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A STOCHASTIC DIFFERENTIAL
REINSURANCE GAME
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Abstract

We study a stochastic differential game between two insurance companies who employ
reinsurance to reduce the risk of exposure. Under the assumption that the companies have
large insurance portfolios compared to any individual claim size, their surplus processes
can be approximated by stochastic differential equations. We formulate competition
between the two companies as a game with a single payoff function which depends on
the surplus processes. One company chooses a dynamic reinsurance strategy in order
to maximize this expected payoff, while the other company simultaneously chooses a
dynamic reinsurance strategy so as to minimize the same quantity. We describe the Nash
equilibrium of this stochastic differential game and solve it explicitly for the case of
maximizing/minimizing the exit probability.
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1. Introduction

For an insurance company, its surplus process can be described by the following classical
Cramer–Lundberg model:

R(t) = x + pt − S(t), t ≥ 0,

where p is the premium rate, x is the initial reserve, S(t) = ∑N(t)
i=1 Zi is the total loss, N(t) is

the Poisson process of the incoming claims, and Zi is a sequence of independent and identically
distributed random variables representing the sizes of the successive claims. Let S(t) = 0 if
N(t) = 0. When the insurance portfolio is large and an individual claim is relatively small
compared to the size of the total reserve, a diffusion which approximates to the Cramer–
Lundberg model can be obtained using the following transformation (see [6, Chapter 11]).
Assume that N(t) has intensity m, and let

µ = p − m E[Z], σ 2 = m E[Z2].
In order to find the limit process, assume that Y := αZ has fixed mean and variance, where α

is a scale. Then

m = σ 2

E[Y 2]α
2, p = µ + σ 2 E[Y ]

E[Y 2]α.
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336 X. ZENG

As α → ∞, one can prove that R(t) converges in distribution to a normally distributed random
variable with mean µt and variance σ 2t . Therefore, R(t) satisfies the following diffusion
model:

dR(t) = µ dt + σ dW(t),

where W(t) is a standard Brownian motion.
In order to reduce the risk of exposure, the insurance company employs a reinsurance strategy.

A reinsurer is required to pay a certain fraction of each claim. As a return, the insurance company
diverts the same or a larger fraction of all premiums received by the reinsurer. Let π ∈ [0, 1]
be the fraction of each claim paid by the insurance company. Then 1 − π is the fraction of the
claim paid by the reinsurer. Assume that λ(1−π) is the rate at which the premiums are diverted
to the reinsurer. Then we must have λ ≥ µ. Otherwise the insurance company will make a full
reinsurance in order to receive a positive return without any risk. This cannot happen in the
real world.

When λ = µ, we say that the reinsurance is cheap, that is, the fraction of the premiums
diverted to the reinsurer is the same as the fraction of each claim covered by the reinsurer. When
λ > µ, we say that the reinsurance is noncheap.

The corresponding diffusion approximation for the insurance company with the reinsurance
strategy becomes

dR(t) = (µ − (1 − π(t))λ) dt + π(t)σ dW(t).

Suppose that another insurance company also chooses a reinsurance strategy to reduce its
risk of exposure. In this paper we consider a stochastic differential game played between
the two insurance companies. The game considered here is zero-sum and there is a single
payoff function. One company tries to maximize this expected payoff while another company
simultaneously tries to minimize the same quantity. The two companies compete by making
independent decisions on reinsurance strategies. Their decisions are assumed to be completely
observed by both companies.

There are many papers on stochastic differential games in the literature. We follow the
line of [2], [3], and [4]. In [2], Browne considered a risky market where the asset prices
follow geometric Brownian motions. He studied stochastic differential portfolio games for two
investors who have a single payoff function depending on both investors’ wealth processes.
Earlier, Elliott [3] disclosed that values of stochastic differential games exist if the Isaacs
condition holds. For the study of stochastic differential games in insurance and reinsurance, we
refer the reader to Suijs et al. [8], who showed that problems in ‘non-life’ insurance and ‘non-
life’ reinsurance can be modeled as cooperative games. A nondiffusion model was considered
there. This paper, to the author’s knowledge, is the first to study stochastic differential games in
a diffusion reinsurance model. For this model and relevant optimal strategy selection problems,
we refer interested readers to [9], [10], and [12].

The rest of this paper is organized as follows. In Section 2 we introduce a reinsurance
model on which a stochastic differential game is defined. In Section 3 we present the Fleming–
Bellman–Isaacs equations for the game with a general payoff function. A verification theorem
is also provided in this section. In Section 4 we study a game of maximizing/minimizing the
probability for which an explicit solution is obtained. In Section 5, a numerical example is
given for the game studied in Section 4. A summary and conclusions are given in Section 6.
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2. A reinsurance model with competition

Let (�, F , Ft , P) be a probability space with filtration Ft and two standard Brownian
motions W1(t) and W2(t), adapted to Ft . The surplus processes of two insurance companies
associated with the controls πi := {πi(t)}t≥0, i = 1, 2, are given by

dR
πi

i (t) = (µi − (1 − πi(t))λi) dt + πi(t)σi dWi(t), i = 1, 2,

X
πi

i (0) = xi > 0, where λi ≥ µi > 0, σi > 0, i = 1, 2, are constants and E[W1(t)W2(t)] =
ρt . We call {πi(t)}t≥0, i = 1, 2, an admissible strategy if πi(t) ∈ [0, 1] is Ft -adapted. Denote
the set of all admissible strategies by H .

