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Abstract

The paper gives a spectral representation for a class of random fields which are bounded in
mean square almost surely. A characterisation of the corresponding spectral measure in the
representation is obtained based on Beurling's duality theory and generalised Fourier transforms.
A representation for the covanance function of asymptotically stationary random fields is also
derived.

1991 Mathematics subject classification (Amer. Math. Soc.): 60 G 60, 62 M 15.

1. Introduction

Suppose that {X(t), t € R"} is a homogeneous complex-valued random field
for which £(X(t)) = 0 and £|X(t)|2 < oo . Additionally, assume that X(t)
is continuous in mean square and let R(t) denote its covanance function.
Then, by Bochner's theorem, R(t) has the representation

(1.1) R(t)= /
JR"

where F(A) is the spectral distribution function of X(t) and (t, A) denotes
the inner product of t, A e R" . Furthermore, there exists a field Z(A) with
orthogonal increments such that for each t e R" , X(t) has the representation

(1.2) X(t)= / e-'(M)JZ(A),
JR"

with E\dZ{X)\2 = rfF(A).
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386 V. V. Anh and K. E. Lunney [2]

This spectral theory for homogeneous random fields was first rigorously
established in Yaglom (1957). Although homogeneity (or stationarity) is an
important concept, which leads to an elegant theory for analysis of random
fields, many significant applications of the theory of random fields, for ex-
ample in image processing, require the removal of this stationarity condition
(see the collection of selected papers in Multidimensional Digital Signal Pro-
cessing, edited by the Multidimensional Signal Processing Committee, IEEE
Press, 1986).

A large class of nonstationary random fields was considered in Wiener
(1930), Chapter 3, which can be defined by the condition that

(1.3) R ( k ) = l i m - 1 / X(t + k)X(t)rft

T-oo KT JCT{0)

exists almost surely for each k e R", where T = (T{, ... , Tn) e R" ,

(1.4) CT(y) = {xeRn;\xi-yi\<Ti,i=\, . . . , « } , y € R \

and VT is the volume of CT(0).
Such a class corresponding to n — 1 (that is, a class of time series) was

named the class 5 in Wiener (1957). Therefore, we shall call S the class of
random fields defined by (1.3). A spectral representation for S in the scalar
case (n — 1) was given in Wiener (1930), Eq. (6.05), p. 155. However,
the result, which relies on Cesaro summation procedure, is not as elegant
as (1.2). (In fact, it holds only in the sense of integration by parts). A
variant of the class S, named the class of asymptotically stationary random
fields, was investigated in Anh and Lunney (1991). In this latter study, the
class of almost harmonizable random fields was shown to be a subclass of the
class of asymptotically stationary random fields. Consequently, harmonizable
random fields, and therefore, stationary random fields, are all asymptotically
stationary. An important example of asymptotically stationary random fields
is the class of periodically correlated random fields. Properties of this latter
class were shown in Anh and Lunney (1990b) to be useful in characterising
the unit pattern in texture analysis. (For a recent survey on various important
classes of nonstationary processes, Rao (1985) and Bhagavan (1985) may be
consulted.)

A more general class of random fields which contains S is the class
(1.5)

3S = I X(t) locally in L2 and sup - r - ^ - f \X(t)\2 dt<oo a.s. I .
[ T>0 1 + Vj JcT(0) J

Here, L2 is the space of quadratically integrable functions on R" with re-
spect to Lebesgue measure and X: R" —> C is said to be locally in L2 if
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jE \X{t)\2 dt < oo for every compact set E of Rn . It is known that signals
with finite power such as those of 38 have in general no Fourier transforms.
They are harmonically analysed by the so-called generalised Fourier trans-
form used so effectively in Wiener (1930). Several properties for 38 with
n — 1 were summarised in Papoulis (1965), Section 13.4. More details for
the scalar case can also be found in Wiener (1957). However, a fundamen-
tal study of 38 for the scalar case n = 1 was given in Henniger (1970),
where Beurling's theory of convolution algebras and ideas from the theory of
distributions were employed.

