ON THE GAUSS MAPS OF SINGULAR PROJECTIVE VARIETIES

E. BALLICO

(Received 24 February 1999; revised 2 February 2001)

Communicated by I. Aitchison

Abstract

Here we study the dimension $\delta(m, X)$ of the general fibers of the m-Gaussian map of a singular n dimensional variety $X \subset \mathbf{P}^{N}$. We show that for all integers a, b, c, d with $n \leq a<b \leq c<d \leq N-1$ and $a+d=b+c$ we have $\delta(a, X)+\delta(d, X) \geq \delta(b, X)+\delta(c, X)$. If $\delta(X, N-1)$ is very large we give some classification results which extend to the singular case some results of Ein.

2000 Mathematics subject classification: primary 14N05, 14M15, 14B05.
Keywords and phrases: Gauss map, projective variety, Grassmannian, Gauss map for singular varieties, tangency, contact locus, dual variety, adjunction mapping.

1. Introduction

We work over an algebraically closed field \mathbf{K}. We are mainly interested in the case $\operatorname{char}(\mathbf{K})=0$. Let $G(m+1, N+1)$ be the Grassmannian of all m-dimensional projective subspaces of \mathbf{P}^{N}. Let $X \subset \mathbf{P}^{N}$ be an integral variety with $\operatorname{dim}(X)=n$. For every integer m with $n \leq m \leq N-1$ the m-Gauss map $\gamma_{m, X}$ of X and the m-defect $\delta(m, X)$ of X are defined in the following way. Set $A^{\prime}(m, X):=\{(P, L) \in$ $\left.X_{\text {reg }} \times G(m+1, N+1): T_{P} X \subseteq L\right\}$ and let $A(m, X)$ be the closure of $A(m, X)$ in $X \times G(m+1, N+1) \subset \mathbf{P}^{N} \times G(m+1, N+1)$. Let $\pi_{1}: X \times G(m+1, N+1) \rightarrow X$ and $\pi_{2}: X \times G(m+1, N+1) \rightarrow G(m+1, N+1)$ be the projection on the first (respectively second) factor. Set $\gamma_{m, X}:=\pi_{2} \mid A(m, X)$ and call $\gamma_{m, X}(X)=\pi_{2}(A(m, X))$ the m Gauss image of X. Let $\delta(m, X)$ be the dimension of the general fiber of $\gamma_{m, X}$, that is, the dimension of the contact locus of a general m-dimensional linear subspace of \mathbf{P}^{N} which is tangent to X at some smooth point. In particular, $\gamma_{N-1, X}(X) \subset \mathbf{P}^{N *}$ is the dual variety X^{*} of X and (with the identification of $A^{\prime}(n, X)$ with $X_{\text {reg }}$) the morphism

[^0]$\gamma_{m, x} \mid X_{\text {reg }}$ is the usual Gauss map from $X_{\text {reg }}$ to $G(m+1, N+1)$. For the background on these topics, see [16] or [13].

In Section 2 we study the finite sequence of all $\delta(m, X), n \leq m \leq N-1$, and prove that for all integers a, b, c, d with $n \leq a<b \leq c<d \leq N-1$ and $a+d=b+c$ we have $\delta(a, X)+\delta(d, X) \geq \delta(b, X)+\delta(c, X)$ (Remark 2) and that if $\delta(m, X)>\delta(n, X)$, then $\delta(m, X)>\delta(m-1, X)$ (Proposition 2). We give examples which, in our opinion, show that not much more is true. Furthermore, we study the relations between the Gauss defects of X and the Gauss defects of the intersection of X with a general hypersurface of degree d. In Section 3 we extend some of the results of [3] and [2] to the singular case; roughly speaking, we have a full extension if $\operatorname{dim}(\operatorname{Sing}(X))=0$ (excluding cones). In the last section we discuss not the dimension of a general fiber of a Gaussian map, but the existence of positive dimensional fibers of the ordinary Gauss map $\gamma_{n, X}$. Of course, by Zak's Tangency Theorem ([16, Theorem 1.7]) the variety X cannot be smooth.

2. The sequence of Gauss defects

In this section we study the sequence $\delta(n, X), n \leq m \leq N-1$, of all Gauss defects of an integral n-dimensional variety $X \subset \mathbf{P}^{N}$. Just by the definition of the Gauss defects we have $\delta(m, X) \leq \delta(m+1, X)$ for every X and every integer m with $n \leq m \leq N-2$. Something more can be said (see Remark 2, Proposition 2 and Example 1), but in our opinion, not much more even for smooth manifolds (see Example 1, Example 2 and Example 3), without making some very strong restrictions on the geometry of X. Then we consider the relations between the Gauss defects of X and the Gauss defects of the intersection of X with a general hypersurface of degree $d \geq 1$.

Lemma 1. Let n, s and N be fixed integers with $n<s<N$. Let $X \subset \mathbf{P}^{N}$ be an integral n-dimensional variety and let $Z \subset \mathbf{P}^{s}$ be a general projection of $X . X$ is reflexive if and only if Z is reflexive.

Proof. Use the Hessian criterion for reflexivity ([11, Theorem 12], or [6, Theorem 3.2 and Corollary 3.3]).