In addition, suppose that the insurance companies invest freely in a risk-free asset whose
dynamics is governed by the equation

dB(t) = rB(t) dt,

where r is the risk-free interest rate. Then the total surplus of insurance company i is the sum of
the wealth invested in the risk-free asset and the surplus from the insurance business. Therefore,
the total surplus obeys

dX
πi

i (t) = X
πi

i (t)r dt + (µi − (1 − πi(t))λi) dt + πi(t)σi dWi(t).

Without loss of generality, we assume that x1 > x2, i.e. one company has more initial surplus
than the other company. Henceforth, we call the company with the larger initial wealth player 1,
and the other company player 2. The goal of player 1 is to keep its surplus advantage. Therefore,
the objective of player 1 is to maximize a payoff function of the difference X

π1
1 − X

π2
2 up to

some date τ , for example, the date it goes bankrupt (i.e. Xπ1
1 (τ ) = 0). Simultaneously, player 2

tries to minimize the same payoff.
Let Xπ1,π2(t) := X

π1
1 (t) − X

π2
2 (t). Then Xπ1,π2(t) obeys the following stochastic differen-

tial equation:

dXπ1,π2(t) = (D + π1(t)λ1 − π2(t)λ2 + rXπ1,π2(t)) dt + σ1π1(t) dW1(t) − σ2π2(t) dW2(t),

where D = λ2 − µ2 − (λ1 − µ1) and Xπ1,π2(0) = x := x1 − x2 > 0.
Denote by

τπ1,π2
y := inf{t > 0 : Xπ1,π2(t) = y}

the first hitting time to the point y under strategies π1 := {π1(t)}t≥0 and π2 := {π2(t)}t≥0. Let
τπ1,π2 := min{τπ1,π2

l , τ
π1,π2
u } denote the first exit time from the interval (l, u), where u and l

are real numbers with u > l.
For a given nonnegative function η(z) ≥ 0, a bounded continuous function c(z), and a

function g(z), we define the expected payoff function as

Jπ1,π2(x) = Ex

[∫ τπ1,π2

0
c(Xπ1,π2(t)) exp

(
−

∫ t

0
η(Xπ1,π2(s)) ds

)
dt

+ g(Xπ1,π2(τπ1,π2)) exp

(
−

∫ τπ1,π2

0
η(Xπ1,π2(s)) ds

)]
.

As usual, we use the convention that Ex[·] := E[· | Xπ1,π2(0) = x]. Then the stochastic
differential game consists of player 1 trying to maximize the above payoff function and player 2
trying to minimize it. Let

J (x) = sup
π1∈H

inf
π2∈H

Jπ1,π2(x) and J (x) = inf
π2∈H

sup
π1∈H

Jπ1,π2(x)
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denote the lower and upper values of the game, respectively. If J (x) = J (x), the value of the
game is given by G(x) := J (x) = J (x).

3. Nash equilibrium and Fleming–Bellman–Isaacs equations

For any admissible π2 chosen by player 2, let G(x; π2) be the optimal payoff function of
player 1, i.e.

G(x; π2) = sup
π1∈H

Jπ1,π2(x).

Assume that G(x; π2) ∈ C2((l, u)) ∩ C1([l, u]). Then, with other essential assumptions,
G(x; π2) satisfies the following Hamilton–Jacobi–Bellman (HJB) equation (see [5] or [7]):

sup
π1∈[0,1]

Lπ1,π2G(x; π2) + c(x) − η(x)G(x; π2) = 0, x ∈ (l, u), (1)

where Lπ1,π2 is the differential operator, i.e. for any f (x) ∈ C2((l, u)),

Lπ1,π2f (x) := (D + π1λ1 − π2λ2 + rx)fx +
(

σ 2
1

2
π2

1 + σ 2
2

2
π2

2 − σ1σ2ρπ1π2

)
fxx.

Similarly, let G(x; π1) be the optimal payoff function of player 2 with respect to any
admissible strategy π1 chosen by player 1, i.e.

G(x; π1) = inf
π2∈H

Jπ1,π2(x).

Then G(x; π1) satisfies another HJB equation:

inf
π2∈[0,1] L

π1,π2G(x; π1) + c(x) − η(x)G(x; π1) = 0, x ∈ (l, u). (2)

A pair of strategies (π∗
1 , π∗

2 ) is said to achieve a Nash equilibrium or, equivalently, a saddle
point for the game if the following inequalities are satisfied. For all π1, π2 ∈ H ,

Jπ1,π
∗
2 (x) ≤ Jπ∗

1 ,π∗
2 (x) ≤ Jπ∗

1 ,π2(x), x ∈ [l, u]. (3)

If the game has a saddle point, (π∗
1 , π∗

2 ), then it is easy to check that

G(x; π∗
2 ) = G(x; π∗

1 ),

and the value of the game G(x) = Jπ∗
1 ,π∗

2 (x) = G(x; π∗
2 ) = G(x; π∗

1 ). According to (1)
and (2), G(x) satisfies the following (Fleming–Bellman–Isaacs) equations:

sup
π1∈[0,1]

