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Abstract

This paper discusses several algorithmic problems related to rings of rational matrices. It provides
solutions to these problems in the commutative case and points out some of the difficulties to be overcome
in the general case. A connection with attempts to construct Grobner bases for ideals in free rings is also
illustrated.
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1. Introduction

This paper discusses several algorithmic questions related to rings of rational matrices.
Some questions about Grobner bases of ideals in free rings are also mentioned. The
number of answers given is considerably smaller than the number of questions raised.
It is hoped that others will find these questions interesting and be able to make progress
on them.

Throughout this paper, all rings and algebras are associative and are assumed to
have multiplicative identities. All ideals are two-sided unless there is an explicit
statement to the contrary.

The investigations reported on here began with the following observation. Let n
be a positive integer, let Mat(n, Q) be the algebra of all rational n-by-n matrices, and
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[2] Algorithmic questions in rings 381

let GL(n, Q) denote the group of invertible elements of Mat(n, Q). If U is a finite
subset of Mat(n, Q) and v is an element of Mat(n, Q), then there are three natural
algorithmic questions that can be asked:

(1) Is v in the Q-subalgebra of Mat(«, Q) generated by £/?
(2) Is v in the subring of Mat(«, Q) generated by [/?
(3) Assuming v and the elements of U are invertible, is v in the subgroup of

GL(n, Q) generated by £/?

These problems will be referred to as the membership problems for finitely generated
algebras, rings, and groups of rational matrices, respectively.

The membership problem for algebras of rational matrices is easily solved using
only elementary linear algebra. We initialize a set B to consist of the identity matrix
and then carry out the following step:

Let C be a basis for the Q-subspace of Mat(n, Q) spanned by the union of B
and the set of elements of the form bu with b in B and u in U. If |C| = |fi|,
then stop. Otherwise, replace B by C and repeat.

This step clearly terminates and when it does, the subspace spanned by B is the
Q-algebra &/ generated by U. At this point it is immediate to decide whether or not
v is in srf.

As first observed in [5], the membership problem for groups of rational matrices
is undecidable, at least when n > 4. For any group G there is a one-to-one corre-
spondence between the set of normal subgroups of G and the subgroups of G x G
that contain the diagonal. This implies that the word problem for finitely presented
groups, which is known to be undecidable, is equivalent to the membership problem
for finitely generated subgroups H of F x F, where F is a free group of finite rank
and H contains the diagonal. The group GL(2, Q) is known to contain subgroups that
are free of any finite or countable rank. Therefore, all the groups F x F with F free
of finite rank can be found as subgroups of GL(2, Q) x GL(2, Q), which is obviously
a subgroup of GL(4, Q).

Thus the membership problem for finitely generated rings of rational matrices is in
some sense intermediate between an easy problem and an impossible one. No general
solution of the ring membership problem is known to me.

The ring membership problem has a simple solution when n — 1. A subring!% of
Q is completely determined by the set of primes that are units in ffi. Thus if n — 1,
then v is in the subring generated by U if and only if each prime occurring in the
denominator of the entry of v occurs in the denominator of the entry of at least one of
the elements of U.

When n > 1, the lattice of subrings of Mat(n, Q) is much more complicated. We
do have the following straight-forward result, although it is not much help in our
situation.
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382 Charles C, Sims [3]

PROPOSITION 1. The subrings o/Mat(n, Q) that contain Mat(n, T) are in one-to-
one correspondence with the subsets of primes.

2. The commutative case

In this section a solution of the membership problem for finitely generated rings of
rational matrices is given for the case in which the ring £$ generated by the finite set
U of matrices is commutative. The solution uses Grobner basis methods.

The ring 2$, is commutative if and only if any two elements of U commute. In this
case, for v to be in ^ each element of U must commute with v. Let us assume that
all elements of U U {v} commute.

Let r = \U\ and let 2[X] = Z[xu ..., xr+l] be the ring of integer polynomials in
r + 1 (commuting) indeterminates. In the context of polynomial rings, a term is a
product of the form jcf • • •x'+I

1, where the exponents e, are nonnegative integers. Set
£%* equal to the ring generated by U U {v}. There is a ring homomorphism / from
1[X] to 3?* that for 1 < i < r takes xt to the i-th element of U and takes xr+x to v.
Let K be the kernel o f / .

If we can find a finite generating set W for the ideal K, then we can decide whether
or not v is in 8?,. We choose a term ordering on the terms in the x{ such that xr+t is
larger than any term not involving xr+i. Then, starting with W, we compute a Grobner
basis B for K as an ideal of 1[X] with respect to this ordering. The matrix v is in Sf,
if and only if B contains an element of the form xr+i — g, where g is a polynomial
that does not involve xr+i.

