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IRREDUCIBILITY OF SOME UNITARY REPRESENTATIONS
OF THE POINCARE GROUP WITH RESPECT
TO THE POINCARE SUBSEMIGROUP, III

HITOSHI KANETA

The aim of this paper is to prove that irreducible unitary represent-
ations (U**, ) of the Poincaré group P = R'X,SL(2, C) are reducible
as the representations of the Poincaré subsemigroup P, = V, X ,SL(2, C)
with V, = {x} — a2} — 2} > 0, x, > 0}. The representations mentioned above
are those associated with the one-sheeted hyperboloid V,,, = {y} — 31 — ¥
— ¥ = — M?} (M > 0) and the irreducible unitary representations =, of
SU(1, 1) not belonging to the discrete series (see the end of this intro-
duction for the definition of the discrete series). To attain our purpose
we shall determine all P,-invariant, closed proper subspaces for the re-
presentations (U*’*, $°°) (Theorems 1.1 and 4.1). Other irreducible unitary
representations of P are known to be irreducible even when they are
restricted to P.[6].

In [6], [7] and this paper we are concerned with the question whether
(Q) there exists a P,-invariant, closed proper subspace for an irreducible
unitary representation of P.

A physical aspect of this problem is as follows. From E. Wigner’s
view point of relativistic quantum mechanics an irreducible unitary re-
presentation (U, §) describes the dynamics of an elementary particle. In
particular the one-parameter unitary group U(¢, 0, 0, 0, e) (t € R) on 9 stands
for the dynamical transformation group. On the other hand some elemen-
tary particles (a neutral pion, for example) are known to decay spontane-
ously. If one tries to explain the phenomena from Wigner’s point of view,
one naturally expects that there exists a proper closed subspace 2 of
such that 2 is invariant under U(t,0,0,0,¢) (¢ > 0) and U(0,0,0,0, g)
(g € SL(2, C)), equivalently such that 2 is P,-invariant. We are very likely
to suspect the existence of an irreducible unitary repressntation of P with
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this property. In reality, however, there do exist such representations.

As in [7] the Hilbert transform and the Frobenius method for ordinary
differential equations with a regular singularity find their applications here
too. But the most effective measures are provided by the eigenfunction
expansion theorems in [4, 5]. This is because we must deal with sscond
and first order ordinary differential operators L, , and M,,, respectively,
acting on LAR)**! (see (1,13), (1, 14)). Of course these operators are con-
nected with the Laplacians 4 and 4’ of SL(2, C) respectively.

In §1, after the definition of the representation (U%*, $*°) we shall
show that, if the statement (Q) above is valid for this representation, there
exists a non-trivial sequence {D,}.c,,.. of closed subspaces in L*(R), ., or
L*(R) such that it satisfies certain conditions (Q.1) and (Q.2) in Lemma
1.4. Conversely, once such sequences are given (Proposition 1.5, Theorems
2.2 and 3.1), we can construct P,-invariant subspaces 2%* of *¢ (Theorems
1.1 and 4.1) ‘mainly due to Proposition 1.6. To determine all nontrivial
sequences {D,};c, .. satisfying the conditions (Q.1) and (Q.2) is, therefore,
the core of our argument. The simplest case, in which 7, is the unit
representation of SU(1, 1), namely (¢, &) = (0, 0), is discussed in § 1, while
the other cases are investigated in §§2 and 3. In the final section, §4,
we shall describe all the P,-invariant, closed proper subspaces of $*° for

(4,¢) # (0,0).

Notation and terminology.

Z is the set of integers and Z, = {ne Z; n > 0}.

R is the set of real numbers, R, = {1€ R; 1 > 0} and R* = R\{0}.

C is the set of complex numbers and C* = C\{0}. T ={zeC;|z| =1}
D.={ze C; |Im 2|<z/2, D,={z € C;|Im 2|<x/2} and D,=D,\{+ix/2}. Through-
out this paper ¢ =7 — inf2. V,y={yeR';y; —y' —y:—yi= — M} (M > 0)
and B; = R X (0, z) X (0, 27). R.f(c) = “(f-«(— o), - - -, fe(— 0)) for a function
f(o) = (filo), - - -, F-1(0)), ke Z,[2. A polynomial in log ¢ with holomorphic
coefficients will be denoted by %(e, log ¢), namely A(qg, loga) = 3, h,(0) X
(log ¢)", where h,(¢) are holomorphic in a vicinity of zero. G,=(a—ishr)™!
(Rea > 0). For the definition of the function P%(2), see [13, p. 120]. We
abbreviate the integral IR f(©dr to ‘f fdr or {f>. aoc bmeansa = cb for
some ce C*. ((a == b)) = (@ + b)(a — b), and signy = + 1 if +v > 0.
M., . is the set of all complex m X n-matrices, M, = M, ,, M} = {Ae M,;
A>0} and M}* ={AeM,; A>0}. I, stands for the unit matrix in M,.
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For A = (a,) in M, , denote by ‘A = (a,;) the transposed matrix of A and
set A = @,), A* = ‘A and |A| = max, >, |a|

C'(S)"(r=0,1, ---, o) for a C~-manifold S is the totality of C"-valued
Cr-functions on S. C;(S)" = f e C"(S)*; f is compactly supported}. C3(S)"
= C(S)". H.(R) (reZ,) is the Sobolev space of order r on R. H.(R)" =

@D H(R) and L*(R)" = H(R)". Let (B, 2Y) be a measurable space,
where B is a Borel subset of R™ and X is the set of all Borel sets in B.
LA(B, p) is the usual L*space defined in terms of the measure x4 on (B, X).
Let p be a M;*-valued Borel measurable function on B. L*B,p) =
L¥B, pdx) stands for the Hilbert space consisting of C"-valued Borel
measurable functions f on B such that f *(x) p(x) f(x) dx < oo, where dx
is the Lebesgue measure. a.e. means alnl;ost everywhere with respect to
the Lebesgue measure.

Let L be a linear operator L: H, — H,. Then Ker L is the kernel of
L. When both H, are Hilbert spaces, L* means the (formal) adjoint of L.
LH, denotes the range of L, namely {Lk; h € H, lies in the domain of L}.
Let H, be a subspace of H,, Then L|H, denotes the restriction of L to H,.
D+ ={heH;h is orthogonal to D} for a Hilbert space H and its subset
D. {,) and | || stand for the inner product and the norm on a Hilbert
space (C*, LB, p), etc.) respectively. However, {x,y> = x5, — X,y — %Y
— x,9; for x, ¥ in R* and {f) =I f(z)dz for an integrable function f on
R. Throughout this paper HilbertR spaces are understood to be separable.

G=SL(@, C), G,=SU(, 1):{(% &); el — | B = 1} and P=R'x,SLE, C)
with the multiplication (x, g)(x', 8') = (x + g*7'x" g7, g¢'), where any x =
Xy — Xy Xy — Ix,

. . . C N\ i %+ )
©,,, are irreducible unitary representations of G belonging to the

continuous series [12, § 11]. =, stand for irreducible unitary represent-
ations of G, (see the beginning of §1). One-parameter subgroups o,(?),
1<j<6, of G are given as follows.

o) = (.c.os 12 isin t/2> ’ oft) = (c.os {2 — sin t/2> ,
isin £/2  cost/2 sin /2 cos t/2

o) — (€XP it/2 0 __(chi/2 shi2
(0 = ( 0 exp ——it/2> ’ olt) = (sh t/2 ch t/2> ’

. cht/2 isht/2 __[expt/2 0
t) = (—i sht/2 «ch t/2) o= ( 0 exp —t/2> ’

(z,0,¢) in B, = R X (0,7) X (0,2x) is a local coordinate of a open dense

(%0, X1, X, 3) in R* is identified with the matrix
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subset of V,,, ={yeR; 5 — i —yi —yi= — M*} (M >0) in the sense
that the map (z, 8, ¢) — (04(2)0(O)wy(P))*Jw(2)w,(B)wy(p) of B, into V,, is a
diffeomorphism, where ) = M —(1) (1) .

Let (T, ) be a continuous unitary representation of G. Then, we set

w; = dldt],. T(w, ) 1<j<6), H. =i, + o, H, = io,
F, =io,+ o, F,=i0, 4= — (H.H. +~ H_.H, + 2HY)/2,
A= (F.F. +F.F. +2F)2+ 4, — 1,

& = (H.F. + H.F, + F.H. + F.H, + 4H.F)/2.

A closed subspace D of a Hilbert space H is said to be invariant
under a self-adjoint operator L if P,L = LP,, where P, is the orthogonal
projection: H — D.

An irreducible unitary representation (r, 9,) of G, is said to belong
to the discrete series in our sense if the selfadjoint operator d/dt|,..iz(w,()
is unbounded, but bounded either from below or above.

§1. P.-invariant subspaces for the representation (U, ")

After defining irreducible unitary representations (U**, ) of P as-
sociated with the one-sheeted hyperboloid V,, and irreducible unitary
representations ., of G, we shall obtain all the P, -invariant, closed
prober subspaces in £™°. Here z,, stands for the unit representation
while =, ((4,¢) # (0, 0)) stands for the irreducible one T, , not belonging
to the discrete series [13, p. 305]. Thus 7(_y/44y,1 @ > 0), T 1/2449,0) (@ = 0)
and zqq (— 1 < ¢ < — 1/2) are irreducible representations belonging to the
continuous spinor series, the continuous non-spinor series and the supple-
mentary series respectively. P,-invariant subspaces in £ ((¢, ¢) # (0, 0))
will be discussed in §4, since it is necessary to determine nontrivial
sequences {D,}icz,.. which satisfy certain conditions (Q.1) and (Q.2) in
advance. See Lemma 1.4 for the definition of (Q.1) and (Q.2).

Let G act on R* by y-g = g*yg, where y = (¥, ¥1, ¥, ¥5) 18 identified

with the matrix (:3;, ‘2’ ; 2’;’1 gj Z ;;33’ '). Then the isotropy group at ¥ = M

X (_(1) 2) is G, = SU(1, 1), and a map p : G — V,, defined by p(g) = g*g

is a surjection. We fix once for all measurable sections s, (ue SU(2))
such that pos, is the identity and that

s, op({z, 8, ¢>) = <z, 8, ppu for (zr,0,4) € B, = R X (0, z) X (0, 27),
where {z, 8, ¢> = wyr)w(Dolp). Denote by &, and dydy.dy,/M?y, the
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representation space of = = n,, and a G-invariant measure on V,, re-
spectively. Following Mackey [10], we can define irreducible unitary
representations (U™*, §*) associated with V,,, and = as follows;

9" = L(Viy — 9., dyidy,dy,[M?|y,)) ,
[U=“(x, ©)F1(y) = e" " Pn(g)F(y-8),

where Fe ©" and (0, s,(3)(x, 8) = («/, 8)(0, s,(y-g)) with g, e G,. Of course
9" denotes a Hilbert space consisting of the square integrable $.-valued
functions on V,, with respect to the measure dy,dy,dy,/M*|y,. Since the
image {p({z, 8, ¢)); (z, 0, ¢) € B;} is dense and open in V,,, we can naturally
identify ©- with a Hilbert space £°°;

1y

(1.2) 9t = LB, — $., ch’r sin 0 dr df dg)

which is, by definition, a Hilbert space consisting of square integrable
9,-valued functions on B; relative to ch’zsinfdrdfdg. Under this iden-
tification (U™¢, ) gives a representation (U**, ") which we intended to
define. Trivially $° = L*B,, ch’c sin 6 dr df d¢) while C; (B; X T) is dense
in % provided (¢, ¢) #= (0, 0). In the latter case we have, for fe C;(B,; X T),

(U0, 8)f1(z, 0, $, ™)

o = (e + @ Ge + (<0, 9, 20 T

" Bei* —}—%:) ’

where (7,0, ¢)g = <% §><T/’ 0, ¢'>. It also follows from (1.1) that

(1.4) U*«(t,0,0,0, e) = exp {iMt sh <} .

Now regarding (U*¢, ) as a representation of G, we define operators
0,1<j<6),H, H,F., F, 4,4 and 4. As to the domains of these
operators, see [6, p. 117]. In the case (4, ¢) = (0, 0) explicit forms of these
operators restricted to C(B; X T) are known [6, § 4] except for that of 4
(there is a misprint on p. 122, namely p(g) = — g*%g instead of g*zg).
Painstaking calculation is necessary to derive the following formula. See
[6, p. 127] for the explicit form of 4,.
2thr v@z‘ )

4= — 3 — th*d}, — = ——siny 9,0, — ——— 0
% chr ¥ 900y sin®d *

-

2 th T {th zcotd + cos ¥ }8,,,6\,,
i} chre

sin
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— {thercotis + 2thrcotécosy | 1 Jo — 2th<o
chr ch’z

" {2:1hr (4 cos ¥ + eisin ) — thiz cosﬁ}ag

chr
(1.5) — ﬁih,—r—{éi sin + e(cos ¥ + e sh r cot §)}9,
chzsind
+ 2 {— ¢ shzcotfsin+y 4+ ei(sh’c cot’d

ch’t

+ 2shzcotd cosy + 1)}3, — Rl ek
ch’z

+ 52<th27 cot?d + 2 il i

cot 6 cos «p)
T

.thr
2el
+ 2¢l1 h

chr

cotfsiny — 1+ 4,.

In the case (4,¢) = (0, 0) explicit forms of H,, H,, etc. restricted to C5(B;)
take the forms;

H, = e™¥(id, & cot 6 9,), H, = 1i9,,

Ft=e¢i¢(:;:sin¢96,¢thz-cos06,+'thf 3¢>, 4 =0,
sin 6

(1.6)

F, = i(cos00, — thesin0d),  4=0+cot0d, + 3%,
sin

A= —3—2thcd, — thzr(a“;—i- cot 03, + — ag) — 14 4.
sin’f

Notice that (1.6) follows from the corresponding ones in the case (¢, 0),
¢ #+ 0, simply by deleting terms containing functions of 4 or 9, and
setting 4 = 0. Put, for ke Z, /2 and p= —k, —k+ 1, -,k

(L.7) Win =19 &f = — k(k + Df, Hf = pf}.
Then, as is well-known, = >, , @ # %"

ProposiTioN 1.1. %%, = {0} if k + ecZ, + 1/2. Otherwise,

W = {f(c)P% (cosO)e~**; fe LA(R, ch’r)},
WL, = { }E_‘J fAz)P% _,(cos G)e~ie+it+ovy f e IXR, ch“’r)}
k

v=—

for (4,¢) + (0,0). See [13, p. 120] for the definition of P%(2).
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Proof. Suppose f, € C7(R). Then f,P% e (ke Z,) or [P _, e ire+it+ar
(k + eeZ,) lies in the domains of w;, 4,, 4 and 4, and these operators
act on these functions as smooth differential operators. These facts can
be shown as Lemma 9 [6]. After this remark we shall prove the proposition
only in the case p = k, for the other cases can be dealt with by the aid
of the relation #°%, = H** %% and a formula [13, p. 137];

(1.8) (JT —Z9 _ f‘f:l)P';,(z) = — iV + k= g+ DP:,(2).
dz 1— 2

Thanks to Proposition 1 [6] it is enough to consider the case (4, ¢) = (0, 0).