REMARK 1. If X is reflexive (and in particular if $\operatorname{char}(\mathbf{K})=0$), then for any n dimensional X and any m the general fiber of $\gamma_{m, X}$ is a linear space (see [11, page 173] for the case $m=N-1$ and reduce to this case taking a general projection into \mathbf{P}^{m+1}; the general projection of a reflexive X into \mathbf{P}^{m+1} is reflexive by Lemma 1); alternatively, if $\operatorname{char}(\mathbf{K})=0$, see $[13,5.2$ (ii)].

Proposition 1. Let $X \subset \mathbf{P}^{N}$ be an integral n-dimensional reflexive variety. Then for all integers m with $n \leq m \leq N-3$ we have

$$
\delta(m+2, X)+\delta(m, X) \geq 2 \delta(m+1, X) .
$$

Proof. Fix a general fiber F of $\gamma_{m, X}$ and two general fibers $F^{\prime}, F^{\prime \prime}$ of $\gamma_{m+1 . X}$ with $F \subset F^{\prime}$ and $F \subset F^{\prime \prime}$. Thus for dimensional reasons we have $F=F^{\prime} \cap F^{\prime \prime}$. Set $G:=\left\langle F^{\prime} \cup F^{\prime \prime}\right\rangle$. Hence G (respectively F^{\prime} and $F^{\prime \prime}$) is a sufficiently general fiber of $\gamma_{m+2, X}$ (respectively $\gamma_{m+1, x}$). Let T ($T^{\prime}, T^{\prime \prime}, R$ respectively) be the contact locus of $F\left(F^{\prime}, F^{\prime \prime}, G\right.$ respectively). By the reflexivity of X the sets $T, T^{\prime}, T^{\prime \prime}$ and R are linear spaces with dimension respectively $\delta(m+2, X), \delta(m+1, X), \delta(m+1, X)$ and $\delta(m, X)$ (Remark 1). Since $T=T^{\prime} \cap T^{\prime \prime}$ and $T^{\prime} \cup T^{\prime \prime} \subseteq R$, we conclude the proof.

Remark 2. Proposition 1 is a convexity result. Indeed, it implies that for all integers a, b, c and d with $n \leq a<b \leq c<d \leq N-1$ and $a+d=b+c$ we have

$$
\delta(a, X)+\delta(d, X) \geq \delta(b, X)+\delta(c, X) .
$$

Proposition 2. For fixed integers n, m and N with $0<n<m<N$, let X be an integral n-dimensional subvariety of \mathbf{P}^{N} with $\delta(m, X)>\delta(n, X)$. Then $\delta(m, X)>$ $\delta(m-1, X)$.

Proof. Fix a general $P \in X_{\text {reg }}$ and a general m-dimensional linear space M with $\operatorname{dim}(M)=m$ and $T_{P} X \subset M$. Let C (respectively C^{\prime}) be the contact locus of M (respectively $T_{P} X$). Since $\operatorname{dim}(C)=\delta(m, X)>\delta(n, X)=\operatorname{dim}\left(C^{\prime}\right)$, there is a hyperplane A of M containing $T_{P} X$ but no irreducible component of C, that is, with contact locus, $C^{\prime \prime}$, of dimension at most $\operatorname{dim}(C)-1$. Hence we conclude the proof by the generality of P, M and A.

The following example shows that in general in the statement of Proposition 2 we cannot replace the assumption $\delta(m, X)>\delta(n, X)$ with the assumption $\delta(m, X)>0$.

Example 1. Let $X \subset \mathbf{P}^{N}$ be the n-dimensional cone over an ($n-1$)-dimensional variety $Y \subset \mathbf{P}^{N-1}$ with $\delta(n, Y)=0$. Then $\delta(n+1, X)=\delta(n, X)=1$.

Proposition 3. Let X be an integral n-dimensional reflexive subvariety of \mathbf{P}^{N} with $\operatorname{Sing}(X)$ finite. X is a cone if and only if $\delta(n, X)>0$.

Proof. If X is a cone we have $\delta(n, X)>0$. Assume $\delta(n, X)>0$. Since X is reflexive, the general contact locus of an n-dimensional tangent space is a positive dimensional linear subspace (Remark 1). Since $\operatorname{Sing}(X)$ is finite, either X is a cone
with $\operatorname{Sing}(X)$ as a vertex or the general contact locus is contained in $X_{\text {reg. }}$. The latter case is excluded by Zak's Theorem of Tangency ([16, Theorem 1.7]).

In our opinion the following two examples show that if we do not make some restrictive assumptions the finite sequence of all Gauss defects of a smooth manifold does not satisfy restrictions much stronger that the ones given by Remark 2 and Proposition 2. However, since smooth manifolds with 'bad' Gauss maps are very particular, it should be possible to make reasonable assumptions and obtain better results. For instance, if $3 n \leq 2 N$ all smooth n-dimensional manifolds $X \subset \mathbf{P}^{N}$ with $\operatorname{dim}(X)=\operatorname{dim}\left(X^{*}\right)$ are classified ([3, Theorem 4.5]).