Lπ1,π
∗
2 G(x) + c(x) − η(x)G(x) = 0, (4)

inf
π2∈[0,1] L

π∗
1 ,π2G(x) + c(x) − η(x)G(x) = 0, (5)

with the boundary conditions G(l) = g(l) and G(u) = g(u).
The above discussions leading to (4) and (5) are heuristic. We prove the following verification

theorem (similar to Theorem 5.1.1 of [11] or Theorem B-1 of [1]) which guarantees that a
suitable solution to (4) and (5) is identical to the value function of the game.
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Theorem 1. If there exist V (x) ∈ C2((l, u))∩C([l, u]) and a pair of real numbers π∗
1 = π∗

1 (x),
π∗

2 = π∗
2 (x) satisfying

π∗
1 = arg sup

π1∈[0,1]
Lπ1,π

∗
2 V (x) + c(x) − η(x)V (x),

π∗
2 = arg inf

π2∈[0,1] L
π∗

1 ,π2V (x) + c(x) − η(x)V (x),
(6)

such that, for x ∈ (l, u), V (x), π∗
1 , and π∗

2 satisfy (4) and (5) with the moment property
∫ t

0
E[V 2

x (Xπ1,π2(s))] ds < ∞ for all π1, π2 ∈ H , (7)

then V (x) is the value of the game achieved at the Nash equilibrium strategy (π∗
1 , π∗

2 ).

Proof. We use the same idea as that given in [2]. Suppose that V (x) satisfies (4), (5), and (7).
Write 	(t; π1, π2) = exp(− ∫ t

0 η(Xπ1,π2(s)) ds) for notational convenience. Let

M(t; π1, π2) = 	(t; π1, π2)V (Xπ1,π2(t)) +
∫ t

0
	(s; π1, π2)c(X

π1,π2(s)) ds.

It is straightforward to check that

M(0; π1, π2) = V (Xπ1,π2(0)) = V (x), Ex[M(τπ1,π2; π1, π2)] = Jπ1,π2(x).

Itô’s formula gives

M(τπ1,π2; π1, π2)

= M(0; π1, π2) +
∫ τπ1,π2

0
	(s; π1, π2)[Lπ1,π2V (Xπ1,π2(s)) + c − ηV (Xπ1,π2(s))] ds

+
∫ τπ1,π2

0
	(s; π1, π2)[Vx(X

π1,π2(s))π1σ1 dW1(s) − Vx(X
π1,π2(s))π2σ2 dW2(s)].

Then

M(τπ1,π
∗
2 ; π1, π

∗
2 )

= M(0; π1, π
∗
2 ) +

∫ τ
π1,π∗

2

0
	(t; π1, π

∗
2 )[Lπ1,π

∗
2 V (X(t)) + c − ηV (X(t))] dt

+
∫ τ

π1,π∗
2

0
Vx(X

π1,π
∗
2 (t))π1σ1 dW1(t) − Vx(X

π1,π
∗
2 (t))π∗

2 σ2 dW2(t)

≤ M(0; π1, π
∗
2 )

+
∫ τ

π1,π∗
2

0
	(t; π1, π

∗
2 )

[
sup

π1∈H
Lπ1,π

∗
2 V (Xπ1,π

∗
2 (t)) + c − ηV (Xπ1,π

∗
2 (t))

]
dt

+
∫ τ

π1,π∗
2

0
	(t; π1, π

∗
2 )[Vx(X

π1,π
∗
2 (t))π1σ1 dW1(t) − Vx(X

π1,π
∗
2 (t))π∗

2 σ2 dW2(t)]
= M(0; π1, π

∗
2 )

+
∫ τ

π1,π∗
2

0
	(t; π1, π

∗
2 )[Vx(X

π1,π
∗
2 (t))π1σ1 dW1(t) − Vx(X

π1,π
∗
2 (t))π∗

2 σ2 dW2(t)].
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Since both π1, π
∗
2 ∈ [0, 1] are bounded and V (x) satisfies condition (7), the stochastic

integral term in the above inequality is a martingale. Taking the expectation of both sides of
the above inequality gives

E[M(τπ1,π
∗
2 ; π1, π

∗
2 )] ≤ M(0; π1, π

∗
2 ),

and it is easy to see that the equality holds for π1 = π∗
1 , i.e.

E[M(τπ∗
1 ,π∗

2 ; π∗
1 , π∗

2 )] = M(0; π∗
1 , π∗

2 ) = V (x).

Moreover,

Jπ1,π
∗
2 = E[M(τπ1,π

∗
2 ; π1, π

∗
2 )]

≤ M(0; π1, π
∗
2 )

= V (x)

= M(0, π∗
1 , π∗

2 )

= E[M(τπ∗
1 ,π∗

2 ; π∗
1 , π∗

2 )]
= Jπ∗

1 ,π∗
2 .

Similarly, we can prove that
Jπ∗

1 ,π∗
2 ≤ Jπ∗

1 ,π2 .

Hence, (π∗
1 , π∗

2 ) is a saddle point strategy for the game by definition (3) and V (x) is identical
to the value of the game Jπ∗

1 ,π∗
2 (x). This completes the proof.