First since U0, —e) is the identity operator, there results that 77!, = {0}

if ke Z,. Secondly, it is easily seen that f,P},e e w (ke Z,), for Pk,

is a solution of the following equation.

(1.9 {0 — 2)d*dz* — 2zd|dz — k|1 — 2°) + k(k + 1)}Q(2) = 0,
ze(—1,1).

Finally assume fe#%5 (ke Z,). Let h(z, 0, ¢) = h(z) h,(0) h($) be an ele-
ment of Cy(B;). Since {f, (H; — k)h) = 0, there results f = f,e”*** for an
f. € L*(R X (0,7), ch’*rsinf). Now the equality {f, {4, + k(2 + D}h) =0
yields

(fo {02+ cot 00, — K sin0 + k(k + 1)}hsh) (e ™, h> = 0.

Set f,(r,0) = g(z,cos §). Then g(z, -) is a weak solution of (1.9) for a.e. 7.
Consequently there are measurable functions f ,(zr) such that fy(z, 6) =
> %aifi,; Qi(cos ) a.e. on R X (0,7), where @, is a fundamental system of
(1.9) with @, = P},. Note that each f, ; belong to L*(R, ch’s). This is
because f;,; are linear combination of f,(-, 6,) and f,(-, 6,) for some fixed 6,.
Since @.(2) is not bounded on (— 1,1) [6, Lemma 8], we can argue as in
the proof of Proposition 1 [6] to show that f,, must vanish. Thus f =
fiP% e~ for some f, € L*(R, ch’z). Q.E.D.
Put Wi:, = LA(R) or LXR)**' (k + e € Z,) according as (¢, ¢) = (0,0) or
not, and introduce a Hilbert space W*:;
Wée = > D WL,
kyp,k+e€Z 4+
Then, in view of Proposition 1.1, an onto isometry J%: : %%, — Wi: can
be defined by
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(1.10) Jf;,,(z f, P -w+f<v+w) - (J 2ki -, chtf)

where ¢, is the norm of ¢/**9* in §,, which is equal to I'(4 — v+ 1)/ (— £ —v)
or 1 according as — 1 < £ < — 1/2 or not. Now we have an onto isometry
IO = akreez, @Y 1 99— Whe By the aid of this isometry we shall
inquire into actions on £ of 4, 4, F,. and F,. Some calculation similar
to that on p. 132 [6] yields

(111 Juiddiit = Ly, Jeiddet = M,
where L, , and M, , are selfadjoint operators taking the following forms.
(1.12) L, = — d&d<* + {1/4 — (k + 1/2)*}/ch’z, M, =0,
(1.13) L,,= — d}dc + Ai1 — sh’t)/ch’c + iU, ,tht/ch
— {k(k + 1) + 4(£ + 1)}/ch’c,
(1.14) M., = — 2iA.dldt 4+ V. Jchr.
In the above A,, U,, and V,, are constant matrices in M,,,,. Their v-th

rows(v=4kk—1,--.,—k)are(---00---),(---—~a,0b0---) and (---0 a0
b0- - -) respectively, where b, is the (v, v + 1)-component and

—U+rv+DVE—v)k+rv+ DV -6 +v+1],
b= —v+DVE—v+ DEFVEF]E—v+1].
Note that the last factors of ¢, and b, are equal to 1 if ¢ = — 1/2 + iy
(p > 0). By a theorem [8, p. 287] the domains of L, L,, and M, , (£ + 0)
are Hy(R), H(R)*** and H,(R)**' (or {(f,) e L'(R)***!; f,e H(R) for v + 0} if
ke Z,) respectively. We turn to F, and F,. At this stage another formulas
on P% are required [13, p. 187-188].

(1.15) cos 0 Py, = e l:_(zﬁ)lf(};)i Ppi %(kﬁi 1y Pe
k£t p+ DRy +T) 4,
(k+ 1)@Ck + 1) wo
(1.16) cos% P =— + AVE=DE =) Pl an
+ ¢(k Fut DE+ v+ D PR s
(117) sin g Pl = -t = vk = )+ ) Pritfoan

-+ \/(k + u+ 1)(k — v+ 1) P'ﬁii@,u-m .
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The sign of P14, ., in (1.17) is correct, while the corresponding one on
p. 188 [13] is misprinted. Combining (1.16) and (1.17), we obtain

- [ ANRENG—y—I2E1D)
sin § Pk, = — 21{-— 9k(@k £ 1) Pl
k=) k+v+1)
(1.18) - EQk + 2) Plva
ERLCEVES (RS DESTE) I
2k + 1)(2k + 2) ”’"”} ’
which is equal to
q NEEW)(R+v—12£1/2)
- 2‘{“ 22k + 1) et
Wk —r+ Dk +)) o,
kQ2k + 2) #v=1
V((k + o+ D)k —v+32+1/2) pro
@k + 1)@k + 2 =L
for P, = P’:;, _, [13, p. 123]. Now assume (¢, ¢) # (0,0) and let f, e C3(R)

(v=~Fkk—1,---, — k). Then, making use of (1.15), (1.18) and a formula
[13, p. 137]

d/dé Pk (cosf) = iWk—-—vk+v+1) P, .(cos0)
+ V(k— v+ 1)(k + v) P, ,(cos 0))/2,

we can show

F Z ka' -—l/l¢+i(u+e)*lr

yv=—k

(=) -
- 4 2k(22)(+ ;; 2 3 2, (2 V(& —v)(E + ){f. + (k -+ Dthzf}

+{—U+r+DVEF)E T+ Dfs
— U=y +D)VE—)F —v+ 1) fi}/chr]

(119) PE-1 gmimpriGray Y — 21(fF’ th
X Pie + gty DI 2+ thef)

+{—U+v+DVE—-)k+v+1Df
+ =+ )VE—F DR T 9f,)lchlPt _ e-tmrioray
k— k 1
et T D S i E— T DE D
X (f — kthef) + (£ + v+ DVE=DE =T D
4 (= v+ DVETOE v F Dfoi)fch o] P, eminssiorov
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Thanks to (1.19), (1.18) and a formula [13, p. 136]

am»{ﬂi?w&+%§%ﬁma=—w@—m@+y+nmm®,

we can spare much calculation in reducing F, > % _.f, Pt _ e i#+it+o¥ for
F_=][H_,F] and F, = [F,, H,] as they ought to be [12, p. 77]. The case
(4,¢) = (0,0) needs no separate consideration. The results in this case
are obtainable from those in the case (4,0) by setting £ =0 and f, =0
for v £ 0. To sum up,

Lemma 1.2. Let f = (fy, ) be an element of W** whose (k, p)-component
f¢,. alone does not necessarily vanish and lies in H,(R) or H,(R)**' according
as (4,¢) = (0,0) or not. Then f belongs to the domains of J"F,J** (s = =,
3). Moreover, omitting the suffix (¢, ¢) of J**, we have the following relations.

» _ NE—pEk+p)
(JFaJ f)lc—l,,u - 2k\/(2k — 1)(2k + 1) K+,k—1,l Kype

JEJf), , = —F M, ,
.2 ( i Y -

(JFaJ_lf)k+l,;1 . \/(k — ¢+ DE+p+1)

N Ak + DV(2k + 1)(2k + 3) writle ns
EJ "l =0 otherwise .

(JF:tJ_lf)k-—l,y:tl o Ki:,k—l,éfk,;l , (JFxJ_lf)k,pil o Mk,tfk,;« s

1.22

( ) (JFiJ—lf)k+1,[4il oc K+,k,£fk,,u’ (JFj:J_lf)lg’,F‘ =0 otherwise.

In the above K, ., = 2i(k + 1){d/dv — (B + Dth} (ke Z,), and in the case
4+ 0,

(1.23) K. ..=2BJfdldr —(k+ 1th} + Y, Jche,

where B, and Y,,, are constant matrices in My, .3 4., . Their v-th rows
v=k+4LEk ---,—k—1are (---0Vk—v+DE+r+1)0-...) and
G0+ Y+ DVE=—E—v+DVE— ]| +v+ 10 —v+ 1) X
v+ v+ v+ DV|E+ v||£ — v+ 1|0 - - ) respectively, in particular their
(v, v)-components are equal to ¥(k — v + 1)(k + v + 1) and 0 respectively.

Proof. For the sake of definiteness assume (4,¢) + (0,0). When f,,
lies in Cy(R)*™*Y, (1.21) and (1.22) hold. To conclude the proof, it is enough
to recall that Cy(R)**' is dense in H,(R)**' and that the infinitesimal
operators w; (4 < j < 6) are closed operators. Q.E.D.
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We shall now show that, if there exists a P,-invariant, closed proper
subspace 2 of %, there is a nontrivial sequence {D,}.c,,.. satisfying
certain conditions. For this purpose, set

(1.24) T, = J4 U“t/M, 0,0, 0, ) J* = exp{itsh}.

LemMmA 1.3. Suppose there exists a P.-invariant, closed proper subspace
D of &, and put 2,,, =D N Wi, (keZ, +¢). Then,

(1) 9. is a proper closed subspace of W%y: and invariant under
selfadjoint operators 4, 4 and the semigroup U*(t,0,0,0,e) (¢ > 0),

(ii) F.2,,;C D1, 641 AN F.2,,.C Zb’=—1@9k+1,k—1-

Proof. The statement (i1) holds because of (34) and (35) [12, p. 106].
Another way to prove (ii) directly is to use Lemma 1.2 and the fact that -
=3 DWE,. Since H, and 4, commute with 4, 4 and U*«(z,0,0, 0, e),
(1) follows except that 9, , is a proper subspace. Assuming that 2, , = {0}
for some ke Z, + ¢, we shall show that 9, , = {0} for any k. First, 9, ,.
={0} for &’ < k, because, if 9, , + {0} then F,9, . + {0} (see Lemma 2
(ii1) [6]). Secondly, 2., ... = {0}. To prove this, set G, = (¢ — ish)!
(Re a > 0), which we regard as the resolvent of the semigroup U*(t/M, 0,
0,0,e) or T, (¢>0). Since #%, C P+ and since 2' is invariant under
U0, g) (g€ G) and U*(—1¢,0,0,0, ¢) (¢t > 0), there results, for any feJ**
Diss,uer and he CF(R) (C W),

(1-25) <f, i’:l,k+l F+J§;::£Ic_l h> =0, <Gaf, Ji’:l,lcu F+Ji~’5k—1 h> =0.

From now on let (4,¢) # (0,0). Another case is easier to handle. We
recall that a locally integrable function on R having a locally integrable
derivative in the distribution sense is absolutely continuous. Set f = (f,).

Then the first equality in (1.25) implies that f, (jv| < k) is absolutely con-
tinuous, and the second one now can be rewritten as

(1.26) 2U(BGLE By + {f, K.,0,.GERY = 0.

W4 being invariant under U“*(--¢,0,0,0,¢) (! > 0), the second term
vanishes. Now (1.26) yields f, = 0 (jv| < k), and the first equality in (1.25)
implies f = 0, as desired. Similarly it can be shown that if 2, , = 7"
for some % the same is true for any k. Q.E.D.

We shall give a more manageable necessary condition for (U**, )
to have a P, -invariant, closed proper subspace.

LemMA 1.4. Suppose there exists a P,-invariant, closed proper subspace
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in 9. Then there is a sequence {D;keZ, + ¢, D, is a proper closed
subspace of LY R)*** (or LXR) if (¢,¢) = (0,0))} which satisfies (Q.1) and
(Q.2);
(Q.1) D, is a closed subspace of L*(R)**' (or L*(R)) and invariant
under the selfadjoint operators L, , M, , and the semigroup T, (t > 0).
Q2 K,..,D,c D,,, and K% ,_, ,D, C D,_,, where the domains of
the operators are H(R)**' (or Hy(R) if (¢,¢) = (0, 0)).

Proof. We retain the notation in Lemma 1.3. Put D, = J%.9,,,.. We
shall show that the sequence {D,};c. .. satisfies (Q.1) and (Q.2). By (1.11)
and (1.24) Lemma 1.3 (i) implies (Q.1). Denote by E%‘ the orthogonal
projection: §“ — #'¢5, Tt it oc K, o, and I8 EYe o F Jys?
o K* ,_,,, on account of Lemma 1.2. Now Lemma 1.3 (ii) implies (Q.2).

Q.E.D.

In case (4,¢) = (0, 0), all sequences {D,; ke Z,, D, is a closed proper
subspace of L*(R)} satisfying (Q.1) and (Q.2) can be determined as a result
of the Part II [7, § 1]. Indeed, using the notation there, it is clear that
Lio=Lrrip0 Ki w0 Fy yiipp0o and K%, yoc F_ ;.10 Therefore we get

ProrositioN 1.5. Let D, be a closed proper subspace of LXR) (ke Z,).
Then {D,}c, satisfies (Q.1) and (Q.2) iff it coincides with either {D},,; }icz,

or {D[})c+1/2,+}keZ+ .

Proof. The sequences {D%,,, .} satisfy the conditions (Q.1) and (Q.2)
by Theorem 1.4 [7]. In view of Theorem 1.2 [7], D, coincides with one of
DY),,.. Theorem 1.3 and the relation (1.32) [7] now imply that D, = D},,, .
according as D, = D}, .. Q.E.D.

In case (4, ¢) # (0, 0), an analogue of Proposition 1.5 will be obtained
later (Theorems 2.2 and 3.1). Throughout the rest of this section we shall
be exclusively concerned with the case (¢4,¢) = (0,0). Correspondingly &
runs in Z,. Define subspaces 2%° of £*° by
1.27) D= 3 DI Diaps -

ke k€ Z 4

Now we are ready to state one of our main theorems in this paper.

THEOREM 1.1. Let 2 be a closed proper subspace of °. Then 2 is
P.-invariant iff it coincides with one of 2°%°.