EXAMPLE 2. Let $X \subset \mathbf{P}^{N}$ be a smooth n-fold which is a \mathbf{P}^{n-1}-bundle over a smooth curve C. Call $\pi: X \rightarrow C$ the projection. For every $P \in X$, we have $\pi^{-1}(\pi(P)) \cong \mathbf{P}^{n-1}$ and $\pi^{-1}(\pi(P)) \subset T_{P} X$. If X is reflexive, then $\delta(N-1, X)=n-2$ ([10, page 360]). For the reverse when X is reflexive, see [2, Theorem 3.1], or, if $\operatorname{char}(\mathbf{K})=0$, [3, Theorem 3.2]. Furthermore, for general $P \in X$ and $H, R \in X^{*}$ with $T_{P} X \subset H \cap R$, the contact loci, L_{H} and L_{R}, of H and R are hyperplanes of $\pi^{-1}(\pi(P))$. Since $L_{H} \cap L_{R}$ is the contact locus of $H \cap R$, we obtain that either $\delta(N-2, X)=\delta(N-1, X)$ or $\delta(N-2, X) \equiv \delta(N-1, X)-1$. By Lemma 2 we must have $\delta(N-2, X)=\delta(N-1, X)-1$. Hence, using Proposition 1, we obtain $\delta(m, X)=\max \{0, n-1-N+m\}$ for every integer $m \geq 0$.

The following example shows a trivial way to obtain singular non-normal varieties, X, which have large $\delta(N-1, X)$.

EXAMPLE 3. Let $Y \subset \mathbf{P}^{N+1}$ be a smooth \mathbf{P}^{m-1}-bundle over a smooth curve (Example 2). Fix general $P^{\prime}, P^{\prime \prime} \in Y$ and take a general point P on the line $\left\langle P^{\prime}, P^{\prime \prime}\right\rangle$ spanned by P^{\prime} and $P^{\prime \prime}$. Let $f: \mathbf{P}^{N+1} \backslash\{P\} \rightarrow \mathbf{P}^{N}$ be the projection from P. Set $X:=f(Y)$. Since $\left\langle P^{\prime}, P^{\prime \prime}\right\rangle \cap Y=\left\{P^{\prime}, P^{\prime \prime}\right\}$ for large N, Y is the normalization of X. By construction X has a non-normal point $f\left(P^{\prime}\right)=f\left(P^{\prime \prime}\right)$ and for large N (for fixed n) this is usually the only singular point of X. If Y is reflexive, then X is reflexive. Hence by [10, page 360], we have $\delta(N-1, X) \geq n-2$ and (except again trivial cases like $N=3$ and Y a smooth quadric surface) we have $\delta(N-1, X)=n-2$. But we have similar 'non-normal scrolls', X^{\prime}, whose normalization $g: Y^{\prime} \rightarrow X^{\prime}$ has $h^{0}\left(X^{\prime}, g^{*}\left(\theta_{Y^{\prime}}(1)\right)\right)=N+1$, that is, the map $Y^{\prime} \rightarrow \mathbf{P}^{N}$ corresponds to a complete linear system; even in these cases [10, page 360], shows that $\delta\left(Y^{\prime}, N-1\right) \geq n-2$ if Y^{\prime} is reflexive. More generally, if the n-dimensional reflexive variety $Z \subset \mathbf{P}^{N}$ is uniruled by t-dimensional linear spaces we have $\delta(N-1, Z) \geq t-1$. If $W=\left\{f\left(x_{0}, \ldots, x_{N}\right)=0\right\}$ is a hypersurface of \mathbf{P}^{N}, there is a necessary and sufficient condition (at least if $\operatorname{char}(\mathbf{K})=0$) to have $\delta(N-1, W)>0$: a certain projective Hessian matrix must be divisible by f (for the case $N=3$ this is an old theorem of Schläfli, see [5,
page 23]). Hence there are non-normal reflexive surfaces $W \subset \mathbf{P}^{3}$ uniruled by lines with $\delta(2, W)>0$.

Example 2 shows why in the statements of Proposition 7 and Proposition 8 we only classified the normalization of X and why in the statement of Theorem 1 we have to assume that X is normal.

Now we study the relation between the Gauss defects of X and the Gauss defects of the intersection of X with a general hypersurface of degree $d \geq 1$.

Lemma 2. Fix integers n, m and N with $2 \leq n \leq m<N$. Let $X \subset \mathbf{P}^{N}$ be an integral n-dimensional variety and Y a general hyperplane section of X. Then $\delta(m-1, Y) \geq \delta(m, X)-1$.

Proof. We may assume $\delta(m, X) \geq 2$. Fix a general $P \in X$ and a general m dimensional linear subspace M of \mathbf{P}^{N} with $T_{P} X \subset M$. Let C be the contact locus of M. Take a general hyperplane H containing P and set $Y:=X \cap H$. By the generality of P, Y is a general hyperplane section of X. By the generality of H, we have $\operatorname{dim}(M \cap H)=m-1$ and $\operatorname{dim}(C \cap H)=\operatorname{dim}(C)-1$. Furthermore, fixing H and varying P in Y we see that P may be considered a general point of Y. Since $C \cap H$ is contained in the contact locus of $M \cap H$ with Y, we obtain the lemma.

Remark 3. Assume char(K) $\neq 2$. Let $X \subset \mathbf{P}^{N}$ be an integral variety with $\operatorname{dim}(X) \geq 2$. For a general hyperplane H of \mathbf{P}^{N}, we have $\delta(N-2, X \cap H)=$ $\max \{0, \delta(N-1, X)-1\}([6$, Theorem 5.9]).