The above theorem guarantees that the solution to (4) and (5) is the value function of the
game with the general payoff function. Obviously, the moment condition (7) can be relaxed or
replaced by other conditions like that in [2]. Since the basic idea to prove such a verification
theorem is similar, we will not consider relaxed conditions in this paper. The following section
is an application of Theorem 1 to the stochastic differential game with a particular payoff.

4. A game of maximizing/minimizing the probability

In this section we solve the game for a particular payoff. Suppose that player 1 wants to
maximize the probability that the difference between two players’ surplus reaches the upper
barrier before it reaches the lower barrier, while player 2 wants to minimize the same probability.
Hence, the game has the payoff function

Jπ1,π2(x) = Pr(τπ1,π2
l > τπ1,π2

u | Xπ1,π2(0) = x) = Ex[1{Xπ1,π2 (τπ1,π2 )=u}].
Letting c(x) = η(x) = 0 and g(x) = 1{x=u} in the Fleming–Bellman–Isaacs equations, (4)

and (5) give

sup
π1∈[0,1]

(D + π1λ1 − π∗
2 λ2 + rx)Vx(x) +

(
σ 2

1

2
π2

1 + σ 2
2

2
(π∗

2 )2 − σ1σ2ρπ1π
∗
2

)
Vxx(x) = 0,

(8)

inf
π2∈[0,1](D + π∗

1 λ1 − π2λ2 + rx)Vx(x) +
(

σ 2
1

2
(π∗

1 )2 + σ 2
2

2
π2

2 − σ1σ2ρπ∗
1 π2

)
Vxx(x) = 0,

(9)
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with the boundary conditions

V (l) = 0, V (u) = 1. (10)

If a twice differentiable function V (x) and a pair of numbers (π∗
1 , π∗

2 ) satisfy (8), (9), (10),
and (6), (7), then by the verification theorem, Theorem 1, we find the value function of the
game and the corresponding saddle point strategy.

To obtain a candidate solution to (8) and (9), we consider the following two cases. Since
the value function of the game is nondecreasing, we are only interested in functions with the
property that Vx(x) ≥ 0 in both cases.

4.1. Case 1: Vxx < 0

Given Vxx < 0, the infimum in (9) is reached at π2 = 0 or π2 = 1. Let

π̂2(V , π∗
1 ) = λ2Vx

σ 2
2 Vxx

+ π∗
1 σ1ρ

σ2
. (11)

Then, for π̂2(V , π∗
1 ) > 1

2 , the minimizer of the left-hand side of (9) is π∗
2 = 0. Substituting

this into (8) gives
(D + π∗

1 λ1 + rx)Vx + 1
2σ 2

1 (π∗
1 )2Vxx = 0, (12)

where π∗
1 = arg supπ1∈[0,1](D + π1λ1 + rx)Vx + 1

2σ 2
1 π2

1 Vxx .

Lemma 1. The solution to (12) is

V (x) =

⎧⎪⎨
⎪⎩

V1 := c1(−D − rx)λ
2
1/2rσ 2

1 +1 + c2, x ∈ 
n,0,1,

V2 := c3

∫ x

a

exp

(
− 1

rσ 2
1

(D + λ1 + ry)2
)

dy + c4, x ∈ 
n,0,2,
(13)

where a is a (any) fixed number in 
n,0,2, and


n,0,1 =
{
x ∈ [l, u] : − λ1

2
≤ D + rx < 0,

(
λ2

σ 2
2

− λ1ρ

σ1σ2

)
2σ 2

1

λ2
1

(D + rx) >
1

2

}
,


n,0,2 =
{
x ∈ [l, u] : max

(
−λ1,

(
1

2
− σ1ρ

σ2

)
λ2

1σ
2
2

2λ2σ
2
1

)
< D + rx < −λ1

2

}
.

The corresponding saddle point strategy, (π∗
1 , π∗

2 ), is given by

(π∗
1 , π∗

2 ) =
⎧⎨
⎩

(
− 2

λ1
(D + rx), 0

)
, x ∈ 
n,0,1,

(1, 0), x ∈ 
n,0,2,

where the constants c1, c2, c3, and c4 are determined using the boundary conditions and the
smooth conditions.

Proof. Let

π̂1 = − λ1Vx

σ 2
1 Vxx

.
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Suppose that π̂1 ∈ [0, 1]. Then the maximizer π∗
1 = π̂1. Substituting π̂1 into (12), it follows

that

(D + rx)Vx − λ2
1V

2
x

2σ 2
1 Vxx

= 0. (14)

Solving (14) gives the solution V1 in (13). Since we assume that Vxx < 0, we conclude that
Vx > 0. (If Vx(x) = 0 then π∗

1 (x) = 0 by (19), and, by (18), π̂2(x) = 0, which contradicts
the assumption that π̂2 > 1

2 given after (18).) Hence, it follows from (14) that D + rx < 0.
Then substituting V1 into π̂1 and letting π̂1 ≤ 1 yields D + rx ≥ −λ1/2. On the other hand,
π̂2(V1, π̂1) > 1

2 yields the second inequality in the definition of 
n,0,1. Hence, V1 is a valid
solution when x ∈ 
n,0,1.