THEOREM 1.2. The representations of SL(2, C) realized in 2°%° decompose
into irreducible ones as
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I® @O:P dp @ Z @ @Zn,o in 9%0 )
Ry

n-1€Z +

©]
I ., dp in 2.
R+

Remark. Mukunda [11] has shown that the representation (U®°, $°9)
of SL(2, C) decomposes into irreducible ones as

(@ e, d)o 5 @c...

n—-1€7Z +

Proof of Theorem 1.1. 1) We shall show that the condition is neces-
sary. To this end set 2,,,=92 N #% Then 9, =dJ% D}, .. by
Lemmas 1.3, 1.4 and Proposition 1.5. Since H**9, , = 9, ,, D;,, = J¥%!
D5, ./,. on account of (1.6) and (1.8). Consequently 2 = >, ,® 2,,, = 2%
2) We shall show that 2% are P,-invariant. It is evident that J%°!
D...,, are invariant for U™ (¢, 0,0,0,e) (¢ > 0). Since H_. and H, leave
Dy o= _ @I DS,y . invariant, 2, . are SU(2)-invariant. It suffices
to verify that 2%° is invariant under U®° (0, w (%)) (¢ € R), for the semigroup
(¢,0,0,0,e) (t > 0) and G generate P, topologically, G being generated by
SU(2) and the one-parameter subgroup w,(f). For this purpose put D,,, .
=D, 1 s ﬁ,w,,i = ﬁ‘,’wm,i and 13,%1 = DA‘,’Hm,i, then we have onto iso-
metries F 1t Dy, — ﬁk,#,i and I, ;... ﬁw,i — ]j,b.‘,,,t (see (1.34) [7D.
Regarding D, ,.. as subspaces of W%’ (see (1.10)), define subspaces D, =
s @Dy, of W' Set D,=3,,®D,,. and D, =3, ,®D,,..
Then we can naturally define onto isometries % . : D, — D. and I .t D"i —
131 in terms of &,,,, and I, ..., respectively. It clear that D, = J"°2%".
Let us further define dense subspaces ﬁi,c of ﬁi. Put ﬁk,,,,i,c = CyR.,)!
® E, ... and denote by D. , the algebraic sum PR Iak,#,i,c. By Lemma
2.4 [7] it is enough to show that F, restricted to 2%°, = (I.F tJ°'°)“ﬁi,c
is essentially selfadjoint in 2%°. To this end, set

iy, = (I.F J*)F(I.F.J*)" with domain D. ,,

and let us prove that i, . is essentially selfadjoint in D,. Let A = ()
be an element of DAM with ﬁk,,,, =0 for (¥, ) # (k, ). Then, by (1.35)
and (1.33) [7] we obtain

TS ES RS eSS
(LwGh)ktl,p(z) = *+ l\/ @k + 1)k + 2+ 1)

X V(& + 12+ 1/2F + 2 by, D)2 > 0),

(1.28)
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; N (e L ES ) (RS Ve
(i B)emr i~ G — 1/2) = F i et P

XN+ 12+ 12 — (G — 127 A o(— G — 1/20),
(i B, () =0 for (K, 1) = (k£ 1, p).

(1.29)

In the above &, stands for one of & .. Applying Proposition 1.6 in the
case (m,p) = (2j —1,0) to id,, in {fz eD,; ﬁ,c,,,(l) =0 except for 1=
— (j — 1/2)%}, id,, . turns out to be essentially selfadjoint there (j € Z, + 3/2).
Put Dt ={heD,;h, () =0 for 2<0}. We shall prove that @, ,, which
is symmetric, is essentially selfadjoint in D* too by showing that the
image (ids, . — z)(ﬁi n DAM) is dense in ﬁi for any z Imz =£0). If an
fe D+ is orthogonal to the image, it follows from (1.28) that

NECEIN e
m«/ F A fuor D = 25,2

e+ D) ymrirrs
\/((2k+2+1)) VEFIF+ 2frn,) =0 ace.

(1.30)

On the other hand, using the notation in Proposition 1.6, let U be a
unitary operator on £%,,5 such that U f% = (— 1)*f%. Evidently UF,U-!
is also essentially selfadjoint and satisfies

UFzU_lf,;i = - ‘/((k = ﬂ)) ckf,;:_l - akf',i + ‘/((k = p+ 1) Ck+lf/’f+1 .

Now (1.30) yields f; (4 = 0 a.e. on R,, namely f = 0. The proof of essen-
tially selfadjointness of i#; _ is similar. Q.E.D.

Proof of Theorem 1.2. Put 9, ,. = 2% N #%.. For the proof it is
enough to determine the spectral type of selfadjoint operators 4/9,,,. and
2Dy, OF . D 41, (keZ, 4+ 1)[6, §3]. The following unitary equival-
ence relations are clear.

®
AN Dy, = Lo,olD(l)/z,i = gl/z,onglz,i = jR 2da

On the other hand, by (1.32) [7] and (1.22) it can be easily seen that
Dii,- OF Dy, o1, = {0} and Dy, O F, Dy _;4-4,. C {J(I)c’,(}c—lek+l/2,k+l/2}' As
to the definition of e, 1.1, See Lemma 1.8 [7]. We claim that the
opposite inclusion relation also holds. To prove this, suppose an fe
D -1,-1,+ lies in the domain of F,. Then {(J%% ™" € 11 Fofy = {F_JY%!

e ) = 0, Il vanf) = O for K¥ . €csipne1p = 0. Since 4 =0, we
have
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D
A,I*@k,k,+ © F+9k—1,k—,+ = .[R 2do(2) ,

where ¢ is the Dirac measure with unit mass at 2 = 0. Q.E.D.

The proof of Theorem 1.1 relies on the next proposition, which asserts
that the operators iw, (1 < j < 6) for the irreducible unitary representation
Sn,, [12, § 11] are essentially selfadjoint even if they are restricted to the
algebraic linear span of the canonical basis.

Prorosition 1.6. Let £;,, be a Hilbert space {(a,,,); B = m/2, m[2 + 1,
e p=—k —k+1,---, k with 33, ,|a,,,F < o} for (m, p) €{(, p); o > 0}
U(Z, + 1) X R, and denote by ¢2,,.. a dense subspace {(a,,,) € ¢%,,; @, =0
for large k}. Then following operators i@, ., , in £, , with domain ¢,
are essentially selfadjoint. In order to define these operators, let f% be an
element of ¢.,, with (K, /)-component 6,,.0,,, and put

H, =i, + o, H =ip,, F.=io,+a,, F,=ip,,
where the suffix (m, p) is omitted for the brevity. Then we define i, ,,,
indirectly by requiring the following equalities.
Hft=VExp+ DETF 0fin, HfE=pft,
F.ft=2VEFNETFp—Defid —VEF plk £ ¢+ Dafia
+Vktp+ D+ p+ 2cafil,
Ffy=V{k£ mefi — paft — V(R + p+ D)ceafi

where a, = mp[{4k(k + 1)}, ¢, = V(B — m*[4)(F* + o*[4)[{k*(4k* — 1)} [12, p.
110 and p. 152].

Remark. Quite analogous statement holds for an irreducible unitary
representation belonging to the supplementary series of SL(2, C), as one
can infer from our proof of the proposition.

CoroOLLARY. Let .1'3’3 be an operator in ¢, , with domain ¢}, , , such that

Then F, is essentially selfadjoint.

Proof of the corollary. Indeed, Fo’a is unitarily equivalent to F, under
a unitary operator U sending f% to (— i)*f%,. Q.E.D.

To shorten the proof of Proposition 1.6, we prepare two lemmas.
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LEmMmA 1.7. Let R be the right regular representation of SU(2), and
denote by R, (1 < i < 3) and 4, the infinitesimal operator d/dt R(wt)),-,
and the Laplace operator > 3., R} respectively. For an fe C~(SU(2)) define
fa (neZ./2) by

k

fo=3 3 @+ DL Pch,

0 pyp=—k

where ¢k, is the matrix element of the representation &,, of SU(2) [12, p.
58] and {, > denotes the inner product on L*(SU(2)) relative to the normalized
Haar measure. Then (1 — 4(f — £)I| and |(1 — 49R,(f — £,)] (g € Z.)
tend to zero as n— oo. In particular f, (resp. R,f,) converge to f (resp.
R.f) as n— oo relative to the uniform norm.

Proof. The L*norms tend to zero on account of the Peter-Weyl
theorem and the fact that 4,cf, = — k(k + 1)c%,. The Sobolev lemma [9,
p. 51] now implies the convergence with respect to the uniform norm.

Q.E.D.

After Neumark [12, p. 143] we denote by (V, L:(SU(2))) the irreducible

unitary representation &, , realized in LZ(SU(2)).

LEmMMA 1.8. Let w; (1 <j< 6) be the infinitesimal operator for the
representation (V, L2,(SU(2))). Then there exist smooth functions a;, (0 <
i < 3) on SU(2) such that

0,f(0) = au@f@) + 3} a,WRFW)

for any fe C=(SU(2)) N L:(SU(2)), where R, stands for the same as in
Lemma 1.7.

Proof. Recall that V(g)f(u) = a(ug)/a(ug)f(ug). Here a(g) = |gy|*™*
X gn for g = (g,,)€ G, and ug denotes a unitary representative of the

coset Kug, K being a subgroup {('2(;1 3), > 0}. Both maps (u, g)—
c(ug)/o{ug) and (u, g) — ug defined on SU(2) X G are smooth. Indeed, first,

simple calculation yields
o(ug)la(ug) = {|ungy + Ungul” + |Up8i + Upgyl'} ™2

[12, p. 141]. Secondly, since a map g — eg defined on G is smooth [12,
p. 141], ug is smooth on SU(2) X G. Consequently V(w,(t))f(u) is smooth
on R x SU(2), from which the lemma follows at once. Q.E.D.

https://doi.org/10.1017/50027763000020018 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020018

UNITARY REPRESENTATIONS 191

We return to the

Proof of Proposition 1.6. Set C;, = C=(SU(2)) N L:(SU(2)). As we
noticed in the proof of Lemma 1.8, V(g) leaves C;, invariant. Recall that
{#rp,cCrsk=m2,m2+1, - -, p=—Fk —k+1, -.--,k} is a complete
orthogonal basis of L} (SU(2)) and that, if f* and &, in Proposition 1.6 are
replaced by ¢%,, and o; (see Lemma 1.8) respectively, still the equalities
there hold [12, p. 147]. Denote by C; . the algebraic linear span of
{¢t),.}. To prove the proposition, now it is enough to show that iw;
restricted to C;, , is essentially selfadjoint. We denote this operator by
iw;.. To this end we shall establish first the essentially selfadjointness
of iw, restricted to C;. We denote this operator by iw,.. Assume that
an f is orthogonal to the image (w; — «)C; (Rea # 0). Then, since
V(g)C;, < C;,, we have (f, V(o,®))(w; — )¢y = 0 for any ¢e C;. Multi-
plying both side by e < and integrating on R, or R\R, according as
Re « > 0 or not, we obtain {f, ¢> = 0, namely f = 0. Secondly, the closure
of iw;,. is an extention of iw, ., in virtue of Lemmas 1.7 and 1.8. Therefore
iw;,. is essentially selfadjoint. Q.E.D.

§ 2. Invariant subspaces common to L,,, M., and T, (r > 0) in
L(R)**', ke Z, + 1/2

The ultimate aim of this section and the next one is to enumerate
all non-trivial sequences {D,},.., ., satisfying the following conditions (Q.1)
and (Q.2);

(@Q.1) D, is a closed subspace of LA(R)***!, and is invariant under the
selfadjoint operators L, ,, M, , and the semigroup T,(¢ > 0).

Q.2 K,.D.cD,,, and K%, ,,D,C D,_,, where the domains of
K, ,,and K%, ,, are Hy(R)**'.
See (1.13) (1.14), (1.23) and (1.24) for the definition of the operators men-
tioned above. A sequence {D,} is said to be nontrivial if not all D, are
trivial. To attain this aim, the following relations will be extensively
used, the proof of which relies on direct calculation.

(2-1) K+,k,eL1c,e = Lk+1,zK+,k,z ’ K+,Ic,£Mlc,e = Mk+1,ZK+,k,Z .
(2-2) K:-k,k,lK-l—,k,Z = 4(k + )+ 4(k + 1)2Lk,l - Ml2c,l .
(23) K+.k—l,zKi<,k—l.€ = 4k* + 4k2Lk,IZ - Mi,l .

In the above the equalities holds on C*(R)**!, and the left side of (2.3)
is understood to be zero if k < 1/2. It also should be noted that D, is
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invariant under T, (£ > 0) iff it is invariant under multiplication operators
G,=(a—ish7)* (Rea > 0). By abuse of notation G, will sometimes
stands for the function (@ — ishz)-! on R.

Throughout the rest of this section, assume that ke Z, 4+ 1/2 and £
= — 1/2 4+ ip (y > 0), and the suffix ¢ will be dropped in principle. Let
us start with reviewing the eigenfunction expansion theorem for M,. By
the theorem M, will be reduced to a simpler operator, as far as invariant
subspaces for M, are concerned. Denote by @.(r, 1) the solution of a
differential equation

(Mlc - 2)@16 =0 ’ (bk(oy 1) = I2k+1 .

Since V,/chr is integrable, there exists a so-called spectral density g,
satisfying the following conditions i)~iii) [4, Theorem 2].

i) p, is a M;.%,-valued continuous function on R.

ii) A map &, : LX(R)y*' — L¥R, j,) defined by

(2.4) Zf() = Lim. j O¥(z, Df () de
N-—oco |z <N
is an onto isometry, whose inverse £ ;! is given by

(2.5) Fig@ =lim. | 0, DD e da.

Nooo J 121

i) M. Z:'g(2) = 28(2) if 2g(2) € L*(R, §y).
Denote by M, a differential operator 2iA, d/dr 4+ V,/ch z, and consider the
following equations;

26 (M, —nL=0. (26) (M, —2yx=0.

Both of them have regular singularity at r = iz/2, in other words at
o = 0. By definition « is an indicial root of the equation (2.6) at ¢ = 0
if det (@ — 27'A;'V,) = 0. The definition of an indicial root of the equation
(2.6) is similar.

LemMA 2.1. The sets of indicial roots of (2.6) and (2.6) coincide. They
are {a, ,;v= —k, — k+ 1, ---, K}, where

o, = — (kR + 1/2) + (signv)(2v + iy).

Proof. The complex conjugate of an indicial root of one equation
is the one of the other. So only the equation (2.6) will be discussed.
If k= 1/2, the lemma holds. Suppose the assertion is valid up to k.
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It suffices to show that — (B + 3/2) + 2v +ip (v = 1/2,3/2, ---, k) are
characteristic roots of — (24,.,) 'V,,,. Indeed, since the characteristic
polynomial of the matrix is even, — (¢ + 3/2) + 2v £ ip (v = £k + 1) turn
out to be characteristic roots. To complete the proof, assume that
{— @A)V, — @} Pi,, = 0 (v] < k) for p,,, € My .1, \{0}. By Lemma A.2 [7]
the equation (2.6) has solutions ¢, , assuming the form ¢***(p;,, + oh(o, log o))
near ¢ = 0. Since K, 4., takes the form o' (py.y,, + oh(o, logo)) for
some non-zero vector p, ., ,, a;,— 1 is a characteristic root of —(24,,)7' Vi,
on account of Lemma A.2 [7]. Q.E.D.