Proposition 4. Fix integers n, m and N with $2 \leq n \leq m<N$. Let $X \subset \mathbf{P}^{N}$ be an integral n-dimensional variety and Y a general hyperplane section of X. Then

$$
\delta(m-1, Y)=\max \{\delta(m, X)-1,0\}
$$

Proof. The case $m=N-1$ of the result was proved in [6, 5.9 and 5.12]. Use Lemma 1 to reduce the general statement to the case $m=N-1$.

REMARK 4. Fix integers d, n and N with $2 \leq n<N$ and $d \geq 2$. Let $X \subset \mathbf{P}^{N}$ be an integral n-dimensional variety and Y the intersection of X with a general hypersurface of degree d. By [6, Theorem 5.6], if either $\operatorname{char}(\mathbf{K}) \neq 2$ or n is even, then Y is reflexive and $\delta(N-1, Y)=0$. It is easy to check directly that $\delta(N-1, Y)=0$ even in the remaining case $\operatorname{char}(\mathbf{K})=2$ and n odd using a Bertini type argument. Hence for every integer m with $n \leq m<N$ we have $\delta(m, Y)=0$.

In positive characteristic it is natural to give criteria for the separability of a Gauss map $\gamma_{m, X}$. In the case $m=N-1$ this is exactly the reflexivity of X (see [10,

Theorem 4]). There are at least two natural definitions for the inseparability degree of Gaussian maps ([12, page 2]); for their coincidence if X is a curve, see [9]; for a discussion of the general case, see [12] and the last part of the introduction of [9].

Using Lemma 1 for $s=m+1$ and the corresponding result for $\gamma_{N-1, X}$ ([11, Theorem 4]) we obtain the following result.

Proposition 5. Fix integers n, m and N with $n \leq m<N$. Let $X \subset \mathbf{P}^{N}$ be an integral n-dimensional variety. The map $\gamma_{m, X}$ is separable if and only if $\gamma_{N-1, X}$ is separable, that is, if and only if X is reflexive.

3. Adjunction theory and Ein's papers

In this section we will try to follow as closely as possible [3] and [2] to obtain results on a singular variety with $\delta(N-1, X)$ large. Roughly speaking, we are able to handle isolated singularities, while in the general case we need to add an additive factor $\operatorname{dim}(\operatorname{Sing}(X))$ to the assumptions of every statement. If A is a closed subvariety of the variety B, let $N_{A / B}$ be the normal sheaf of A in B.

Remark 5. Let $X \subset \mathbf{P}^{N}$ be an n-dimensional integral reflexive variety with $\delta(N-1, X)>0$. Let L_{H} be the contact locus of a general $H \in X^{*}$. Since X is reflexive, L_{H} is a linear space of dimension $\delta(N-1, X)$ ([11, page 173]). Hence if $\operatorname{Sing}(X)$ is finite, then either $L_{H} \subset X_{\text {reg }}$ or X is a cone.

Definition 1. Let X be an integral n-dimensional variety, $n \geq 2$, with $\delta(N-1$, $X)>0$. Let Π be the covering family of all $\delta(N-1, X)$-dimensional linear spaces which are limits of the family of all 'general' $\delta(N-1, X)$-dimensional contact loci. Since X is closed in \mathbf{P}^{N}, every $R \in \Pi$ is contained in X. Since X^{*} is irreducible, Π is irreducible. We will say that X satisfies Condition (\$) if for a general $R \in \Pi$ we have $R \subset X_{\text {reg }}$. Let \mathbf{T} be the covering family of lines obtained as closure of all lines in the contact loci of general $M \in X^{*}$, that is, let \mathbf{T} be the set of all lines contained in some $R \in \Pi$. We will say that X satisfies Condition ($£$) if for a general $D \in \mathbf{T}$ we have $D \subset X_{\text {reg }}$.

By Remark 5 Condition (\$) is satisfied if $\operatorname{Sing}(X)$ is finite and X is not a cone. Obviously, Condition (\$) implies Condition ($£$).

Remark 6. Let $X \subset \mathbf{P}^{N}$ be an n-dimensional integral reflexive variety with $\delta(N-$ $1, X)>0$. We assume $\operatorname{char}(\mathbf{K}) \neq 2$. Here we assume that the contact locus, L, of a general $H \in X^{*}$ is contained in $X_{\text {reg }}$. We will follow quite closely [3] and [2] and obtain some informations on X. In [3] and [2] the variety X was assumed to
be smooth. Since X is reflexive, L is a linear space of dimension $\delta(N-1, X)$ ([11, page 173]). Set $k:=\delta(N-1, X)$. Since $L \subset X_{\text {reg }}$, the normal sheaf $N_{L / X}$ is locally free of rank $n-k$. Since $L \subset X_{\text {reg }}, X$ is reflexive and $\operatorname{char}(\mathbf{K}) \neq 2$, the proof of [3, Theorem 2.1] works verbatim and gives [3, Theorem 2.2], that is, $N_{L / X} \cong N_{L / X}^{*}(1)$. The proof of [3, Theorem 2.3] works verbatim and gives that for every line $T \subseteq X$ we have

$$
N_{L / X} \mid T \cong \mathscr{O}_{T}^{\oplus(n-k) / 2} \oplus \mathscr{O}_{T}(1)^{\oplus(n-k) / 2}
$$

in particular, $N_{L / X}$ is a uniform vector bundle and if $\operatorname{rank}\left(N_{L} / X\right)<\operatorname{dim}(L)$, that is, if $n<2 k$, then