Thus it remains to show that we can find a presentation as a commutative ring for
the ring 2& generated by a finite set U of commuting rational matrices. Let r = \ U\,
let X denote the set of indeterminates x h . . . , xr, let / be the homomorphism from
1[X] to 3R taking xt to the j-th element of U, and let K be the kernel of / .

To find a finite generating set for K, we start by finding an algebra presentation
for the Q-algebra sf generated by U. Since Z[X] is a subring of Q[X] and 3f, is a
subring of &/, we can extend / to be a Q-algebra homomorphism of Q[X] onto si'.
Let L be the kernel of / considered as a map from Q[X] to si.

Let 1 = Z\, Zi, • • • be the terms in the xt listed in order of total degree and then
lexicographically, and let d be the dimension of s/. The images of the z( under/ span
s/. Let J be the set of positive integers j such that / (ZJ ) is not a linear combination
of the / (z,) with i < j . Then | J \ = d and the matrices / (ZJ ) with j in J form a basis
for s/. For each positive integer k not in J there is an equation in sf of the form
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where the akj are rational numbers. The polynomials

for which the degree of zt does not exceed by more than 1 the degree of any of the Zj
withy" in J constitute a set of generators for L.

Now K — L fl Z[X]. Finding a generating set for K can be accomplished with
Grobner basis methods. Let B be a Grobner basis (over Q) for L. The term ordering is
not important, but let us choose the total degree plus lexicographic order used above.
By clearing denominators, we may assume that for each b in B the coefficients of b are
integers that are relatively prime and the leading coefficient of b is positive. Clearly
the ideal Ko of Z[X] generated by B is contained in K. Let q be the least common
multiple of the head coefficients of the elements of B.

PROPOSITION 2. In this situation Ko = K if and only

PROOF. If g is an element of K all of whose coefficients are divisible by q, then
g/q is in L and is in T[X}. Therefore g/q is in K.

Now suppose that

-(Konql[X])QKo

q
but that Ko ̂  K. Choose an element g of K that is not in Ko such that the head term
z of g is as small as possible. Since g is in L and B is a Grobner basis for L, there is
an element b of B such that the head term of b divides the head term of g. Since the
head coefficient of b divides q, there is an integer a and a term z' such that the head
terms of g and (a/q)z'b are equal. Thus h = g — {a/q)z'b is in L and either h = 0
or the head term of h is less than that of g. Now qh has integer coefficients and thus
is in AT. By the minimality of g, we know that qh is in Ko. Therefore

qg — qh + az'b

is in Ao. But qg is in q1[X] and hence by assumption g is in Ko. D

Given the generating set B for Ko, we can compute a generating set C for

Ko n ql[X]
using standard Grobner basis techniques. See Section 6.2 of [2] for example. If g/q
is in Ko for each g in C, then we know that B generates K. If some h — g/q is not in
Ko, then we add h to B, compute a new Grobner basis, and repeat the test. Since the
ascending chain condition holds for ideals of 1[X], this process eventually terminates
and gives us a presentation for &?,.
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384 Charles C. Sims

3. The general case

[5]

The solution of the membership problem for finitely generated commutative rings
of rational matrices given in Section 2 depends on being able to get presentations
for such rings and on being able to perform Grobner basis computations in finitely
generated free commutative rings, that is, polynomial rings.

As we consider the general case, it is natural to ask whether we can find finite
presentations for arbitrary finitely generated rings of rational matrices and perform
Grobner basis computations in the ideals of free rings that arise. The answers are
disappointing.

A literature search on the finite presentability of finitely generated matrix rings did
not locate any reference on the subject. However, it is known that finitely generated
groups of rational matrices need not have finite group presentations. Example 4.22 of
[10] can be easily modified to prove the following.

PROPOSITION 3. There exists a finitely generated subring o/Mat(4, Q) that is not
finitely presentable.

PROOF. We start with a subring of Mat(3, Q). Let 3& be the ring generated by the
matrices

a =

1
1
0

0
1
0

0
0
1

"1
0
0

0
1
1

0"
0
1

t =

1 0 0'
0 1/2 0
0 0 1

Let / be the identity matrix. If u = a — I and v = b — I, then

and

0 0 0'
tlu= 1/2' 0 0

0 0 0

t'ub - bt'u =

It follows that Sf. consists of all matrices

vt* =
'0 0 i
0 0 i

_0 1/2' 0_

0 0 0'
0 0 0

J/2' 0 0_

a

Y
S

0

P
6

0
0
a
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where a is in Z and /3, y, 8, and e are in Z[|].
Let M be the set of elements in SP, of the form

'0
0
8

0
0
0

0
0
0_

It is easy to check that M is an ideal of & and that left and right multiplication by a,
b, and t act as the identity on M. Thus any additive subgroup of M is an ideal of 3?,.
Since the additive group of Z[|] is not finitely generated, M is not finitely generated
as an ideal of ^?.