When k = 1/2, all invariant proper closed subspaces common to M,
and T, (¢ > 0) can be specified. We shall define the subspaces. To begin
with, by Lemma A.2 [7] there are solutions {, ..(z, 2) of (2.6) and y,, ..(z, 2)
of (2.6) which, being holomorphic in D, X C, take the following form near
c=0;

(2'7) Ck,:tk = Gi“(Zﬂ zk,ik,non) ’ Xk, +x = giiﬂ(zo xk,:tk,n"”) )
= by

where R 1, F1). Set, = (Ck,—k, ck,k)’ Ax = (Xk,—k’ Xk,k)9 and
define Z,, X,, s... and r . by

Culz, 2) = Oz, DZ,(2) , 2T, 2) = D (z, DX, () for (r, ) e R?,

@8) o X1 L1TD, .= ( ‘1) (l))s"’* k=1/2).

In terms of the isometry £ ,, we define proper closed subspaces D, . of
L¥R)* by

(2.9) Dy = Fip{ge LR, p\)); '8, (D 8QA) = 0 ace.}.
These subspaces are what we intended to define, for we can show

THEOREM 2.1. Let D be a closed proper subspace of LY R).

(i) D is invariant under the selfadjoint operator M,, , and T, (t > 0)
iff it coincides with one of D, ..

(ii) Di,,. are invariant under the selfadjoint operator L, ,.

For the proof we prepare a few lemmas in advance. The first one
is concerned with estimates of the solutions of (2.6) and (2.6).

LemMa 2.2.
(i) Fix ,¢ R and ¢ > 0. Then there exist positive K and & such that
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|0.(z, )] < K on D.N{Rez|>1}, |z, D) < Ke''™ on R X {|2 — 2| < &}

(i1) Let x(r,2) be a solution of (2.6) with x(0,2) = I,,,. Then the
statement (i) holds for y.

Proof. Put ¥ = exp{ic(2iA,)"'}1®,. Then ¥ satisfies an equation ¥’ =
W(z, T with (0, 2) = I,,,,, where W = exp{ic(2iA,) '}(2iA,) 'V, exp{—ir
X (2iA,)"}/chz. Trivially |¥(z, 4,)| is bounded on D.N{/Re z| = 1}. More-
over, there exists an integrable function w on (— oo, —1]U[1, o) such that
[W(z, )] < wRet) on D.N{|Rez|>1}. It now follows from Problem 1
[2, p. 97] that |¥(z, 4,)|, hence |D,(z, 1,)| as well, is bounded on D, X {|Re 7|
> 1}. Next take so small a positive ¢ that |Im {2(2 A,)"'}| < min{e, 1/4}.
Then there is an integrable function v on R such that |W(z, )| < v(r) on
R X {2 — 4| <é}. Using Problem 1 [2, p. 97], we conclude that |¥(z, 2)|
is bounded on R X {|2 — 4| < }. Now the second inequality in (i) follows
at once. The proof of (ii) is quite similar to that of (i). Q.E.D.

Denote by M,(¢s) and M,(s) the differential operators M, and M, re-
presented in terms of ¢ =z — iz/2 respectively, and let R, be a map
sending an M,,,,,-valued function f(o) = (fi(0), - - -, f-(0)) to “(f_.(— o),

5 fil(— o).

Lemma 2.3.

(i) R.M,.(0o)R. = M, (o), RkMk(O')RIc = Mk(a)! R.L.(0)R, = L(0),
szk(U)Rk = Ek(o')-

(ii) For k=1/2 and ne Z,, we have

Rz . v, = F (— 1)nzk,tk,n , kak,:tk,n = F (— 1)nxk,tk,n .

Proof. The assertion (i) is easy to verify. As to (ii) only 2, ., , will
be treated. Set 2, ..(0) = 2702, 21,0 Then it is enough to show that
Rz, ..(0) = F2, ..(0). To this end notice that R, .. = @.:ls, .. for some
constant a,, on account of (2.1). Consequently Rz, .,(0) = b.,2, ..(0) for
some constant b,,, which yields b., = F 1, since 2., = (1, ¥ 1). Q.E.D.

The following lemma is concerned with the if part of Theorem 2.1.

LEMMA 2.4. Let k= 1/2 and v = & 1/2. Then, for any reals 2, & and
a(Re a > 0), the integral {'y, (z, ) G.L: _(z, &)> vanishes.

Proof. By Lemma 2.3 (ii) ‘y,.(z, D&, -.(z, §) takes the form > 2 ¢, a*"*!
near ¢ = 0. Changing the variable r to z= (1 + ish)/2, we can apply
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Proposition 1.2 (i) [7] to the integral in view of Lemma 1.1 (ii) [7] and
Lemma 2.2. Q.E.D.
We return to the

Proof of Theorem 2.1. Let k= 1/2 throughout the proof. 1) We
shall show that Di . have the desired invariant property. By the aid of
the isometry %, it is easy to see that they are M,-invariant. Since L,
= M? — 1/4 by (2.3), they are L,-invariant too. In order to show that
T, (t > 0) leaves D: ., invariant, it suffices to verify

(2.10) ‘s.,.(D[F:G.Fi'r.,.h](A) = 0 for Rea > 0 and he C(R)' .
To this end we will show

(2.11) (81, (D P (, ) GDi(z, £) (), (€)) = 0,

from which (2.10) follows immediately. Put

Ia.l,f = <tXIc(T’ 2) GaCk(T, §)> sy 0= lelﬁk LXEI s, U = t(l x 1’ 1 F ]-) .

Then the left side of the equality (2.11) can be rewritten as ‘v.I, , . o(§) X
<_(1) (1)>vi det X,(£), because <_(1) (1)) Y(_(l) (1)) = — 'Y~ !'det Y for a regular
matrix Y. On the other hand, since I,,, is diagonal by Lemma 2.4, there
results that p(€) is also diagonal (see the proof of Theorem 1.1 [7]). Now
one can verify (2.11) easily. 2) We shall show that if M, and T, (t > 0)
keep D invariant, then D = D .. According to Proposition 1.4 [7] there
exist disjoint Borel sets B,, B, of R and a Borel measurable function s on

B, with values in M, ;\{0} such that

F.D={gelXR,5,); 8 =0 a.e. outside B,, and ‘sg = 0 a.e. on B}
®{ge L (R, 5.); & = 0 a.e. outside B,}.
We must show that B, = R, B, = ¢ and s = c.s,,. for some C*-valued

measurable function ¢, on R. Since G,D is dense in D, there exist f, and
f. in D such that

(2.12) det (.G, f (D, .G (D) #0 a.e. on B,.

If B, is not a null set, the determinant does not vanish a.e. on R, for it
is real analytic in 2 by virtue of Lemma 2.2. Since D is a proper closed
subspace, B, must be a null set. Now that B, = ¢, analyticity of £ ,G.f

(fe D\{0}) yields B, = R. Moreover we can assume § = (_? 3)7 . G.T.
Put r = (__(1) (1))3 Then, for any he C(R) and 2¢ R, we have
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(2.13) sM[F .G, Fi'r.hl(A) = 0.

Let h converge to the Dirac measure supported at ¢ to obtain (*s(1) 9¥(z, 2)
X G, D.(z, & (&) r(§)) = 0, which is equivalent to

(2.14) X )DL @ _] )X 9@ =0.

Put X;'s = Ya_;, @) and p, = (v, v)-component of p(v = =+ k). Then (2.14)
implies on account of Proposition 1.2 (ii) [7] that a function of z = (1 +
ish7)/2

v;i:kay(x) (T D e, (x5 &) pE) a_ (&) fz(1 — 2)p

is holomorphic in {Re 2 < 1}. Thanks to Lemma 1.1 [7], the function is
so iff a(Da_,(8) =0 (v = + k). Since @, is real analytic, it follows that
either ¢, = 0 or a_, = 0. That is, s = c.s;, .. Q.E.D.

When k& > 1/2, there are, as will be shown later, at least two proper
closed subspaces of L*(R)**', say D ., satisfying the condition (Q.1). For
our purpose it is desirable, but not necessary, to determine all closed
proper subspaces satisfying the condition. In order to define D. . we
begin with

LemmaA 2.5. Let £ =&, ---,C.x) and x = (g, - - +, x-x) be solutions of
(2.6) and (2.6) respectively. Then { and y satisfy

(2.15) Kf,k-xc =0, —(71—5)— Kf,k—xx =0,

respectively iff . and y, solve certain second order differential equations of
the following form respectively.

2

(2-16) Z Unck,z-n(o'y Z)Cl(cn) =0, Cio = 1,
n=0

- 2

(2‘16) Z anék,z—n(a’ Z)Xl(cn) = ’ Ek,o = 1 ’

0

3
Il

where ¢, and &, ,, being holomorphic in D. X C, satisfy the following
condition;

ale — 1+ Ck,l(oa Do + (0, 2) = ala — 1) + Elc,l(07 D + ék,Z(O’ V)]

= (C{ —_ 0{,‘,,‘1,2)(6( - ak,l/Z) .

Proof. The v-component of { is expressible in terms of ¢, and its
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derivatives. Suppose { satisfies (2.15). Then the equality (K* ,_,£),_, =0
gives a second order differential equation (2.16). In particular, it follows
easily that dim (Ker K% ,_,) = 2, where K* ,_, is regarded as a linear map
sending solutions of (2.6) to solutions of (2.6) with the suffix &2 — 1.
Therefore, if £, solves (2.16), ¢ satisfies (2.15). Similar argument is available

for . Q.E.D.
At this stage fundamental systems {y,,; [v| =1/2, ---, k} and {{,;

lv| = 1/2, ---, k} of the equations (2.6) and (2.6) respectively are to be
introduced.

(2.17) Ve, = {Cl/z,p for k = |v| — 1/2 ,

K+,k—1'\["1c—1,y ([”{ < k) or Vi, sk ([Vl = k),

where ¥, ..(z, 1), being holomorphic in D, X C, satisfy K* V.. =0
and have the following expansion near ¢ = 0;

k,
Vi, ex = 0° “’Z(Z €, +%,n Gn) s €, .x0 7 0.

n=0

_ {Xl/z,u for k =y =1/2,
B K+,k-1\pk—1,» (I”' < k) or ‘;[}k,ik (I”[ =k,

where v, ..(c, 2), being holomorphic in D, X C, satisfy K* ,_ v ., =0
and have the following form;

@17

Vi, ek = cr"”’“”(z €, xkom 0n> s €y, ur,0 F 0.
n=0

Note that .., as well as ¥ ., really exists in view of Lemma A.1 7]
and Lemma 2.5. Put 0, = (e i)y T = @i - > Tiei)s Tiow = Wiy
\pk,v), and define Zk('z)’ Pk(z) e My, Xk(x)eMZ and sk,:(/?)y 7';.-,:(2)1‘42,1 by

@k(T, 2) = wk(f) Z)Zlc(x) ) Ox = Ly D Z/f s

(2.18) irk,k(f, A= ngk,k(T’ DHX(2) for (¢, D) e R,
Se = XAEL1FD,  ne=(_] s

Via an onto isometry: L¥R, §,) — LR, p,) sending g to Z*'g there arise
an onto isometry &, : LA(R)**' — L*(R, p,) and its inverse F#;';

(2.19) FS@ =1im [ TG D@ de.
(2.20) Fi'g@ = Lim flw Ve, D) o) gR) da.
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The eigenfunction expansion for M, with respect to ¥, is more convenient
in the sense that the spectral density p, has a simpler form.

ProrosiTioN 2.6.
Pk,l/z(z) O
(i) o) = pran(D , oo D e M.
O pk,k(z)
(i)  px, = Ny, pis, for v < k, where n, (1) = {(F* — V)(4k* + )}

Proof. (i) Suppose the assertion (i) is true up to & — 1 (k> 1/2).
First putting 7, = .[Zlfk,ugy di for g, e C(R)* (1/2 < v < k), we will show that
{fsfoy =0if v =1/, To this end note that f,(r) >0 as |z' — oo and that

(2-21) Kf,k—thk—lwk—l,u = {(kz - 2)(4k2 + zzlyz)}_lwkq,» s
which is an easy consequence of the fundamental relations (2.1)~(2.3).

Since {f,,f.> is equal to

(2.22) lim{ (K%, V.. d)*T, 8 dids

Noow J <y

for v/ < k, there results {f,,f.,> = 0 if v £ . Secondly, denoting by @,
the matrix such that @, (g, - - -, ‘gx) = 0, - - -0, ‘g,, 0- - -, 0), we will show

that p;' = >5,,Q, pi* @,, from which (i) follows at once. In fact, for any
he C(R)**1, we have

[ €@, 0 pydi = (F e 7 by
= 3 [ < Qe Qoihyaz.

(il)) Now {f,f) = j(p,;},g,, g>dA (v <k). The left side is equal to
(ngt ik, 8,8, d2 on account of (2.21) and (2.22). Since g, e C(R) is
arbitrary, (i1) has been proved. Q.E.D.

We are in a position to define closed proper subspaces D; , of L} R)***'.
(2.23) D; . = F:1(g) e AR, pu); 5.,.(0) 82 = 0 ael.
Our main result in this section is the following theorem.

THEOREM 2.2. Let D, be a closed subspace of L*(R)**! for each ke Z,
+ 1/2. Then the sequence {D,} is nontrivial and satisfies the conditions
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(Q.1) and (Q.2) (see the beginning of §2) iff it coincides with either {D: _}
or {D .}. The sequence is said to be nontrivial if not all D, are trivial.

Before going into the proof we shall compile some facts. To begin
with, let us introduce other fundamental systems {¢, ,; |v| = 1/2, - - -, k} and
{xe.3 [v] = 1/2, - - -, k} of the equations (2.6) and (2.6) respectively as follows.

Cow = Kii Gior (W < B) 0 Loy (b= R),
where ¢, ..(z, 2), being holomorphic in D, X C, have the following ex-
pression near ¢ = 0;
ok = a"’“*"(éo zk,ik,na") , Zi k0 7= 0.
Lep = K+,k—1Xk—1,u (vl <k or y, (vl =24,
where 7, ..(z, 2), being holomorphic in D, X C, assume the following form

near ¢ = 0;

. Ok,xk
X,z = O (Zo X, +k,n 0n> ) X0 7+ 0.
=

As to the definition of {, , and y,, for £ = 1/2, see (2.7). Thanks to Lemma
A2 [7], &, .. and y, ., are well-defined up to constant multiple. It is easy
to see that ¢, and y,, have the form around ¢ = 0;

Ck,u = a.ak,p(i zk,v,n o.n) s zk,u,o ‘7‘—- 0 ’
(2.24) "=

— 5%k
Xk,u =0 ‘D<ZO xk,v,non) ’ xk,v,O i 0 .
n=

Recall the definition of the operator R, made above Lemma 2.3.