$$
N_{L / X} \cong \mathscr{O}_{L}^{\oplus(n-k) / 2} \oplus \mathscr{O}_{L}(1)^{\oplus(n-k) / 2}
$$

by a theorem of Tango on uniform vector bundles on \mathbf{P}^{k} valid in arbitrary characteristic ([14] and [15]). As in [3, Theorem 2.3, part (b)] we obtain the existence of an irreducible family of dimension $(n+k-2) / 2$ of lines on X and that for any $P \in T$ there is a family of dimension $(n+k-2) / 2$ of lines in X through P. Using the extension of [3, Theorem 2.3], we obtain Landman's parity criterion given in [3, Theorem 2.4], that is, we obtain that $n-\delta(N-1, X)$ is even (of course, only under the assumption $L \subset X_{\text {reg }}$). For the same reason we have parts (a), (b), (c) and (d) of [3, Theorem 2.4], but not (a priori) part (e) of [3, Theorem 4], because of dim $\operatorname{Sing}(X)$ we cannot apply the part of Lefschetz theorem stating that if $2 n>N+2$, then $\operatorname{Pic}(X)$ is generated by the hyperplane class.

PROPOSITION 6. Assume $\operatorname{char}(\mathbf{K}) \neq 2$. Let $X \subset \mathbf{P}^{N}$ be a two-dimensional integral reflexive variety with $\delta(N-1, X)>0$ and $\operatorname{Sing}(X)$ finite and not empty. Then X is a cone.

Proof. We have $0<\delta(N-1, X)<2$. If the contact locus of a general $H \in X^{*}$ intersects $\operatorname{Sing}(X), X$ is a cone by Remark 5. If the contact locus of a general $H \in X^{*}$ does not intersect $\operatorname{Sing}(X)$, then $2-\delta(N-1, X)$ is even by Landman's parity criterion extended in Remark 5, contradiction.

Proposition 7. Assume $\operatorname{char}(\mathbf{K}) \neq 2$. Let $X \subset \mathbf{P}^{N}, N \geq 5$, be a reflexive integral variety with $\operatorname{dim}(X)=3, \operatorname{Sing}(X)$ finite and $\delta(N-1, X)>0$. Let $g: Z \rightarrow X$ be the normalization. Then either X is a cone or Z is a smooth scroll, say $\pi: Z \rightarrow C$, over a smooth curve C and g sends every fiber of π isomorphically onto a plane contained in X.

Proof. By [2, Corollary 3.2 (a)] we may assume $\operatorname{Sing}(X) \neq \emptyset$. Since X is reflexive, the generic contact locus is a linear space. Assume that X is not a cone. Hence there is an irreducible covering family \mathbf{T} of lines such that for a general $L \in \mathbf{T}$ we have $L \subset X_{\text {reg }}, L$ is a contact locus and $N_{L / X} \cong \mathscr{O}_{L}(1) \oplus \mathscr{O}$. Fix a general $L \in \mathrm{~T}$
and a general $P \in L$. Hence P may be considered as a general point of X. Since X is not a cone and $\operatorname{Sing}(X)$ is finite, no line containing P intersects $\operatorname{Sing}(X)$. Hence by the deformation theory there is an irreducible one-dimensional family $\mathbf{T}(P) \subset \mathbf{T}$ formed by the lines containing P. Since $h^{1}\left(L, N_{L / X}(-P)\right)=0, T(P)$ is smooth at L. Set $F(P):=\{Q \in X: Q \in D$ for some $D \in \mathbf{T}(P)\}$. Since two distinct lines through P intersect only at $P, F(P)$ is a two-dimensional subvariety of X. We have $F(P) \cap \operatorname{Sing}(X)=\emptyset$ for general $P . F(P)$ is a cone with vertex P and hence $T_{P} X$ contains $F(P)$.

First assume that for general P the variety $F(P)$ is not a plane. Let $R \subset \mathbf{P}^{N}$ be a general hyperplane containing P. Set $Y:=X \cap R$. Since P is general, Y may be considered as a general hyperplane section of X. Thus $\delta(N-2, Y)=$ $\delta(N-1, X)-1=0$ (Remark 3). Hence $T_{P} Y \cap Y$ has P as a unique singular point and this singularity is an ordinary quadratic singularity ([6, Theorem 3.5], or [11, Theorem 17, page 179]). Thus $R \cap F(P)$ has at most two irreducible components, that is, $F(P)$ is a quadratic cone. Since $N \geq 5$ and $F(P) \subset T_{P} X$, for a general $H \in X^{*}$ with $T_{P} X \subset H$ the scheme $H \cap X$ contains at least two irreducible components, one of them (that is, $F(P)$) being singular. Hence $Y \cap H=X \cap H \cap R$ does not have an ordinary quadratic singularity as a unique singular point, contradiction.

