F [x, y | xy − yx = 1],
(3) the enveloping algebra F [x, y | xy − yx = x],
(4) the quantum plane F [x, y | xy = qyx] with q �= 1,
(5) the quantum Weyl algebra F [x, y | xy − qyx = 1] with q �= 1.

In particular, all five algebras are Noetherian, finitely generated, with GK dimension equal
to 2.

Proof. We will begin by showing that A is a homomorphic image of one of the
algebras (1)–(5) above. In light of Lemma 6, it suffices to show that A is generated
over F by some x, y with the relation xy − qyx = αx + βy + γ , where α, β, γ ∈ F .
By Lemma 5, Aδ1 and Aδ2 are commutative domains with GK dimension 1, whose
intersection is the field F . Furthermore, by Lemma 3, [δ1, σ2]q = [σ1, δ2]q = 0, hence
Aδ1 and Aδ2 are both stable under δ1, δ2, σ1, σ2. By Lemma 5(3), the restrictions of δ1

and δ2 to Aδ2 and Aδ1 , respectively, are nonzero locally nilpotent skew derivations.
Since, the field F is the invariants of the locally nilpotent actions of δ1 on Aδ2 and

of δ2 on Aδ1 , there exists x ∈ Aδ2 , y ∈ Aδ1 such that δ1(x) = 1, δ2(y) = 1. By Lemma
4, Aδ1 is a skew polynomial ring over F generated by y and Aδ2 is a skew polynomial
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ring over F generated by x. However, both Aδ1 and Aδ2 are commutative rings and are
therefore ordinary polynomial rings. Thus Aδ1 = F [y] and Aδ2 = F [x].

We can also apply Lemma 4 to the actions of δ1 and δ2 on A to represent A in two
different ways as skew polynomials rings. In particular, we have A = Aδ1 [x; σ−1

1 , d1]
and A = Aδ2 [y; σ−1

2 , d2], where d1 is a σ−1
1 -derivation of Aδ1 and d2 is a σ−1

2 -derivation
of Aδ2 . Combining this with that facts that Aδ1 = F [y] and Aδ2 = F [x], we now have
A = F [y][x; σ−1

1 , d1] = F [x][y; σ−1
2 , d2]. Looking at our two representations of A as

skew polynomials rings, we that A is generated over F by x, y subject to the relations

xy = σ−1
1 (y)x + f (y) and yx = σ−1

2 (x)y + g(x), (5)

where f (y) ∈ F [y] and g(x) ∈ F [x].
Next, we need to compute σ−1

1 (y) and σ−1
2 (x). By Lemma 3, [δ1, σ2]q = [σ1, δ2]q =

0, which implies that

σ−1
2 (δ1(x)) = qδ1(σ−1

2 (x)) and σ−1
1 (δ2(y)) = q−1δ2(σ−1

1 (y)).

Since δ1(x) = 1, δ2(y) = 1, the previous equations imply that

δ1(σ−1
2 (x)) = q−1 = δ1(q−1x) and δ2(σ−1

1 (y)) = q = δ2(qy).

As a result,

σ−1
2 (x) − q−1x ∈ Aδ1 = F [y] and σ−1

1 (y) − qy ∈ Aδ2 = F [x].

However, Aδ1 = F [y] is σ2-stable and Aδ2 = F [x] is σ1-stable. Therefore, we now have

σ−1
2 (x) − q−1x ∈ F [x] ∩ F [y] = F and σ−1

1 (y) − qy ∈ F [x] ∩ F [y] = F.

Thus

σ−1
2 (x) = q−1x + a and σ−1

1 (y) = qy + b,

for some a, b ∈ F .
Substituting the values of σ−1

2 (x) and σ−1
1 (y) into equation (3), we now have

xy = (qy + b)x + f (y) and yx = (q−1x + a)y + g(x).

These equations can be rewritten as

xy − qyx = bx + f (y) and xy − qyx = −qay − qg(x).

As a result,

bx + f (y) = −qay − qg(x),

hence

bx + qg(x) = −qay − f (y) ∈ F [x] ∩ F [y] = F.

Therefore bx + qg(x) = −qay − f (y) = c ∈ F and both earlier equations now
reduce to

xy − qyx = bx − qay − c.
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Thus A is indeed generated over F by x, y with a relation of the form xy − qyx =
αx + βy + γ , where α, β, γ ∈ F .

