
JFP 18 (3): 285–331, 2008. c© 2007 Cambridge University Press

doi:10.1017/S0956796807006405 First published online 6 July 2007 Printed in the United Kingdom

285

Lightweight family polymorphism�

CHIERI SAITO and ATSUSHI IGARASHI

Kyoto University, Japan

(e-mail: {saito,igarashi}@kuis.kyoto-u.ac.jp)

MIRKO VIROLI

Alma Mater Studiorum – Università di Bologna a Cesena, Italy

(e-mail: mirko.viroli@unibo.it)

Abstract

Family polymorphism has been proposed for object-oriented languages as a solution to

supporting reusable yet type-safe mutually recursive classes. A key idea of family poly-

morphism is the notion of families, which are used to group mutually recursive classes. In

the original proposal, due to the design decision that families are represented by objects,

dependent types had to be introduced, resulting in a rather complex type system. In this

article, we propose a simpler solution of lightweight family polymorphism, based on the idea

that families are represented by classes rather than by objects. This change makes the type

system significantly simpler without losing much expressive power of the language. Moreover,

“family-polymorphic” methods now take a form of parametric methods; thus, it is easy to

apply method type argument inference as in Java 5.0. To rigorously show that our approach

is safe, we formalize the set of language features on top of Featherweight Java and prove that

the type system is sound. An algorithm for type inference for family-polymorphic method

invocations is also formalized and proved to be correct. Finally, a formal translation by

erasure to Featherweight Java is presented; it is proved to preserve typing and execution

results, showing that our new language features can be implemented in Java by simply

extending the compiler.

1 Introduction

1.1 Mismatch Between Mutually Recursive Classes and Simple Inheritance

It is fairly well-known that, in object-oriented languages with simple name-based type

systems such as C++ or Java, mutually recursive class definitions and extension by

inheritance do not fit very well. Since classes are usually closed entities in a program,

mutually recursive classes here really mean a set of classes whose method signatures

refer to each other by their names. Thus, different sets of mutually recursive classes

necessarily have different signatures, even though their structures are similar. On the

other hand, in C++ or Java, it is not allowed to inherit a method from the superclass

with a different signature (in fact, it is not safe, in general, to allow covariant change

� A preliminary summary appeared in the proceedings of the third Asian Symposium on Programming
Languages and Systems (APLAS2005), volume 3780 of Lecture Notes in Computer Science, Tsukuba,
Japan, November 2005, Springer-Verlag, pp. 161–177.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

286 C. Saito et al.

of method parameter types). As a result, deriving subclasses of mutually recursive

classes yields another set of classes that do not refer to each other and, worse, this

mismatch is often resolved by typecasting, which is a potentially unsafe operation

(not to say unsafe, an exception may be raised). A lot of studies (Bruce et al. 1998;

Bruce & Vanderwaart 1999; Thorup & Torgersen 1999; Ernst 2001; Bruce 2003;

Odersky et al. 2003; Jolly et al. 2004; Nystrom et al. 2004; Ernst et al. 2006) have

been recently done to develop a language mechanism with a static type system

that allows “right” extension of mutually recursive classes without resorting to

typecasting or other unsafe features.

1.2 Family polymorphism

Erik Ernst (2001) has recently coined the term “family polymorphism” for a

particular programming style, using virtual classes (Madsen & Møller-Pedersen

1989) of gbeta (Ernst 1999), and applied it to solve the above-mentioned problem

of mutually recursive classes.

In his proposal, mutually recursive classes are programmed as nested class

members of another (top-level) class. These member classes are virtual in the

same sense as virtual methods—a reference to a class member is resolved at run-

time. Thus, the meaning of mutual references to class names will change when a

subclass of the enclosing class is derived and these member classes are inherited.

This late-binding of class names makes it possible to reuse implementation without

the mismatch described above. The term “family” refers to such a set of mutually

recursive classes grouped inside another class. He has also shown how a method

that can uniformly work for different families can be written in a safe way: such

“family-polymorphic” methods take as arguments not only instances of mutually

recursive classes but also the identity of the family that they belong to, so that

semantical analysis (or a static type checker) can check if these instances really

belong to the same family.

Although family polymorphism seems very powerful, we feel that there may be

a simpler solution to the present problem. In particular, in gbeta, nested classes

really are members (or, more precisely, attributes) of an object, so types for mutually

recursive classes include as part object references, which serve as identifiers of

families. As a result, the semantical analysis of gbeta essentially involves a dependent

type system (Odersky et al. 2003; Aspinall & Hofmann 2005; Ernst et al. 2006),

which is rather complex (especially in the presence of side effects).

1.3 Contributions of this article

We identify a minimal, lightweight set of language features to solve the problem of

typing mutually recursive classes, rather than introduce a new advanced mechanism.

As done elsewhere (Jolly et al. 2004), we adopt what we call the “classes-as-families”

principle, in which families are identified with classes, which are static entities,

rather than with objects, which are dynamic. Although it loses some expressive

power, programming extensible mutually recursive classes is still possible. Moreover,

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 287

for type safety reasons, we take the approach that inheritance is not subtyping and

regard all types for nested classes as exact, in the sense of Bruce et al. (1998), while

admitting subtyping for top-level types. These decisions simplify the type system a

lot, making much easier a type soundness argument and application to practical

languages such as Java. As a by-product, we can view family-polymorphic methods

as a kind of parametric methods found, e.g. in Java generics and find that the

technique of type argument synthesis as in GJ and Java 5.0 (Bracha et al. 1998;

Odersky 2002) can be extended to our proposal as well.