Now assume that $F(P)$ is a plane. Since $F(P) \cap F\left(P^{\prime}\right)=\emptyset$ for general $P, P^{\prime} \in X$, we have $N_{F(P) / X} \cong \mathscr{O}_{F(P}$. Since the Grassmannian $G(2, N+1)$ is complete, for every $Q \in \operatorname{Sing}(X)$, there is at least a plane $V(Q) \in \mathbf{T}$ with $Q \in V(Q)$. Fix any such $V(Q)$ and a plane $F \in \mathbf{T}$ with $F \cap \operatorname{Sing}(X)=\emptyset$. First assume $F \cap V(Q) \neq \emptyset$. Since $F \cap \operatorname{Sing}(X)=\emptyset$ and both F and $V(Q)$ are planes, $D:=F \cap V(Q)$ is a line. For every $P \in D$, we have $F \cup V(Q) \subset T_{P} X$. Hence $T_{P} X$ is the 3-dimensional linear space M spanned by $F \cup V(Q)$, that is, M is tangent along D to X. Since $D \subset F \subset X_{\text {reg }}$, this contradicts Zak's Tangency Theorem ([16, Theorem 1.7]). Hence $V(Q) \cap F=\emptyset$ for every $F \in \mathbf{T}$ with $F \cap \operatorname{Sing}(X)=\emptyset$. For the same reason, if $Q^{\prime} \in \operatorname{Sing}(X)$ and $Q^{\prime} \notin V(Q)$, then $V(Q) \cap V\left(Q^{\prime}\right)=\emptyset$ for any $V\left(Q^{\prime}\right)$ with $Q \notin V\left(Q^{\prime}\right)$. By construction we have a smooth affine curve A parametrizing an open subset of planes in X, an open subset Ω of $X_{\text {reg }}$ and a morphism $\pi^{\prime}: \Omega \rightarrow A$ with fibers as planes of \mathbf{T} not intersecting $\operatorname{Sing}(X)$. Fix $B \in X_{\text {reg }}$. For a general hyperplane R through B, the surface $X \cap R$ is smooth and it is a \mathbf{P}^{1}-bundle $\pi_{R}: X \cap R \rightarrow C_{R}$ over a smooth curve C_{R}. If $\operatorname{char}(\mathbf{K})=0$ and Z is assumed to have only locally complete intersection singularities, then Z is a \mathbf{P}^{2}-bundle over C_{R} by a theorem of Badescu ($[1$, Theorem 5.5.3]); in the general case we need to work more. Using π^{\prime} we see that $C_{R}=C_{R^{\prime}}$ for any R, R^{\prime} and that in this way we define a fibration $\pi_{\mathrm{reg}}: X_{\mathrm{reg}} \rightarrow C_{R}$ such that $\pi_{\text {reg }} / U=\pi^{\prime}$. Set $C:=C_{R}$. Varying the hyperplane R we obtain that for every plane $V \in \mathbf{T}$ we have $\operatorname{Card}(V \backslash V \cap \operatorname{Sing}(X))=1$. Let $\Gamma \subset X \times G(3, N+1)$ be the closure of the restriction to the fibers of π^{\prime} of the incidence correspondence and let Φ be the normalization of Γ. Since $\operatorname{Card}(V \backslash V \cap \operatorname{Sing}(X))=1$ for every plane
$V \in \mathbf{T}$, we obtain a morphism $\pi^{\prime \prime}: \Phi \rightarrow C$. The projection $\Phi \rightarrow X$ factors through a birational morphism $\alpha: \Phi \rightarrow Z$. Since $\operatorname{dim}(X)=3$ and X is not a cone, for every $Q \in \operatorname{Sing}(X)$ there are only finitely many planes containing Q and contained in X. Hence α is finite. Since Z is normal, α is an isomorphism and hence Z is a \mathbf{P}^{2}-bundle over the smooth curve C. In particular, Z is smooth.

Proposition 8. Let $X \subset \mathbf{P}^{N}, N \geq 6$, be an integral variety with $\operatorname{dim}(X)=4$, Sing (X) finite and $\delta(N-1, X)>0$. Let $g: Z \rightarrow X$ be the normalization. Then either X is a cone or Z is a smooth scroll over a smooth curve, say $\pi: Z \rightarrow C$, and g sends every fiber of π isomorphically onto a 3-dimensional linear subspace contained in X.

Proof. By [2, Corollary 3.3 (b)], we may assume $\operatorname{Sing}(X) \neq \emptyset$. By Remark 5 either X is a cone or Condition (\$) is satisfied and in particular $\operatorname{dim}(X)-\delta(N-1, X)$ is even (Remark 6). Hence, $\delta(N-1, X)=2$. Fix $Q \in X$ and let Z be a general hyperplane section of X containing Q. By Bertini's theorem we have $\operatorname{Sing}(Z) \subseteq\{Q\}$. We have $\delta(N-2, Z) \geq \delta(N-1, X)-1=1$. Hence we may apply Proposition 7 to Z and then apply the same proof taking Z instead of $X \cap R$.

Theorem 1. Assume $\operatorname{char}(\mathbf{K}) \neq 2$. Let $X \subset \mathbf{P}^{N}$ be an irreducible normal reflexive n-dimensional variety with $\operatorname{Sing}(X) \neq \emptyset$ and $\delta(N-1, X)>0$. Assume $2 \delta(N-1, X) \geq n+\operatorname{dim}(\operatorname{Sing}(X))$. Then $\operatorname{Sing}(X)$ is a linear space and X is a cone with $\operatorname{Sing}(X)$ as its vertex.