Part of this paper extends the work of Henniger (1970) to random fields.
It should be noted that the technique used in proving Theorem 1 of Sec-
tion 3 is different from that of Henniger (1970). (In fact, the proof of the
converse in Henniger's Theorem 3.1 cannot be used for random fields). A
spectral representation for the class 38 is given in the next section. Here,
the representation will be of the form (1.2) with Z(X) as the limit of a
generalised Fourier transform. The result is essentially based on the duality
theory of Beurling (1964). A characterisation of the field Z(A) in the spectral
representation is obtained in Section 3. Based on this characterisation, the
distribution function corresponding to the spectral representation obtained
and the covariance function of 38 are defined. As is well known, the spectral
representation and, in particular, the spectral measure and density function,
play a dominant role in the filtering and prediction of stationary random
processes and fields (see Gihman and Skorohod (1974), Chapter 4). Based
on the results developed in this paper, a theory for filtering and prediction
of the large class 38 is under consideration. In Anh and Lunney (1991), a
continuity theorem for the class S is established. This continuity theorem
yields the spectral representation for the covariance function R(k) of S as
defined by (1.3). However, the result of Anh and Lunney (1991) assumes
the continuity of R(k) at the origin. It is known that, even through X(t)
can be assumed to be mean square continuous, the covariance function R(k)
defined as the limit of (1.3) may not be continuous at any point. With the
hindsight of the work developed in Sections 2 and 3, we now derive in Sec-
tion 4 an alternative representation for R(k) of 5 without the assumption
that R(0) be continuous. This will involve the generalised Fourier transform

considered in Section 2.

2. Spectral representation

We first introduce some notations and give a summary of Beurling's theory
as needed in the analysis. Apart from CT(y) as defined by (1.4), we also put,

https://doi.org/10.1017/S1446788700036557 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036557
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for convenience, Cg = {x e R" ; 0 < x < e} , e e R" .
The volume of CT(y) is VT = 2nTi-Tn, while the volui of C£ is

^ = ^i •••£„> where e = (el, . . . , en). The norm for the class 38 is defined
as

\ 1/2
I 1

# = sup
•* T>0 V 1 + VT

We next consider

W = < Q : R" —> R ; a(t) > 0 , non-increasing in |t| ,

/ a ( t ) dt < oo and a(0) = l ima( t ) < cxo \.
JR» t—o J

Define the norm in W as

(2.1) N{a)=a(0)+ f a(t)dt,

and consider WQ = {a e W; N(a) = 1} . We next define

L2(a(t)dt) = JX: R" -» C; ^ |X(t)|2a(t)rft < oo j ,

(2.2) 11^= sup ( / \X(t)\2a(t)dt) .

Then B is a Banach space in the norm (2.2) (see Beurling (1964), Theorem
1). We further define

A= U L2(dt/a(t)),

(2.3) l l^l l^ = Jurf ^ 2 )

Then ^ is a Banach algebra under addit ion and convolution with the norm
(2.3) and \\X{*X2\\A < H ^ U I * ^ (see Beuling (1964), Theorem 1).

An impor tant result of Beurling (1964) that we require is the following.

T H E O R E M (Beurling).
(i) 3§ = B = A * , where A* is the dual of A in the Banach space sense;
(ii) each linear functional X on A has the form

= j (p{t)Y{t)dt
JR"
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for a unique Y in B and

\\X\\A.= sup

389

<P(t)Y(t)dt

{seeBeurling (1964), Theorem 2).

The above theory was developed for functions on R" . By considering the
random field {^(t)} as the class of sample functions Xw (or simply X) on
a probability space (Q, s/ , P) (see Gihman and Skorohod (1974), p. 42),
then Beurling's theory applies and the results hold almost surely. We shall
follows this convention throughout the paper. From Beurling's theorem, it is
seen that, for X <

Also,

g
, X e L2(dt/(l + |t|"+1)) since 1/(1 + |t|"+1) 6 W.

Thus, for large |t|,

\X(t)\2 f ei{t'x)

JC.
dx dt<c I \X{t)\7 dt

1 +
< oo; for some constant c

that is,

x{i) I
Jc.

Its Fourier transform is then

Therefore,

(2.4)

REMARK. The above quantity Z£(A) is the generalised Fourier transform
of X(t). In the scalar case, this is defined by

-X{t)dt
-It

(see Papoulis (1965), p. 468).
Therefore,

G{k + e) - G(A - e) _
2e

e dx\e dt
1 /*OO / 1 f£ \

=hLMhb"*d*)
which is of the form (2.4) above.
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For the derivation of the spectral representation, we require the following
result due to Henniger (1970).

