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Abstract

Background. People with bipolar disorder (BPD) are more likely to die prematurely, which is
partly attributed to comorbid cardiometabolic traits. Previous studies report cardiometabolic
abnormalities in BPD, but their shared aetiology remains poorly understood. This study
examined the phenotypic associations and shared genetic aetiology between BPD and various
cardiometabolic traits.

Methods. In a subset of the UK Biobank sample (N =61508) we investigated phenotypic
associations between BPD (71, =4186) and cardiometabolic traits, represented by
biomarkers, anthropometric traits and cardiometabolic diseases. To determine shared genetic
aetiology in European ancestry, polygenic risk scores (PRS) and genetic correlations were
calculated between BPD and cardiometabolic traits.

Results. Several traits were significantly associated with increased risk for BPD, namely low
total cholesterol, low high-density lipoprotein cholesterol, high triglycerides, high glycated
haemoglobin, low systolic blood pressure, high body mass index, high waist-to-hip ratio;
and stroke, coronary artery disease and type 2 diabetes diagnosis. BPD was associated
with higher polygenic risk for triglycerides, waist-to-hip ratio, coronary artery disease and
type 2 diabetes. Shared genetic aetiology persisted for coronary artery disease, when correcting
PRS associations for cardiometabolic base phenotypes. Associations were not replicated using
genetic correlations.

Conclusions. This large study identified increased phenotypic cardiometabolic abnormalities
in BPD participants. It is found that the comorbidity of coronary artery disease may be based
on shared genetic aetiology. These results motivate hypothesis-driven research to consider
individual cardiometabolic traits rather than a composite metabolic syndrome when attempt-
ing to disentangle driving mechanisms of cardiometabolic abnormalities in BPD.

Introduction

Bipolar disorder (BPD) is among the 20 most debilitating neuropsychiatric diseases (World
Health Organization, 2008), and is often accompanied by excess morbidity and premature
mortality (Crump, Sundquist, Winkleby, & Sundquist, 2013). This co-occurrence has been
attributed to comorbid cardiovascular and metabolic diseases, including coronary artery dis-
ease, stroke and type 2 diabetes, as well as risk factors such as high blood lipid levels and
body mass measures (Penninx & Lange, 2018).

Epidemiological meta-analyses established a phenotypic link between BPD and obesity, high
blood pressure and abnormal lipid levels (relative risk of metabolic abnormalities = 1.58, 95% CI
1.24-2.03) (Vancampfort et al., 2015), as well as type 2 diabetes (relative risk =1.98, 95% CI
1.6-2.4) (Vancampfort et al., 2016). Results for coronary artery disease and BPD have been
inconsistent: meta-analysis found associations in longitudinal (adjusted hazard ratio = 1.57,
95% CI1.28-1.93), but not cross-sectional data (Correll et al., 2017b). Some studies even support
a bidirectional relationship, meaning that cardiometabolic traits increase the risk for BPD, and
vice versa (Lopresti & Drummond, 2013). However, it is unclear whether cardiometabolic
abnormalities are inherent properties of BPD, or if the comorbidities implicate environmental
influences - such as medication and lifestyle - or genetics.

BPD and cardiometabolic traits are substantially heritable. Twin studies estimated the herit-
ability of BPD to be 62% (Wray & Gottesman, 2012); they estimated around 60% for metabolic
traits and around 40% for cardiovascular traits (Polderman et al., 2015). SNP-based heritability
for BPD was estimated between 11% and 25% (Stahl et al., 2019) and estimates for cardiometa-
bolic diseases ranged from 38% for stroke (Bevan et al., 2012), 40% for coronary artery disease
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(Nikpay et al., 2015), to 63% for type 2 diabetes [DIAbetes Genetics
Replication Meta-analysis (DIAGRAM) Consortium et al., 2014).
Recent genome-wide association studies (GWAS) identified 30 dis-
tinct loci associated with BPD (Stahl et al., 2019) and many loci
associated with cardiometabolic traits [e.g. 304 loci for coronary
artery disease (Nelson et al.,, 2017), 32 for stroke (Malik et al.,
2018), 343 for type 2 diabetes (Mahajan et al., 2018)].

BPD and cardiometabolic traits are substantially heritable. Twin
studies estimated the heritability of BPD to be 62% (Wray &
Gottesman, 2012); they estimated around 60% for metabolic traits
and around 40% for cardiovascular traits (Polderman et al.,
2015). SNP-based heritability for BPD was estimated between
11% and 25% (Stahl et al., 2019) and estimates for cardiometabolic
diseases ranged from 38% for stroke (Bevan et al., 2012), 40% for
coronary artery disease (Nikpay et al., 2015), to 63% for type 2 dia-
betes [DIAbetes Genetics Replication Meta-analysis (DIAGRAM)
Consortium et al., 2014). Recent genome-wide association studies
(GWAS) identified 30 distinct loci associated with BPD (Stahl
et al., 2019) and many loci associated with cardiometabolic traits
[e.g. 304 loci for coronary artery disease (Nelson et al., 2017), 32
for stroke (Malik et al., 2018), 343 for type 2 diabetes (Mahajan
et al,, 2018)].