LEMmma 2.7.
(i) Rezi,. = — (— D*(signv) 2, RiXy,,, = — (— D(sign v)x;,, ..
(i) If w <0 and «ay, + @, >0, then

e, DG Loz, D> = 0 for (r, ) e R* and « (Rea > 0).

Proof. (i) Put 2, ,0) = 20 2kpa0" and x,,(0) = 2wy X ,n0". We
shall show that

(2.25) szk,v(a) = — (sign V)zk,u(o') ’ kak.u(o') = — (sign ”)xk,u(o') .

Only x;,¢) will be discussed. The relation (2.25) holds for k£ = 1/2 by
Lemma 2.3. Suppose (2.25) is valid up to k. First note that R,,, K, .(0)
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R, = — K, o), where K. .(s) = — 2iB.{d/do — (k + 1) cotho} — T/sha,
and apply R,,, to both sides of an identity x..., = K, .x:. (v| < k) to
obtain (— 6)**** Ry,; Xi.1,(0) = (— o)™ (signv) x; ,(0). Since @i, = a,,
— 1, (2.25) holds for the suffix (& + 1,v) (vy] < k). Secondly, note that
R.K* (0)R.., = — K* ,(¢) and that, for |v| = k + 1,

(2.26) -Rk+1 XIc-H,y = cu Xk+l,» .
(2‘27) Ki‘,k Xe+t,y = vxk,»' ’ IJ, =V - (Sign IJ) .

Indeed, (2.26) follows from Lemma 2.3 (i) and (2.24) while (2.27) from (2.1)
and Lemma 2.5. Now applying R, to the both sides in (2.27) and using
(2.26), we obtain c,d,c*+ x, ,.(¢) = (signyv)d,(— ¢)* x, ,(s), which yields
¢, = — (signy). The assertion (i) has been proved. (i) Under the con-
dition in (i) ‘g .(z, D& (r, &) takes the form 7 ,c,6***! near ¢ = 0.
Changing the variable ¢ to z = (1 4+ ish 7)/2, we deduce that the integral
%k, G.Li,.» vanishes by Proposition 1.2 (i) [7] (cf. Proof of Lemma 2.4).

Q.E.D.

The next lemma is concerned with the if part of Theorem 2.2.

LeEmMA 2.8. Suppose that for any k < k' (e Z, + 1/2)
<txk,v(r> 2) Ga Ck,u’(T’ $)> = O b (2’ E) e ‘Rz b Re « > 0 ’ )J)J, < 0 .

(i) The integral vanishes even for k =k + 1.
(ii) D5 . are invariant under the selfadjoint operators L,, M, and the
semigroup T, (t > 0). In particular, so are D, . by (i).

Proof. It is clear that the linear span of {¢,,; = v > 0} (resp. {yi..;
+ v > 0}) coincides with the one of {{,; == v > 0} (resp. {y,,; = v > O}).
We shall prove (ii) first. (ii) Di , are invariant under M,. Since

(2.28) LY, (z, ) = {2/(4*) — v}, (z, 2)

by virtue of (2.1)~(2.3), D; . are invariant under L, too. Put I2y, =
T, (z, D) G, (2, &)Y, which is diagonal by the hypothesis. Since I2%,
is diagonal, 4., = p.,'X;" is also diagonal (see the proof of Theorem 1.1
[7]). Consequently, for any A e Cy(R)! we have

ts, ,(2) [f,cGa [#.e 90T O O ds] @
(2.29)

= [t @( ) })vh@aet X @ de =0,
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where we used the following relations;

(2'30) tsu,i w‘;f,v' = tviﬁ‘k,v K tv:t = (1 i 1) 1 __'_ 1) ’
(231) wk,u Okl e = wk,» ﬁk,n< 2 g.)) U, det X, .

Thus G, sends a dense subspace F;Y(r, . h,)e L*(R, p); h,e C(R)'} of D; .
into D ., namely Di . is invariant under T, (f > 0). (i) First we shall
prove the following relations in the case v’ < 0.

(2.32) s Galiery = 0,

(2.33) i A GLCy =0,

(2.39) e M Ak Gy = 0,

(2.35) e G2iA%th « + Ug/ch 2}, > = 0.

For this purpose denote by A the infinitesimal operator of the semigroup
T, (¢ > 0), that is, A = i shr, and note that f, = Ic,m,(r, &) (&) dé € Dl s
for any he Cy(R)' on account of (2.31). Since Ly, = X ums0 G, p Vi, the
T.-invariance of D¢ . implies {{L;7%../*G.f.> = 0. Integration by parts
and the fact that L. {., = 23,508,V yield < 'y, (— G, — 2G.9[d0)f,)
= 0. On the other hand, an equality G” = AG: — 2(1 — AY) G, together
with the T,-invariance of D! ., yields {(4..GYf.> = 0. Now letting 5
converge to the Dirac measure supported at & in the now proved equality
e Gofly =0, we obtain (2.32). We can safely change the order of
integration and the limiting procedure by Lemma 2.2. Starting with
(M 7. )¥G. f.> = 0, we can verify (2.33) similarly. For the proof of (2.34),
it suffices to substitute (M, ,)* for ‘,, in (2.33) and integrate by parts.
It follows from (2.33) and (2.34) that {('x.{A.G.M, — M A.G}..> =0,
where { } takes the form 2i{4}G) + G.U,/ch<, since AV, — VA, = U,.
We must show that A%GY can be replaced by G.thz = AG?2. To this end
notice that A,G, leaves D , invariant in virtue of (2.33). Consequently,
since (¢ — A)(A,GL? = A1 — A% G, it follows that (y, ALl — ADGES,)
= 0 for the above-mentioned f,. The last equality yields {’y; A1 — A%
XG> =0. Since G/ = AG? — 2(1 — A*)G:, we can replace A;G. by
G.thz in the above { }. (2.35) has been proved. Secondly, to complete
the proof of (ii), we shall show

(2‘36) <txk+1,v(f’ 2) Gack+1,v’(r7 €)> = O 1 y’)l < 0 .

In view of Lemma 2.7, we may assume «,,,, + @1, < 0. Hence y;,,, =
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K. .xn, and &, = K, ;... Integrating by parts in the left side of
(2.36), we arrive at
(2'37) <th 1,0 Ga Cu +1,p'> = <le,u G:x Blc K+,k Ck,v’> .
Note that G, B, K, , is equal to
G{2i(k + 1)d/dr + (AM,) + (2iA}tht + U,/ch )}
— 2i(k + 1D — A)'A.

Now the right side of (2.37) vanishes on account of (2.32), (2.33) and
(2.35), together with the T,-invariance of Dj .. Q.E.D.

The next lemma is concerned with the only if part of Theorem 2.2.

LEmmaA 2.9.
(i) 2xk,il/z,o 2y, 12,0 0 (see (2.24)).
(ii) For any (1,8 € R* and v,V (W > 0), there exists an a(Rea > 0)

such that 'V, (z, 2) G ¥y, (2, &) # 0.

Proof. Let us define z,, and x, . both in M,,,,, so that they are
proportional to 2z, .0 and x; ..., respectively;
2 s =%, =41, F 1) for k=1/2,
(2.38) Ziire = {2(— 2k - 12+ ip) B, — Y.}z,
xk+1,:t = {_ 2(— 2k - 1/2 + ”])Bk - ?k}xk,d: .
Then (i) is an immediate consequence of the following recursion formula;
(2.39) "Xy 2, e = 8k+ DR+ D(xin—k)(xin—k— 1/2)'x; .2, -

To prove (2.39), by the very definition of x, . and z,,. we have

(2'40) tka’i L1,y = txk,:t[_ 4131{(k + 1)2 - Ai} + 2181(2k + 3)
+ U — Vi+ 4k + 1) + (B + DAL — 4(k + 1% + D]z, ,

where B, = — 2k — 1/2 + iy. At this stage observe that v .. = D0
@i Ciw AN Vg ot = D1uus0Gry Xiw With @y 1 G i1 7+ 0 in view of Lemma
2.5 and the definitions of 4, ., and v, ... Consequently, the equations
(L, + B — 24T, . = 0 (see (2.28)), (M, — MV, , =0 and (M, — DT,
= 0 imply

24D {—(=k+12xinp(—k—12=xip + k(Ek+ 1) + £ + 1)
- ZA?s + Uk}zk,:l: = O,
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(2.42) (—2(— k+ 12+ ipA, — Vijz,. =0,
(2.43) 2(-k+1/2 % A, — ‘—/k}xk,: =0

respectively. Recalling that U, = A,V, — V. A,, it follows from (2.42) and
(2.43) that both ‘x, .U, 2z, . and ‘x, .Viz, . are proportional to ‘x, , A%z, ..
Now (2.41) yields

txk,:Afczk,:t = k(l + 21/77)/{4( - k + 1 + i’])}txk,:tzk,: ’

which enables us to rewrite the right side of (2.40) as (2.39). (i) It is
not difficult to show, by Lemma 2.5 and the definition of ., and ,,
that ., , = ¢CEEGm e, , ,0") with €4,,,099 2, signwie,0 and that Vi, =
g BB 8L 0") WIth 8,000 X signyime  Assume vy’ > 0. Then
e Ty e (c, &) takes the form g***¢ien»12 (3« ¢ ") near ¢ = 0, where
¢ # 0 by (i). On the other hand, if (‘. , G,V vanishes identically in
{Re a > 0}, then “ (z, D, (c, ©)/f2(1 — 2)}'”%, as a function of z = (1 +
i sh7)/2, is holomorphic in {Re z < 1} by Proposition 1.2 (ii) [7], which is
absurd in view of Lemma 1.1 [7]. Thus {(J,G.V..> can not vanish
identically. Q.E.D.

We return to the

Proof of Theorem 2.2. We devide the proof into six parts.

1) The sequence {D; .} fulfils the conditions (Q.1) and (Q.2).

First, the condition (Q.1) is satisfied by Theorem 2.1 and Lemma 2.8.
Secondly, we shall prove that K, ,D;. C Di,, .. For this purpose it
suffices to show that, for any f= ‘[ ¥, pr.To. hd2 lying in H{R)**,
F oK, o f = (@i, ) =1/2, -+, k + 1) with gy, = 0,, ni},,7,,.h. Inte-
gration by parts yields the desired g;.,, on account of the formula
K¥, ¥y =0 — 041051, Ty, due to (2.21). Finally, the inclusion
relation K* , ,D; . C D;_, . can be shown in a similar manner.

2) K* ., LR)y**'is dense in L R)*"'.

This statement is an easy consequence of Proposition 2.6 and (2.21).

3) Let D be a closed subspace of L*(R)**® such that it is invariant
under 7T, or T_, (¢ > 0) and that K, ,L*(R)**' C D. Then D = L*(R)**:

To be definite, let 7', (¢ > 0) leave D invariant. Assuming f = (f,) € D+,
we shall show f= 0. We have, for any ¢ € Cy(R)*+!,

<faK+,k¢>=09 <f:GaK+,k¢>=O-
The first equality implies that f,(jv| < k) is absolutely continuous. Inte-
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grating by parts in the second equality and using the first one, we obtain
(B.f, G,¢> = 0. Therefore f,(jv| < k) vanishes. Now the first equality
yields f = 0.

4) If D, = LX(R)*™* for some k', then D, = L} R)**! for all k.

Indeed, D, = L} R)***' for any k > k' by 3) and for any k < k’ by 2).

5) If D, = {0} for some %/, then D, = {0} for all k.

To prove this, consider a sequence {Dj}, each member of which is
surely invariant under the selfadjoint operators L,, M, and the semigroup
T_, (@ > 0). This sequence satisfies the condition (Q.2) too. To verify this,
it is enough to note that, D, and D} being L,invariant, D, N Hy(R)***
and Di N Hy(R)**' are dense in D, and Dj respectively. Applying 2) and
3) to {D¢}, we conclude that D, = {0}.

6) Let {D,} be a nontrivial sequence satisfying the conditions (Q.1)
and (Q.2). Then {D,} = {D; _} or {D;,}.

To begin with, note that D, is a proper subspace of L*(R)***! for any
k by 4) and 5). In particular D, = D _ or D, . for k= 1/2 on account
of Theorem 2.1. Assuming that the latter is the case for definiteness, we
shall show that D, = D , for all k. To this end denote by I the identity
operator on L*(R)***!, and by P, , (v = 1/2, - - -, k) the orthogonal projection:
LA(R)*+ ! — {I U.,pe,8d2; g e LX(R, p,m)}. Suppose Dy, = D¢, , for any k' <k
(B > 1/2). As one can see easily, K, ,_,D:_, . is dense in (I — P, )D: _,
in particular (I — P, ,)D: ., C D, by the condition (Q.2). We claim that
D . c D,. For this proof, recall Lemmas 2.8 and 2.9, by which we have

$ra, -ty D) G iz, 8)) = 0 for any a (Rea > 0),
(P Ty A Gz, &)Y #= 0 for some o’ (Rea’ > 0).

Consequently there are an « in {Rew >0} and an f in P,,, D, , such
that G,feD:, and P,,G.f+0. For example, f(c) = J ¥,z &) h(E) de

with & € C(R)' such that <‘1/7k,k(z', DG, j Pean(e, & h(E) d&> = 0. The support
of #, P, .G.f is R, because &, P, , G, f is real analytic on R. Therefore
it is clear that the closed linear span of {[exp itM,] P, . G..f; t € R} coincides
with P, . D. .. Since P, .G, f belong to D%, N D, and (I — P, )D; . C D,,
we conclude that D{ < D,. Next, assuming he D,© T — P, )D. ., we
will show that ke P,,D,, in other words, D, = P, D, ® (I — P, )D; ..
Since D, © (I — Py )D: . is L,-invariant, we may assume 5 e H,(R)**.
Note that P, ,h lies in the domain of L,, because P,, commutes with L,.
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Now K* P, .h = 0. Using this equality, we will show that (I — P, ,)h
= 0. In fact, for any f in D, . N H(R)*' we have
0= <K+,k—1f7 h> = <f: K:‘f,k—l h> = <f: Kf,k—x(l— Pkk)h> .

By the induction hypothesis there results K* . (I — P, )k = 0, which
yields (I — P, ,)h = 0, since #,(I — P,,)h =0. Thus D, =P, D, ® I —
P, )D; .. Finally, we shall prove that P, D, = P, ,D. . by showing the
following equality;

@44) ‘s, I U (e, ) G h(@)de = 0 for (L, @)e R X {Rea > 0},

where A stands for the same as above. Suppose the integral in (2.44)
does not vanish for some (¥, «’). Then, since the integral is a real analytic
function of 2, it is not equal to zero a.e. on R for the «’. In particular

det(rk,+(x), f Ut iz, 2) Gu h(c) df) +0 ae on R.