If π̂1 > 1 then the maximizer of the left-hand side of (12) is 1. As a result, we have the
following equation:

(D + λ1 + rx)Vx + 1
2σ 2

1 Vxx = 0.

Solving this equation gives the solution V2. Again, we conclude that V2 is a valid solution when
0 < D + λ1 + rx (since Vx > 0 and Vxx < 0) and D + λ1 + rx < λ1/2 (by letting π̂1 > 1).
Furthermore, π̂2(V2, 1) > 1

2 implies that

D + rx >

(
1

2
− σ1ρ

σ2

)
λ2

1σ
2
2

2λ2σ
2
1

.

Hence, V2(x) is a valid solution if x ∈ 
n,0,2. This completes the proof.

For the case in which π̂2(V , π∗
1 ) ≤ 1

2 , the minimizer of the left-hand side of (9) is π∗
2 = 1.

As a result of substituting π∗
2 = 1 into (8), V (x) satisfies

(D + π∗
1 λ1 − λ2 + rx)Vx + ( 1

2σ 2
1 π∗

1 + 1
2σ 2

2 − π∗
1 σ1σ2ρ

)
Vxx = 0, (15)

where

π∗
1 = arg sup

π1∈[0,1]
(D + π1λ1 − λ2 + rx)Vx + ( 1

2σ 2
1 π2

1 + 1
2σ 2

2 − π1σ1σ2ρ
)
Vxx.

Let π̂1 = −λ1Vx/σ
2
1 Vxx + σ2ρ/σ1, and suppose that π̂1 ∈ [0, 1]. Then

π∗
1 = π̂1 = − λ1Vx

σ 2
1 Vxx

+ σ2

σ1
ρ. (16)

Substituting this into (15) yields
(

D − λ2 + rx + σ2

σ1
λ1ρ

)
Vx + 1

2
σ 2

2 (1 − ρ2)Vxx − 1

2

λ2
1V

2
x

σ 2
1 Vxx

= 0,

or
1

2
σ 2

2 (1 − ρ2)

(
Vxx

Vx

)2

+
(

D − λ2 + rx + σ2

σ2
λ1ρ

)
Vxx

Vx

− 1

2

λ2
1

σ 2
1

= 0. (17)

It turns out that the solution to (17) is

V4(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c7

∫ x

d

exp

(∫ z

d

A(s) ds

)
dz + c8, ρ = ±1,

c7

(
D − λ2 + rx + σ2

σ1
λ1ρ

)λ2
1/2rσ 2

1 +1

+ c8, ρ �= ±1,

(18)
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where

A(x) = − (D − λ2 + rx + σ2λ1ρ/σ1)

σ 2
2 (1 − ρ2)

−
√

(D − λ2 + rx + σ2λ1ρ/σ1)2 + σ 2
2 (1 − ρ2)λ2

1/σ
2
1

σ 2
2 (1 − ρ2)

,

and d ∈ [l, u] is a fixed point, which will be specified later. The above solution is obtained
under the assumption that π̂1 ∈ [0, 1]. In the case ρ �= ±1, substituting V4(x) into 0 ≤ π̂1 ≤ 1
yields

σ1σ2ρ

λ1
≥ 1

A(x)
≥

(
σ2

σ1
ρ − 1

)
σ 2

1

λ1
.

Moreover, π̂2(V3, π
∗
1 ) ≤ 1

2 yields
(

λ2
2

σ 2
2

− λ1ρ

σ1σ2

)
1

A(x)
≤ 1

2
− ρ2.

Therefore, V4(x) is a valid solution if x ∈ 
n,1,1 and ρ �= ±1, where


n,1,1 =
{
x ∈ [l, u] : σ1σ2ρ

λ1
≥ 1

A(x)
≥

(
σ2

σ1
ρ − 1

)
σ 2

1

λ1
,

(
λ2

2

σ 2
2

− λ1ρ

σ1σ2

)
1

A(x)
<

1

2
− ρ2

}
.

Similarly, for the case in which ρ = ±1, we can show that V4(x) is a valid solution for
x ∈ 
′

n,1,1, where


′
n,1,1 =

{
x ∈ [l, u] : λ1σ2

σ1
min

(
−ρ, −ρ

2

)
≥ D − λ2 + rx ≥ −λ1

2

(
1 + σ2ρ

σ1

)
,

(
λ2

σ 2
2

− λ1ρ

σ1σ2

)
2σ 2

1

λ2
1

(D − λ2 + rx) + 2σ1λ2ρ

λ1σ2
<

3

2

}
.

Then the constant d in (18) is a fixed point in 
n,1,1 (if ρ �= ±1) or 
′
n,1,1 (if ρ = ±1). Finally,

substituting V = V4 into (16) yields π∗
1 = −λ1/σ

2
1 A(x) + σ2ρ/σ1.