Despite the polygenicity of BPD and cardiometabolic traits,
only a few population-based studies investigated their shared gen-
etic aetiology. They revealed either no associations or suggested
negative associations based on approaches analysing summary
statistics. For example, using linkage disequilibrium score regres-
sion (LDSC), Stahl et al. (2019) found no genetic correlations
between BPD and cardiometabolic traits, [body mass index
(BMI), waist-to-hip ratio, type 2 diabetes, coronary artery dis-
ease], or lipid traits (cholesterol and triglycerides); nor did
Hiibel et al. (2019) between BPD and measures of body compos-
ition, including BMI. To date, the only study that systematically
examined shared genetic aetiology between BPD and cardiometa-
bolic traits found a reduced risk of BPD associated with higher
polygenic scores for cardiometabolic traits (So, Chau, Ao, Mo,
& Sham, 2019). Here, polygenic scores were calculated purely
based on summary statistics and no individual-level data and
therefore lacked some specificity. Associations were assessed
using summary statistics for BMI, total cholesterol, triglycerides,
waist-to-hip ratio and several other traits. LDSC did not reveal
significant genetic correlations between the traits.

In summary, evidence for shared genetic aetiology between
BPD and cardiometabolic traits in population-based samples is
scarce. Their relationships, as well as their influencing factors,
are poorly understood; no comprehensive, individual-level pheno-
typic and genetic investigation has been conducted.

Here, we investigate the relationship between BPD and cardi-
ometabolic traits on a phenotypic and genetic level in the
European UK Biobank (UKB) sample. First, we hypothesise that
there is an increased risk of cardiometabolic traits in BPD. We
assess phenotypic associations between BPD and three categories
of cardiometabolic traits which were selected because they have
been shown to be associated with BPD in the existing literature
(Correll et al., 2017a; Mclntyre et al.,, 2007; Prieto et al., 2014;
Sinha et al., 2018; Vancampfort et al., 2015, 2016): anthropomet-
ric risk factors, biomarkers and cardiometabolic diseases. Second,
we hypothesise that these polygenic traits share a genetic basis
with BPD. We use two approaches; individual-level polygenic
risk score (PRS) analyses and summary-level genetic correlations,
to investigate shared genetic aetiology between BPD and the
cardiometabolic traits.
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Methods
Sample

The UKB is a prospective health resource including more than 500
000 people from across the UK (https:/www.ukbiobank.ac.uk/)
(Sudlow et al., 2015). More information about the cohort can be
found in Supplementary Material 1.

Phenotypic measures

Bipolar disorder (BPD)

BPD status was determined based on self-report questionnaires, a
nurse interview and hospital episode statistics. BPD cases matched
diagnostic ICD-10 codes for BPD (items 41202 and 41204;
Supplementary Material 6), had a self-report diagnosis of
mania, BPD or manic depression at nurse interview (items
20002 and 20544), fulfilled BPD criteria according to the baseline
questionnaire of mood disorders (Smith et al., 2013), or fulfilled
lifetime depression and mania criteria based on the Mental
Health Questionnaire (Davis et al., 2019). Super-healthy controls,
as defined by Glanville et al. (2020) (MHQ controls), did not meet
any of these BPD criteria or any other mental health condition
(ICD-9, ICD-10, self-report items 20002 and 20544, MHQ,
Smith definition). Controls excluded participants with self-
reported antipsychotic, antidepressant and mood stabiliser usage
(item 20003).

Antidepressant, antipsychotic and mood stabiliser medication
intake variables were based on self-reports (item 20003); mood
stabiliser codes are in Supplementary Material 8 and all
other medication codes in Glanville et al. (2020).

Blood pressure

Systolic and diastolic blood pressure was corrected for antihyper-
tensive medication based on the recommendations by Tobin,
Sheehan, Scurrah, and Burton (2005). If medication intake was
reported (items 6177 and 6153), we added 15 mmHg to systolic
blood pressure and 10 mmHg to diastolic blood pressure readings.
Hypertension was determined based on high systolic and diastolic
blood pressure measures (systolic >140 mmHg and diastolic
290 mmHg).

Body mass index

Two measures of BMI were available, one as weight/height (kg/m?)
and the other measured using electrical impedance. Where both
measures were available, we calculated the average of the measures
and excluded participants who differed between the two measures
by over 4.56 standard deviations (n=1164) (Yaghootkar et al,
2016). If only one measure was available (n=2923), this value
was used.

Waist-to-hip ratio
Waist-to-hip ratio was calculated as the ratio between waist and
hip circumference (cm/cm). The ratio was residualised for BMI
to represent abdominal body mass distribution independent of
overall body mass.