Other technical contributions of the present article can be summarized as follows:

• simplification of the type system for family polymorphism with the support

for family-polymorphic methods;

• a rigorous discussion of the safety issues by the development of a formal

model called .FJ (read “dot FJ”) of lightweight family polymorphism, on top

of Featherweight Java (FJ) (Igarashi et al. 2001) with a correctness theorem

of the type system;

• an algorithm of type argument synthesis for family-polymorphic methods and

its correctness theorem; and

• a formal translation of .FJ to FJ, which is proved to preserve typing and

semantics.

This article adds the formal translation and its correctness proof as a new contribu-

tion to the conference version (Igarashi et al. 2005).

We would like to emphasize that one of our main aims is to identify a minimal

set of features to describe typical examples of family polymorphism, rather than to

solve a wider range of problems, as tackled in the literature (Ernst 1999; Odersky

et al. 2003; Jolly et al. 2004). As a result, our language has several restrictions not

found in those proposals. Most restrictions, however, have been relaxed in succeeding

work (Igarashi & Viroli 2007), which will be mentioned in Section 6.

1.4 The rest of this article

After Section 2 presents the overview of our language constructs through the

standard example of graphs, Section 3 formalizes those mechanisms as the calculus

.FJ and discusses its type safety. Then, Section 4 formalizes the translation of .FJ

into FJ as a model of erasure compilation of lightweight family polymorphism

to Java with correctness theorems. After Section 5, which discusses related work,

Section 6 concludes.

2 Programming lightweight family polymorphism

We start by informally describing the main aspects of the language constructs we

study in this article, used to support lightweight family polymorphism. To this end,

we consider as a reference the example in Ernst (2001), properly adapted to fit our

“classes-as-families” principle.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

288 C. Saito et al.

This example features a family (or group) Graph, containing the classes Node and

Edge, which are the members of the family, and are used as components to build

graph instances. As typically happens, members of the same family can mutually

refer to each other: in our example, for instance, each node holds a reference to

(an array of) connected edges, while each edge holds references to its source and

destination nodes. Now suppose that we are interested in defining a new family

ColorWeightGraph, used to define graphs with colored nodes and weighted edges—

nodes and edges with the new fields called color and weight, respectively—with

the property that the weight of an edge depends on the color of its source and

destination nodes. Note that in this way the members of the family Graph are not

compatible with those of family ColorWeightGraph in the sense that an edge of a

ColorWeightGraph cannot be used in a plain Graph. Nevertheless, to achieve code

reuse, we would like to define the family ColorWeightGraph as an extension of

the family Graph, and declare a member Node that automatically inherits all the

attributes (fields and methods) of Node in Graph, and similarly for member Edge.

Moreover, as advocated by the family polymorphism idea, we would like classes

Node and Edge in ColorWeightGraph to mutually refer to each other automatically,

as opposed to those solutions exploiting simple inheritance where class Node of

ColorWeightGraph would refer to Edge of Graph—thus requiring extensive uses of

typecasts.

2.1 Nested classes, relative path types, and extension of families

This graph example can be programmed using our lightweight family polymorphism

solution as reported in Figure 1, whose code adheres to a Java-like syntax—which

is also the basis for the syntax of the calculus .FJ we introduce in Section 3.

The first idea is to represent families as (top-level) classes, and their members

as nested classes. Note that in particular we relied on the syntax of Java static

member classes, which provide a grouping mechanism suitable to define a family. In

spite of this similarity, however, we shall give a different semantics to those member

classes, in order to support family polymorphism. The types of nodes and edges of

class (family) Graph are denoted by notations Graph.Node and Graph.Edge, which

we call absolute path types. Although such types are useful outside the family to

declare variables and to create instances of such member classes, we do not use them

to specify mutual references of family members. The notations .Node and .Edge are

instead introduced for this purpose, meaning “member Node in the current family”

and “member Edge in the current family,” respectively. We call such types relative

path types. A similar distinction between absolute and relative is found, for example,

in UNIX file systems.

The importance of relative path types becomes clear when introducing the concept

of family extension. To define a new family ColorWeightGraph, the new class

ColorWeightGraph is declared to extend Graph and provide the member classes

Node and Edge. Such new members, identified outside their family by the absolute

path types ColorWeightGraph.Node and ColorWeightGraph.Edge, will inherit all

the attributes of classes Graph.Node and Graph.Edge, respectively. In particular,

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 289

class Graph {

static class Node {

.Edge[] es=new .Edge[10]; int i=0;

void add(.Edge e) { es[i++] = e; }}

static class Edge {

.Node src, dst;

void connect(.Node s, .Node d) {

src = s; dst = d; s.add(this); d.add(this);

}

}

}

class ColorWeightGraph extends Graph {

static class Node { Color color; }

static class Edge {

int weight;

void connect(.Node s, .Node d) {

weight = colorToWeight(s.color, d.color);

super.connect(s, d);

}

}

}

Graph.Edge e; Graph.Node n1, n2;

ColorWeightGraph.Edge we; ColorWeightGraph.Node cn1, cn2;

e.connect(n1, n2); // 1: OK

we.connect(cn1, cn2); // 2: OK

we.connect(n1, cn2); // 3: compile-time error

e.connect(n1, cn2); // 4: compile-time error

<G extends Graph>

void connectAll(G.Edge[] es, G.Node n1, G.Node n2){

for (int i: es) es[i].connect(n1,n2);

}

Graph.Edge[] ges; Graph.Node gn1,gn2;

ColorWeightGraph.Edge[] ces; ColorWeightGraph.Node cn1,cn2;

connectAll(ges, gn1, gn2); // G as Graph

connectAll(ces, cn1, cn2); // G as ColorWeightGraph

connectAll(ces, gn1, gn2); // compile-time error

Fig. 1. Graph and ColorWeightGraph classes.