P, D, being M,-invariant, it follows that

Pk,ka = {J‘ wk,k (ok,lcgdl; ge LR, Pk,k)} .

In view of Lemma 2.9, for any (1, &) ¢ R? and v(< k — 1) there exists an
a (Re « > 0) such that

tsv,+('l) <w2<,u(fa 2) Ga 1I/'k,—k(z.y $)> = <t1/7k,-»(‘f, '2) Ga \l"k,—k(‘n S)> * 0.

Consequently there exists an fe P, D, (CD,) such that P, ,G,fe P, D .,
which contradicts the fact D, = P, D, ® (I — P, ,)D: .. Thus (2.44) holds.
Q.E.D.

By Proposition 2.6 and (2.21), it is not hard to see that, for

f= (v per.hdr, heC®,

v=1/2

we have

E-1
K:‘f,k—lf: ;9 wk—l,upk—l,vrv,r h,d2,
(2.45) v

k
K,.f=3 jzlfpr niti, hoda.

v=1/2
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§ 3. Invariant subspaces common to L,,, M,, and T, (r > 0) in
LX(R)**', ke Z,

The purpose of this section is to determine all nontrivial sequence
{D\}xez, satisfying the conditions (Q.1) and (Q.2) (see the beginning of § 2)
in the case (¢, ¢) = (¢, 0) with either £ = — 12 +ipor —1< £ < —1/2
Throughout § 3 it is assumed that ke Z, and £ = — 1/2 + iy (y > 0) or
— 1< £ < —1/2. Our reasoning will follow almost the same line as in
§ 2, except that the eigenfunction expansion for L, as well as for M, will
be used. This is because in the orthogonal decomposition

3.1) LA(R)*+' = Ker M, ® (Ker M,)*

Ker M, is infinite dimensional, for it contains K, ,_,- - - K, ,Cy(R)'
Let 0,(z, 2) € My 11 414, and @y(z, 2) € M, ., ,, be solutions of the following
equations respectively;

(3-2) (Lk - Z)ék =0 ) z(tgk; tél’c)r:(} = Lig+2y
(3.3) (M, — )0, =0, D0, 2) = L,

where ék(r, 1) denotes the matrix obtained by deleting the 0-th row of
?.(z, 2) (the 0-th row of A, is equal to 0). Since L, + d*/dz® + A2 is a
multiplication by an integrable function, the spectral matrix 3, for L,
relative to the generalized eigenfunction #, has a spectral density 4, on
R, [5, Theorem 15] which fulfils the following conditions i)~iii) (cf. [2,
p. 264]).

1) &, is an M}*,-valued continuous function on R,.

i) A map &, : LA(R)**' — L¥R,, §,) defined by

(3.4) &) = lim. I G5(z, D () dr
N—oo lzl<N
is an onto partial isometry, whose inverse £;': L*(R,, 6,) — L*(R)**! is
given by
(8.5) £7lg(r) = lim. G,(z, D) 5,(2) g(A) da .
N-—oo 0<A<N

i) &,L, &7 g(R) = 2g(2) if 1g(2) belongs to LAR., 6;).

As to the eigenfunction expansion for M,, there exists a spectral
density g, on R* satisfying the following conditions iv)~vi) [5, Theorem
14].

iv) 5, is a M;, -valued continuous function on R*.
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v) A map &, : LYR)**' — L¥(R*, 5,) defined by

(3.6) Zuf@ =1lim.| O Df)de

N—ooo

is an onto isometry with Ker &, = Ker M,. The inverse £ ;' is given by

3.7 Z;1g(x) = Lim. D.(z, 2) p(A) Q) da.

New JN-1<121<N
vi) F.M,7:'g() = 2g80) if 2g(2) lies in L*(R*, p,).

All closed, proper invariant subspaces common to L, and T,(t > 0)
is known [7, Theorem 1.1]. To define these subspaces again, denote by
{&..(z, 2); |v] = 1/4} a fundamental system of an equation (L, — )¢ =0,
each member of which, being holomorphic in D, X C, is assumed to have
the following form near ¢ = 0;

G, = 0™ (}’izo” ) if £+ —1/2,
=0

j ] it 0= —1/2.
Co,-176 = Co,1ps logo + 01/2(2211 20,-1/4,7n ‘7")

B.8) Loy = o (i in @ )

In the above Qp w1y = 1/2 + (¢ 4 1/2) and 2,0 = L. Put §, = (Co,-uu Co,m),
and define X;(2) € M, and s, .(2), r,,.(2) e M,, by

(39) CO(T> 2) = éo(f, Z)XO(Z) sy So,x = X) Vey Toe = (_g 1)30,1 )

where v, = (1 £+ 1,1F 1) or %0, 2) according as £ + — 1/2 or not. Now
we define closed proper subspaces Df ., of L*(R)' by

(3.10) Di. = &{ge LX(R,, 60); 's,. 8(A) = 0 a.e.}.

ProrositioN 3.1. Let D, be a closed proper subspace of L*(R). Then
D, is invariant under the selfadjoint operator L, and the semigroup T,(t > 0)
iff D, coincides with one of D ..

Let us introduce a fundamental matrix 6, = (6,0, 641, - -, 6:.,) Of the
equation (L, — )8 = 0 in order to reduce the spectral density &, to a
simpler one;

0y =&, 0k,v = K+,k—-10k—1,u(0 <v < k) or 0k,k (” = k) )
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where 6, ,(z, 1), being holomorphic in D, x C, satisfies K* ., .0,,=0 too
(notice that the k-th row of 4,, (k> 1) is a solution of a 4-th order
differential equation). Set

(3.11) 9k(7’ 2) = 0,(z, 2) Yk(z) s or = Y, 6, YE.
Then &, and £;! give rise to an onto partial isometry &, : LA(R)**' —
L*(R.,0,) and its inverse &;*: L*(R., o,) — LA(R)**!;
(3.12) 6, f(A) = Lim, 0f(z, Hf(r)dr,
Nooo Jpsi<n
(3.13) Eitglr) = lim. 0.(z, 2) a,(2) g(A) dA.
N-—oo 0<I<N
The eigenfunction expansion for L, relative to 6, has an advantage, be-
cause we have

ProrosiTioN 3.2.

g k,()(l) O
(n<m»=| (D , 0uo) € Mi*, 0., () € M+

0 e
(i) 00, = My, 0xr., where my () = (4K — ) (B + v + D}

Proof. The proof follows the same development of that of Proposition
2.6, using Lemma 3.3 and an equality

K:-t.k—l K+,k—-1 0k~1,»(7, l) = ml;,lv(z) 0k-1,»(7, 2) ’

which is an easy consequence of the fundamental relations (2.1)~(2.3).
Q.E.D.

LEmMmaA 3.3.
(i) Fix positives 2, and ¢. Then there are positives 6 and K such
that
|6(z, )| + 1Gilz, 2)| < K on D.N{Rez| > 1},
16z, D] + |63z, D) < Ke™! on R X {|]2 — 2| < d}.

(ii) Assume 6,(t,2) € My, 4., satisfies the equation (L, — )0, =0
with initial value (‘,,'0})..o = I,.,. Then the statement (i) holds for .

Proof. Put 6, = «('d,,'d;) and V(z) = {2 — k(k + 1) — £(¢ + 1)}/ch?z +
iU, th/chz. Then
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i 0 L\ .
W:( %ﬁa, 50,0 = I,.,.
k _ Ai + V— 2 O k k( ) 4k +2

As is known ([5, § 3], for example), there are M, ,-valued continuous
functions 7.(2) on {Re 2> 0, + Im 2 > 0} such that

V=T, 0 |
0 Lo\ p-1p) — V=1=7d,
TO(_ oy )= J
0 Ny

where J, (n > 1) means the diagonal matrix (g" _(} ) € M,,. Denote by

B.(2) the above matrix, and put 6, , = T.6,. Then 0:,1 satisfies an equ-

ation 0; ., = (B, + R.)d, . for R, = Ti(g 8) T;*. From now on we can
argue as in the proof of Lemma 2.2, Q.E.D.
The subspace Ker M, in L*R)**' can be identified with L*(R,, o, ,) in

a sense.

LemmaA 34. Ker M, = &' LX(R,, 0..0),
where LXR,, g, ,) is regarded as a subspace of L (R, d}).

Proof. First we claim that L, has no eigenvalues. To prove this
assertion by induction, assume it to be true up to £ — 1 (2 > 0), and let
(L, — »f = 0 for some fe Hy(R)**'\{0}. Then (L,_., — )K* ,_,f = 0, which
implies, by the induction hypothesis, that K* ,_,f= 0. Thanks to (2.3),
Mif = 4k¥(k* + )f. If 2+ — k*, then fe (Ker M,)*, hence, rewriting the
equality in L*R*, 3,), f = 0. This is absurd. On the other hand, if 2 =
— K, then M:f =0, which means feKer M,, since M,fe (Ker M,): N
Ker M, = {0}. As will be shown later (Lemma 3.13), an f lying in H,(R)***!
satisfies a condition that K%, ,f= M,f=0 iff f=0. Thus L, has no
eigenvalues. Secondly, we shall show that Ker M, C &;'LXR,, ., to
conclude the proof, for the opposite inclusion is trivial on account of the
relation M, 6, , = 0, which is due to (2.1). Suppose the inclusion relation
holds up to 2 — 1 (> 0). Then it follows from (2.1), (2.3) and Proposition
3.2 that, for any fe Hy(R)**' N Ker M,, (4k* + 4k’L,)f lies in &;* LX(R,, 0.,
in particular in &;'L*R,,0,). Since L, has no eigenvalues, there results
fe &' LYR,,s,). Now using M3i6,,= — 4*(¢* + A6,,, it can be easily
shown that fe &' L(R., 0.,). Since Hy(R)**' N Ker M, is dense in the
L,-invariant subspace Ker M,, the desired inclusion relation holds for k.

Q.E.D.
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For our later use, set (v = + 1/4)

a,, = — k + 1/2 4 (signv) (4 + 1/2),

Cow =Y, = K+,k-1' . 'K+,o Cos s wk,o = ("’k,—ms ‘I"k,m) s
(3-14) Xew = V;k,» = K+,k—1‘ . 'I—{+,o Co,u ’ irk,o = (\;k.—m’ \Dk,lﬂ) ’

Oi0 = 0z on R, while p,, =0 on R\R,,

Nyo = My, on R, while n,, =0 on R\R,.

Next, we intend to reduce the spectral density g, for M, to a simpler
one by the aid of another generalized eigenfunction ¥,,. For this pur-
pose some preliminary considerations are necessary. Let { = &, - -,{ %)
and y = “(x, - - -, x-) be solutions of the following equations (1 # 0);

(3.15) M, - D=0, (8.15) M, —Dx=0.
Then &, (resp. x,) can be represented in terms of {, (resp. y,) and its
derivatives;
k—y k—v-—m
(316) Cv(79 2) = - 2;0 ak,u,m,n(T) Cl(cm)(r) Ar »
——— k—vy k=yv—-m
@16 2o D = 5 3 s BT

Furthermore, it is not hard to verify that ¢, and y, satisfy 2k-th order
differential equations of the following form respectively;

2k

3.17) zo 0" by i (0, DT = 0, bio=1,
I 3k - ~

(3.17) ch=:o 0" byaialo, D1 = 0, ko =1,

where b, , and b, , are holomorphic in D, X C and b, (0, 2) and b, ,(0, 2)
are independent of i. Conversely, if &, and y, solve (3.17) and (3.17)
respectively, then ¢ and y defined by (3.16) and (3.16) satisfy (3.15) and
(3.15) respectively.

Lemma 3.5. The set of indicial roots of the equation (3.17) at ¢ =0
is {ap,;v= =21+ 2, -.., k}, where

a,, = —k — 32+ (signv)(¢ + 1/2 + 2).
The same is true for the set of indicial roots of (3.17).

For the proof we require the following lemma.
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LEmMA 3.6. Let { and y be solutions of (3.15) and (3.15) respectively.
Then ¢ and y solve
(3.18) Kf,k—lc =0, (3.18) I?f.k-lx =0,

respectively, iff ¢, and y, satisfy certain differential equations of the form

2

(3.19) Z a" ck,2—n(a, NP =0, Ceo=1.
n=0

R 2

(3'19) Z a" 6k,2—n(a: Z) XI(cn) =V, Cro = 1,
n=0

where ¢, ., and &, being holomorphic in D. x C, satisfy the following
condition.

ale — 1) + Ck,:(O, N + ck,Z(Oa 2) = (e — O(k,~1)<“ — “k,l)
= ala — 1) + Ek,l(O, Na + ¢, (0, .

Proof. Even though some involved calculation is needed, the proof
of the only if part is straightforward. To prove the if part, note that
when K* ,_, is regarded as a linear map sending solutions of (3.15) into
those of (3.15) with suffix 2 — 1, dim (Ker K* ,_,) > 2. The only if part
means dim (Ker K% ,_,) < 2. Now that dim (Ker K* ,_,) = 2, any solution
¢, of (8.19) gives a solution { of (3.18) defined by the formula (3.16).

Q.E.D.

Proof of Lemma 3.5. It suffices to prove the lemma in the case ¢ +
— 1/2, for b, ,(0,2) and b, ,(0,2) are continuous in 4. We will treat only
(3.17). When k =1, the lemma holds by Lemma 3.6. Assume it to be
valid up to 2 — 1 (> 1). Then (3.15) has solutions {{,,; 1 < v| < k — 1}
such that

(Ck,v)k = G‘”"”(ZO Zhn ke 0'”) ’ Zewor 0,
Py

where (£, ,), denotes the k-th row of £, ,. One can verify this statement
inductively, using Lemma A.1 [7] and (2.1). By Lemma A.l «,, (1 < |y
< k — 1) is an indicial root of the equation (3.17). We claim that all
indicial roots of (38.17) are simple. Otherwise, denote by « a multiple
root. Then by Lemma A.l there exists a solution { of (3.15) such that
©). = o°(log ¢ + ah(o, log ). In particular (K* ._,{);., = 0" (aloge + b
+ oh(s, log 6)), where aocc(e — a;, _;)(a¢ — a,,) and boca + & + 1/2. Since
no solution of (3.17) with suffix £ — 1 contains the logarithmic term, it
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follows that ¢ = @,;,.;. In this case, since b 0, one of «, ., — 1 is an
indicial root of (8.17) by Lemma A.l, which contradicts the induction
hypothesis. Now denote by « the one of unknown roots. Again by Lemma
A.1 there exists a solution { of (8.15) such that (&), = ¢*(1 + ¢h(c, log ¢)).
In particular (K* ,_,8);.; = ¢* ' (@ + dh(s, log ¢)). Since a #= 0, it follows
that « belongs to {1 + a,_;,;1 < |v]| < kB — I{\{a,; 1 < |v| < kB ~— 1}, namely
a =1+ g .-n = O, e Q.E.D.