Biomarkers

Five blood biomarkers were analysed: lipid levels [total
cholesterol, low-density lipoprotein cholesterol (LDL cholesterol),
high-density lipoprotein cholesterol (HDL cholesterol) and trigly-
cerides] and glycated haemoglobin (HbAlc). Quality control was
performed by UKB using standardised laboratory procedures


https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
https://doi.org/10.1017/S0033291721000945

Psychological Medicine

(Sinnott-Armstrong et al, 2019) (http:/biobank.ndph.ox.ac.uk/
showcase/showcase/docs/biomarker_issues.pdf). We corrected LDL
and total cholesterol levels for individuals taking any cholesterol-
lowering medication (Supplementary Material 7). LDL cholesterol
levels for individuals taking medication were divided by 0.7, while
total cholesterol levels were divided by 0.8 (Khera et al., 2016).

Type 2 diabetes

Type 2 diabetes cases were identified based on hospital episode
statistics (ICD-9 and ICD-10), the national death register and self-
reported questionnaires. Cases had self-reported type 2 or generic
diabetes as established in the nurse interview and the touchscreen
questionnaire. However, participants were only classified as cases
when they reported in the questionnaire that (1) they had not
been treated with insulin in the first year after diagnosis, (2)
and had been diagnosed after the age of 35 years (Tyrrell,
Yaghootkar, Freathy, Hattersley, & Frayling, 2013). Type 2 dia-
betes controls did not fulfil these type 2 diabetes criteria and
did not have any other types of diabetes (inclusion and exclusion
codes in Supplementary Material 9 and 10).

Coronary artery disease

Participants registered in the hospital in-patient data or the death
register to have had ischemic heart diseases, or participants who
had coronary revascularisation operations were classified as coronary
artery disease cases (ICD-9 and 10 diagnoses and operation codes in
Supplementary Material 11 and 12). Participants self-reporting those
conditions in the nurse interview or touchscreen questionnaire were
also considered coronary artery disease cases. Coronary artery dis-
ease controls did not fulfil coronary artery disease criteria.

Stroke

Stroke status was determined using stroke diagnoses in the
hospital in-patient data and the death register. Additionally,
participants self-reporting to have had a stroke in the nurse inter-
view or in the touchscreen questionnaire were included as stroke
cases (Schnier, Bush, Nolan, Sudlow, & on behalf of UK Biobank
Outcome Adjudication Group, 2017). Stroke controls had no
diagnosed or self-reported stroke.

Binary traits (BPD, type 2 diabetes, coronary artery disease,
stroke) represent lifetime diagnoses (maximum three time points),
and continuous variables were based on the first visit at the
assessment centre. For a summary of items and codes, refer to
Supplementary Material 5. Information on genotype quality
control is in Supplementary Material 2.

Statistical analyses

Phenotypic associations

To assess phenotypic relationships between BPD (#,5es = 4186;
eontrols = 57 322) and cardiometabolic traits, we performed logis-
tic regressions in R v3.6.0 (R Core Team, 2013). Continuous traits
were standardised prior to analysis: they were total cholesterol,
LDL and HDL cholesterol, triglycerides, HbA1lc, diastolic and sys-
tolic blood pressure, BMI and waist-to-hip ratio, unadjusted and
adjusted for BMI. All models were adjusted for assessment centre.
The models regressing BPD onto biomarker variables were also
adjusted for fasting time (models in Supplementary Material 14).
We repeated this analysis for males (#1cases = 19265 Meontrols = 30 039)
and females (M1ca5es = 22605 Meontrols = 27 283) separately to identify
sex-specific associations. Phenotypic sensitivity analyses are
described in Supplementary Material 3.
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Polygenic risk score (PRS) regressions

We created PRSs representing genetic propensity to cardiometa-
bolic traits by aggregating by-variant effects across the autosomes,
weighted by effect sizes from GWAS summary statistics. PRSs
were created for total cholesterol, LDL and HDL cholesterol, tri-
glycerides (Willer et al., 2013), HbAlc (Wheeler et al., 2017), dia-
stolic and systolic blood pressure (Evangelou et al., 2018), BMI
(Locke et al,, 2015), waist-to-hip ratio, unadjusted and adjusted
for BMI (Shungin et al., 2015), coronary artery disease (Nikpay
et al, 2015), stroke (Malik et al, 2018) and type 2 diabetes
(Scott et al., 2017) (availability information in Supplementary
Material 13). Every PRS was created at 11 p-value thresholds
(PRSpr=5x10"%, 1x107°, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 1). PRSicev2 (https:/github.com/choishingwan/PRSice)
(Choi, Heng Mak, & O’Reilly, 2018; Euesden, Lewis, & O’Reilly,
2015) was used for clumping within windows of 250 kilobases
(r* <0.25) and to create the PRSs. PRSs were standardised.

To test for shared genetic aetiology in individuals of European
ancestries between BPD (#1,ges = 41865 Ncontrols = 57 322) and car-
diometabolic traits, we calculated logistic regressions with BPD as
the dependent variable, and the standardised cardiometabolic
PRSs at 11 p-value thresholds. The models were adjusted for
assessment centre, genotyping batch and six genetic principal
components to control for population stratification. This analysis
was repeated for males (Mcages =1926; Meontrols =30039) and
females (Mcases = 22605 Meontrols = 27 283) separately to identify
sex-specific associations.