ColorWeightGraph.Edge will inherit method connect() from Graph.Edge, and

can therefore override it as shown in the reference code, and even redirect calls

by the invocation super.connect(). However, since connect() is declared to

accept two arguments of relative path type .Node, it will accept a Graph.Node

when invoked on a Graph.Edge, and a ColorWeightGraph.Node when invoked on

a ColorWeightGraph.Edge. Notice that relative path types are essential to realize

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

290 C. Saito et al.

family polymorphism, as they guarantee members of the extended family to mutually

refer to each other, and not to refer to a different (i.e., super) family.

2.2 Member class inheritance is not subtyping

This covariance schema for relative path types—they change as we move from a

family to a subfamily—resembles and extends the construct of ThisType (Bruce

& Foster 2004), used to make method signatures of self-referencing classes change

covariantly through inheritance hierarchies. As well known, however, such a co-

variance schema prevents inheritance and substitutability from correctly working

together as happens in most of common object-oriented languages. In particular,

when a relative path type is used as an argument type to a method in a family

member, as in method connect() of class Edge, they prevent its instances from

being substituted for those in the superfamily, even though the proper inheritance

relation is supported. The following code fragment reveals this problem:

// If ColorWeightGraph.Edge were substitutable for Graph.Edge

Graph.Edge e = new ColorWeightGraph.Edge();

Graph.Node n1 = new Graph.Node();

Graph.Node n2 = new Graph.Node();

e.connect(n1,n2); // Unsafe!!

If class ColorWeightGraph.Edge could be substituted for Graph.Edge, then

connect() would be invoked on the object (e) of ColorWeightGraph.Edge with

the objects (n1 and n2) of Graph.Node as arguments. This invocation would lead to

an attempt to access field color on n1 and n2, which do not have such a field!

To prevent this form of unsoundness, our lightweight family polymorphism solu-

tion disallows such substitutability by adopting an “inheritance-without-subtyping”

approach for family members. (Subtyping between top-level classes is retained as

usual.) Applied to our graph example, it means that while ColorWeightGraph.Node

inherits all the attributes of Graph.Node (for ColorWeightGraph extends Graph),

ColorWeightGraph.Node is not a subtype of Graph.Node. In other words,

Graph.Node and Graph.Edge (as well as ColorWeightGraph.Node and

ColorWeightGraph.Edge) are exact types (Bruce et al. 1998). As a result, we can

correctly typecheck the invocation of methods in member classes. In the client code

in the middle of Figure 1, the first two invocations are correct as node arguments

belong to the same family of the receiver edge, but the third and fourth are (statically)

rejected, as we are passing as an argument a node belonging to a family different

from the receiver edge: in other words, Graph.Node and ColorWeightGraph.Node

are not in the subtype relation.

2.3 Family-polymorphic methods as parametric methods

To fully exploit the benefits of family polymorphism, it should be possible to

write so-called family-polymorphic methods—methods that can work uniformly over

different families. As an example, we consider the method connectAll() that takes

as input an array of edges and two nodes of any family and connects each edge

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 291

to the two nodes. In our language this is realized through parametric methods as

shown at the bottom of Figure 1. Method connectAll() is defined as parametric

in a type G—which represents the family used for each invocation—with upper-

bound Graph and correspondingly the arguments are of type G.Edge[], G.Node and

G.Node, respectively. As a result, in the first invocation of the example code, by

passing edges and nodes of family Graph, the compiler would infer the type Graph

for G, and similarly in the second invocation infers ColorWeightGraph. Finally, in

the third invocation no type can be inferred for G, since types G.Edge and G.Node

do not match ColorWeightGraph.Edge and Graph.Node, respectively, for any G.

It may be worth noting that we do not allow relative path types to appear

directly in a top-level class: for instance, .Node cannot appear in Graph or

ColorWeightGraph. This is because allowing both subtyping, which is used to

realize family-polymorphic methods, and relative path types in a top-level class

would also lead to unsoundness, as the following code fragment, which is similar to

the previous one, shows:

// If Graph had a field f of type .Edge

Graph g = new ColorWeightGraph();

Graph.Edge e = g.f;

Graph.Node n1 = new Graph.Node();

Graph.Node n2 = new Graph.Node();

e.connect(n1,n2); // Unsafe!!

3 .FJ: A formal model of lightweight family polymorphism

In this section, we formalize the ideas described in the previous section, namely,

nested classes with simultaneous extension, relative path types, and family-poly-

morphic methods. This is realized through a small calculus named .FJ based on

Featherweight Java (Igarashi et al. 2001), a functional core calculus of class-based

object-oriented languages. After formally defining the syntax (Section 3.1), type

system (Sections 3.2 and 3.3), and operational semantics (Section 3.4) of .FJ, we

show a type soundness result (Section 3.5). Finally, we present an algorithm of type

inference for polymorphic methods and show its soundness (Section 3.6).