Let / be the map from £$ to Mat(4, Q) defined by

a
y

8

0

P
€

0"
0
a

. - •

a
y
0
0

0
p
0
0

0
0
p
€

0
0
0

a

It is easy to check that / is a ring homomorphism with kernel M. If the image @\ of
/ were finitely presented, then M would be finitely generated as an ideal. Since this
is not the case, ̂ , is not finitely presented. •

Let X be a finite set of (noncommuting) indeterminates. We may consider the free
ring Z(X) generated by X to be a subring of the free Q-algebra Q(X) generated by
X. An alternative statement of Proposition 3 is: Let / be an ideal of Q(X) with finite
vector space codimension. Then / is easily seen to be finitely generated. It is even
finitely generated as a right ideal. Let J = I D Z(X). Then J need not be finitely
generated as an ideal ofl(X).

Since ideals in Q(X) and 1(X) need not be finitely generated, these ideals certainly
need not have finite Grobner bases. In Q(X) it is at least possible to decide when a
given finite set of elements forms a Grobner basis for the ideal it generates, see [8].
For Z(X) I am not aware of any algorithm that determines whether or not a finite set
of elements forms a Grobner basis.

Grobner bases in free algebras over fields have been considered in [4,7,8]. A
discussion of Grobner bases in free algebras over (commutative) polynomial rings
is presented in [6], which has an extensive bibliography. For the special case of
2(X), one can make relatively simple changes in the exposition in [2, Chapter 5 and
Section 10.1]. The approach adopted here draws on [2,6]. Because few new ideas are
involved, proofs will frequently be sketched or omitted completely.

An element of 1 {X) is an integer linear combination of elements of the free monoid
X* generated by X. Often elements of X* are called words, but in the context of free
rings elements of X* are usually called terms. We start by fixing a term order < on X*.
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This is a well ordering such that for all terms s, t, u, and v, if s < t, then usv < utv.
A monomial is a product of a nonzero integer and a term.

An element / of Z(X) can be written uniquely in the form

axu\ +a2u2 H \-arur,

where the a, are nonzero integers and the M/ are terms with ux > u2 > • • • > ur. (If
/ = 0, then r = 0.) If/ is not 0, then the head monomial off is HM(/) = a\U\, the
headtermoif isHT(/) = u u and the head coefficient of / isHC(f) = a\. We shall
abuse language and refer to elements of Z(X) as (noncommutative) polynomials.

A monomial au divides a monomial bv if a divides b and u is a substring of v,
or equivalently, if there exist an integer c and terms i and ; such that b = ca and
v = sut. A finite subset B of 1{X) is a Grobner basis if 0 is not in B and for every
nonzero element / of the ideal generated by B, there exists an element g of B such
that HM(g) divides HM(/).

Given any finite subset B of 1 (X} and an element / of 1 {X}, we can reduce / with
respect to B by repeating the following:

While / ^ 0 and there exists an element g of B such that HM(g) divides HM(/) do
Let HM(/ ) = OM HM(g)i), where a is an integer and u and v are terms.
Let / = / — aHgu.

od.

If B is a Grobner basis, then a polynomial / is in the ideal generated by B if and
only if/ reduces to 0 with respect to B. We say the / is top reducible with respect
to B if either / = 0 or the reduction loop is executed at least once. That is, HM(/)
is divisible by the head monomial of some element of B.

In the commutative case, any two terms have a well-defined least common multiple,
which divides any common multiple. When indeterminates do not commute, the
situation is much more complicated. Let t\ and t2 be elements of X*. A minimal
common multiple of t\ and t2 is a quintuple of terms (w, u^Vi, u2,v2) such that
w = UitiVi = u2t2v2, either u\ or u2 is empty, and either V\ or v2 is empty. If this
holds, then the term w is clearly a common multiple of t\ and t2. The condition on
the M, and u, ensures that the occurrences of t\ and t2 in w are not both part of some
proper substring of w.

For 1 < i < 2 let g, be a nonzero polynomial. Let a, = HC(g;) and /, = HT(g,).
Set a = lcm(a1; a2) and d = gcd(ai, a2). There are integers b, and c, such that

a = biOi, and d = cxa\ + c2a2.

For each minimal common multiple m = (w, uu vu u2, v2) of ty and r2 we have the
S-polynomial and the G-polynomial of g1 and g2 defined by

spol(gi, g2, m) = bxuxgxvx - b2u2g2v2
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and

, gi, m) = CiUigiVi + c2u1g2v1.

Note that the head monomials of the two summands cancel in the definition of
spoKg!, g2, m). The definition given for gpol(gi, g2, m) depends on Ci and c2. As
explained in [2, Section 10.1], for each pair of integers (au a2) one can fix a pair
(c\, c2) and always use these multipliers.