Explained variances in the phenotypic and PRS analyses were
calculated using Nagelkerke’s pseudo-R® and transformed to
liability scale using a population prevalence of 8% (Cerimele,
Chwastiak, Dodson, & Katon, 2014). Sensitivity analyses for
PRS associations are described in Supplementary Material 4.

Genetic correlations

Genetic correlations were calculated between BPD and cardiome-
tabolic traits using LDSC with the default HapMap LD reference
(https://github.com/bulik/ldsc) (Bulik-Sullivan et al., 2015). We
used the most recent GWAS summary statistics for BPD (Stahl
et al.,, 2019), total cholesterol, LDL cholesterol, HDL cholesterol,
triglycerides (Willer et al., 2013), HbAlc (Wheeler et al.,, 2017),
diastolic and systolic blood pressure (Evangelou et al., 2018),
BMI (Yengo et al., 2018) and waist-to-hip ratio, unadjusted and
adjusted for BMI (Shungin et al., 2015), coronary artery disease
(Nikpay et al., 2015), stroke (Malik et al., 2018) and type 2 dia-
betes (Scott et al, 2017) (availability of summary statistics in
Supplementary Material 13). Genetic correlations calculated
with LDSC are robust to sample overlap.

Correction for multiple testing

Correction for multiple testing was done for every separate analysis
described above with a false discovery rate of 5% (Benjamini &
Hochberg, 1995). p-values <5.8 x 10~* were considered significant
in the primary phenotypic analyses, and p-values <0.0065 in the
primary PRS analyses.

Results

The sample consisted of 61 508 participants (48% females), with a
mean age of 57 years (s.0. = 7.69). The sample included 4186 BPD
cases and 57 322 unaffected controls (mean age BPD group = 55;
mean age controls = 57). Descriptive statistics of cardiometabolic
traits by BPD case-control status are shown in Table 1
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Table 1. Descriptive statistics of the sample and phenotypic associations between BPD and cardiometabolic traits

Anna E

. Fiirtjes et al.

All participants BPD cases Controls 0dds
Cardiometabolic traits (N=61508) (n=4186) (n=57322) ratio 95% ClI p value R? (%)®
Continuous traits: mean (s.p.)
Total cholesterol 5.73 (1.11) 5.67 (1.17) 5.74 (1.1) 0.94 0.91-0.97 1.08x107* 0.04
LDL cholesterol 3.74 (0.83) 3.76 (0.9) 3.74 (0.82) 1.01 0.98-1.04 0.552 —0.03
HDL cholesterol 1.48 (0.38) 1.41 (0.39) 1.48 (0.38) 0.81 0.78-0.84 1.73x1072° 0.67
Triglycerides 1.73 (1.04) 1.99 (1.23) 1.71 (1.03) 1.24 1.21-1.27 1.10 x 107%¢ 0.97
HbA1lc 35.27 (5.45) 35.83 (7.05) 35.23 (5.31) 1.09 1.06-1.12 2.40x10°° 0.08
Systolic blood pressure® 140.15 (20.04) 136.81 (19.77) 140.4 (20.04) 0.82 0.80-0.85 9.47 x 10~ 0.59
Diastolic blood pressure® 83.69 (11.08) 83.6 (11.3) 83.7 (11.06) 0.99 0.96-1.02 0.492 0.01
Body mass index 26.56 (4.25) 28.11 (5.38) 26.45 (4.14) 1.39 1.35-1.43 1.70 x 107 2.18
Waist-to-hip ratio 0.87 (0.09) 0.88 (0.09) 0.86 (0.09) 1.22 1.18-1.26 1.14x 1073 0.66
Waist-to-hip ratio adjusted for BMI 0 (0.08) 0.01 (0.08) 0 (0.08) 1.06 1.02-1.09 5.79x10* 0.06
Binary traits: affected cases, n (%)
Hypertension 14 821 (24.1) 963 (23.01) 13 858 (24.18) 0.93 0.87-1.01 0.069 0.02
Coronary artery disease 3188 (5.18) 373 (8.91) 2815 (4.91) 1.89 1.69-2.12 3.75x10 28 0.45
Stroke 854 (1.39) 127 (3.03) 727 (1.27) 2.44 2.01-2.96 9.74x1072° 0.29
Type 2 diabetes 1572 (2.56) 227 (5.42) 1345 (2.35) 2.4 2.07-2.78 6.69 x 1032 0.61

0dds ratios indicate increased or decreased chances of having BPD, associated with an increase of one standard deviation in the cardiometabolic trait. Results with a false discovery rate of

5% at p<5.8x10~* are in bold.

®R? (%) indicates the percentage of explained variance in BPD by the cardiometabolic trait, calculated using Nagelkerke’s pseudo-R* and transformed to liability scale (population
prevalence 8%). The negative R? for LDL cholesterol was possible to obtain because we calculated R? as the difference between full explained variance by a model including the

cardiometabolic trait and all covariates (assessment centre, and for biomarkers also fasting time) and the explained variance by a model including covariates only.
PDiastolic and systolic blood pressure were adjusted for blood pressure medication (see ’Methods’ section).

(descriptive statistics stratified by sex in online Supplementary
Table S1, phenotypic relationships among cardiometabolic traits
in online Supplementary Table S9).