For simplicity, we deal with only a single level of class nesting, as opposed to

Java, which allows arbitrary levels of nesting. We believe that, for programming

family polymorphism, little expressiveness is lost by this restriction. In succeeding

work (Igarashi & Viroli 2007), this restriction is lifted and arbitrarily deep nesting

is allowed. Although they are easy to add, typecasts, which appear in Featherweight

Java and are essential to discuss erasure compilation of generics, are dropped since

one of our aims here is to show that programming as in the previous section

is possible without typecasts. In .FJ, every parametric method invocation has to

provide its type arguments—type inference will be discussed in Section 3.6. Method

invocation on super is also omitted since directly formalizing super would require

several global changes to the calculus, because super invocation is not virtual (Flatt

et al. 1998) and, more importantly, it does not really pose a new typing challenge.

Invocations on super work for much the same reason for invocations of inherited

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

292 C. Saito et al.

P,Q ::= C | X family names

A,B ::= C | C.C absolute class names

S,T,U ::= P | P.C | .C types

L ::= class C � C {T f; K M N} top-level class declarations

K ::= C(T f){super(f); this.f=f;} constructor declarations

M ::= <X � C>T m(T x){ return e; } method declarations

N ::= class C {T f; K M} nested class declarations

d,e ::= x | e.f | e.<P>m(e) | new A(e) expressions

v ::= new A(v) values

Fig. 2. .FJ: Syntax.

methods on this to work. One may criticize that the formal model is functional

unlike the models presented elsewhere (Odersky et al. 2003; Jolly et al. 2004; Nystrom

et al. 2004; Ernst et al. 2006) and doubt the safety in the presence of imperative

features such as assignments. We believe that a functional model is sufficient to catch

most of the typing issues and that imperative features do not harm to type safety

(we do not claim that type soundness of an imperative model has been proved, of

course).

3.1 Syntax

The abstract syntax of top-level/nested class declarations, constructor declarations,

method declarations, and expressions of .FJ is given in Figure 2. Here, the metavari-

ables C, D, and E range over (simple) class names; X and Y range over type variable

names; f and g range over field names; m ranges over method names; x and y range

over variables.

We put an overline for a possibly empty sequence and denote the length of

a sequence by #(·). Furthermore, we abbreviate pairs of sequences in a similar

way, writing “T f” for “T1 f1, . . . ,Tn fn,” where n is the length of T and f,

and “this.f=f;” as shorthand for “this.f1=f1; . . . ;this.fn=fn;” and so on.

Sequences of type variables, field declarations, parameter names, and method

declarations are assumed to contain no duplicate names. We write the empty

sequence as • and denote concatenation of sequences using a comma.

A family name P, used as a type argument to family-polymorphic methods, is

either a top-level class name or a type variable. Absolute class names can be used

to instantiate objects, so they play the role of run-time types of objects. A type

can be an absolute path type P or P.C, or a relative path type .C. A top-level

class declaration consists of its name, its superclass, field declarations, a constructor,

methods, and nested classes. The symbol � is read extends. On the other hand, a

nested class does not have an extends clause since the class from which it inherits is

implicitly determined. We have dropped the key word static, used in the previous

section, for conciseness. As in Featherweight Java, a constructor is given in a stylized

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 293

syntax and just takes initial (and final) values for the fields and assigns them to

corresponding fields. A method declaration can be parameterized by type variables,

whose bounds are top-level class (i.e., family) names. Since the language is functional,

the body of a method is a single return statement. An expression is a variable, field

access, method invocation, or object creation. We assume that the set of variables

includes the special variable this, which cannot be used as the name of a parameter

to a method.

A class table CT is a mapping from top-level class names C to top-level class

declarations. A program is a pair (CT, e) of a class table and an expression. To

lighten the notation in what follows, we always assume a fixed class table CT. As in

Featherweight Java, we assume that Object has no members and its definition does

not appear in the class table. We also assume some other sanity conditions on CT:

(1) CT(C) = class C .. for every C ∈ dom(CT); (2) for every class name C (except

Object) appearing anywhere in CT, we have C ∈ dom(CT); and (3) there are no

cycles in the transitive closure of extends relation. Given these conditions, we can

identify a class table with a sequence of class declarations in an obvious way. Thus,

in what follows, we write simply class C .. to mean CT(C) = class C .. .

3.2 Lookup functions

Before proceeding to the type system, we give functions to look up field or method

definitions. The function fields(A) returns a sequence T f of field names of the

class A with their types. The function mtype(m, A) takes a method name and a

class name as inputs and returns the corresponding method signature of the form

<X�C>T→T0, in which X are bound in T and T0. They are defined by the rules

in Figure 3. Here, m �∈ M (and E �∈ N) means the method of name m (and the

nested class of name E, respectively) does not exist in M (and N, respectively).

In what follows, we identify method signatures modulo renaming of bound type

variables.