We now know that A is isomorphic to B/P, where B is one of the algebras (1)–(5)
and P is a prime ideal of B. Observe that B is a domain with GKdim(B) = 2. If
P �= 0, then P contains a regular element of B and Proposition 3.15 of [8] shows that
GKdim(A) + 1 ≤ GKdim(B). Thus GKdim(A) ≤ 1, contradicting our assumption
that 2 ≤ GKdim(A) < 3. As a result, P = 0 and A must be one of the algebras (1)–(5).
Observe that all five algebras obtained in this classification are easily seen to be
Noetherian, finitely generated, and have GK dimension equal to 2. �

The following examples illiustrate that all five algebras described in Theorem 7
do have two locally nilpotent skew derivations with the properties described in the
theorem.

EXAMPLE 8. The five algebras described in Theorem 7 all have locally nilpotent
skew derivations δ1, δ2 with the properties described in Theorem 7.

Case 1: A = F [x, y | xy − qyx = 0]. Since we are allowing q = 1, algebras (1) and
(4) from Theorem 7 are both described in this manner. Next, suppose q1, q2 ∈ F such
that charqi = 0, for i = 1, 2. We can now define qi-skew σi-derivations δi as follows:

δ1(x) = 1, δ1(y) = 0, σ1(x) = q1x, σ1(y) = q−1y

δ2(x) = 0, δ2(y) = 1, σ2(x) = qx, σ2(y) = q2y.

In this case, δ1, δ2, σ1, σ2 extend uniquely to all of A such that δ1, δ2 are locally
nilpotent and satisfy all the properties listed in Theorem 7.

Case 2: A = F [x, y | xy − qyx = 1]. Since we are allowing q = 1, algebras (2)
and (5) from Theorem 7 are both described in this manner. In this case, we let δ1, δ2

be defined as in Case 1. However in order for σ1 and σ2 to preserve the relation
xy − qyx = 1, we need q = q1 = q2

−1. Therefore, in the example, δ1 is q-skew and δ2 is
q−1-skew.

Case 3: A = F [x, y | xy − yx = x]. This case covers algebra (3) from Theorem 7.
We once again define δ1, δ2 as in Case 1. However, in this case, we define σ1, σ2 as

σ1(x) = q1x, σ1(y) = y − 1, σ2(x) = x, σ2(y) = y + a,

where a ∈ F . In this example, q2 = 1, hence δ2 commutes with both δ1 and σ2. However,
δ1 is q1-skew for any q1 with charqi = 0. Observe that δ2 is an ordinary derivation if
and only if a = 0.

3. Derivations. Let A be an algebra of characteristic 0 with GKdim(A) < ∞ and
let δ be an ordinary derivation of A which is locally nilpotent. The question of whether
GKdim(A) = GKdim(Aδ) + 1 is open, even if A is a domain. It is well-known that
the answer is yes if A is a commutative domain and the goal of Theorems 9 and 10
is to extend this to prime rings satisfying a polynomial identity and then to finitely
generated semiprime rings satisfying a polynomial identity.
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THEOREM 9. Let δ be a locally nilpotent derivation of a prime algebra A of
characteristic 0 satisfying a polynomial identity and having finite GK dimension.

(1) If δ vanishes on Z(A), then GKdim(A) = GKdim(Aδ).
(2) If δ does not vanish on Z(A), then GKdim(A) = GKdim(Aδ) + 1.

Proof. Since A is prime and satisfies a polynomial identity, A(Z(A)∗)−1 is a simple
algebra which is finite dimensional over the field Z(A)(Z(A)∗)−1. Therefore

GKdim(A) = GKdim(A(Z(A)∗)−1) = GKdim(Z(A)(Z(A)∗)−1) = GKdim(Z(A)).

If δ vanishes on Z(A), we have Z(A) ⊆ Aδ. Therefore GKdim(Z(A)) ≤ GKdim(Aδ),
hence

GKdim(A) = GKdim(Z(A)) ≤ GKdim(Aδ) ≤ GKdim(A),

proving (1).
If δ does not vanish on Z(A), it restricts to a locally nilpotent derivation of

Z(A) which, by Lemma 1, is not nilpotent. Therefore, there exists y ∈ Z(A) such
that δ(y) �= 0 and δ2(y) = 0. Let α = δ(y) and then let S and T be the localizations
of A and Aδ, respectively, obtained by inverting the powers of α. Then δ remains
locally nilpotent on S and Sδ = T . Since α is central, GKdim(S) = GKdim(A) and
GKdim(T) = GKdim(Aδ).