LEMMA 1. Let {Xn} be a sequence in 38. Consider the following state-
ments:

(a) {Xn} is a Cauchy sequence in the weak-star topology of 38 ;
(b) {Xn} is a Cauchy sequence in L (a(t) dt) for each a e W;
(c) {Xn} is a Cauchy sequence in L2(CT(0)) for each T > 0.

Then (b) => (c) and (b) => (a).
If {Xn} is a bounded set in 38, then (b) $> (c). If Xn is bounded and

any o/(a)-(c) holds, then there exists X in 38 such that Xn —• X in the
respective topology.

PROOF. Extension of Theorem 2.1 of Henniger (1970).

Put XE(t) ± / { t x )

Then, as shown above, XE e L and

K (2?

Let <p e A. By definition, <p e L2. Thus, Parseval's identity implies that,
for e ^ 0,

f Z U)
(p{t)XE(t)dt= J yW-^dk,

where q> is the Fourier transform of ^ . It is clear that | |^e| |^ < ||X\\^ so
that {XE} is a bound<
T > 0 as e —• 0 since

|
that {XJ is a bounded set in 3S. Also XE -• X in L2(CT(0)) for each

lim-— /
«-o V Jc
lim^r / ei{'-t]dx=l.

Thus, in view of Lemma 1 above, we get XE —> X in the weak-star topology
of 38 . Consequently, Beurling's theorem implies that

f q>(t)Xe(t)dt-+X{9)

and

(2.5) Xtf) = ]im[ (p[Xy^dk= f <j>

Eq. (2.5) defines the Fourier transform X of X e 38 . It is represented by
the measure dZ generated by the generalised Fourier transform Z of X .

https://doi.org/10.1017/S1446788700036557 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036557


[7] Generalised harmonic analysis 391

For a representation of X e £% , we note that by Plancherel's theorem,

As seen above, XE -> X in any of the three types of convergence specified in
Lemma 1. Thus,

X{t) = \imj n^e~i(uk)dA,

that is,

(2.6)

as required.

3. Characterisation of the spectral measure

As seen above, X(t) e 38 has the representation (2.6) where the spectral
measure dZ(A) is generated by the generalised Fourier transform Z£ of X£

in L2. It should be noted from the analysis that the representation (2.6)
holds for X(t) in a larger class, namely, L2(dt/(l + | t |"+ 1)). In this section,
we give a characterisation for dZ(A) corresponding to X(t) e 38 .

We require the following result due to Henniger (1970) for the class

= | X: R -f C; X locally in L2 and sup , / f \X(t)\2 dt < oo I .
v r>o 1 +

LEMMA 2. X belongs to 38X if and only if

= sup
. 2

Furthermore, there exist constants kx, k2 independent of X such that

PROOF. See Henniger (1970), Lemma 3.1.

We now prove

LEMMA 3. X belongs to & if and only if

(3.2) S(X) = ^sup 2 J^ \X{t)\2 [ ] -±L jdt < oo.
,_/ ^ V=1 i i I
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PROOF. Suppose that J e J 1 . Then, as

7=1

we get

<sup—i— / \X(t)\2dt<™.
T 0 A + V J

/ \
T>0 A + VT JcT(0)

T h i s i m p l i e s t h a t , f o r j = 1 , . . . , « ,

(3.4) s u p - — — \X(t{, ... , tn)\ dtj < oo.

Therefore, in view of Lemma 2 above and for j = 1, . . . , n ,

(3.5)
> sin2,

for some constant kj independent of X. Now, for 0 < n2 < 1/2,

I I sup /
J-oo \Q<pit<l/2J-c

oo

L
for some constant kx using (3.5)

/ : , . . . , in)\ 2 » > 2 l " ' 1

using Fubini's theorem

s\xv \ f ' sup / 2

r,>o i + -i-* i J-r, r2>o J-r
for some constant k7 in view of (3.5).
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Repeating the argument will lead to

r 2 ( " sin2 u t \

/ \x(tlf...,tn)\2m—f2MV

for some constants kx, ... ,kn

< oc in view of (3.3).