As mentioned before, Object does not have any fields, methods, or nested classes,

so fields(Object) = •, and mtype(m, Object) and mtype(m, Object.C) are undefined

for any C. The definitions are straightforward extensions of the ones in Featherweight

Java. Interesting rules are the last rules: when a nested class C.E does not exist,

lookup proceeds in the nested class of the same name E in the superclass of the

enclosing class C. When the method definition is found in a superclass, relative path

types—whose meaning depends on the type of the receiver—in the method signature

remain unchanged; they are resolved in typing rules. Note that we allow Object.C

to be an argument of fields(·) for technical convenience, contrary to the fact that

Object has no nested classes, to define fields(C.D) concisely. Moreover, fields(C.D)

is defined for any D if C ∈ dom(CT). It does no harm since we never ask fields of

such nonexisting classes, which will be rejected as ill-formed types (see the definition

of type well-formedness below). We also think it would clutter the presentation to

give a definition in which fields(C.D) is undefined when C or its superclasses do not

have D.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

294 C. Saito et al.

Field Lookup

fields(Object) = • (F-TObject)

class C � D{T f;.. } fields(D) = U g

fields(C) = U g, T f
(F-TClass)

fields(Object.C) = • (F-NObject)

class C � D{.. class E{T f;.. }.. } fields(D.E) = U g

fields(C.E) = U g, T f
(F-NClass)

class C � D {.. N} E �∈ N fields(D.E) = U g

fields(C.E) = U g
(F-NSuper)

Method Type Lookup

class C � D {.. M}
<X�C>T0 m(T x){ return e; } ∈ M

mtype(m, C) = <X � C>T→T0

(MT-TClass)

class C � D {.. M.. } m �∈ M
mtype(m, D) = <X � C>T→T0

mtype(m, C) = <X � C>T→T0

(MT-TSuper)

class C � D {.. class E {.. M}.. }
<X�C>T0 m(T x){ return e; } ∈ M

mtype(m, C.E) = <X � C>T→T0

(MT-NClass)

class C � D {.. class E {.. M}.. }
m �∈ M mtype(m, D.E) = <X � C>T→T0

mtype(m, C.E) = <X � C>T→T0

(MT-NSuper1)

class C � D {.. N} E �∈ N
mtype(m, D.E) = <X � C>T→T0

mtype(m, C.E) = <X � C>T→T0

(MT-NSuper2)

Fig. 3. .FJ: Lookup functions.

3.3 Type system

The main judgments of the type system consist of one for subtyping Δ � S <: T,

one for type well-formedness Δ; A � T ok, and one for typing Δ; Γ; A � e : T. Here,

Δ is a bound environment, which is a finite mapping from type variables to their

bounds, written X<:C, and Γ is a type environment, which is a finite mapping from

variables to types, written x:T. Since we are not concerned with more general forms

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 295

Subtyping

Δ � T <: T (S-Refl)

Δ � X <: Δ(X) (S-Var)

Δ � T <: Object (S-Object)

class C � D {.. }

Δ � C <: D
(S-Class)

Δ � S <: T Δ � T <: U

Δ � S <: U
(S-Trans)

Type Well-formedness

Δ;A � Object ok (WF-Object)

Δ̂(P) ∈ dom(CT)

Δ;A � P ok
(WF-Abs)

C = Δ̂(P) class C � D{.. class E {.. } .. }

Δ;A � P.E ok
(WF-NClass)

C = Δ̂(P) class C � D{.. N}
E �∈ N Δ;A � D.E ok

Δ;A � P.E ok
(WF-NClassSup)

Δ;C.D � C.E ok

Δ;C.D � .E ok
(WF-Rel)

Fig. 4. .FJ: Subtyping and type well-formedness.

of bounded polymorphism, upper bounds are always top-level class names. We write

Δ̂(T) for the upper bound of T with respect to Δ, defined by Δ̂(A) = A, Δ̂(X) = Δ(X)

and Δ̂(X.C) = Δ(X).C. We never ask the upper bound of a relative path type, so

Δ̂(.C) is undefined. We abbreviate a sequence of judgments in the obvious way:

Δ � S1 <: T1, . . . , Δ � Sn <: Tn to Δ � S <: T; and Δ; A � T1 ok, . . . , Δ; A � Tn ok to

Δ; A � T ok; and Δ; Γ; A � e1:T1, . . . , Δ; Γ; A � en:Tn to Δ; Γ; A � e:T.

Subtyping. The subtyping judgment Δ � S <: T, read as “S is subtype of T under

Δ,” is defined in Figure 4. This relation is the reflexive and transitive closure of the

extends relation with Object being the top type. Note that a nested class, which

does not have the extends clause, has only a trivial proper supertype, which is

Object, even if some members are inherited from another (nested) class.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

296 C. Saito et al.

Type Well-formedness. The type well-formedness judgment Δ; A � T ok, read as “T

is a well-formed type in (the body of) class A under Δ.” The rules for well-formed

types appear also in Figure 4. Object and class names in the domain of the class

table are well formed. Moreover, a nested class name C.E is well formed if E is

inherited from C’s superclass D. Type X (possibly with a suffix) is well formed if its

upper bound (with the suffix) is well formed. Finally, a relative path type .E is well

formed in a nested class C.D if C.E is well formed.

Typing. Typing requires another auxiliary (but important) definition. The resolution

T@S of T at S intuitively denotes the class name that T refers to in a given class

S. One use of the resolution is to determine which class to look up for fields or

methods, when a receiver’s type is relative: fields and mtype require absolute path

types as arguments. The definition is as follows:

.D@P.C = P.D .D@.C = .D P@T = P P.C@T = P.C.

The only interesting case is the first clause: it means that a relative path type .D

in P.C refers to P.D. For example, .Edge@Graph.Node = Graph.Edge. Note that

.D@C and .D@X are undefined since we never resolve a relative path type with

respect to a family name.