PROPOSITION 4. A finite subset B ofl{X) not containing 0 is a Grobner basis if and
only if for all g\ andg2 in B and all minimal common multiples m = (w, U\, Vi, u2, v2)
o/HT(gi) and HT(g2) the element spol(gi, g2, m) can be reduced to 0 with respect to
B and gpol(gi, g2,m) is top reducible with respect to B.

As is shown below, following [8], the criterion in Proposition 4 reduces to a finite
test when the elements of B are monic. However, in general it appears that infinitely
many S- and G-polynomials must be considered. It seems appropriate to call attention
to this fact by stating the following.

PROBLEM. IS it possible to decide whether a finite subset of 2(Z> is a Grobner
basis?

Another form of the criterion for a finite set B of polynomials to be a Grobner basis
can be stated using the notion of a r-representation. Let / be an element of the ideal
generated by B and let / be a term. A t-representation of/ with respect to B is an
expression of/ as a sum

f =

where the a, are nonzero integers, the «, and t>, are terms, the gi are in B, and for all i
we have HT(a/«,g,i;,) < /. As before, the empty sum is considered a f-representation
of 0. (Note that this is a slight modification of the definition given in [2].)

PROPOSITIONS. Let B be a finite subset of T(X) not containing 0. Suppose
for each pair of elements g\ and g2 in B and for each minimal common multiple
m = (w, M,, vu «2, v2) ofUTigx) andHT(g2) that spol(g,, g2, m) has a HTCui^Vi)-
representation with respect to B and gpol(g!, g2, m) is top reducible with respect to
B. Then B is a Grobner basis.

I close this section with an example that shows in one specific case that it is possible
to decide whether a given set of polynomials is a Grobner basis, even if some of the
polynomials in the set are not monic. At this point I cannot say whether this example
is typical.
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388 Charles C. Sims [9]

The following example was studied as part of an effort to gain some insight into the
structure of finitely generated rings of rational matrices. Let x and y be the following
elements of Mat(2, Q).

[ -1 0] = U -21
L-5/2 2_|' y [l 9/2J "

The Q-algebra generated by x and y has a basis consisting of the matrices 1, JC, y,
and xy and is defined by the following Q-algebra relations:

x2 -x - 2 = 0,

yx+xy-y- Ylx/2 - 3/2 = 0,

y2 - My 12 + 20 = 0.

The left sides of these relations form a Grobner basis for the ideal of Q(JC, y) they
generate. Here the ordering on terms is first by length and then lexicographic with
x < y.

By clearing denominators in the Q-algebra relations, we obtain the following ring
relations:

x2 - x - 2 = 0, 2yjt + 2xy - 2y - 17.x - 3 = 0, 2y2 - lly + 40 = 0.

Using ad hoc methods, it was determined that these relations imply that

2xyx +4y - 20jt - 34 = 0.

Dividing this relation by 2, we get the new ring relation

xyx + 2y - IOJC - 1 7 = 0.

A prototype Maple implementation of the test in Proposition 4 has been written.
This program investigates a specified finite set of S-polynomials and G-polynomials.
This program was run with the input

x2 -x-2,

2yx +2xy -2y - \lx - 3 ,

2y2 -\ly+ 40,

xyx + 2y - 10* - 17.

The output from the program consisted of the following five polynomials.

fti =x2 -x - 2 ,
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h2 = 2yx + 2xy-2y - \lx - 3,

h3 = 2y2 - lly + 40,

h4 = xyx +2y - IOJC - 17,

h5 = yxy - lOy - 2(k + 20.

Enough S-polynomials and G-polynomials had been considered that it was plausible
that this set B of five polynomials formed a Grobner basis.

As the following result shows, it is easy to see that all G-polynomials obtained from
elements of B are top reducible.

PROPOSITION 6. Suppose that gi and g2 are nonzero elements ofZ(X) such that
HC(gi) divides HC(g2). Then for any minimal common multiple m = (w, ult v\, u2, v2)
ofWT(gi) and HT(g2) the corresponding G-polynomial is top reducible with respect
to[gi).

PROOF. We may take gpol(gi, g2, m) to be KigiVi. •

It is not clear that all the S-polynomials obtained from elements gx and g2 of B
can be reduced to 0. Let m = (w, ult V\, u2, v2) be a minimal common multiple of

and HT(^2)- There are only finitely many cases in which the occurrences of
and HT(g2) in w overlap. These can be considered individually and in all

cases the S-polynomials reduce to 0.
As we consider the minimal common multiples in which t\ = H T ^ ) and t2 =

HT(g2) do not overlap, it suffices to assume that ti is a prefix of w and t2 is a suffix of
w. Thus there is a term v such that w — t\Vt2, ut — v2 = s, V\ = vt2 and u2 = t\V.
Let us denote the corresponding S-polynomial as S(g\, g2,v).

The following general result eliminates many cases.