Conversely, suppose that for some T7 = (7^ , . . . , T'n),

(3.6) TTTT I \X{t)\2dt>M, M>0.
1 + vr JcT,(o)

We can assume that Tj > 2, j = 1 , ... , n. Take fij = n/(4Tj), j =

1 , . . . , « . Then, for j = 1, . . . , n, 0 < /a < 1/2 and sin2 fijtj > 1/2 for
t < 2Tj

j

Also from (3.6),

/ 2dt>^ for T ; < T < 2 T ; .
2JcT(Q)

Thus, for T7, < T < 2T', ,

(2*) \^TJ

(2n)n

1 2"T[---T'nM
~ (2n)n T[ • • • T'n 2"

- M

~ (2n)"-
Consequently, if the mean square of X is unbounded, then S{X) = oo, a
contradiction.

We now characterise the spectral measure dZ for X 6 ̂  .
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THEOREM 1. The field Z{X) of (2.5) and (2.6) generates a spectral mea-
sure dZ in 38, the space of Fourier transforms of X ^38, if and only if it
is locally in L2 and satisfies

(3.7) D(Z) = sup 1 / \Zc{X)\2dk < oo.
0<e<l Vt JR"

(3-8)

PROOF. Since Zc(X)/Ve is the Fourier transform of Xe(t), we get

1

v

But \e'ejtj - 1|2 = 4 sin2 Sjtj/2. Therefore, we can rewrite equation (3.8) as

sin2

7=1

The left hand side of (3.9) is bounded for 0 < e < 1 by Lemma 3, taking
fij = Bj/2, j = 1 , . . . , « . Consequently, (3.7) holds.

Conversely, suppose that Z£ is a field locally in L2 and satisfies (3.7).

Then, using PlanchereFs theorem, we can define a function X(t, e) such

/c.that X(t, e) is locally in L2 for each e > 0 and X(t, e) Jc e'{t'x) dx is the
inverse transform of Z (X), that is,

/ n £ 4 z
; C T ( 0 ) ^ it.

We want to show that X{t, e) = /R»e"' ( t ' u ) dZ(u) = X(t), independent of
e. In fact, put

*CT) = / I I 7T^— ( / e-llt'u)dZ(m)) dt

Then

- 4(0) 3 1 UJ
using Fubini's theorem

= 2" / h(n,T)dZ(u),
Jtin

where

7=iJo
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If we denote by C the cube {u e R" ; X < u < A + e} , then

g(T) = 2"( [ + f + f)h(u,T)dZ(u)
\Jcc he JcJ

= 2 " ( / 1 + / 2 + / 3 ) ,

where Cc is the complement of C and d C its boundary.
Since C is a continuity set of Z(u), 72 = 0. Also,

f 0, u £ C
lim A(u,T) = .{ 1 *

using the result that

{ TT/2, a > 0

0, a = 0

- « / 2 , a < 0
(see Lukacs (1970) p. 31). Consequently, in view of the dominated conver-
gence theorem, we get

lim L= [ ( lim h(a, T)) dZ(u) = 0,
T->oo JQC \T-»OO J

, / ( lim
T-»oo J 7 V

so that

It then follows that X{t, e) = /B. e"'(t>Il) </Z(n) a.e.
The Parseval identity now implies

2^T4sm2ejtj/

(57 /.
that is,

" sin2

Condition (3.7) then yields that X e 38 in view of Lemma 3.

4. Representation for the covariance function

In view of Theorem 1, the distribution function corresponding to the rep-
resentation (2.6) may be defined as

(4.1) F(n)= sup 1 f" ••• / " ' \Z£(X)\2dXr..dXn
0<e<l "e J—oo J-oo
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for u = (ux, ... , un) G R". This definition suggests a way to define the
covariance function of 9S as

(4.2) R(*)= I e~i{k'u)dF(u)

if the transform exists.
For Wiener's class S, which is a subclass of 38, result (4.2) has a more

definite setting. It is proved in Anh and Lunney (1991) that the representation
(4.2) holds under some conditions including the continuity of R(0). In this
section, we shall remove the latter restriction. An alternative representation
for R(k) is derived based on the generalised Fourier transform Z£(A) of the
previous sections.

We shall require the following

WIENER'S TAUBERIAN THEOREM. Suppose that y/ e L°°(R"), / G Ll (R"),
f{X) ? 0 for every l e R " , and

Then l im| t H o o(g * y/)(t) = ag(0) for every g e Ll(Rn).

PROOF. See Rudin (1973), pp. 211-212.

