On the Foundations of Dynamics.

By Dr Peddie.

Note on a Theorem in connection with the Hessian of a Binary Quantic.

By Charles Tweedie, M.A., B.Sc.

Extension of the "Medial Section" problem (Euclid II :11, VI : 30, etc.) and derivation of a Hyperbolic Graph.

By R. E. Anderson, M.A.
To divide the straight line AB (containing a units) at C so that

$$
\mathrm{AB} \cdot \mathrm{BC}=p . \mathrm{AC}^{2}
$$

§ I.

By algebra, taking the positive root,

$$
\begin{equation*}
\mathbf{A C}=\frac{\mathbf{A B}}{2 p}(\sqrt{4 p+1}-1) \tag{1.}
\end{equation*}
$$

The number p may therefore have any positive value, integral or fractional, and when negative cannot exceed $\frac{1}{4}$. Secondly, AC and AB are incommensurable except when $4 p+1$ is a square :e.g., if $4 p=(q-1)(q+1)$ or if $p=q(q+1), q$ being any positive integer or fraction.

To find the surd-line $\sqrt{4 p+1}$ geometrically is the heart of the problem. Euclid solves it (II :11) when $p=1$ by I: 47, which is also used in Ex. i., ii., iii. following ; but II : 14 will sometimes be easier. Since equation (1.) becomes $\mathbf{A C}=\sqrt{4 p+1}-1$, if $\mathrm{AB}=2 p$, i.e., if the unit line is $\frac{A B}{2 p}$ or $\frac{A M^{*}}{p}$, we construct thus :-
(Figure 1.)
Ex. i. Solve AB. $\mathrm{BC}=3 \mathrm{AC}^{2}$. Here $p=3$, surd $=\sqrt{ } 13$.
Take $\quad A K=\frac{1}{3} A M, A R=2 A K$, and $K S=R M$.
O the point required is determined by a square described on A.S.
(Figure 2.)
Ex. ii. Solve AB. BC $=4 \mathrm{AC}^{2}$. Here $p=4$, surd $=\sqrt{ } 17$.
Take

$$
\mathrm{AK}=\frac{1}{4} \mathrm{AM} \text { and } \mathrm{KS}=\mathrm{KM} .
$$

C the point required is determined by square on AS.
(Figure 3.)
Ex. iii. Solve AB. $\mathrm{BC}=7 \mathrm{AC}^{2}$. Here $p=7$, surd $=\sqrt{ } 29$. Take $A K=\frac{1}{8} \mathrm{AM}, \quad \mathrm{AR}=2 \mathrm{AK}, \quad \mathrm{AT}=5 \mathrm{AK}, \quad$ and $\quad \mathrm{KS}=\mathrm{RT}$. \mathbf{C} is determined by square on $A S$.
(Figure 4.)
Ex. iv. Solve $\mathrm{AB} . \mathrm{BC}=\mathrm{AC}^{2}$ by II: 14. Here $p=1$, surd $=\sqrt{ } 5$. Produce AB both ways till $\mathrm{AK}=\mathrm{AM}$ the unit, and $\mathrm{AH}=5 \mathrm{AM}$ $\therefore \mathrm{AR}=\sqrt{ } 5$ if $\perp \mathrm{AB}$ and limited by $\frac{1}{2} \odot$ on $\mathrm{KH}: \therefore$ if $\mathrm{KC}=\mathrm{AR}$, C gives the medial section of $A B$; and if $K C^{\prime}=K C, C^{\prime}$ is point of external section, corresponding to the negative root of equation (1.).
(Figure 5.)
Ex. v. Solve $\mathrm{AB} . \mathrm{BC}=\frac{2}{3} \mathrm{AC}^{3} . \quad$ Here $p=\frac{2}{3}$, surd $=\sqrt{\frac{11}{3}}=\frac{2}{3} \sqrt{ } 33$. Produce $A B$ both ways. In $A B$ produced take $A K=\frac{3}{2} A M$, $\mathrm{AW}=3 \mathrm{AK}$, and $\mathrm{AY}=11 \mathrm{AK} . \quad \therefore \mathrm{AR}=\sqrt{3 \times 11}$ if $\perp \mathrm{AB}$ and limited by $\frac{1}{2} \odot$ on WY. Hence if $K C=\frac{1}{3} A R, C$ is the point required; and if $\mathrm{KC}^{\prime}=\mathrm{KC}, \mathrm{C}^{\prime}$ is the point of external section, as in Ex. iv. above.

Thus for a given value of p the surd number $\sqrt{4 p+1}$ though intractable to Arithmetic can always be found by Geometry. In certain cases lower surds should be subsidised: thus for $\sqrt{33}$ (just found by II : 14) we may say $33=5^{2}+(2 \sqrt{2})^{2}$.
Similarly $\quad 21=4^{2}+(\sqrt{ } 5)^{2} ; \quad 181=13^{2}+(2 \sqrt{ } 3)^{2}$.