Now we are in a position to define a fundamental system {v,,; 1 <
[v] < B} of (3.15)

(3.20) Vi, = K+,k-1 Vi1, 1< |V| < k) or Vi, (!Vl =k),

where the k-th row (¥, ..); satisfies (3.19) and is a holomorphic function
on D, X C assuming the following form near ¢ = 0;

(‘["k,ik)k = O'Hk’ﬂ(zgo €, 1,2,k 0'") y €renon = 1 if £+ —1/2,

(‘P‘k,k)k = 0“"’1(}: €,k n,k 0") s Chkog = 1
} if £=—1/2.
(‘!"k,-k)k = (‘I"k,k)k logo + oak’l(nzgl Ce-n.t o'")

Put 7., = (\bk,—u, ‘I"k,») and ¥, , = (wk,ls Ty, Wk,k): and define Z,(2), pl,k(l) €
M, by

(3-21) @k(T, 2) = ?Fl,k(fy 1) Zk(l) ’ L1,z = Zk O ZIT .

Then &, and & ;' give rise to an onto partial isometry &, , : L(R)**! —
LX(R*, p,,) and its inverse Fi}: LA(R*, p, ) — LA(R)*™*';

(3.22) F Q) = lim, Uz, Hf(r)de,
N—oo lel<N
(3.23) grl_,}c g(r) = Lim. wmc(f, 2 Px,k(z) g da.

N-ooo N-12I<KN

Now, repeating the argument in the proof of Proposition 2.6 and using
Lemma 3.8 below, we obtain

ProrosiTiON 3.7.

0e1(2) 0
(1) puuld = o  peD) € M.
0 " pres®)
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(ii) pr, = Ny, pr-1, for 1 <v <k, where n, ()={(k*—v*)(4k*+ 22/L?)} .
Recall the definition of ¥, , and p,, in (3.14), and put

(3 24) ?lrk = wo,o (k = 0) or (wk,o’ wl,k) (k > 0) )
’ Or = Po,0 (k=0) or 0O%x.0 @® O1,% (k>0).
We can safely write L*(R, p,) in place of L*(R*, p,). Keeping this remark

in mind, let us define an onto isometry &%, :L*R)**' — LR, p,) and its
inverse ;! as follows;

(3.25) Zuf@) =1im. | Ui D) de,

(3.26) F;'g(2) = lim. Uz, D) p(2) g(2) da .

Nooo N=12|I<N

By Propositions 3.2 and 3.7 and Lemma 3.4 one should find no difficulty
in verifying that &, and £;' are well-defined and have presupposed
properties. As to the estimates of solutions of the equations (3.15) and

(3.15), we have
LEmMA 3.8.

(1) Fix 2, € R* and ¢ > 0. Then there exist positives § and K such
that

[z, 2)| <K  on D, N{Rec|>1},
|®u(z, )] < Ke'™'  on R X {|a — 4| < 5}.
In particular the 0-th row of @(z, A,) tends to zero as ¢ — =+ oo.
(ii) Let yu(r,2) € My, 0 be a solution of (3.15) with %.(0,2) = L.
Then (i) holds for y,. See (8.3) for the definition of &, and K-
(iii) Fix 2 e{Im2a| < 1/4\{0}. Then there exist positives § and K such
that |9,(z, 2)] < Ke""® on R X {|]2 — 4,| < d}.

Proof. Note that st satisfies certain differential equation (5,’5 =
V(z, )®,. Hence the argument in the proof of Lemma 2.2 is available to
prove (i) and (iii). The proof of (ii) is quite similar. Q.E.D.

We intend to define closed subspaces D: . of L*(R)**' by the aid of

a fundamental system {,,; 1 < |v| < k} of the equation (3.15);
(3.27) \p‘k,u = K+,k—1 T;k—i,u a< v < k) or ‘I’k,u (l”l = k),

where the k-th row (J, ..), satisfies (3.19) and is a holomorphic function
on D, X C with the following form;
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8

n

(\Dk,z;k)k = Gak'il( oék.ik,n,k 0”) s ék,:tk,o,k =1if ¢ *+ -~ 1/2 ’

(‘T’k,k)k = Gak’l(zo €51,k 0'“) s €106 = 1
" if £=—1/2.

(‘pk,-k)k = (Tpk.k)k loge + oak’l(gl €y —ktyn,t on)
Put ﬁk,p = (&k,—n \pk,p)(]- < v < k), and define X,(2) € M, and 8;,.(3), rk,i(z)

eM,, by
Voilr,) =Tz, ) X,(2)  for (r,) e R X R*,
(3.28) Sp,x = Xk V., Ti, o = (_2 (]i>sk,i )

where v, = (1 £ 1,1 F 1) or 0, 2) according as ¢ + — 1/2 or not. Then
recalling the definition of s, . and r, . in (3.9), set

3.29) D..=ZF:"(g)eL(R,p); 's,.8 =0 ae for v=20,1,---, k}.

We are now ready to state our main theorem in this section.

TueoreM 3.1. Let D, be a closed subspace of LX(R)*** (ke Z.). Then
the sequence {D,},c,. is a nontrivial one satisfying the conditions (Q.1) and
(Q.2) iff it coincides with either {D. _} or {D. .} (see Theorem 2.2 for the
definition of a nontrivial sequence).

For the proof we prepare some lemmas. Let {{,,(z,4); 1 < |v| < k} and
{xp.(z, ); 1 < |v| < k} be new fundamental systems of the equations (3.15)
and (8.15) respectively, whose definition runs as follows.

(3.30) Cen = K+,k—1 Ce-1,s aLg | < k) or Ce, (l”l =k),

where the k-th component (&, ..). being holomorphic in D, X C, assumes
the form

(Ck,ik)k = Gak'“(nzlo Zk,ik,n,ko'") y Zueron = 1 if ¢+ — 1/2:

(Ck,k)k = 0""”‘(20 2tk 0'") y Zegon = 1
Fym

. if £=-—1/2.
(Ck,—k)k = (Ck,k)k loga + 0””‘(;1 2k, —kyn,k o'n)
(3—305 Xew = K+,k—1Xk—1,v (1 < |’J| < k) Or Y&, (l"'l = k) ’

where the k-th component (y, ..):, being holomorphic in D, X C, has the
form
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(Xk,ik)k = 0'”’“(20 Xk, kyn,k 0") y Xperon = 1 if £+ —1/2,

(Xk,k)lc = O'ak’k(}_‘_._ Xy -,k O'n) y Xpgon =1
" i} if £=—1/2.
(Xk,—k)k = (Xk,k)k IOgo' + oak'k(zz‘.l Xk, ~k,n,k 0'")

In view of (3.8), (3.16) and (3.16), {,,, and y,., (|v] = 1/4,1, - .., k) have the
following expression near ¢ = 0; when ¢ #+ — 1/2,

(3.31) Ce = 0‘”""(2 Zpn 0"), Yiw = o""'”( Xivon a") ,
n=0 =0

o

while in the case £ = — 1/2, ¢, and y,, (v > 0) having the form as above,
Ce,-, and y,. _, (v > 0) have the following form

Cev = O'uk’"(zk,-u,»o log o + Yie,~v0 T @ h(o, log o)),

(3.32) . 4
Xie,—» = (%, _, 0108 0 + F,_,0 + 0 h(o, l0g 0)) .

We note that z,,_,, = 2,,, and x, _,, = %;,, if £ = — 1/2. The operator
R, has been introduced just before Lemma 2.3.

LEmma 3.9.

(1) Rz =(—1D"2,n» Rixn = (= 1" Xpn »
where v = £ 1/4, + 1, ..., = k or 1/4,1, .- -, k according as ¢ + — 1/2 or
not.

(1) e, )G E(7,8)> =0 for (3,8)e R* X R* and « (Rea > 0),
if one of the following two conditions is satisfied;

L+ —-12, w<0, a,+a.,>—1,

(3.33)
b=—1/2, v/ >0, a,+ a,., > —1.

Of course 2 or & should be positive according as |v| = 1/4 or || = 1/4.

Proof. Put zk,v(o) = D im0 Zipn 0" and x,, = D 70 %,,,0" (0 <v < kif
4 = —1/2). We shall show that

(3-34) R, zk,u(o') = zk,u(a) ’ 7334) R, Xip = xk,v(a) .

Only the proof of (3.34) for v > 0 will be given. First, let v = 1/4. Since
R,L(0o)R, = L,(¢) by Lemma 2.3, R{,,o<{,,. In particular Rz, .(¢) =
¢z, ,(¢) for some constant c¢. Thus ¢ =1, since 2,,,l. Suppose (3.34)
is true up to k for v = 1/4. Keeping in mind that R,, K,  (o)R,=
— K, (o), let R,,, operate to the both sides of {,,,, = K, ;{;, to obtain
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(— D) g™ Ry 2440,(0) = — (— 1)™”¢,,,,. Therefore (3.34) holds for
v =1/4. Secondly, let v > 1. Since R.M,(0)R, = M,(0), there exists a
constant ¢, such that Rz, (o) = c¢,2,,(0). As one can verify easily, R,z ,,
= 21,0, Which yields ¢, = 1. As in the case v = 1/4, (3.34) with suffix
(B + 1,v) holds if (3.34) is true. It remains, therefore, to prove that
Ry2411,641(0) = Z441,141(0) under the condition that (3.34) is valid for any

vy >1. Since R.K% (o)Ry,, = — K* (o), the equality R, 2401, 144(0) =
Ci+1Zi41,1+1(0), together with K% Civt,ie1 o€ Coer yields ¢, (— D051 K%,
X Crrrper = — (— D™  K* Lot 1r1, namely c,,; = 1. This completes the

proof of (i). (i) To begin with, on an additional condition «, , + a; , >
— 1, ‘%z, D) & (z, &) can be expanded as Y7 ,c,o**' by virtue of (i).
Consequently the integral in question vanishes by Proposition 1.2 (i) [7].
Now we may assume that «;, + «,, = — 1. Again by (i) it is enough
to show that ‘x;,,2;,,=0. Note that 2, .., and x,,.,,, are proportional
to 2, .10 and x,,.,, respectively, since so they are when k& = 1. Without
loss of generality, let |v|,|v'] > 1. It is clear that ‘x,,,2,,,0 = 0for k = 1.
Assume that this equality holds up to 2 — 1 (8 > 1). Since a;,_; + @
= 2k — 8, either y;, = K, y_1 %1, O &w = K, 4181, For the sake of
definiteness suppose the latter is the case. Then by Lemma 3.10 below
the coefficient of o' of ’y ¢, is equal to the corresponding one of
‘(K. x-1Xx,)Ce-1,,, Which can be represented as (2 a,xi-1,.)ls-1,,. Here
27 stands for >, or > k!, according as v<<0 or v > 0. By the
induction hypothesis ‘x; , 2,0 = 0. Q.E.D.

LEmma 3.10. Let C and D be constant matrices in M, ,, and x(c)
(resp. 2(0)) be M, (resp. M, ,)-valued functions of the form

(o) = a«(i x, o") , 20) = oﬂ(i z, o") with @ + 8= 0.
n=0 n=0
Then the coefficient of o7 of ‘x(¢)(Cd/ds + Do*)2(c) is equal to the co-
efficient of o' of {(— ‘Cd/de + ‘Do) x(0)}2(0).

Proof. This is because ‘x,(fC + D)z, = {(— a'C + ‘D) x,}2,. Q.E.D.
The next lemma is concerned with the if part of Theorem 3.1,

Lemma 3.11. Assume that, for any (, &) € R*XR*, a(Rea > 0) and
v,V with either v <0 or v,y >0 according as £+ — 1/2 or not, the
following equality holds for any k< k' (e Z.);

(3.35) k7 8) G Ga(r, 6)) = 0.
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(i) The equality (3.35) holds even for k =k + 1.

(ii) Di . (k< k) are invariant under the selfadjoint operators L, and
M, and the semigroup T, (t > 0). In particular so are Di. ., . by (i).

To be precise, in (3.35) 2 or & should be positive according as |v| = 1/4
or V| = 1/4.

Proof. The proof is much like that of Lemma 2.8, and will be
sketched briefly. (ii) Using relations L o(z, 2) = 2T, «(z, 2) and L 7T, (z, 2)
= {2/(4*) —}¥, (7, 1), we can show that L, and M, leave D . invariant.
It remains to prove the T,-invariance of Di . (t > 0). By the assumption
the integral (¥ (r, ) G. ¥y .(z, &) () = 0, - - -, k) takes the form (g g)
or I 8 according as ¢ + — 1/2 or not. Consequently a matrix g, ,(2)
= p,,()'X;%(2) turns out to be of the form 8 g) or (g :) according as
4 #+ — 1/2 or not (cf. the proof of Theorem 1.1 [7]). Now it follows that,
for any h, € C(R*)! (C(R,)! for v/ = 0) and « (Re « > 0), the integral

5, [ V36,0 G| 0.5, 9 01O 1 O (O di ) de

vanishes. This means that G, sends a dense set of D., into D... In
other words T, (¢ > 0) leaves D; , invariant. (i) Thanks to Lemma 3.9,
it suffices to prove {('yi.i., G.Cis1,,y = 0 on the additional condition that
Yesiw = Ko w20, and &iyryr = K, . C.. This can be done as in the proof
of Lemma 2.8, since the exact analogues to (2.32)~(2.35) hold. Q.E.D.

The following lemma is concerned with the only if part of Theorem
3.1.

LemMma 3.12.

(1) When ¢+ — 1/2, "%, 11,024,210 F 0. If £ = — 1/2, then 'x, .., X
2,210 = 0 while (*Fr,_1,0 21,0 (Xi1.0 Vi, -1,0) # O.

(ii) For any (1, &) e R* X R* and v,V with w > 0 or w < 0 according
as ¢ + — 1/2 or not, there exists an « (Re a > 0) such that (¥, (7, 2) G, X
V.o (t, ) does not vanish. To be more precise, A or & should be positive
according as |v| = 1/4 or |v| = 1/4.

Proof. (i) We observed before that 2z, ,,.00c 2.0 and % ..,
%y,.10. Let us define sequences {z; .},c,, and {x; .}ic,, so that z,. and
x,,. are proportional to 2, .,,and x,, ., , respectively (¢ > 0) by the following
recursion formulas;
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Zr1,x = [2{ — 2k — 1/2 =+ (Z + 1/2)}Bk - Yk]zk,i) Ro,x = 1 ’

(3.36) ,
xk+1,:t = [_ 2{ - 2k - 1/2 i (ﬂ i 1/2)}Bk - Yk]xk,ty xo,: =1.