Let y/ be as given in the above theorem. Put

Then

—jr • • / <p(t)dtr--dtn
•• • i n Jo Jo

— OO J —OO

o Jo \fj[

https://doi.org/10.1017/S1446788700036557 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036557


[13]

Define

Generalised harmonic analysis 397

< oo, j = 1, . . . , n
otherwise.

Then,

/
" /-00 f

5/-co*
" /•<» sin2 Xj

Also,
(4.1)

lim
/ 9 \ rim U /

(4.2) lim
T O O

= Urnlim
T-»OO 7 j • • • i n J 0 0 R

As shown by Wiener (1958), pp. 142-143, for each j = l,...,n,
(2/7t) exp(<!; ) sin exp(-f ) e L (R) and its Fourier transform does not van-
ish on R. Thus, / € L\R") and f{X) ^ 0, A e R" . Consequently, the two
limits in (4.1) and (4.2) assume the same value, if they exist, by Wiener's
Tauberian theorem as stated above.

By choosing tp(t) - |^(t) |2 , X & S, the above analysis yields immediately

1 /" •> \ t 1 -w-r Sin £,I;

lim — / \X{t)\2 dt = lim - / \X(t)\2 J I ir1dt.

In conjunction with (3.9), we then have

(4.3) lim 1- f |X(t)|2Jt = l i m l / \Ze{l)\2dX.
T-00 vT JCT{0) £^O ve yR»

REMARK. The quantity on the right hand side of (4.3) is known as the
quadratic variation of the integrated Fourier transform Z£. Result (4.3)
states that the quadratic variation of the integrated Fourier transform of a
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field is equal to its mean square value. This important result is known as
Wiener's theorem of quadratic variation in the scalar case. (See Lee (1960),
pp. 85-92, for a study of the quadratic variation of several important classes
of time series).

It should be noted that the left hand side of (4.3) is R(0)(= /„„ dF(X))
and result (4.3) in fact motivaties the definition of the distribution function
F(u) given in (4.1) above. The usual relationship between the covariance
function and the distribution function then suggests that

(4.4)

We now prove that this is indeed the case for Wiener's class S and the result
does not require the continuity of R(k).

THEOREM 2. Let X e S and R(k) be defined by (1.3). Then R(k) has
the representation (4.4).

PROOF. We have

R(k) = lim -J- / X{t + k)Z(t) dt
T-oo KT Jr(0)T JCT(0)

2(4.5) = \ lim - 1 / {\X{t + k) + X(t)\2 - \X(t + k) - X(t)\
4 T-oo ^ JCT{0)

•k) + iX(t)\2

•k)-iX(t)\2)dt.

Define the generalised Fourier transform Z£ corresponding to X(t), which
exists, as in Section 2, and let the generalised Fourier transform correspond-
ing to X(t + k) be Z£ k(k). Then, using (4.3),
(4.6)

lim 4" / \X(t + k) + aX(t)\2dt

- i / \Ze k{X) + aZE{X)\2dk for
e

= lim y Jn \Z£k{k) + aZe(X) + e~l{k'X)ZeW - ^/(k';)Ze(A)|2 dk

= lim y 1^ |Ze>k(A) - e-i{k'"]ZeW + (a + e-
i{k'X))ZEW\2 dk.
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[15] Generalised harmonic analysis 399

Applying Minkowski's inequality to the right hand side of (4.6), we get

\ 1/2

/ 1 r \ l/2

(4 7̂ 1 ^ ft- l I T / i \ - i ( k , J l ) ™ , , , , 2 , , \
^ ' ^ I l i m 77 / |Z£ k(A) — e Z£(/l)| a/I I

1/2

Now, using the transformation t + k —> t ,

Also,

Therefore,

sine,7,

f((

Parseval's identity then yields

As shown in Wiener (1958), pp. 157-158,

sinejjtj-kj) sine jtj

Also, from Beurling's theorem, it is seen that, for X e S\ X e
L2(dt/(l + |t|2")) since 1/(1 + |t|2") G FT. Consequently, the right hand
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400 V. V. Anh and K. E. Lunney [16]

side of (4.8) is 0(e, • • • e2
n). This result together with (4.7), yields

(4.9)

If we now take a = 1, - 1 , /, - / successively in (4.9) and combine the four
results in accordance with (4.5), the representation (4.4) will be obtained.
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