Next, let x = yα−1; then x ∈ Z(S) and d(x) = 1. By Lemma 4, S is the skew
polynomial ring Sδ[x; d], for some derivation d of Sδ. However, x is central, therefore
d = 0 and S = Sδ[x]. Therefore, by item (9), GKdim(S) = GKdim(Sδ) + 1 and we now
have

GKdim(A) = GKdim(S) = GKdim(Sδ) + 1 = GKdim(T) + 1 = GKdim(Aδ) + 1,

proving (2). �
We now extend the previous result from prime rings to finitely generated semiprime

rings.

THEOREM 10. Let δ be a locally nilpotent derivation of a finitely generated semiprime
algebra A of characteristic 0 satisfying a polynomial identity and having finite GK
dimension.

(1) If δ is nilpotent on an ideal with the same GK dimension as A, then GKdim(A) =
GKdim(Aδ).

(2) If δ is not nilpotent on every ideal with the same GK dimension as A, then
GKdim(A) = GKdim(Aδ) + 1.

Proof. Since A is semiprime, finitely generated, and satisfies a polynomial identity,
it has a finite number of minimal primes ideals and is therefore Goldie, see 13.4.4 and
13.6.9 in [9]. Let P1, . . . , Pn be the minimal primes of A and, for each i, let Ai be the
right annihilator of Pi of A. Since A has characteristic 0, by [7], each Pi is δ-stable.
Observe that each Ai, when viewed as a ring, is a prime ring and is also δ-stable.

Let B = A1 + · · · + An; we claim that this sum of ideals is actually a direct sum.
If not, without loss of generality, we may assume that there exists ai ∈ Ai such that
0 �= a1 = a2 + · · · + an. Since aiPi = 0, it follows that

a1P2 · · · Pn = (a2 + · · · + an)P2 · · · Pn = 0.

https://doi.org/10.1017/S0017089514000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000482


GK DIMENSION AND LOCALLY NILPOTENT SKEW DERIVATIONS 565

Since A1 ∩ P1 = 0, we know that a1 /∈ P1. Therefore, since P1 is prime, Pj ⊆ P1, for
some j > 1. However, Pj �= P1, thus Pj is properly contained in P1 which contradicts
that P1 is a minimal prime.

Next, we claim that B = A1 ⊕ · · · ⊕ An is essential as both a left and right ideal
of A. If aB = 0, then aAi = 0, for all i. Each Pi is prime and Ai �⊆ Pi, therefore
a ∈ ⋂n

i=1 Pi = 0. Thus B is a two-sided ideal with zero left annihilator in a semiprime
ring and it immediately follows that B is essential as both a left and right ideal.

To prove part (1), suppose δ is nilpotent on an ideal I of A such that GKdim(A) =
GKdim(I). Since

⋂n
i=1 Pi = 0, we have

GKdim(A) = GKdim(I) = max
i

GKdim(I + Pi/Pi).

Therefore, there is a minimal prime Pm such that GKdim(A) = GKdim(I + Pm/Pm).
Derivations of prime rings which are nilpotent on a nonzero ideal are nilpotent on
the entire ring [5]. Since δ is nilpotent on I + Pm/Pm, it now follows that δ is also
nilpotent on A/Pm, hence must be nilpotent on Am/Pm. Therefore, for some t, δt(Am) ⊆
Am ∩ Pm = 0. Thus δ is nilpotent on Am and Lemma 1 now implies that δ vanishes on
the domain Z(Am). Applying Theorem 9, we have

GKdim(Am) = GKdim((Am)δ).

All nonzero ideals of a prime ring satisfying a polynomial identity produce the
same quotient ring when localized at their centre, therefore they all have the same GK
dimension. Therefore GKdim(Am/Pm) = GKdim(I + Pm/Pm) and we have

GKdim(Aδ) ≥ GKdim((Am)δ) = GKdim(Am) ≥ GKdim(Am/Pm)

= GKdim(I + Pm/Pm) = GKdim(A).

The above inequalities immediately imply that GKdim(A) = GKdim(Aδ), proving (1).
To prove part (2), for any i, Z(Ai) is δ-stable. Therefore there exists some nonzero

ti ∈ Z(Ai) ∩ Aδ. Since ti is in the centre of the prime ring Ai, ti is regular in Ai. Thus if
we let t = t1 + · · · + tn, then t is central and regular in B. However, B is essential, thus t
is also central and regular in A. Next, we let AT−1 (Aδ)T−1, BT−1 and (Bδ)T−1 denote,
respectively, the localizations of A, Aδ, B, and Bδ at the powers of t. If a ∈ A, we have
a = (at)t−1 ∈ BT−1, thus AT−1 = BT−1. Furthermore, since t is a regular element of
A belonging to Bδ, it also follows that

(Aδ)T−1 = (AT−1)δ = (BT−1)δ = (Bδ)T−1.