The typing judgment for expressions is of the form Δ; Γ; A � e:T, read as “under

bound environment Δ and type environment Γ, expression e has type T in class

A,” in which we assume that for any x ∈ dom(Γ), Δ; A � Γ(x) ok. Typing rules are

given in Figure 5. Interesting rules are T-Field and T-Invk, although the basic

idea is as usual—for example, in T-Field, the field types are retrieved from the

receiver’s type T0, and the corresponding type of the accessed field is the type of

the whole expression. We need some tricks to deal with relative path types (and

type variables): if the receiver’s type T0 is a relative path type, it has to be resolved

in A, the class in which e appears; a type variable is taken to its upper bound

by Δ̂(·). Moreover, if the field type is a relative path type, it is resolved in the

receiver’s type. For example, if fields(ColorWeightGraph.Node) = .Edge edg and

Γ = x:ColorWeightGraph.Node, y:.Node, then

Δ;Γ; ColorWeightGraph.Node � x.edg : ColorWeightGraph.Edge and

Δ; Γ; ColorWeightGraph.Node � y.edg : .Edge.

In this way, accessing a field of relative path type gives a relative path type if and

only if the receiver is also given a relative path type. Similarly, in T-Invk, the method

type is retrieved from the receiver’s type; then, it is checked whether the given type

arguments are subtypes of bounds C of formal type parameters and the types of

actual value arguments are subtypes of those of formal parameters, where type

arguments are substituted for variables. For example, if mtype(connectAll, C) =

<G�Graph>(G.Node,G.Edge)→void, then

Δ; x:C, n:ColorWeightGraph.Node, e:ColorWeightGraph.Edge; A �
x.<ColorWeightGraph>connectAll(n,e) : void.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 297

Expression Typing

Δ; Γ;A � x : Γ(x) (T-Var)

Δ; Γ;A � e0 : T0 fields(Δ̂(T0@A)) = T f

Δ; Γ;A � e0.fi : Ti@T0

(T-Field)

Δ; Γ;A � e0 : T0 mtype(m, Δ̂(T0@A)) = <X � C>U→U0

Δ;A � P ok Δ � P <: C Δ; Γ;A � e : T Δ � T <: ([P/X]U)@T0

Δ; Γ;A � e0.<P>m(e) : ([P/X]U0)@T0

(T-Invk)

Δ;A � A0 ok fields(A0) = T f Δ; Γ;A � e : U Δ � U <: (T@A0)

Δ; Γ;A � new A0(e) : A0

(T-New)

Method Typing

Δ = X<:C Δ;x : T, this : thistype(A);A � e0:U0

Δ � U0 <: T0 Δ;A � T0,T,C ok

if mtype(m, superclass(A)) = <Y � D>S→S0, then (X,C,T,T0) = (Y,D,S,S0)

A � <X � C>T0 m(T x){return e0;} ok
(T-Method)

Class Typing

K = E(U g,T f){super(g);this.f=f;}
fields(superclass(C.E)) = U g C.E � M ok ∅;C.E � T ok

C � class E {T f; K M} ok
(T-NClass)

K = C(U g,T f){super(g);this.f=f;}
fields(D) = U g C � M ok C � N ok ∅;C � T,D ok

� class C � D{T f; K M N} ok
(T-TClass)

Fig. 5. .FJ: Typing.

A judgment for method typing is written A � M ok, and derived by T-Method.

Here, thistype(A) and superclass(A) are defined by the following:

thistype(C) = C thistype(C.E) = .E

superclass(C) = D superclass(C.E) = D.E

where class C � D{.. }. It is checked that the body of the method is well typed

under the bound and type environments obtained from the definition. Note that

the type of this in a nested class is relative, as the meaning of this changes in

subclasses. The last conditional premise checks that m correctly overrides (if it does)

the method of the same name in the superclass with the same signature.

There are two class typing rules, one for top-level classes and one for nested

classes. Both of them are essentially the same: they check that field types and

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

298 C. Saito et al.

constructor argument types are the same, and that methods are ok in the class. The

rule T-TClass for top-level classes also checks that nested classes are ok.

3.4 Operational semantics

The operational semantics is given by the reduction relation of the form e −→ e′,

read “expression e reduces to e′ in one step.” We require another lookup function

mbody(m<P>, A), for the method body with formal parameters, written x.e, of given

method and class names. It is defined at the top of Figure 6. Similarly to mtype,

mbody(m<P>, Object) and mbody(m<P>, Object.C) are undefined.

The reduction rules are given in the middle of Figure 6. We write [d/x, e/y]e0

for the expression obtained from e0 by replacing x1 with d1, . . . , xn with dn, and

y with e. There are two reduction rules, one for field access and one for method

invocation, which are straightforward. The reduction rules may be applied at any

point in an expression, so we also need the obvious congruence rules (if e −→ e′

then e.f −→ e′.f, and the like). We write −→∗ for the reflexive and transitive

closure of −→.

3.5 Type soundness

The type system is sound with respect to the operational semantics, as expected.

Type soundness is proved in the standard manner via subject reduction and progress

(Wright & Felleisen 1994; Igarashi et al. 2001). (Recall that values are defined by

v ::= new A(v), where v can be empty.)

Theorem 3.1 (Subject Reduction)

If Δ; Γ; A � e:T and e −→ e′, then Δ; Γ; A � e′:T′, for some T′ such that Δ � T′<:T.

Proof

See Appendix A. �

Theorem 3.2 (Progress)

If ∅; ∅; B � e:A and e is not a value, then e −→ e′, for some e′.

Proof

By induction on ∅; ∅; B � e : A with case analysis on the last rule used.