Proof. Set $k:=\delta(N-1, X)$. Using Remark 3 and the preservation of reflexivity for general hyperplane sections ([10, Theorem 22 (i)], or [6, 5.9 and 5.12]), we reduce the general case to the case in which $\operatorname{Sing}(X)$ is finite; it is quite subtle (but true in arbitrary characteristic) that if a general hyperplane section of X is a cone, then X is a cone (see the second part titled 'When is the general hyperplane section of a variety a cone?' of [7]). In order to obtain a contradiction we assume that X is not a cone. Since $\operatorname{Sing}(X)$ is finite and X is not a cone we may assume Condition (\$) (Proposition 2). By Remark 6 and Proposition 6 we may assume $n \geq 5$. Fix a general $P \in X$ and a general contact locus L_{0} with $P \in L_{0}$. We will follow the proof of [2, Theorem 4.2]. Let $F(P)$ (or just Q_{0} as in [2, page 903]) be the connected component containing L_{0} of the set of all k-dimensional linear spaces in X which are deformations of L_{0} and contain P; parts (a), (b) and (c) of [2, Lemma 4.2] work verbatim by Condition (\$) because these parts concern only a general element of $\mathrm{F}(\mathrm{P})$; part (d) of [2, Lemma 4.2] works for the elements $L \in F(P)$ with $l \cap \operatorname{Sing}(X)=\emptyset$; since $\operatorname{Sing}(X)$ is finite, part (d) of [2, Lemma 4.2] is true by Proposition 2. Thus we may obtain [2, Lemma 4.3], that is, the existence of a linear space $D_{0} \subset X$ with $L_{0} \subset D_{0}$ and $\operatorname{dim}\left(D_{0}\right)=(n+k) / 2 ; D_{0}$ is the union of all k-planes in the family
$F(P)$. Since D_{0} depends only on P (assumed to be general), we will set $D(P):=D_{0}$. Then we conclude as in the proof of Proposition 7.

If $\operatorname{char}(\mathbf{K})=0$ and Z is assumed to have only locally complete intersection singularities, Theorem 1 follows from a theorem of Sommese ([1, Theorem 5.5.2]).

4. Zak's Tangency Theorem

In this section we discuss the existence of positive dimensional fibers of the ordinary Gauss map $\gamma_{n, X}$. Of course, by Zak's Tangency Theorem ([16, Theorem 1.7]) the variety X cannot be smooth.

Remark 7. Let $X \subset \mathbf{P}^{N}$ be an integral n-dimensional variety, $P \in X$ and let $V \subset \mathbf{P}^{N}$ be a linear space with $\operatorname{dim}(V)=n$ which is J-tangent to X at P in the sense of [16, Definition 1.6]. Then X must be smooth at P and $V=T_{P} X$. This trivial observation shows why in the case of the ordinary Gauss map Theorem 1.7 of [16] covers only the case in which the contact locus is contained in $X_{\text {reg }}$. This observation was one of the motivations for this paper.

EXAMPLE 4. Here we make no restriction on $\operatorname{char}(\mathbf{K})$. Fix homogeneous coordinates x_{0}, \ldots, x_{3} of \mathbf{P}^{3} and set $H:=\left\{x_{0}=0\right\}$. Fix an integer $s \geq 1$ and integers $a_{1}, \ldots, a_{s}, m_{1}, \ldots, m_{s}$ with $a_{i} \geq 1$ and $m_{i} \geq 2$ for every i. Fix an integer $d \geq \sum_{i=1}^{s} a_{i} m_{i}$. In the plane H we fix s distinct integral curves R_{1}, \ldots, R_{s} with $\operatorname{deg}\left(R_{i}\right)=a_{i}$. Set $R:=\bigcup_{i=1}^{s} R_{i}$. We want to find a degree d normal surface $A \subset \mathbf{P}^{3}$ such that H is tangent to A at each point of $R_{\text {reg }}$ and such that the scheme $A \cap H$ contains each curve R_{i} with multiplicity m_{i}. Let B be any reduced curve contained in H with $\operatorname{deg}(B)=d-\sum_{i=1}^{s} a_{i} m_{i}$ and $\operatorname{card}(B \cap R)$ finite; if $d=\sum_{i=1}^{s} a_{i} m_{i}$ we take $B=\emptyset$. Set $C:=B \cup\left(\bigcup_{i=1}^{s} m_{i} R_{i}\right)$. Hence C is a degree d plane curve. We will show that we may find such a normal surface A with $H \cap A$ containing C (as schemes), A smooth at every point not on H and smooth at every point of $B \cup \operatorname{Sing}(R)$. Let W be the linear system of all degree d surfaces in \mathbf{P}^{3} containing C and hence either containing H or with C as a scheme-theoretic intersection with H. By the definition of W and Bezout theorem every $A^{\prime} \in W$ not containing H is smooth at each point of $B_{\text {reg }}$. Taking reducible surfaces $H \cup F^{\prime} \in W$ with F^{\prime} as any degree $d-1$ surface we see that the linear system W has no base point outside C and separates the tangent vectors at each point of $\mathbf{P}^{3} \backslash H$. Hence by Bertini's theorem ([8, Theorem 6.3, part 4]) general $F \in W$ is smooth outside H. Since $\operatorname{Sing}(R) \cup \operatorname{Sing}(B)$ is finite, we easily see that general $A^{\prime} \in W$ is smooth at each point of $\operatorname{Sing}(R) \cup \operatorname{Sing}(B)$. Let $X=\{f=0\}$ be an irreducible degree d surface containing C. Since $H=\left\{x_{0}=0\right\}$ and X contains every irreducible component of R with multiplicity at least 2 , the Euler sequence of
$T \mathbf{P}^{3}$ shows that $\operatorname{Sing}(X) \cap R=H \cap\left\{\partial f / \partial x_{0}\right\}$. Hence we see that such a general X has exactly $(d-1)\left(\sum_{i=1}^{s} a_{i}\right)$ singular points, each of them on $R_{\text {reg }}$, exactly $(d-1) a_{i}$ of them on $R_{i}, 1 \leq i \leq s$, and that each of these singular points is an ordinary double point. However, taking particular equations f we may find X with a smaller number of singular points, although these singular points may be non-ordinary or with higher multiplicity. For instance, take $s=1$ and R smooth. Fix a degree $d-1$ homogeneous polynomial $g\left(x_{1}, x_{2}, x_{3}\right)$ in 3 variables such that $w:=\operatorname{card}\left(R \cap\left\{g\left(x_{1}, x_{2}, x_{3}\right)=0\right\}\right)$ is as small as possible. For $\operatorname{deg}(R) \leq 3$, we may take $w=1$. There exists a degree d polynomial f with $\{f=0\} \cap H=C$ and with $\partial f / \partial x_{0} \equiv g\left(x_{1}, x_{2}, x_{3}\right) \bmod \left(x_{0}\right)$. At least in some cases (for instance when R is a line) for the general polynomial f with these properties the surface $\{f=0\}$ is smooth outside R.

