and $p_{x}=\frac{\mathrm{D}_{x+1}}{\mathrm{D}_{x}} \cdot \frac{1}{v}$, or $p_{x}=\frac{\mathrm{D}_{x+1}}{\mathrm{D}_{x}}(1+r)$, as may be found most convenient.
2. Should it be preferred to exhibit a table of decrements of the usual form, it is very easily deduced by the formula $\mathrm{D}_{x}=l_{x} v^{x} \therefore l_{x}=\mathrm{D}_{x} \cdot \frac{1}{v^{x}}$, or $\mathrm{D}_{x}(1+r)^{x}$.

> I remain, Sir, \quad Your most obedient Servant, H. A. S.

Aberdeen, $4 t h$ August, 1856.

ON FORMULAE FOR USING TABLES OF LOGARITHMS.
To the Editor of the Assurance Magazine.

Sir,-I understand that you are about to pablish some tables of logarithms to twelve places of decimals, and I have thought that it might be interesting to you to have your attention called to the following formulx for using the tables:-

Suppose $\log .(x \pm h)=\log . x \pm y$, then

$$
\begin{align*}
\log . y & =\log \cdot\left(\frac{m h}{x}\right) \mp \frac{1}{2}\left(\frac{m h}{x}\right) \text { nearly } . \tag{1}\\
\log \cdot h & =\log \cdot(x \mathrm{M} y) \pm \frac{1}{2} y \text { nearly } \tag{2}
\end{align*}
$$

The first is obtained by taking the logarithm of y in the equation

$$
\begin{aligned}
\pm y & =\log \cdot(x \pm h)-\log \cdot x \\
& = \pm \frac{m h}{x}-\frac{m}{2} \frac{h^{2}}{x^{2}} \pm \frac{m}{3} \frac{h^{3}}{x^{3}}-\frac{m}{4} \frac{h^{4}}{x^{4}} \pm \ldots \ldots \\
& = \pm \frac{m h}{x}\left\{1 \mp \frac{h}{2 x}+\frac{h^{2}}{3 x^{2}} \mp \frac{h^{3}}{4 x^{3}}+\ldots \ldots\right\}
\end{aligned}
$$

and the complete expression for $\log . y$ is

$$
\log . y=\log \left(\frac{m h}{x}\right) \mp \frac{1}{2}\left(\frac{m h}{x}\right)\left\{1 \mp \frac{5 h}{12 x} \pm \frac{h^{2}}{4 x^{2}} \mp \frac{251 h^{3}}{1440 x^{3}} \pm \frac{19 h^{4}}{144 x^{4}} \mp . .\right\}
$$

I found this formula for myself, and am not aware that it has yet been published in print.

The second formnla is due to Legendre, who establishes it nearly as follows:-Sappose log. $\mathrm{X}=\log . x \pm y, \mathrm{X}=x \pm h$, whence $\mathrm{X}=x \varepsilon^{ \pm M y}$;

$$
\therefore \pm h=\mathbf{X}-x=x\left(\varepsilon^{ \pm M y}-1\right)= \pm x \varepsilon^{\varepsilon^{ \pm} M y}\left(\varepsilon^{\frac{1 M}{M} y}-\varepsilon^{-\frac{z^{M} M y}{}}\right) .
$$

Expanding the term in parentheses, we have

$$
h=(x \mathrm{M} y) \varepsilon^{ \pm 3 \mathrm{M} y}\left(1+\frac{1}{6} \frac{\mathrm{M}^{2} y^{2}}{4}+\frac{1}{120} \frac{\mathrm{M}^{4} y^{4}}{16}+\ldots \ldots\right)
$$

and, fmally, taking the logarithm

$$
\log . h=\log \cdot(x \mathrm{M} y) \pm \frac{1}{2} y+\frac{\mathrm{M} y^{2}}{24}\left(1-\frac{\mathrm{M}^{2} y^{2}}{120}\right) \text { nearly }
$$

M and m are the modulus and its reciprocal. The values of their common logarithms, as computed by Mr. Maynard, are

$$
\begin{array}{llllll}
\text { Log. } m=9 \cdot 63778 & 43113 & 00536 & 78912 & 29674 & 98645 \\
\text { Log. } M_{1}=0.36221 & 56886 & 99463 & 21087 & 70325 & 01355
\end{array}
$$

Before proceeding to exemplify the use of the foregoing formulx, it will be convenient to mention a method, due (I believe) to Barckhardt,* of splitting numbers into factors for logarithmic purposes.