Repeating this procedure, assuming that π̂1 > 1 or π̂1 < 0 and substituting π∗
1 = 1 or

π∗
1 = 0 into (15), respectively, we find solutions for other cases and the corresponding regions

where the solutions are valid:

V3(x) := c5

∫ x

e1

exp

(
− 1

rσ 2
2

(D − λ2 + ry)2
)

dy + c6, x ∈ 
n,1,0,

V5(x) := c9

∫ x

e2

exp

(−(D + λ1 − λ2 + ry)2

r(σ 2
1 + σ 2

2 − 2σ1σ2ρ)

)
dx + c10, x ∈ 
n,1,2,

where


n,1,0 =
{
x : λ1σ2

2σ1

1

D − λ2 + rx
+ ρ < 0, D − λ2 + rx > 0

}
,


n,1,2 =
{
x : λ1

2σ 2
1

σ 2
1 + σ 2

2 − 2σ1σ2ρ

D + λ1 − λ2 + rx
+ σ2

σ1
ρ > 1, D + λ1 − λ2 + rx > 0,

− λ2

2σ2

σ 2
1 + σ 2

2 − 2σ1σ2ρ

D + λ1 − λ2 + rx
<

1

2
− σ1ρ

σ2

}
,
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and the constants e1 ∈ 
n,1,0 and e2 ∈ 
n,1,2 are fixed points. The above results are
summarized in the following lemma.

Lemma 2. The solution to (15) is given by

V (x) =

⎧⎪⎨
⎪⎩

V3(x), x ∈ 
n,1,0,

V4(x), x ∈ 
n,1,1 if ρ �= ±1, or x ∈ 
′
n,1,1 if ρ = ±1,

V5(x), x ∈ 
n,1,2,

(19)

and the corresponding saddle point strategy is given by

(π∗
1 (x), π∗

2 (x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(0, 1), x ∈ 
n,1,0,(
− λ1

σ 2
1 A(x)

+ σ2

σ1
ρ, 1

)
, x ∈ 
n,1,1, ρ �= ±1,

(
− 2

λ1
(D − λ1 + rx) − σ2

σ1
ρ, 1

)
, x ∈ 
′

n,1,1, ρ = ±1,

(1, 1), x ∈ 
n,1,2.

(20)

4.2. Case 2: Vxx > 0

Under the condition that Vxx > 0, the supremum of the left-hand side of (8) is reached at
π1 = 0 or π1 = 1. Let

π̂1(V , π∗
2 ) = − λ1Vx

σ 2
1 Vxx

+ σ2

σ1
ρπ∗

2 (x).

If π̂1(V , π∗
2 ) > 1

2 then the maximizer of the left-hand side of (8) is π∗
1 = 0, and we obtain

the following equation by substituting π∗
1 = 0 into (9):

(D − π∗
2 λ2 + rx)Vx + 1

2σ 2
2 (π∗

2 )2Vxx = 0. (21)

Similarly to (12), (21) has the solution presented in the following lemma.

Lemma 3. The solution to (21) is given by

V (x) =

⎧⎪⎨
⎪⎩

V6 := c11(D + rx)λ
2
2/2rσ 2

2 +1 + c12, x ∈ 
p,0,1,

V7 := c13

∫ x

f

exp

(
− 1

rσ 2
2

(D − λ2 + ry)2 dy

)
+ c14, x ∈ 
p,0,2,

and the corresponding saddle strategy, (π∗
1 , π∗

2 ), is given by

(π∗
1 (x), π∗

2 (x)) =
⎧⎨
⎩

(
0,

2

λ2
(D + rx)

)
, x ∈ 
p,0,1,

(0, 1), x ∈ 
p,0,2,

where


p,0,1 =
{
x ∈ [l, u] : 0 < D + rx ≤ λ2

2
,

(
− λ1

σ 2
1

+ λ2ρ

σ1σ2

)
2σ 2

2

λ2
2

(D + rx) >
1

2

}
,


p,0,2 =
{
x ∈ [l, u] : λ2

2
< D + rx < λ2, − λ1

σ 2
1

2σ 2
2

λ2
2

(D + rx) >
1

2
− σ2

σ1
ρ

}
,

and f ∈ 
p,0,2 is a fixed point.

https://doi.org/10.1239/jap/1276784895 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784895


Reinsurance game 345

If π̂1(V , π∗
2 ) ≤ 1

2 then the maximizer of the left-hand side of (8) is π∗
1 = 1. As a result of

substituting π∗
1 = 1 into (9), we have

(D + λ1 − π∗
2 λ2 + rx)Vx + ( 1

2σ 2
1 + 1

2σ 2
2 (π∗

2 )2 − σ1σ2ρπ∗
2

)
Vxx = 0. (22)

Similarly to (15), (22) has the solution presented in the following lemma.

Lemma 4. The solution to (22) is given by

V (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V8 := c15

∫ x

m1

exp

(
− 1

rσ 2
1

(D + λ1 + ry)2
)

dy + c16, x ∈ 
p,1,0,

V9 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c17

∫ x

m2

exp

(∫ z

m2

B(s) ds

)
dz + c18, x ∈ 
p,1,1, ρ �= ±1,

c17

(
D + λ1 + rx − σ1

σ2
λ2ρ

)λ1
1/2rσ 2

2 +1

+ c18, x ∈ 
′
p,1,1, ρ = ±1,

V10 := c19

∫ x

m3

exp

(
− (D + λ1 − λ2 + ry)2

r(σ 2
1 + σ 2

2 − 2σ1σ2ρ)

)
dy + c20, x ∈ 
p,1,2,

and the corresponding saddle strategy, (π∗
1 , π∗), is given by

(π∗
1 (x), π∗

2 (x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0), x ∈ 
p,1,0,(
1,

λ2

σ 2
2

1

B(x)
+ σ1

σ2
ρ

)
, x ∈ 
p,1,1, ρ �= ±1,

(
1,

2

λ2
(D + λ1 + rx) − σ1

σ2
ρ

)
, x ∈ 
′

p,1,1, ρ = ±1,

(1, 1), x ∈ 
p,1,2.