Phenotypic associations

The phenotypic relationship between BPD and cardiometabolic
traits was assessed using logistic regressions (Table 1). Meeting
multiple testing correction of p<58x10~* (FDR 5%), we
observed positive associations between BPD and the cardiometa-
bolic traits triglycerides, HbAlc, BMI, waist-to-hip ratio,
waist-to-hip ratio adjusted for BMI, stroke, type 2 diabetes and
coronary artery disease. Total cholesterol, HDL cholesterol and
systolic blood pressure were negatively associated with BPD
(Table 1, Fig. 1). The same analyses conducted separately for
males and females showed consistent results with partly differing
sex-specific effect sizes (e.g. CAD in males: OR =1.74; females:
OR = 3.03; full results in online Supplementary Tables S2 and S3).

Phenotypic sensitivity analysis

(1) To analyse whether phenotypic associations with blood pres-
sure traits were biased by the blood pressure medication adjust-
ment, phenotypic associations were re-calculated excluding
participants on blood pressure medication. Systolic blood pressure
remained negatively associated (OR=0.75, 95% CI 0.72-0.79).
Diastolic blood pressure (OR=0.97, 95% CI 0.93-1.00) and
hypertension (OR =0.88, 95% CI 0.80-0.98) showed no effect
on BPD, indicating that this association was independent of
medication intake. (2) When limiting BPD cases to hospital
in-patients only (#1,5es = 920), odds ratios indicated larger effects
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Fig. 1. Odds ratios indicating the phenotypic associations between BPD and cardio-
metabolic traits. Significant associations at p < 5.8 x 10~ are marked with *. Panel (a)
indicates odds ratios for the continuous traits and (b) odds ratios for the binary traits.

(e.g. stroke OR increased from 2.44 to 4.94), with larger explained
variances (e.g. BMI R” increased from 2.81% to 3.70%; online
Supplementary  Table S7). (3) Adding antipsychotic,
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Table 2. Associations between BPD and PRS for each cardiometabolic traits at the most predictive threshold
Cardiometabolic trait PRSp? 0Odds ratio 95% Cl p value R? (%)°
Biomarkers
Total cholesterol 0.01 0.99 0.96-1.02 0.5100 0.00
LDL cholesterol 0.01 0.97 0.94-1 0.0497 0.02
HDL cholesterol 0.5 0.97 0.94-1 0.0724 0.02
Triglycerides 0.4 1.05 1.02-1.08 0.0028 0.06
HbAlc 0.001 0.98 0.95-1.01 0.2720 0.01
Anthropometric traits
Systolic blood pressure 0.01 0.98 0.94-1.01 0.1520 0.01
Diastolic blood pressure 0.001 0.99 0.96-1.02 0.4810 0.00
Body mass index 0.4 1.04 1.01-1.08 0.0142 0.04
Waist-to-hip ratio 0.5 1.08 1.04-1.12 4,50x10°° 0.13
Waist-to-hip ratio adjusted for BMI 0.3 1.06 1.03-1.1 0.0003 0.08
Cardiometabolic diseases
Coronary artery disease 1 1.07 1.04-1.11 2.03x10°° 0.11
Stroke 0.1 1.03 1-1.07 0.0464 0.02
Type 2 diabetes 0.4 1.06 1.03-1.1 0.0003 0.08

Results with a false discovery rate of 5% at p < 0.0065 are printed in bold. The table only includes the most predictive PRSpy for each trait. Associated traits showed significant associations at
a minimum of four PRS thresholds; full results in online Supplementary Table 10. Odds ratios indicate changes in chances of having BPD associated with an increase of one standard

deviation in the PRS.
@PRSpr indicates the p-value threshold used to create the PRSs.

PR? (%) indicates the percentage of explained variance in BPD and was calculated using Nagelkerke’s pseudo R?, transformed to liability scale (population prevalence 8%). The indicated R? is
the difference between full explained variance by a model including the cardiometabolic trait and all covariates (assessment centre, batch and six genetic PCs) and the explained variance by

a model including covariates only.

antidepressant and mood stabiliser medication as covariates
showed consistent directions of effects and largely the same sig-
nificant results between cardiometabolic traits and BPD as
found in the primary analysis (online Supplementary Tables S4,
S5, S6). However, odds ratios decreased and explained variances
reduced drastically (e.g. BMI from R®=2.18 in primary analysis
to 0.83 when controlling for antidepressants). Waist-to-hip ratio
adjusted for BMI became non-significant when controlling for
either medication, and had the largest decrease in odds ratios
from 1.06 (95% CI 1.02-1.09) in primary analysis to 1.00 (95%
CI 0.96-1.03) when controlled for mood stabilisers. (4)
Residualising CMTs for age and re-calculating their association
with BPD yielded similar results to the primary associations;
they can be found in online Supplementary Table S8.