Take some square number, a^{2}, a little greater than the given number x, and let the approximate square root of the remainder be b, so that $x=a^{2}-b^{2}$ nearly, $=(a+b)(a-b)$ nearly. Here we have two factors at once, and by a little management a and b may be found, so that both ($a+b$) and ($a-b$) shall be capable of further resolation; or we may diminish $(a+b)$ and increase ($a-b$), or vice versd, by a small quantity c, with the assistance of the formula

$$
\begin{aligned}
& (a+b-c)(a-b+c)=\left(a^{2}-b^{2}\right)+2 b c-c^{2} \\
& (a+b+c)(a-b-c)=\left(a^{2}-b^{2}\right)-2 b c+c^{2}
\end{aligned}
$$

As an example capable of easy verification, I take the logarithm of ($\pi=3 \cdot 141592653590$)

Now, applying Formula (1),

$\log \cdot 1 \cdot 7853=0 \cdot 251711204984$	$h=0 \cdot 000000243590$
log. $1 \cdot 7597=0.245438634036$	$\log . h=3.3866595$
$\log x=0.497149839020$	ar. co. log. $x=9 \cdot 50285$
log. $y=0.000000033674$	log. $m=9 \cdot 63778$
log. $\pi=0.497149872694$	log. $y=2 \cdot 5272940$

[^0]This value is correct even to the last figare. As y has no significant digit in the seventh place, it was unnecessary to introduce the second correction. If we had required this, we should have found y approximately, and subtracted half this approximate value of y from the $\log .\left(\frac{m h}{x}\right)$.

As an example of Formula (2)-Required the number corresponding to the logarithm $m=0.434294481903$.

By the seven-figure table we find, for an approximate value,

$\begin{array}{lll} 2 \cdot 71 & 82 & 82(1 \cdot 649 \\ 1 \end{array}$	
26) 171	$\therefore 2.718282$
156	+19
324)	$\overline{2.718301}=\overline{1.649}{ }^{2}-\overline{0.030}{ }^{2}$
1296	$=1.679 \times 1.619$
3289)28682	
29601	
$919=\left.\overline{30}\right\|^{2}$ nearly.	

$\log .1 \cdot 679=0 \cdot 22505$	0696138	
" $1 \cdot 619=0.20924$	6848753	
$x=0.43429$	7544891	log. $x=0.4342975$
\% (x-h) $=0 \cdot 43429$	4481903	\% $\mathrm{M}=0.3622157$
$y=$	3062988	" $y=4 \cdot 4861453$
		$5 \cdot 2826585$
		$-\frac{1}{2} y=\quad-15$
$h=-1$	917154	$\log . h=5 \cdot 2826570$

antilog. $m=\overline{2.71828 \quad 182846}$
which again is right, even to the last figure.
I have given you these methods, becanse I do not find them mentioned in Vega, or in any other work upon logarithms, and I think them less tronblesome than the use of second differences, especially for the inverse process of finding a number from its logarithm. Legendre's formula makes the antilogarithmic canon a superfluity, and the difference colomn is not required for either formula.

I possess a copy of Briggs (14 figg.), containing the 101st chiliad, as well as the usual 30 chiliads; and I have a French table containing the 102nd chiliad to 11 figures, besides some odd logarithms to 19 figures in an Italian collection and in Legendre. If yon should desire to collate any of these they are mach at your service.

I am, Sir,
Your obedient Servant,
13, Brompton Row.
C. W. MERRIFIELD.

[^0]: * Burckhardt, Table des Diviseurs pour tous les Nombres depuzs là 3,036,000. Paris, 1817. 4to. (Introduction.)