Here

B(s) = − (D + λ1 + rx − σ1λ2ρ/σ2)

σ 2
1 (1 − ρ2)

+
√

(D + λ1 + rx − σ1λ2ρ/σ2)2 + σ 2
1 (1 − ρ2)λ2

2/σ
2
2

σ 2
1 (1 − ρ2)

,


p,1,0 =
{
x ∈ [l, u] : − λ2σ1

2σ2

1

D + λ1 + rx
+ ρ < 0, D + λ1 + rx < 0

}
,


p,1,1 =
{
x ∈ [l, u] : − σ1σ2ρ

λ2
≤ B(x) ≤

(
1 − σ1ρ

σ2

)
σ 2

2

λ2
,

(
− λ1

σ 2
2

+ λ2ρ

σ1σ2

)
1

B(x)
<

1

2
− ρ2

}
,


′
p,1,1 =

{
x ∈ [l, u] : λ2σ1

σ2
max

(
ρ,

ρ

2

)
≤ D + λ1 + rx ≤ λ2

2

(
1 + σ1ρ

σ2

)
,

(
− λ1

σ 2
1

+ λ2ρ

σ1σ2

)
2σ 2

2

λ2
2

(D + λ1 + rx) + 2σ1λ1

λ2
>

3

2

}
,
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p,1,2 =
{
x ∈ [l, u] : − λ2

σ 2
2

0.5σ 2
1 + 0.5σ 2

2 − σ1σ2ρ

D + λ1 − λ2 + rx
+ σ1

σ2
ρ > 1,

D + λ1 − λ2 + rx < 0,
λ1

2σ 2
1

σ 2
1 + σ 2

2 − 2σ1σ2ρ

D + λ1 − λ2 + rx
<

1

2
− σ2

σ1
ρ

}
,

and m1, m2, and m3 are fixed constants that belong to the corresponding sets.

With some tedious calculations we can show that 
n,0,1, 
n,0,2, 
n,1,0, 
n,1,1 (or 
′
n,1,1 if

ρ = ±1), 
n,1,2 and 
p,0,1, 
p,0,2, 
p,1,0, 
p,1,1 (or 
′
p,1,1 if ρ = ±1), 
p,1,2 are mutually

exclusive and their union is [l, u]. Depending on the model parameters (µi, λi , σi, i = 1, 2)
and the correlation coefficient ρ between the two surplus processes, some sets may be empty.

It is straightforward to verify that the above lemmas provide a solution to the Fleming–
Bellman–Isaacs equations (8) and (9) for all x ∈ [l, u]. The function Vx(x) is smooth on all
sets, so it is bounded on [l, u]. Therefore, condition (7) is satisfied and V (x) obtained above
is the value of the game achieved at the saddle point (π∗

1 , π∗
2 ) by Theorem 1. In the following

section we deal with the particular case ρ ≤ 0 and show the structure of the solution clearly.

5. A numerical example: the ρ ≤ 0 case

Provided that the condition ρ < 0 holds, some sets defined previously are simplified or
degenerated:


n,0,1 = ∅,


n,0,2 = ∅,


n,1,0 = {x2 < x},


n,1,1 =
{

σ1σ2ρ

λ1
≥ 1

A(x)
≥

(
σ2ρ

σ1
− 1

)
σ 2

1

λ1

}
= {x1 ≤ x ≤ x2},


n,1,2 =
{

0 < D + λ1 − λ2 + rx <
λ1(σ

2
1 + σ 2

2 − 2σ1σ2ρ)

2σ 2
1 (1 − σ2ρ/σ1)

}
= {x0 < x < x1},

where

x0 = 1

r
(µ2 − µ1),

x1 = 1

r

(
µ2 − µ1 + λ1

2σ 2
1 (1 − σ2ρ/σ1

(σ 2
1 + σ 2

2 − 2σ1σ2ρ)

)
,

x2 = 1

r

(
λ2 − D − λ1σ2

2σ1ρ

)
.

Similarly, we obtain


p,0,1 = ∅,


p,0,2 = ∅,


p,1,0 = {x < x′
2},


p,1,1 = {x′
2 ≤ x ≤ x′

1},

p,1,2 = {x′

1 < x < x0},
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where

x′
1 = 1

r

(
µ2 − µ1 − λ2

2σ 2
2 (1 − σ1ρ/σ2)

(σ 2
1 + σ 2

2 − 2σ1σ2ρ)

)
,

x′
2 = 1

r

(
−λ1 − D + λ2σ1

2σ2ρ

)
.