[^0]§ II.

(Figure 6.)

For the general case of equation (1.), the surd line $\sqrt{4 p+1}$ can be expressed either by I:47, since $4 p+1=(2 \sqrt{p})^{2}+1^{2}$, or by II: 14. Thus, by the latter, produce AB both ways till
$\mathrm{AK}=$ the unit $=\frac{\mathrm{AB}}{2 p}$ and $\mathrm{BH}=\mathrm{BK}$, so that $\mathrm{AH}=4 p+1$ units. $\therefore \mathrm{AR}=\sqrt{4 p+1}$ if $\perp \mathrm{AB}$ and limited by $\frac{1}{2} \odot$ on KH . Hence if $K C=K C^{\prime}=A R, C$ and C^{\prime} are the required points of section.
(Figure 7.)
Mr G. Duthie suggests a third general construction for eq. (1.). "Produce AB till $\mathrm{BK}=\mathbf{M B}=\mathbf{M A}$, and take $\mathrm{MH}=\frac{\mathrm{AM}}{p}$: with centre K and radius $K M$ describe \odot MQW. Finally take $H R=H Q$ the tangent from H . Then if $\mathrm{AC}=\mathrm{MR}, \mathrm{C}$ is the point required."

As shown above, C and C^{\prime} are two points in $A B$ or its production which determine the roots of the original quadratic. Thus, if $\mathrm{AR}=\frac{\mathrm{AB}}{2_{p}}$, then
(a.), when p is positive, with limits ∞ and 0 ,

$$
\mathbf{A C}=\mathbf{A R}(\sqrt{1+4 p}-1), \text { and } \mathbf{A C}^{\prime}=-\mathbf{A R}(\sqrt{1+4 p}+1)
$$

\therefore as AR grows continuously from 0 to ∞, so C and C^{\prime} move further apart from A in opposite directions;
(β.), when p is negative, with limits $-\frac{1}{4}$ and $-\frac{1}{\infty}$,

$$
\mathbf{A C}=\mathbf{A R}(1-\sqrt{1+4 p}), \text { and } \mathbf{A C}^{\prime}=\mathbf{A R}(1+\sqrt{1+4 p})
$$

\therefore as AR grows continuously from $-2 a$ to $-\infty$, so C and C^{\prime} move in opposite directions further and further apart from Z which is a point in AB produced positively so that $\mathrm{AZ}=2 a$.
$(\gamma$.$) . At any instant both for (a.) and (\beta$.), the distance $\mathrm{CC}^{\prime}=$ twice the surd-line; and, numerically, $A C^{\prime}-A C=2 A R$.

We may note also from equation (1.) that generally $\frac{\mathrm{AO}}{\mathrm{AM}}=\frac{\sqrt{4 p+1}-1}{p} ; \quad \therefore \mathrm{AC} \lessgtr \mathrm{AM}$ according as $\sqrt{4 p+1} \lessgtr 1+p$, or as $2 \lessgtr p$: [Thus $\mathrm{AC}=\frac{1}{2} \mathrm{AB}$ when $p=2 ; \mathrm{AO}>\frac{1}{2} \mathrm{AB}$ when $p<2$ as in Euclid II: 11 and Ex. v. above; $\mathrm{AC}<\frac{1}{2} \mathrm{AB}$ when $p>2$ as Ex. i., ii., iii.],
§III.
(Figure 8.)
To show graphically the variation of the segment AC , as obtained by equation (1.), I have placed $P_{1} R_{1} \quad P_{2} R_{2} \quad P_{3} R_{3} \ldots$ perpendicular to the fixed line $A B$, so that

$$
P_{1} \mathbf{R}_{1}=A R_{1}(\sqrt{ } / 5-1), \quad P_{3} R_{2}=A R_{2}(\sqrt{ } 9-1), \quad P_{3} R_{3}=\text { etc., etc., }
$$

and generally $\mathrm{PR}=\mathrm{AR}(\sqrt{4 p+1}-1)$, where $\mathrm{PR}=\mathrm{AC}, \mathrm{AR}=\frac{\mathrm{AB}}{2 p}$

$$
\begin{align*}
& \therefore \quad \mathrm{PR}+\mathrm{AR}=\mathrm{PS}=\mathrm{AR} \sqrt{4 p+1}=\frac{\mathrm{AS}}{\sqrt{2}} \sqrt{4 p+1} \\
& \left.\begin{array}{rl}
\therefore \quad 2 \mathrm{PS}^{2} & =\mathrm{AS}^{2}(4 p+1) \\
& =\mathrm{AS}(2 a \sqrt{ } 2+\mathrm{AS})
\end{array}\right\} \text { since } 4 p=\frac{2 a}{\mathrm{AR}}=\frac{2 a \sqrt{ } 2}{\mathrm{AS}}, \\
& =A S . A^{\prime} S \text {, } \tag{3.}
\end{align*}
$$

Hence for P, any point in the locus, the square of PS has a constant ratio to the rectangle AS. A'S, and that is the geometrical property of a Hyperbola having A'OASE as a diameter and PS an ordinate to it. Thus $P S=S Q$, $F A D$ is a tangent at A, $F^{\prime} A^{\prime}$ another at A^{\prime}, and O is the centre of the curve.