Polygenic risk score analysis

Logistic regressions were performed to test the association
between BPD and PRSs at 11 p-value thresholds for each cardio-
metabolic trait. Results for the most predictive thresholds in each
cardiometabolic trait are indicated in Table 2 and Fig. 2 (we
observed at least four out of 11 significantly associated PRS
thresholds for every significant trait). At a multiple testing correc-
tion of p <0.0065 (FDR 5%), BPD was positively associated with
PRSs for triglycerides, waist-to-hip ratio, waist-to-hip ratio
adjusted for BMI, coronary artery disease and type 2 diabetes.
The highest contribution to explaining variance in BPD was
from the waist-to-hip ratio PRS (PRSpr=0.5) accounting for
0.13% of the variance (full results in online Supplementary
Table S10). PRS analyses repeated for males and females

https://doi.org/10.1017/50033291721000945 Published online by Cambridge University Press

separately did not survive correction for multiple testing; however,
directions of effects were largely consistent with the primary ana-
lysis (online Supplementary Tables S11 and S12).

Sensitivity analyses for PRS associations

(1) To assess whether significant PRS associations were driven by
phenotypic associations between BPD and cardiometabolic traits,
we investigated the attenuation of explained variance when control-
ling for the base cardiometabolic phenotype. For binary traits, we
re-calculated associations for significant PRSs with BPD by exclud-
ing cases with the corresponding cardiometabolic disease (i.e. T2D
analyses: excluding 1572 T2D cases; CAD analyses: excluding 3188
CAD cases). For coronary artery disease PRSs, explained variance
was hardly attenuated. For example, the variance explained with
PRSpy 0.4 declined from R*=0.081% in the main analysis to R*=
0.076% in the sensitivity analysis (relative attenuation <5.90%).
When excluding type 2 diabetes cases, type 2 diabetes PRS associa-
tions had a substantial attenuation in explained variance. For
example, for PRSpr 0.4 it declined from R*=0.080 in the main ana-
lysis to R*=0.059% in the sensitivity analysis (relative attenuation
15-26%; online Supplementary Table S16). For continuous traits,
we repeated the PRS analyses adding the base cardiometabolic
trait as a covariate; that is, triglycerides, and both waist-to-hip ratios,
respectively. In those three cases, explained variance drastically
declined. The explained variance by triglycerides PRS (PRSpr 1)
dropped from R>=0.049% in the primary analysis to R’=
0.00008% when adding triglycerides as a covariate (relative
attenuation in R? across thresholds between 96% and 100%).
Explained variance by waist-to-hip ratio PRS (PRSp 0.1) declined
from R*=0.055% in primary analysis to R*=0.021% (relative
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Table 3. Genetic correlations between BPD and 13 cardiometabolic traits calculated using LDSC regression

Cardiometabolic trait h2 h2 se I 95% Cl p-value
Biomarkers
Total cholesterol 0.2472 0.0384 0.016 —0.044 to 0.076 0.611
Triglycerides 0.2857 0.0620 0.008 —0.052 to 0.067 0.805
HDL cholesterol 0.2474 0.0388 0.010 —0.039 to 0.060 0.681
LDL cholesterol 0.2209 0.0466 0.013 —0.047 to 0.073 0.673
HbAlc 0.0627 0.0088 —0.013 —0.092 to 0.066 0.747

Anthropometric traits

Body mass index 0.2163 0.0070 —0.064 —0.108 to —0.020 0.004
Waist-to-hip ratio 0.1047 0.0067 0.024 —0.035 to 0.084 0.423
Waist-to-hip ratio (adjusted for BMI) 0.1207 0.0081 0.050 0.003-0.098 0.038
Systolic blood pressure 0.1159 0.0068 0.020 —0.039 to 0.079 0.509
Diastolic blood pressure 0.1413 0.0065 0.024 —0.023 to 0.071 0.314

Cardiometabolic diseases

Stroke 0.0121 0.0015 0.031 0.064-0.126 0.517
Coronary artery disease 0.0681 0.0053 —0.023 —0.088 to 0.041 0.475
Type 2 diabetes 0.0792 0.0061 —0.054 —0.124 to 0.017 0.134

SNP-heritability for BPD estimated using LDSC =0.342 (s.e. = 0.019).

attenuation: 53-62%), and for waist-to-hip ratio adjusted for BMI  displayed in online Supplementary Tables S14 and S15. (4) There
PRS (PRSpr 0.2), a relatively smaller decrease from R*=0.055% to ~ were no significant associations when predicting cardiometabolic
R*=0.046% (relative attenuation in R?>=14-17%; online traits using BPD PRS (online Supplementary Tables S18 and S19).
Supplementary Table S17). (2) To test whether the strength of the
phenotype influenced the associations, we restricted to BPD cases
based on hospital in-patient ICD10 diagnoses (#1¢,ses = 920). None
of these associations survived correction for multiple testing (online ~ Genetic correlations between BPD and cardiometabolic traits
Supplementary Table S13). (3) Predictive abilities of PRSs are  were low and not significant after correcting for multiple testing

Genetic correlations
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(Table 3, Fig. 3). BMI (rg=—0.064, p=0.004) and waist-to-hip
ratio adjusted for BMI (r, = 0.050, p = 0.038) were nominally cor-
related but did not survive correction for multiple testing.