PROPOSITION 7. Suppose g\ andg2 are nonzero elements ofZ(X) such thatHC(gi)
andHC(g2) are relatively prime. Then for any term v the polynomial S(gi, g2, v) has
a t-representation with respect to {gu g2), where t =

PROOF. Under the given assumptions,

S(gi, g2, v) = gii)HM(g2) - HM(gi)vg2

= [gi - UM(8l)]vg2 - giv[g2 -

The polynomials [gi - HM(g{)]vg2 and g\v[g2 — HM(g2)] are either 0 or have head
terms less than HT(g!)uHT(g2)- Thus the last expression is a r-representation of
S(gu ft. v), where t = HT(g,)w HTfe). D
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Putting Proposition 6 and Proposition 7 together, we see that there is a finite test to
decide whether a finite set of monic polynomials in 1{X) is a Grobner basis.

In our example, the finitely many S-polynomials that are not of the form S(gi, g2, v)
can be checked individually and shown to have appropriate /-representations. There
are four cases S(gi, g2, v) that are not covered by Proposition?. They are S(h2, h2, v),
S(h2, h3, v), S(h3, h2, v), and S(h3, h3, v). Let us examine each one in turn. Let

7i(u) = S(h2, h2, v) + h2v[xy -y-%x-l] + [-xy + y + 9x + 2]vh2

= yxvx + xvyx + xvxy + xyvx + vyx + vxy — yvx + yxv

— xvy — Ylxvx + xyv — vy — \0vx — yv — IOJCU — 3v.

Let Wr(v) = yxvyx = UT(h2vyx) = KT(yxvh2). To show that S(h2,h2,v) has
Wi(u)-representation, it suffices to show that T{(v) has a W,(u)-representation.

To show that S(h2, h3, v) has the appropriate representation, it suffices to show that

T2(v) = S(h2, h3, v) + [-xy + y+9x + 2]vh3 + h2v[Sy + 20]

= yxvy + xvyy + xyvy + vyy — yvy — \lxvy — lOiry + 2Qxv + 20v

has a W2(v)-representation, where W2(v) = yxvyy.
To show that S(h3, h2, v) and 5(/i3, /i3, v) have the appropriate representations,

it suffices to show that 73(i;) has a W^tO-representation and T4(v) has a M i s -
representation, where

r3(u) = S(h3, h2, v) + h3v[xy -y-Sx -l] + [9y- 20]vh2

= yvyx + yvxy + yyvx — yvy — 17 yvx + yyv + 20t>x — 10yu + 20u,

T4(v) = 5(A3. h3, v) + [9y - 20]vh3 + h3v[-Sy + 20]

= yvyy + yyvy — 17y vy + 20uy + 20_yu,

W3(v) = yyvyx, and W4(v) = yyvyy.

PROPOSITION 8. For 1 < i < 4, and for all terms v, there is a Wt(v) -representation
ofUv).

PROOF. We proceed by induction on |u|. The case v — e is easily checked. Now
assume that v = x u for some term u. Straightforward computation shows that

TiOtu) = yhx[ux + u] + xTi{u) - hxy[ux + u].

Now, no matter what u is, HT(y/iiMx) = yxxux < W{{ux) = yxxuyx. Similarly,
UT(hiyux) is less than Wx{ux). By induction, 7\(M) has a Wx(«)-representation. It
follows easily that xTt(u) has a x Wi(H)-representation and xWi(u) = xyxuyx <
Wi(ux). Therefore, Ti(ux) has the desired Wi(«;t^representation.
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Additional computation shows that

T2(xu) = yhxuy +xT2(u) -hxyuy,

T3(xu) = yT{(u) - h5u[x + 1] - T3(u) + h3u[x + 1],

T4{xu) = yT2(u) - h5uy - T4(u) + h3uy,

and the same kind of argument shows that each of the polynomials 7](*«) has a
Wl(* ̂ -representation for 2 < i < 4.

It remains to consider the case v = yu for some term u. Here we have

Tx(yu) = h5u[x + l] + [x + l]T3(u) - h3u[x + 1], T3(yu) = yT3(u),

T2(yu) = h5uy + [x + l]T4(u) - h3uy, T4(yu) = yT4(u).

Again the induction assumption for 7](w) makes it possible to conclude that 7](y«)

has a W)(}>M)-representation. •

The idea behind the proof of Proposition 8 can be automated. However, it is not
clear whether a failure of the induction step always produces a polynomial that must
be added to the current basis. Thus more work is needed before this procedure can be
claimed to give a finite test for being a Grobner basis.

4. Related problems

There are several problems related to the membership problem for finitely generated
rings of rational matrices that should be mentioned.

We begin by pointing out that it is possible to determine the intersection of a sub-
space V of Qm with Zm. In fact this is similar to and easier than finding the intersection
of an ideal in Q[X] with 2[X], where X is a set of commuting indeterminates. The
solution sketched here is in the spirit of the solution sketched above for the ideal
intersection problem.