Now we will show that, at least for non-normal varieties, we cannot extend Zak's Tangency Theorem making assumptions on their birational model, for instance to be very ample.

Example 5. Fix an integer $n \geq 2$, a smooth n-dimensional variety Z and an effective Cartier divisor $C \subset Z$. Let D be an effective divisor such that the line bundle $\mathscr{O}_{Z}(2 C+D)$ is very ample. Consider the complete embedding ϕ of Z into $\mathbf{P}^{s}:=\mathbf{P}\left(H^{0}\left(Z, \mathscr{O}_{Z}(2 C+D)\right)\right)$ and let H be the hyperplane of \mathbf{P}^{s} corresponding to the divisor $2 C+D$. By construction H is tangent to $\phi(Z)$ along $\phi(C)$. Assume that for a general linear subspace M of H with $\operatorname{dim}(M)=s-n-2$, the linear projection of \mathbf{P}^{s} from M into \mathbf{P}^{n+1} induces a birational map of $\phi(Z)$ and of C. Let X and C^{\prime} be the corresponding images. Assume that X is not singular at the general point of every irreducible component of C^{\prime}. Let Π be the hyperplane of \mathbf{P}^{n+1} image of H through the projection from M. By construction Π is tangent to X along C^{\prime} and X is birational to Z.

References

[1] M. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties (Walter de Gruyter, Berlin, 1995).
[2] L. Ein, 'Varieties with small dual varieties, II', Duke Math. J. 52 (1985), 895-907.
[3] ——, 'Varieties with small dual varieties, I', Invent. Math. 86 (1986), 63-74.
[4] T. Fujita, 'Remarks on quasi-polarized varieties’, Nagoya Math. J. 115 (1989), 105-123.
[5] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, resultants and multidimensional determinants (Birkhäuser, Boston, 1994).
[6] A. Hefez and S. L. Kleiman, 'Notes on duality for projective varieties', in: Geometry today (eds. E. Arbarello, C. Procesi and E. Strickland), Progr. Math. 60 (Birkhäuser, Boston, 1985) pp. 143-185.
[7] M. L. Johnson, Higher secant varieties (Ph.D. Thesis, Brandeis University, 1994).
[8] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progr. Math. 42 (Birkhäuser, Boston, 1983).
[9] H. Kaji, 'On the inseparable degrees of the Gauss map and the projection of the conormal variety to the dual of higher order for space curves', Math. Ann. 292 (1992), 529-532.
[10] S. L. Kleiman, 'The enumerative theory of singularities', in: Real and Complex Singularities, Oslo, 1976 (ed. P. Holm) (Sijitoff and Noordhoof, Alphen aan den Rijn, 1977) pp. 297-396.
[11] -_, 'Tangency and duality', in: Proc. 1984 Vancouver Conference in Algebraic Geometry, CMS-AMS Conference Proceedings 6 (Amer. Math. Soc., Providence, RI, 1986).
[12] S. L. Kleiman and R. Piene, 'On the inseparability of the Gauss map', in: Enumerative Algebraic Geometry, Proc. Zeuthen Symposium, Contemp. Math. 123 (Amer. Math. Soc., Providence, RI, 1991) pp. 149-160.
[13] J. Landsberg, 'Algebraic geometry and projective differential geometry-Seoul National University concentrated lecture series', preprint math.AG/9809184, 1997.
[14] H. Tango, 'On ($n-1$)-dimensional projective spaces contained in the Grassmann variety $\operatorname{Gr}(n, 1)$ ', J. Math. Kyoto Univ. 14 (1974), 415-460.
[15] —_, 'On morphisms from projective space \mathbf{P}^{n} ', J. Math. Kyoto Univ. 16 (1976), 201-207.
[16] F. L. Zak, Tangents and secants of algebraic varieties, Transl. Math. Monographs 127 (Amer. Math. Soc., Providence, RI, 1983).

Department of Mathematics
University of Trento
38050 Povo (TN)
Italy
e-mail: ballico@science.unitn.it

[^0]: The author was partially supported by MURST (Italy).
 (c) 2002 Australian Mathematical Society 0263-6115/2002 \$A2.00 + 0.00