Case T-Var:

Cannot happen.

Case T-Field: ∅; ∅; B � e0 : A0 fields(Δ̂(A0@B)) = T f

If e0 = new A0(v), then, by R-Field, e0−→vi; otherwise, immediate from the

induction hypothesis and RC-Field.

Case T-Invk: e = e0.<P>m(v)

If there is a nonvalue subexpression, then the conclusion is immediate from the

induction hypothesis and the rules RC-Inv-Recv and RC-Inv-Arg. Suppose that

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 299

Method body lookup

class C�D{.. M.. }
<X � C>T m(T x){ return e0; } ∈ M

mbody(m<P>, C) = x.[P/X]e0

(MB-TClass)

class C � D {.. M.. } m �∈ M

mbody(m<P>, C) = mbody(m<P>, D)
(MB-TSuper)

class C � D {.. N} class E {.. M} ∈ N
<X � C>T m(T x){ return e0; } ∈ M

mbody(m<P>, C.E) = x.[P/X]e0

(MB-NClass)

class C � D {.. N} E �∈ N

mbody(m<P>, C.E) = mbody(m<P>, D.E)
(MB-NSuper1)

class C � D {.. N} class E {.. M} ∈ N m �∈ M

mbody(m<P>, C.E) = mbody(m<P>, D.E)
(MB-NSuper2)

Computation

fields(A) = T f

new A(e).fi −→ ei

(R-Field)

mbody(m<P>, A) = x.e0

new A(e).<P>m(d) −→ [d/x, new A(e)/this]e0

(R-Invk)

Congruence

e0 −→ e0
′

e0.f −→ e0
′.f

(RC-Field)

e0 −→ e0
′

e0.<P>m(e) −→ e0
′.<P>m(e)

(RC-Invk-Recv)

ei −→ ei
′

e0.<P>m(. . .,ei, . . .) −→ e0.<P>m(. . .,ei
′, . . .)

(RC-Invk-Arg)

ei −→ ei
′

new A(. . .,ei, . . .) −→ new A(. . .,ei
′, . . .)

(RC-New-Arg)

Fig. 6. .FJ: Operational semantics.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

300 C. Saito et al.

e0 and e are values v0 and v, respectively. Then, by T-Invk,

∅; ∅; B � v0 : A0 mtype(m, Δ̂(A0@B)) = <X � C>T→T0

∅; B � P ok ∅ � P <: C ∅; ∅; B � v : A ∅ � A <: ([P/X]T)@A0

∅; ∅; B � v0.<P>m(v) : ([P/X]T0)@A0

From premises of the rule, we have #(v) = #(A) = #(T). Since mtype(m, A0) =

<X � C>T→T0, it is easy to show that mbody(m<P>, A0) = x.e0 for some x and e0 with

#(T) = #(x). Then, by R-Invk, v0.<P>m(v)−→ [v/x,v0/this]e0.

Case T-New: e = new A(e)

If one of e is not a value, apply the induction hypothesis with the rule T-New-Arg;

otherwise, e is a value. �

Theorem 3.3 (Type Soundness)

If ∅; ∅; B � e : A and e −→∗ e′ with e′ a normal form, then e′ is a value v with

∅; ∅; B � v : A′ and ∅ � A′ <: A.

Proof

By easy induction on e −→∗ e′ using Theorems 3.1 and 3.2. �

3.6 Type inference for parametric method invocations

The language .FJ is considered an intermediate language in which every type

argument to parametric methods is made explicit. In this section, we briefly discuss

how type arguments can be recovered, give an algorithm for type argument inference,

and prove its correctness theorem.

The basic idea of type inference is the same as Java 5.0: given a method invocation

expression e0.m(e) that appears in class A without specifying type arguments, we

can at least compute the type T0 of e0, the signature <X�C>U→U0 of the method m,

and the types T of (value) arguments. Then, it is easy to see from the rule T-Invk

that it suffices to find P that satisfies P <: C and T <:([P/X]U)@T0. In other words,

the goal of type inference is to solve the set {X<:C,T<:(U@T0)} of inequalities with

respect to X.

We formalize this constraint-solving process as function InferΔ
X (S). It takes as

input a set S of inequalities of the form either X<:C or T1<:T2, where T1 does not

contain Xi, and returns a mapping from X to types (more precisely, family names).

The auxiliary parameter Δ records other variables’ bounds, so X and the domain

of Δ are assumed to be disjoint. The definition of InferΔ
X (S) is shown in Figure 7.

Here, S1
 S2 is a union of S1 and S2, where S1 ∩ S2 = ∅. T1 �Δ T2 is the least upper

bound of T1 and T2 (the least upper bound of two given types always exists since

we do not have interfaces, which can extend more than one interface). We assume

that each clause is applied in the order shown—thus, for example, the fourth clause

will not be applied until there is only one inequation of the form T<:Xi.