If the dimension of V is r, then W = V D Zm is a free Abelian group of rank r. Let
B be a basis for V. By clearing denominators, we may assume that the elements of B
are in Zm. Let Wo be the subgroup of T" generated by B. Then \W : W0\is finite and
W is the set of elements a in U" such that some positive integer multiple of a is in Wo.
Let M be the r-by-m matrix whose rows are the elements of B. We may assume that
M is in row-Hermite normal form, see [9]. The order of | W : Wo\ divides the product
n of the 'corner entries' in M.

PROPOSITION 9. In this situation, W = Wo if and only for each prime p dividing n
we have

(Wnlm)£ Wo.
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PROOF. If W = Wo and w is an element of (l/p)(Wfl plm), then w is in V and
also in Zm. Therefore w is in W = Wo.

Now suppose that

-(WonPim)£ w0
p

for all primes p dividing n but Wo ^ W. Then there exists an element w in W such
that u> is not in Wo but pio is in Wo for some prime p and /? divides \W : Wo\, which
divides n. But then pw is in Wo D p2m and by our assumption w; = (pw)/p is in Wo

after all. •

Given the generating set B for Wo, we can construct a generating set for Wor\plm as
follows: Let a = {ax,..., ar) be a variable vector in T'. Find a set A of elements of If
that maps to a basis modulo /? for the solutions of the linear system aM = 0 (mod p).
Then W0C\plm is generated by the elements pb with b in B together with the elements
aM with a in A. Thus to check whether

-
p

we have only to test whether {aM)/p is in Wo for all a in A.
For any element u of Mat(n, Q) let denom(«) denote the smallest positive integer d

such that du has integer entries and let num(«) denote denom(M)M. If U is a nonempty,
finite subset of Mat(n, Q), let denom( U) be the least common multiple of the numbers
denom(w) with u in U.

Let U be our finite subset of Mat(n, Q), let si be the Q-algebra generated by U,
and let 0f, be the ring generated by U. We can consider the following problems:

(1) The ring 3?,\ — & n Mat(n, 2) is finitely generated as an Abelian group. Find a
basis for this ring.
(2) More generally, for a given positive integer d find a basis for the Abelian group

&,d = dSt, n Mat(n, 1).
(3) Determine the ring 5? of scalar matrices contained in 3?..
(4) Decide whether 3% is conjugate in Mat(n, Q) to a subring of Mat(«, I), that

is, whether there is an element w of GL(n, Q) such that w^Sf.w is contained in
Mat(n, Z).

We can find a vector space basis for &/ and thus, by the above argument, a basis as
a free Abelian group for the ring S\ = si n Mat(n, 2). We can also determine a basis
for the ring <% generated by the elements num(w) with « in U. Then

% c #, c î

https://doi.org/10.1017/S144678870000207X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000207X


[14] Algorithmic questions in rings 393

and the index (as an additive subgroup) of % in ^ is finite. If we can decide
membership in J?, then we can choose coset representatives for % in ^ and use them
to determine £?.\.

Our element v is in 3$ if and only if num(u) is in dSf, D Mat(n, Z), where d =
denom(u). Thus being able to solve the second problem makes it possible to decide
membership in £#.. Since d3% D Mat(n, Z) contains d^0 as a subgroup of finite index,
the argument of the previous paragraph shows that the second problem is equivalent
to deciding membership in 3?,.

The ring of scalar matrices in Mat(n, Q) is isomorphic to Q. In the following, we
identify these two rings. In particular, we write 1 for the n-by-n identity matrix. To
solve the third problem it suffices to decide for which primes p is \/p in £%. Any such
prime must divide the denominator of some element of U and hence there are only
finitely many candidates for p. Therefore, if we can decide membership in 3?,, then
we can solve the third problem.

We can determine the ring of scalar matrices in J? when 2% is commutative. A
prime p is a unit in SP, if and only if the ideal N of £2 generated by p is all of 0K. If
we have an ideal generating set R for an ideal K of Z[X] such that £?, is isomorphic
to 1[X]/K, then 3?/N is isomorphic to Z[X]/H, where H is the ideal generated by
R U {p}. Grobner basis methods allow us to decide whether or not H = Z[X]. If it
does, then we can express 1 in terms of the elements of R U [p]. That is, we can find
polynomials fo,f\,... ,/.,, and gi,... , gs such that the g, are in R and

1 =Pfo+figi H Vfsgs-

The image of f0 in & is \/p.
An alternative approach to deciding whether \/p is in 3?, is to consider the ideal

M of 1P[X] generated by the image of R, since p is invertible in J? if and only if
M = ZP[X]. Grobner basis techniques in ZP[X] suffice for this.