Discussion

This study investigated the relationship between BPD and cardi-
ometabolic traits in UKB on a phenotypic and genetic level,
using PRS analyses and genetic correlations.

Phenotypic associations

The phenotypic results revealed significant, but weak associations
with several cardiometabolic traits, namely low total cholesterol,
high triglycerides, low HDL cholesterol, low systolic blood pres-
sure, high BMI, high waist-to-hip ratio, as well as stroke, type 2
diabetes and coronary artery disease status. These findings were
largely consistent with our hypothesis that BPD status is asso-
ciated with increased cardiometabolic risk.

Associations with biomarkers were consistent with meta-analytic
findings for triglycerides, HDL cholesterol, HbAlc (Vancampfort
et al., 2013, 2015) and BMI (Correll et al., 2017b). We are unaware
of previous studies reporting increased relative risk for BPD conveyed
by waist-to-hip ratio unadjusted and adjusted for BMI. These find-
ings indicate that, on average, there was increased body mass in
BPD cases, which was found for body fat distribution and abdominal
obesity independent of body fat. Coronary artery disease, stroke and
type 2 diabetes were associated with at least twofold increased odds of
having BPD, which converges with epidemiological meta-analyses
(Correll et al., 2017b; Vancampfort et al., 2016).

In contrast, we observed surprising directions of effects in
associations with BPD for total cholesterol and blood pressure.
Total cholesterol was lower in BPD cases than in controls. This
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Fig. 3. Genetic correlations between BPD and cardiometabolic traits.

contradicts our hypothesis that cardiometabolic risk is increased
in BPD. The literature assessing total cholesterol in BPD is scarce;
one study showed no effect of peripheral total cholesterol on BPD
(Garcia-Portilla et al., 2009).

It was unexpected, based on the unhealthy effects of total choles-
terol demonstrated in other samples, that we found unusual relation-
ships between total cholesterol and other cardiometabolic traits. For
example, it was lowered in participants with coronary artery disease,
stroke and type 2 diabetes. This could be indexing a survivor bias,
meaning that participants within the UKB demonstrate health-risk
factors, such as high cholesterol, but are otherwise unusually healthy,
introducing spurious relationships between variables (Schooling,
2019). As the association with LDL and HDL cholesterol showed
directions of effects as expected from previous literature, future stud-
ies could consider those potentially more robust variables instead of
a composite total cholesterol measure in the context of BPD.

The survivor bias is also reflected in significant age differences
[t(61506) =17.92, p <0.0001) between BPD cases (mean = 54.58,
s.D. =7.93) and controls (mean = 56.78, s.p. = 7.65)]. Controls are
likely older because participants must remain healthy until the last
measured time point to classify as controls. However, associations
between cardiometabolic traits and BPD in this study remained
robust when controlled for age. Future studies should further
assess these associations and potential age-related influences
using longitudinal BPD definitions.

We observed a negative association between BPD and
systolic blood pressure, whereas diastolic blood pressure and hyper-
tension were not associated. This was unexpected because elevated
systolic and diastolic measures were both linked with negative
health outcomes, including cardiovascular events (Cooper-DeHoff
et al,, 2010). Hypertension was previously shown to be increased
in BPD cases (Ayerbe et al, 2018); and further investigation in
other samples is needed to clarify whether this effect is real.
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When calculating associations with BPD for males and females
separately, we found largely consistent, but partly differing sex-
specific effect sizes. Future studies should split their analyses by
sex for more accurate estimates and discern whether differences
rely on noise or sex-specific mechanisms, particularly for coron-
ary artery disease.

Sensitivity analyses restricted to more severe BPD cases (#¢yges
=920) confirmed associations found in primary analyses and
explained more variance. This strengthens the evidence that the
significant phenotypic associations are not artefactual, because
these 920 cases are classified with high confidence having been
admitted to hospital for BPD. It is possible that these stronger
associations reflect that cardiometabolic traits themselves increase
the likelihood for BPD participants to seek medical help and
receive a BPD diagnosis.

Finally, we controlled the associations between BPD and cardi-
ometabolic traits for antipsychotic, antidepressant and mood sta-
biliser usage. Directions of effects were consistent compared with
the primary analyses, but odds ratios and explained variances
were considerably lower suggesting that medications moderate
the associations and that effects depend on medication intake.
For example, the R* of the BMI-BPD association attenuated
from 2.18% to 0.83% when controlling for antidepressants; and
the WHR-BPD association attenuated from 0.66% to 0.16%
when controlling for mood stabilisers. However, it must be con-
sidered that medication self-reports only concerned 2-week win-
dows and might not represent long-term intake. Adding them
as covariates probably added some precision but might not have
entirely ruled out influences by medication intake. Future studies
with access to more detailed information about medication usage
(for example, electronic health records) could further examine the
effect of medication use on the association between BPD and car-
diometabolic traits.