Then, repeating the argument in the proof of (2.39), we obtain

K1, s AL 21, e = — (we —RF + R+ 1) + 40 +1) + 1/4 Xy, 220,55

(3.37) 2+ 4(x. — k + 1/2)
Xiat,x Zrere = — 8k + D2k + D(a. — k) (a. — kb — 1/2)txk,:t 2,1

where @, = £ (¢ + 1/2). Now it is clear that ‘x, . 2, ., = 0(k > 0) iff £ =
—1/2. In case £ = — 1/2, let {y,} and {,} be sequences defined by

Yeer ={+ 2(— 2k — 1/2)B, — Yy + 2Biz,, ¥ =0,

5’k+1 = { _ 2( — 2k — 1/2)Bk - Yk}j’k - 2kalc ’ 5’0 = O,

(3.38)

where 2z, = 2,. and %, = x,,,. Since y, oc ¥, 1, and 7, oc J;_,, (B > 0), it
is enough to show the following relations (3.39) and (3.40).

"1 Ve = — 4k(k + 1)(2k + 1)**

(3.39) -ic 1Y+ (B + 1)(2k + )“-'fkyk} k>1).
tyk+l Rpyg = — 4k(k + 1) (Zk + 1) ykzk

(3.40) (Cxey)(5:2) #0 (k= 1,2).

From now on we shall be concerned with ‘j,z,, for the same argument
is applicable to ‘x,y,. By the definition of J, and z, we have

Fer1 Zirr = Ful — 4{(k + 1) — Ai}(zk + 1/2)
(3.41) + (4k + D)(Y¥B, — B.Y,) + YiY,]z,
—‘x [ — 4{(R + 1) — A} (2k + 1/2) — 2B, Y ]z, .

At this stage, notice that

YIT-Bk—BkYkz _(2k+3)Uk, BkYk=(k+1)Uk+Aka)
YiYe=—Vi+ 4k + Dk + 2A, — 4k + 1)(¢ + 1).

Furthermore, x,, 7, and z, satisfy the following relations;

(3.42) {2(—k+1/2A, — ?k}yk + 24,x, =0,
(3.43) 20—k + 1/2)A, + V,}2,. =0,
(8.44) (P 144+ kk+ 1)+ 46+ 1) —24;+ U}z, = 0.

Indeed, (3.42) ~(3.44) follows from the equalities (M, — 2)y,., =0, (M, — )Z,
= 0 and (L, — A)&;,x = O respectively. Since U, = 4,V, — VA, and since
tx. Alz, = 0 (kB > 1) by (3.37), it follows from (3.42) and (3.43) that ‘,U,2,
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o< '§,Ajz,. Now (3.44) yields '§,Alz, = — k{4(k — 1)} '*y,2, (R > 1). Ex-
pressing the right side of (3.41) in terms of ‘¥z, and ‘5,A%z,, we get (3.39).
Finally, it is not hard to verify (3.40) directly. (ii) We shall give the
proof in the case ¢ = — 1/2. The other case is easier to deal with. For
the sake of definiteness assume v << 0 < v'. Then

J"k,v = Z dﬂxk-p s '\l"k,»’ = Z a, zk,# ’
#<0 >0

where only one element of {@_,,, d_,} and {a,;, @,} vanishes. Therefore, in
the neighborhood of ¢ = 0 W, ., takes the form ¢**(cloge + ah (o,
loga)) (c # 0) by virtue of (i). In particular F(2) = 4, (¢, DV (7, &)/
v2(1 — 2), as a function of z = (1 + ish7)/2, can not be holomorphic in
{Rez <1} by Lemma 1.1 (i) [7]. On the other hand, if (4, , G, V¥x.>
vanishes identically in {Re @ > 0}, it follows from Proposition 1.2 (ii) [7]
that F' is holomorphic in {Re z < 1}, which is a desired contradiction.

Q.E.D.

We return to the

Proof of Theorem 3.1. We devide the proof into six parts as in the
proof of Theorem 2.2. Since there arises no difficulty anew until the last
step 6), it suffices to show that a nontrivial sequence {D,} satisfying the
conditions (Q.1) and (Q.2) coincides with one of {D{.,}. For the sake of
definiteness, assume /= —1/2. P,, (v=0,1,---,k) now denotes the
orthogonal projection: L*(R)**! — { .. p:,8082; g LR, pk,,)}. By Propo-
sition 3.1 D, = D (= D _)for k= 0. We shall show that D, = D, , on
the condition that D, = D, , for any k' < k(k>0). Since K, ,_,Di_, .
is dense in (I — P, ,)D. ., the condition (Q.1) yields (I — P, ,)D. . C D,.
In addition, by Lemmas 3.9 and 3.12 we have

CFrei(ty D) Gy iz, §)) = 0 for any a(Rea > 0),
(T, ) G ulz, &)Y = 0 for some o (Re o > 0).

These facts imply the existence of an element f in P, ,D. . such that
P,.G,f+ 0 for the above «. Since %,.P,,G. f(2) is anti-holomorphic
in {{Im 2] < 1/47\{0} by Lemma 3.8 (iii), the closed linear span of {[exp it],]
X P G. f; t € R} coincides with P, D. .. Now D., C D, in view of the
fact that P, , G, feD. . ND, and (I — P, )D.,N D, Asin the proof of
Theorem 2.2, D, = P, D, ® (I — P, )D. .. To conclude the proof, we shall
show P, D, = P, ,D. . by checking the following equality for A in P, ,D,.
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(3.45) ‘sk,+(2)f¥f,ﬁk(r, DG, hx)de =0, (a)eR* X {Rea > 0}.

In fact, if the left side in (3.45) does not vanish for some (1, @), then
P, .D, = {I U.roe:80d2; 8 LA(R, p,c,k)} (see the proof of Theorem 2.2).
Moreover, Lemma 3.12 ensures existence of an o« (Re &’ > 0) such that

6 WL D) Gt (e, ) = [V G, a0,

where v/ = 1/4 or v according as v = 0 or v > 0. Using this fact, it can
be easily shown that there is an f in P, D, such that P, ,G,.fe P, D ..
This contradicts the decomposition D, = P, D, ® (I — P, ,)D.,. Hence
(3.45) holds and we have proved that D, = D; ,. Q.E.D.

The following lemma has been used in the proof of Lemma 3.3.

Lemma 3.13. Let f = fi, fi-1» - - > [-x) = (f,) be absolutely continuous
on R with f,e LXR) (k > 1). If f satisfies
(3.46) M,f=0 and K*,.,f=0,
then f = 0.

Proof. Thanks to the first equality in (3.46), we can represent f,_,
and f,_, in terms of f, and its derivatives. Now the second equality yields
a differential equation of f;; fr -+ 2kthzf;, — (k + £)(k — { — 1)f,/ch’z = 0.
By the change of variable z = (1 + ish)/2, h(2) = f,(zr) satisfies

77 (Zk + 1)(2 - 1/2) / (k + 4)(k -4 — 1) —

(3.47) n + e n + 220z — I)F h=0.

Since the set of indicial roots at 2 =0 is { — (k + 4)/2, — (k — ¢ — 1)/2},
a solution of (3.47) which is holomorphic in a punctured vicinity of z = 0
is a trivial one. The set of indicial roots at z = oo is {0,2k}. If f, =0,
then f = 0 by the first equality in (3.46). To complete the proof, we shall
show that A is a nontrivial holomorphic function in a punctured vicinity
of z =0 unless f, = 0. If f, # 0, h takes the form z **(3.= ¢,z ") (c, # 0)
in some region {|z| > K}. This is because jg[h(z)lzdlz|/Vz(l————z)< oo for
C=1{1/2 + iy;ye R}. Since h is continuous on the line C by the assump-
tion on f,, A is holomorphic in a punctured vicinity of z = 0. Q.E.D.

At the end of this section we remark that
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B-1
Kt,k-lf: Z [/ Ok-1,5Ty, = h,da,
(3.48) v

®
— =
K+,kf_' Z{:} ¢k+1,ppk+1,» ry,. N, h,d2,
=

where

f=3 j Tyopent. hodi  (hye CRY) for v =0, ---, k).
v=0
Indeed, (3.48) is clear by virtue of Propositions 3.2 and 3.7.

§4. P.-invariant subspaces for the representation (U*:, £*°)

In this section all P,-invariant, closed proper subspaces in $* will be
determined. Throughout this section we assume (4,¢) % (0,0). It has
been established in §§ 2~3 that the sequences {D}.}ic,,.. satisfy the
conditions (Q.1) and (Q.2) and that there are no other such nontrivial
sequences (Theorems 2.2 and 3.1). Regarding D;. as a subspace of
Wie = LY(R)**!, set

k
(4.1) 2y = 2. 2. @JpDi.,
k€Z4+e p=—k
where Ji, @ #70, — Wi, is an onto isometry defined by (1.10). Theorem
4.1, together with Theorem 1.1, is our main result in this paper. As to
the representation &,,, of G, see [12, § 11].

THEOREM 4.1. Let 2 be a closed proper subspace of £"*. Then 2 is
P.-invariant iff it coincides with either 2% or 2%-.

THEOREM 4.2. The representations of SL(2, C) realized in 2%* decompose
into irreducible ones as

(4.2) 20 Cunnde  ife=1p2,
neEZ + R
(4.3) f S, dp® 3 @f@z",,,dp ife=0.
R4 n-1€Z 4+ R

Remark. It is known [1] that the representation of SL(2, C) in £*°
is unitary equivalent to the 2-multiple of the representation (4.2) or (4.3)
according as ¢ = 1/2 or ¢ = 0.

Proof of Theorem 4.1. The proof of the only if part is quite the same
as that of the proof of Theorem 1.1. We shall, therefore, show that 2%
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are P,-invariant. Put 2%:, . = J5,'D; . and 2%, = 335, @ 2%, .. Then
2%, . is invariant under U*(¢,0,0,0,e) (£ > 0) by Proposition 1.1 and
Theorem 3.1. In addition 2%: is SU(2)-invariant, for H, and H_ leave it
invariant by (1.8). Therefore it is enough to show that U**(0, w,(2)) keeps
2% invariant. To this end put

‘Di,p,i = ch,:t ) ﬁi,p,:t = ykDic,:t
D, = DR (ke Z. + 1/2) or LXR.) ® IXR)* (ke Z.).

Then a map I, ,,: D, . —>ﬁm defined by
I:t,k,y(rv,:h hk,p,u) = (hk,p,» ri‘ji pk.v r;)

is an onto isometry. Put further

®D,,,

fl

Dy=3@®D;,., Dr=3@D,., D
Ton kg Yo
where 35, = D liezi+e 2aie-re Now in terms of #, and I, ,, we can de-
fine onto isometries ¢ : D% — D% and I%* : D% — D* in a trivial manner.
Denote by D: a dense set {(fzk,y,,) e Dr; fzk,,,,” € C(R*)' or Cy(R.) according
asyv>0o0rv=0, ﬁk,p,, = 0 for sufficiently large k}. Then 2%*, = (I%<F**
X J“‘)‘lf); lies in the domain of F, by Lemma 1.2. Moreover, F, 2%, C
2% in virtue of Lemma 1.2, (2.45) and (3.48). To prove that U*<(0, w(?))
leaves 2%* invariant, it is enough to show that F; restricted to 2%, is
essentially selfadjoint [7, Lemma 2.4]. To complete the proof we shall
show that the image (F, — 2)2%‘, is dense in 2% for any z (Im z + 0).

For this purpose, set

B, . = (I F o do)F (I FoJo) " restricted to D:,

and let us show that the image (13'3,i — 2)D¢ is dense in D*. By virtue
of Lemma 1.2, (2.45) and (8.48), we have the following relations for an
h= (iAz,c,’,,,,y,) e ﬁ; with fz,c,,,,,,,, = 0 for (%, u/,v) #* (k, p,v), where k' and v/
run in Z, + ¢ and {e,e + 1, - - -, &’} respectively.

In case v >0,

Eesns = SEED e 3l 1 (V)] bt

EV((2k + 1))
A A . UZ A
(F3h)k,,u,v(2) = mhhp,»(z) )
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5 7, __ Nkxp+ 1) .
@) B, ) = g LETEED [+ 2 — 9

2y 71/2 A
x {k+ v+ (2N B,
(ﬁ'ﬁ)k,,,,,,v,(l) =0 otherwise.

In case v =0,

5 7 _ NEEY)
(F3h)k—1,p,0(l) = W\/k + th,p,o(x) ’

57 _ N+ ) i
(Fsh)kn,p,o(z) - \/((2’3 + ’2’ i 1)) (k + 1) + th,,‘,o(z) ’

(ﬁaﬁ)k,,#,,v,(z) = 0 otherwise.

(4.5)

In the above 13‘a = ﬁ;,i. From now on we assume ¢ = 0 for the sake of
definiteness. Let f = (f,c,,“,) e D* be orthogonal to the image (FA‘3 — 2)D:.
Then it can be easily seen that

NEED) s
we VEEED) VE + Ufiesno® = 2 Fon®)
t @y VE D e =0 ae on R,
\/m 2 2 2 —2— 2 1/2 .
e[ =+ ()] he
+ ‘U—z — 2* fk,p,n(l)
.7 (2k(k + 1) )

(CETES) .
MR ¢ i ) OBt

2\ 12
X {(k + 17 + <——2——) }] fes1,up(d) = 0 a.e. on R.
Y
Applying the corollary of Proposition 1.6 in the cases (m, p) = (0,2v 1)
and (m, p) = (2, 1/v) to (4.6) and (4.7) respectively, we obtain
fk,#,‘,(l) =0 a.e. on R,, and f,w,,,(l) =0ae.on RO<y<k)

respectively. This means that f = 0. We have shown that F, restricted
to 2%, are essentially selfadjoint in 2%-. Q.E.D.

Proof of Theorem 4.2. Let 2%, . be as in the proof of Theorem 4.1,
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and only the case ¢ = 0 will be discussed. Note first that 2% . = #"%5

N2% (see (1.7) for the definition of #7%%). Moreover 2%, . © F. 2%, , ;.
= Jie! {j Uk PouTe,= P Ty, s he LA(R, p,,,k)}. In fact, the latter, say J%3™*
X Py D¢ ., contains the former on account of (2.48) and (3.48), while the
former contains the latter, because, for any fe H(Ry**'ND; . and h in
D% k1, as well as in the domain of F,, we have

(To f, Fohy = (F_Jb f, Y oc (KK* o f, i hy =0,

that is, because the former contains a dense subset J%4 (H(R)**'N D .)
of Jii ' P, Di.. Now the following unitary equivalence relations are
easy to verify.

D
4.8) 4195 = LoD, = [ 2d2.
4.9) L@ © F Dbty ) = My | P, D, = j@ da.

In view of a general method to decompose a unitary representation of G
into irreducible ones, (4.8) and (4.9) means that the representations in
2% (¢ = 0) contain

j@ &,,dp and JQ Sy, dp
Ry R
respectively [6, § 3]. Q.E.D.
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