Somewhat surprisingly, the fourth problem can be solved. In [1], it is shown that
given a finite subset U of GL(n, Q), it is possible to determine whether the group
G generated by U is conjugate in GL(n, Q) to a subgroup of GL(«, Z). Now G is
conjugate to a subgroup of GL(n, Z) if and only if the ring 5? generated by G is
conjugate to a subring of Mat(n, Z) and 5? is generated by U U U~l. If one assumes
that U = U~\ then the proof in [1] does not depend in any significant way on the fact
that the elements of U are invertible. Thus the approach in [1] can be easily modified
to give a solution to problem (4). Here is a brief sketch of that solution.

PROPOSITION 10. Let &?, be a subring o/Mat(n, Q). The following are equiva-
lent:

(i) Sf. is conjugate to a subring o/Mat(n, Z).
(ii) t% is finitely generated as an Abelian group.
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(iii) There is a positive integer d such that dffi c Mat(n, Z).
(iv) StTn is contained in a lattice.

PROOF. A subring 5? of Mat(n, Z) is finitely generated as an Abelian group and
hence any subring of Mat(n, Q) conjugate to y has the same property. Thus (i)
implies (ii).

Suppose that v\,... , vr is a basis for ^ as an Abelian group. Let d be denom({ui,
. . . , vr}). Then dSt. c Mat(«, Z). Thus (ii) implies (iii).

Suppose that dSt. c Mat(n, Z). Then St,Zn c (l/d)ln and (l/d)Zn is a lattice.
Thus (iii) implies (iv).

Suppose that S?.~lLn c V, where V is a lattice in Q". We may assume that V is
the additive subgroup generated by St~ln. Thus S?,V = V. Since St. contains the
identity, V has rank n. Let v\,... , vn be a basis for V as an Abelian group. Then the
v, form a vector space basis for Q" and the matrices for elements of St. with respect
to this basis have integer entries. If w is the matrix with the vt as columns, then
Wx3t.w c Mat(n, Z). Thus (iv) implies (i). •

Let ^ be a subring of Mat(n, Q). The Q-subalgebra generated by St. is called the
enveloping algebra of 3t and denoted env(^). Let U\,... , ur be a basis for env(^).
(The M, may be chosen to be elements of St..) Let T be the r-by-r matrix whose y -th
entry is Tr(«,My), where Tr denotes the trace. The following is Lemma 2.1 of [1],
which is quoted from [3, page 106].

PROPOSITION 11. Under the stated assumptions, T is nonsingular if and only if
env(^) is semisimple. In fact, the radical ofen\($) consists of those elements

1=1

such that Ta = 0.

Since elements of Mat(n, Z) have integer traces and conjugate matrices have the
same trace, a necessary condition for a subring ^ of Mat(n, Q) to be conjugate to a
subring of Mat(n, Z) is that all elements of $ have integer traces. The following is
essentially part (b) of Theorem 2.4 of [1].

PROPOSITION 12. Let St. be a subring o/Mat(n, Q) such that all elements of St.
have integer traces. If env(St.) is semisimple, then St is conjugate to a subring of
Mat(n, 1).

PROOF. Let r,uu... ,ur, and T be as in the previous proposition, with the M, chosen
to be in St.. Then T is a nonsingular integer matrix. Let d\ = denom({«i,..., Mr})
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and d2 = | det(r)|. By Cramer's rule, d2T~l is an integer matrix. Set d = d\d2. Let
u be in @. Then

where the a, are rational numbers. For 1 < i < r, let r, = Tr(M«,), which by
assumption is an integer. Then r = Tu and hence a = T~lx. It follows that
dctiUi = (d2T~xx)id\Uj is an integer matrix and therefore so is du. Hence dSft c
Mat(n, Z). D

PROPOSITION 13. Let Sf. be a finitely generated subring o/Mat(n, Q). Suppose
that V is an 3?,-submodule ofQ" such that the ring of linear transformations induced
by 32 on V © (Q"/ V) is finitely generated as an Abelian group. Then 3$ is finitely
generated as an Abelian group.

PROOF. Let y be the ring of linear transformations induced by 3$ on V © (Q"/ V).
The rings of linear transformations induced by 3f, on V and on Q" / V are quotient rings
of y and hence also finitely generated as Abelian groups. Let m be the dimension of
V. By Proposition 10, we may chose a basis Vi,... , vn of Q" such that vt,... , vm is
a basis for V and with respect to the v, the matrices for elements of 3$ have the block
form

o c\*
where A and C are integer matrices. Suppose we have two such matrices

for i = l ,2 . Then u^u2 is

[~A,A2 AlB2 + B1C2l

[ o QC2 y
It follows that if d is a positive integer such that du\ and du2 are both integer matrices,
then du\u2 is also an integer matrix. By assumption, 8?, is generated by a finite set U.
lfd = denom(L0» then dffi c Mat(n, 1). By Proposition 10, £# is finitely generated
as an Abelian group. •