With reference to the original problem, PS (or SQ) is the surd-line $\sqrt{4 p+1}, \mathrm{AR}$ (or RS) the unit-line, and the two roots of equation (1.) are PR and RQ. If, for example,

$$
\left.\begin{array}{rl}
p=1, \mathrm{SP} & =\mathrm{SQ}=\sqrt{ } 5 \\
\mathrm{PR} & =\sqrt{5}-1=\mathrm{AC}, \text { internal segment } \\
\mathrm{RQ} & =-\sqrt{5}-1=\mathrm{AO}^{\prime} \text {, external segment }
\end{array}\right\} \begin{aligned}
& \text { cf. Ex. iv. of } \S \mathrm{I} . \\
& \text { and } \text { Euclid } \mathrm{II}: 11 .
\end{aligned}
$$

The ordinate at P^{\prime} if produced upward to meet the branch $P^{\prime} V^{\prime} A^{\prime}$ in Q^{\prime}, and downward to meet $A B$ in R^{\prime}, gives $P^{\prime} R^{\prime}=A C$ and $\mathbf{Q}^{\prime} \mathbf{R}^{\prime}=\mathbf{A C}$, for p negative. The Euclidian solution therefore of this case must place C and O^{\prime} in $A B$ produced through B, as already shown, §II.

§IV.

The Cartesian equation to this Hyperbola is at once derived from equation (3.) thus, choosing OFG as the axis of x,
$\left.\begin{array}{rl}2 \mathrm{PS}^{2} & =\mathrm{AS} . \mathrm{A}^{\prime} \mathrm{S}=(\mathrm{OS}-a \sqrt{ } 2)(\mathrm{OS}+a \sqrt{ } 2) \\ & =\mathrm{OS}^{2}-2 a^{2} \\ \therefore \quad 2(x+y)^{2} & =2 x^{2}-2 a^{2}\end{array}\right\}$ putting $x+y$ for PS and $x \sqrt{ } 2$ for OS.
The form of this equation shows that one asymptote is parallel to the axis of $x \therefore$ OFG is that asymptote. But $y^{2}+2 x y=y(y+2 x)$, $\therefore y+2 x=0$ is the other asymptote, viz., the line OD. Thus V'OV bisecting the angle FOD is the transverse axis of the Hyperbola, V and V^{\prime} are the vertices.

Finally, referring the curve to its own axes, equation (4.) becomes

$$
\begin{equation*}
\frac{x^{2}}{\sqrt{ } 5+1}-\frac{y^{2}}{\sqrt{ } 5-1}=\frac{a^{2}}{2}, \quad \text { or } \quad\left(\frac{x}{h}\right)^{2}-\left(\frac{y}{k}\right)^{2}=1 \tag{5.}
\end{equation*}
$$

where

$$
\begin{aligned}
& h^{2}=\mathrm{OV}^{2}=\frac{a^{2}}{2}(\sqrt{ } 5+1)=2 a^{2} \cos \frac{\pi}{5} \\
& k^{2}=\mathrm{OW}^{2}=\frac{a^{2}}{2}(\sqrt{ } 5-1)=2 a^{2} \cos \frac{2 \pi}{5}
\end{aligned}
$$

Thus $h k=a^{2}=\frac{1}{4} \mathrm{LL} \mathrm{L}^{\prime}$, where L is the lat. rectum of the curve, and L ' that of its conjugate. Hence

$$
\mathrm{L}=4 k \cos 72^{\circ}
$$

A curious property therefore of our Hyperbola is that

$$
\begin{equation*}
\frac{\mathbf{L}}{\mathbf{W} \mathbf{W}^{\prime}}=\frac{\mathbf{W} \mathbf{W}^{\prime}}{\mathbf{V V ^ { \prime }}}=\frac{\nabla \mathbf{V}^{\prime}}{\mathbf{L}^{\prime}}=2 \cos 72^{\circ} \tag{6.}
\end{equation*}
$$

In other words, an isosceles Δ satisfying Euclid IV: 10 is found by taking the two terms of any one of those three fractions, and making the numerator the base.

Another singular property, easily deduced, is that

$$
\begin{equation*}
r^{\frac{2}{3}}+a^{\frac{2}{3}}=(4 \mathrm{~L})^{\frac{2}{3}}, \tag{7}
\end{equation*}
$$

where $r=$ radius of curvature at the extremity of L the latus rectum.

[^0]: * In the diagrams M is the mid-point of $A B$ and in Figs. 1, 2, 3, $S A K$ is $\perp A B$.