Note that V5(x) on 
n,1,2 and V10(x) on 
p,1,2 have the same form, disregarding the constants,
and 
n,1,2 ∪
p,1,2 = {x′

1 < x < x0} ∪ {x0 < x < x1}. Since the value function is continuous
and smooth, we conclude that the function has the same form at x0 (actually, x0 is an inflection
point) and we may keep only one of V5 and V10 on {x′

1 < x < x1} (this simplification is
actually generally correct for all ρ ∈ [−1, 1]). Then applying Lemmas 2–5, the solution to the
Fleming–Bellman–Isaacs equations (8) and (9) is given by

V (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V3 = c5

∫ x

x2

exp

(
− 1

rσ 2
2

(D − λ2 + ry)2
)

dy + c6, x > x2,

V4 = c7

∫ x

x1

exp

(∫ z

x1

A(s) ds

)
dz + c8, x1 ≤ x ≤ x2,

V5 = c9

∫ x

x0

exp

(−(D + λ1 − λ2 + ry)2

r(σ 2
1 + σ 2

2 − 2σ1σ2ρ)

)
dy + c10, x′

1 < x < x1,

V9 = c17

∫ x

x′
2

exp

(∫ z

x′
2

B(s) ds

)
dz + c18, x′

2 ≤ x ≤ x′
1,

V8 = c15

∫ x

x′
2

exp

(
− 1

rσ 2
1

(D + λ1 + ry)2
)

dy + c16, x < x′
2,

(23)

and the corresponding saddle point strategy is given by

(π∗
1 , π∗

2 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 1), x > x2,(
− λ1

σ 2
1 A(x)

+ σ2

σ1
ρ, 1

)
, x1 ≤ x ≤ x2,

(1, 1), x′
1 < x < x1,(

1,
λ2

σ 2
2 B(x)

+ σ1

σ2
ρ

)
, x′

2 ≤ x ≤ x′
1,

(1, 0), x < x′
2,

where the constants c5, . . . , c10, c15, . . . , c18 are determined by the boundary conditions V (l) =
0 and V (u) = 1 and the smooth conditions

V3(x2) = V4(x2), V ′
3(x2) = V ′

4(x2), . . . , V9(x
′
2) = V10(x

′
2), V ′

9(x
′
2) = V ′

10(x
′
2).

In Figures 1 and 2 we present numerical examples of the value function and the saddle point
strategy, respectively. We select parameters artificially so that each function is significantly
visible on each interval. For example, we choose relatively large σ1 and σ2 in order to make
V3 and V8 significant, and we choose l and u in order to show as many intervals as possible.
Figure 1 shows that V8(x) and V9(x) are convex, V5(x) is convex when x < x0 and concave
when x > x0, and V4(x) and V3(x) are concave. All of these functions are connected smoothly.
Figure 2 shows that player 1 tends to take the highest risk exposure (π∗

1 = 1, i.e. no reinsurance)
when x, the difference between two surplus processes, is at a relatively low level. The player
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V3(x)

V8(x)
V9(x)

V5(x)

x1 x2x2
′ x1

′

Figure 1: The value function of the maximizing probability game. The parameters used are µ1 = 0.1,
µ2 = 0.13, λ1 = 0.15, λ2 = 0.14, σ1 = σ2 = 0.75, r = 0.04, ϕ = −0.9, l = −5.6944, u = 7.5833,

x′
2 = −4.6944, x′

1 = −2.75, x1 = 4.5, and x2 = 6.5833.

–6 –4 –2 0 2 4 6 8

0.0
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0.0

0.2

0.4

0.6

0.8

1.0

x1 x2

x1 x2

x2
′ x1

′

x ′
2 x ′

1

Figure 2: The saddle point strategies of player 1 (top) and player 2 (bottom).

will take the lowest risk exposure (π∗
1 = 0, i.e. full reinsurance) when x is at a relatively high

level. If x is between x1 and x2, the saddle point strategy of player 1 is no longer simple.
Although its curve looks like a straight line in the figure, the strategy is a complicated function
of x and equals −λ1/σ

2
1 A(x) + σ2ρ/σ1. For player 2, the strategy is an almost mirror image

of that for player 1.
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For the case in which ρ = 0, the solution is obtained by letting ρ → 0− in (23). Direct
calculations show that x2 = ∞ and x′

2 = −∞, and, hence, the solution is constructed by V4,
V5, and V9 only.

6. Conclusions and summary

In this paper we studied a zero-sum stochastic differential game between two insurance
companies who compete on their surplus processes when they make decisions on reinsurance.
One company tries to maximize a payoff function depending on the difference between their
surplus processes, while the other company tries to simultaneously minimize the same quantity.
We studied the problem for a general payoff function and provided a verification theorem for
the solution to the Fleming–Bellman–Isaacs equations. Furthermore, we studied the maximiz-
ing/minimizing probability game as an application of the theorem. We showed that, for such
a game, at least one player’s saddle point strategy takes extreme or trivial values, that is, the
reinsurance proportion is either 1 or 0, while it takes nontrivial values on the interval [x1, x2]
or [x′

2, x
′
1], during the whole competition.

Although we assumed that the insurance companies invest only in a risk-free asset, it is
straightforward to extend the result in this paper to the case where a risky asset is involved.
However, if two risky assets with different volatilities are added into the model, it will be difficult
to obtain explicit solutions in general. The verification theorem might still hold though. In
this paper we considered competition between two noncooperative insurance companies. As a
direct extension, a topic of further study could be cooperative games among insurers, between
an insurer and a reinsurer, or an individual person and an insurer.
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