Shared genetic aetiology

We discovered evidence for shared genetic aetiology in European
ancestries based on PRS associations in primary analyses for five
cardiometabolic traits: triglycerides, waist-to-hip ratio unadjusted
and adjusted for BMI, coronary artery disease and type 2 diabetes.
Associations re-calculated for males and females showed consist-
ent directions of effects but did not survive correction for multiple
testing; nor did they when cases were limited to more severe BPD
cases (fggses = 920). The number of cases was probably underpow-
ered to capture significant PRS associations, underlining the
importance of future large-scale studies.

The small, explained variances found in the primary PRS ana-
lyses could be due to the limited predictive power of the PRSs,
which was demonstrated when using PRSs to predict their base car-
diometabolic phenotype. The best prediction was for LDL choles-
terol by LDL cholesterol PRS with up to 11% explained variance.
The lowest prediction was by stroke PRS which explained 0.12%
variance in the stroke phenotype, reflecting the small sample size
used to calculate the stroke GWAS. Future studies will benefit
from larger GWAS and better predictive power of PRSs.

None of the PRS associations were replicated by genetic
correlations inferred through LDSC. As genetic correlations are
calculated with GWAS summary statistics and PRS analyses rely
on individual-level genotype data, the PRS analyses might have
been more powerful (genetic correlations have larger standard
errors; van Rheenen, Peyrot, Schork, Lee, & Wray, 2019).
Therefore, PRS associations could have captured real shared
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genetic aetiology undetected by LDSC. This could explain the dis-
crepancy with the findings by So et al. (2019), as their PRS ana-
lyses did not consider individual-level genotype data. It is
equally possible that our results reflect discontinuity between the
UKB phenotypes compared with PGC; and our findings might
describe unrepresentative BPD relationships specific to UKB.

Furthermore, we investigated whether associations between
cardiometabolic PRSs and BPD remained significant after con-
trolling for the base phenotype, either by excluding participants
with the cardiometabolic disease or by adding the cardiometa-
bolic phenotype as a covariate in the model. We observed differ-
ent degrees of attenuation in explained variances, including very
little relative attenuation in the case of coronary artery disease
(average attenuation 1.09%), and full relative attenuation for tri-
glycerides (average attenuation 98.76%). This indicates that,
when predicting BPD, adding a coronary artery disease PRS
seems to explain some additional variance beyond the variance
captured by the coronary artery disease phenotype. This indicates
shared genetic aetiology with BPD above and beyond their base
phenotypes in UKB, which was not the case for triglycerides,
and at least partly applied to type 2 diabetes, waist-to-hip ratio
unadjusted and adjusted for BMI. Consistent with phenotypic
associations reported above, these differing patterns indicate dis-
tinct relationships with BPD for individual cardiometabolic traits,
some of which probably share some genetic aetiology in UKB
with BPD; mainly type 2 diabetes, coronary artery disease and
waist-to-hip ratio. Future research is imperative to investigate to
what extent those results are prone towards collider bias
(Akimova, Breen, Brazel, & Mills, 2020).

BPD PRSs did not significantly predict any cardiometabolic
phenotypes, which could be due to differences in statistical power
between the BPD GWAS and the CMT GWAS. This underlines
the need for future more powerful BPD GWAS that will facilitate
to disentangle whether the genetic overlap with genetic underpin-
nings of CMTs relies on shared biological pathways, pleiotropy or
whether CMTs confound BPD GWAS summary statistics.

Limitations

There are additional limitations, beyond those highlighted
throughout this discussion. The possible bipolar status definition
was chosen for its high predictive validity (Davis et al., 2019).
However, it outlines a non-clinical subpopulation with increased
prevalence of BPD symptoms and caution must be taken
when translating our findings. Because of a healthy-volunteer
selection bias, particularly among participants in the Mental
Health Questionnaire, it is unclear how generalisable findings
are (Adams et al., 2018). Selection bias probably introduced spuri-
ous relationships for variables that influence participation in UKB
(Munafo, Tilling, Taylor, Evans, & Davey Smith, 2017).
Phenotypic and PRS associations explained only a fraction of vari-
ance in BPD (R? phenotypes <2.18%; PRS <0.13%), and none
implicated causal biological mechanisms.

Conclusion

This large-scale, cross-sectional study constitutes a nuanced
account of the comorbidity between BPD and various, extensively
phenotyped, cardiometabolic traits, considering clinical and self-
report data, physical measurements, and biological samples. BMI
was most strongly associated with an increased risk of BPD. We
found shared genetic aetiology for coronary artery disease, type 2
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diabetes, and waist-to-hip ratio unadjusted and adjusted for BMI
and triglycerides. These associations only persisted beyond the vari-
ance explained by cardiometabolic base phenotypes in the case of
coronary artery disease. This was not replicated by genetic correla-
tions, accentuating the importance of choosing appropriate statis-
tical techniques when testing for shared genetic aetiology.

Our results underline that cardiometabolic comorbidity in
BPD differs between cardiometabolic traits, where effect sizes
depend on sex, medication intake and the phenotype strength.
This should motivate future hypothesis-driven longitudinal
research inside and outside UKB to consider specific cardiometa-
bolic traits for associations with BPD, rather than an overarching
global metabolic trait, when attempting to disentangle underlying
biological mechanisms.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/50033291721000945.
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