PROPOSITION 14. Let Sf. be a finitely generated subring o/Mat(n, Q) such that
the trace of every element of 3$ is an integer. Then Sf, is conjugate to a subring of
Mat(n, 1).
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PROOF. We proceed by induction on the dimension m of env(^). If env(^) is
semisimple (in particular, if m = 1), then the result follows from Proposition 12. Let
TV be the radical of 31 and assume that N ^ 0. Let k be the smallest positive integer
such that Nk = 0 and set V = NQ", which is a proper, nontrivial env(^)-submodule
of Q \ Let y be the ring of linear transformations induced on V © (Q"/ V) by
3?,. Note that env(<50 is the image of env(^). Elements of N map Q"/ V to 0 and
elements of Nk~x map V to 0. Thus Nk~l is in the kernel of the homomorphism /
from env(J?) to env(^). Thus the dimension of env(^) is less than m. The map /
preserves traces. Thus the trace of every element of y is an integer. The image under
/ of the finite generating set for 38 is a generating set for y . Thus by induction, y is
conjugate to a subring of Mat(/i, Z). By Proposition 13, 38 is conjugate to a subring
ofMat(n.Z). D

If we are given a finite subset U of Mat(«, Q), then it is not immediately apparent
whether the trace of every element of the ring 3? generated by U is an integer. We can
form a few 'random' elements of 38. If we find any with nonintegral traces, then we
know that ^ is not conjugate to a subring of Mat(«, Q).

The proof of Proposition 14 contains an algorithm for determining an integer d such
that d38 c Mat(n, Z). The algorithm is only guaranteed to work if the trace of every
element of 3P, is an integer. However, we can apply the algorithm any way. If any
of the traces that are computed in executing the algorithm turn out not to be integers,
then we abandon the computation. If this does not happen then we obtain a positive
integer d such that either d3£ c Mat(n, Z) or for no integer e > 0 is e£#. C Mat(n, Z).
We can decide whether dSf, C Mat(n, Z) as follows:

(1) Let L = dln.
(2) If L is not contained in Z", then return false.
(3) If uL c L for all u in U, then return true.
(4) Let u be an element of U such that uL ^ L.
(5) Replace L by L + uL and go to 2.

The running time analysis in [1] carries over and we find that one can decide
whether the subring generated by a given set of rational matrices is conjugate to a ring
of integer matrices in time polynomial in the size of the input.

5. A single generator

The ring Sft is commutative when the generating set U consists of a single element.
In this case, we can give concise answers to many of the questions about the ring
generated by U. We start with the following result.

PROPOSITION 15. Let u be an element o/Mat(n, Q). The following are equiva-
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lent:

(1) The characteristic polynomial of u has integer coefficients.
(2) The monic minimal polynomial of u has integer coefficients.
(3) The subring o/Mat(n, Q) generated by u is finitely generated as an Abelian

group.

PROOF. If there is a monic integer polynomial g such that g(u) = 0, then the ring
M generated by u is generated as an Abelian group by 1, M, . . . , ur~\ where r is the
degree of g. Thus (1) or (2) implies (3). If (3) holds, then, as noted above, 3? is
conjugate to a subring of Mat(n, 2). In particular u is similar to an integer matrix and
hence (1) holds. The monic minimal polynomial divides the characteristic polynomial
and it is an easy consequence of Gauss' Lemma that (2) must also hold. •

Let x be a single indeterminate. The monic minimal polynomial g in 2[JC] of an
element u of Mat(/i, Q) has in general coefficients that are not integers. However,
there is a unique rational multiple h of g that is a primitive polynomial in Z[x] with
positive head coefficient. Let us call h the primitive minimal polynomial of u.

PROPOSITION 16. Let h be the primitive minimal polynomial of an element u of
Mat(n, Q) and let M be the ideal of1[x] generated by h. Then the ring generated by
u is isomorphic to Z[x]/M.

PROOF. Let 3£ be the ring generated by u and let N be the ideal of Q[X] generated
by h. Then 3Z is isomorphic to 1[X]/N n 1[X]. Let g be an element of 1[X]
divisible by h in Q[X]. Since h is primitive, Gauss' Lemma implies that h divides g

•
We can now determine the scalar matrices in the ring generated by u.

PROPOSITION 17. Let u be an element o/Mat(n, Q) with primitive minimal polyno-
mial h = arx

r + ar-ix
r~l -\ \-ao. If ffi is the ring generated by u, then the ring 5?

of scalar matrices contained in & is generated by \/q, where q = gcd(ar,..., a\).

PROOF. We have to determine for which primes p the ideal of Ip[x] generated by
the image h of h contains 1. Since h is primitive, h is not 0. Since lp is a field, 1 is
divisible in lp[x] by h if and only if h is a nonzero scalar, or equivalently, p divides
au... ,ar. •
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