Since we are localizing at central elements, we have

GKdim(Aδ) = GKdim((Aδ)T−1) = GKdim((Bδ)T−1) = GKdim(Bδ).

Observe that

Bδ = (A1)δ ⊕ · · · ⊕ (An)δ.

Therefore, GKdim(Bδ) = max
i

GKdim((Ai)δ). Given i, one possibility is that

GKdim(Ai) < GKdim(A). The GK dimension of any semiprime ring satisfying a
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polynomial identity is an integer. Therefore, in this case, we have GKdim(Ai) ≤
GKdim(A) − 1. Thus

GKdim((Ai)δ) ≤ GKdim(Ai) ≤ GKdim(A) − 1.

The other possibility is that GKdim(Ai) = GKdim(A). Since we are trying to prove
(2), we know that δ is not nilpotent on Ai. Since Ai is prime and satisfies a polynomial
identity, if we let S = A(Z(A)∗)−1, then S is simple and finite dimensional over its
centre. If δ vanished on Z(Ai), the extension of δ to S would be both algebraic and
locally nilpotent. contradicting that it is not nilpotent on Ai. Thus δ cannot vanish
on Z(Ai) and Theorem 9 now asserts that GKdim((Ai)δ) = GKdim(Ai) − 1, hence
GKdim((Ai)δ) = GKdim(A) − 1.

Since there exists some j where GKdim(Aj) = GKdim(A), the arguments above
combine to show that max

i
GKdim((Ai)δ) = GKdim(A) − 1. Hence,

GKdim(Bδ) = max
i

GKdim((Ai)δ) = GKdim(A) − 1.

However, GKdim(Aδ) = GKdim(Bδ), therefore whenever δ is not nilpotent on every
ideal with the same GK dimension as A, we have GKdim(A) = GKdim(Aδ) + 1,
proving (2). �

The result in Theorem 10 cannot be extended to the characteristic p > 0 case. In
fact, we conclude this paper by showing that in the characteristic p case, A and Aδ have
the same GK dimension for every derivation δ.

THEOREM 11. Let δ be a derivation of a finitely generated semiprime algebra A of
characteristic p > 0 satisfying a polynomial identity and having finite GK dimension.
Then GKdim(A) = GKdim(Aδ).

Proof. We will first consider the case where A is prime. As in the proof of Theorem
9, since A satisfies a polynomial identity, A and Z(A) have the same GK dimension.
If L and K are the quotient fields of Z(A) and Z(A)δ, respectively, then GKdim(L) =
GKdim(Z(A)) and GKdim(K) = GKdim(Z(A)δ). Since A has characteristic p and L
is commutative, for every α ∈ L, we have αp ∈ K . Therefore L is algebraic over K and
since every algebraic extension of a field has the same GK dimension as the smaller
field, we have GKdim(L) = GKdim(K). Combining all of the above, we have

GKdim(A) = GKdim(Z(A)) = GKdim(L) = GKdim(K) = GKdim(Z(A)δ)

≤ GKdim(Aδ) ≤ GKdim(A),

proving the prime case.
For the semiprime case, as in the proof of Theorem 10, we can let P1, . . . , Pn be

the minimal primes of A and let Ai be the annihilator of Pi. Since A has characteristic
p, the minimal primes need not be δ-stable. However, for each i, δ(Pi

2) ⊆ Pi and

0 = δ(Ai(Pi)2) ⊆ δ(Ai)(Pi)2 + Aiδ(Pi
2) = δ(Ai)(Pi)2.

Therefore

(δ(Ai)Pi)2 ⊆ δ(Ai)(Pi)2 = 0,
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hence δ(Ai)Pi is nilpotent and must therefore be zero. Since δ(Ai)Pi = 0, δ(Ai)
annihilates Pi, thus Ai is δ-stable.

Therefore, again as in the proof of Theorem 10, each Ai is a prime ring and
B = A1 ⊕ · · · ⊕ An is a direct sum of δ-stable ideals of A which is essential as both a
left and right ideal of A. We can again localize A and B at the powers of some central,
regular element in Bδ to conclude that for some j ≤ n, GKdim(A) = GKdim(Aj). We
can now apply the prime case to conclude that GKdim(Aj) = GKdim(Aj

δ). As a result,

GKdim(A) = GKdim(Aj) = GKdim(Aj
δ) ≤ GKdim(Aδ) ≤ GKdim(A),

thereby proving (2). �
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