The algorithm is explained as follows. The second clause is the case where a

formal argument type is Xi.C and the corresponding actual is P.C: since P.C has

only a trivial supertype (namely, itself) except Object, Xi must be P. The third

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 301

InferΔ
X(∅) = []

InferΔ
X(S

′
 {P.C<:Xi.C}) = [P/Xi] ◦ InferΔ
X\{Xi}

([P/Xi]S
′)

InferΔ
X(S

′
 {T1<:Xi}
 {T2<:Xi}) = InferΔ
X(S

′
 {(T1 �Δ T2)<:Xi})

InferΔ
X(S

′
 {T<:Xi,Xi<:C}) =

⎧⎨⎩
[T/Xi] ◦ InferΔ

X\{Xi}
(S ′)

(if Δ � T<:C and Xi �∈ S ′)

fail (otherwise)

InferΔ
X(S

′
 {Xi<:C}) =

{
[C/Xi] ◦ InferΔ

X\{Xi}
(S ′) (if Xi �∈ S ′)

fail (otherwise)

InferΔ
X(S

′
 {T1<:T2}) =

{
InferΔ

X(S
′) (if Δ � T1<:T2)

fail (otherwise)

Fig. 7. Type inference algorithm.

clause is the case where a type variable has more than one lower bound: we replace

two inequalities by one using the least upper bound. The following two clauses are

applied when no other constraints on Xi appear elsewhere; they check whether the

constraint is satisfiable. Note that the fifth clause is applied only when the method

signature contains a type variable that does not appear in parameters types, as in

<G�Graph>()→void. In this case, the given upper bound itself is chosen for the type

variable and so the solution will not be least.

Now, we state the theorem of correctness of type inference. It means that, if type

inference succeeds (and every type variable appears in argument types), it gives the

least type arguments.

Theorem 3.4 (Type inference correctness)

If Δ; Γ; A � e0:T0 and mtype(m, Δ̂(T0@A)) = <X�C>U→U0 and Δ; Γ; A � e:T and

InferΔ
X ({X<:C,T<:(U@T0)}) returns σ = [P/X], then Δ; Γ; A � e0.<σX>m(e) : (σU0)@T0.

Moreover, if every Xi occurs in U, then σ is least in the sense that for any σ′ such

that Δ; Γ; A � e0.<σ′X>m(e) : (σ′U0)@T0, it holds that Δ � σ(Xi) <: σ′(Xi) for any Xi.

Proof

We show that, if X∩dom(Δ) = ∅ and X do not occur in S and InferΔ
X ({X<:C, S<:T}) = σ,

then Δ � σX <: C and Δ � S <: σT and σ is least, by induction on the number of

steps to derive InferΔ
X ({X<:C, S<:T}) = σ. (It is easy to show Δ; A � σ(X) ok from

Lemma B.5.)

Case: InferΔ
X ({}) = []

Trivial.

Case: InferΔ
X (S ′
 {P.C<:Xi.C}) = [P/Xi] ◦ InferΔ

X\{Xi}([P/Xi]S
′)

Let σ′ = InferΔ
X\{Xi}([P/Xi]S

′). By the induction hypothesis, for each S<:T ∈ [P/Xi]S ′, it

holds that Δ � σ′(S <: T). Thus, Δ � (σ′ ◦[P/Xi])(S′<:T′) for each S′<:T′ ∈ S ′. Since Xi is

not in the range of σ′ and none of X appears in P, it holds that σ′ ◦[P/Xi] = [P/Xi]◦σ′.

Thus, Δ � ([P/Xi]◦σ′)(S′ <: T′) and Δ � ([P/Xi]◦σ′)(P.C <: Xi.C). Leastness is obvious

since Xi must be instantiated to P for Δ � ([P/Xi] ◦ σ′)(P.C <: Xi.C) to hold.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

302 C. Saito et al.

Case: InferΔ
X (S ′
 {T1<:Xi}
 {T2<:Xi}) = InferΔ

X (S ′
 {(T1 �Δ T2)<:Xi})
Similar. For leastness, recall that T1 �Δ T2 gives the least upper bound of T1 and T2

(with respect to Δ).

Case: InferΔ
X (S ′
 {T<:Xi, Xi<:C}) = [T/Xi] ◦ InferΔ

X\{Xi}(S
′)

Δ � T<:C Xi �∈ S ′

Similar. Obviously, instantiating Xi with T gives the least solution.

Case: InferΔ
X (S ′
 {Xi<:C}) = [C/Xi] ◦ InferΔ

X\{Xi}(S
′) Xi �∈ S ′

Similar. Note that this case does not apply to the leastness proof.

Case: InferΔ
X (S ′
 {T1<:T2}) = InferΔ

X (S ′) Δ � T1<:T2

Similar. �

4 Translating .FJ to Featherweight Java

In this section, we discuss a possible implementation of the proposed language

features by erasure translation. The basic idea of erasure translation, which is also

used in the current implementation of Java generics (Bracha et al. 1998), is to

erase refined type information such as type arguments to generic classes or, here,

relative path types to conventional monomorphic types; since simply erasing some

type information makes the program ill-typed, typecasts are inserted where required.

Following Igarashi et al. (2001), we model erasure translation by presenting formal

translation from .FJ to Featherweight Java (FJ). This is an abstraction of the actual

translation that a real compiler would apply to abstract syntax trees to support the

language extension—features like generics and nested classes are implemented in

javac in this way. Then, we prove that the translation is correct with respect to

typing and reduction.

Before proceeding to the formal definition of the translation, we describe how

classes Graph and ColorWeightGraph and polymorphic method connectAll()

would be translated by erasure in Figure 8. First of all, all nested classes are pulled

out to the top level and fully qualified names are made simple as in Graph$Edge, in

which $ is another character that can be used to form a simple name. As mentioned

above, all relative path types are changed to ordinary types; also, type parameters

to polymorphic methods are erased by replacing the type variable G by its upper

bound Graph. Since method connect() now takes two Graph$Nodes, typecasts

to ColorWeightGraph$Node are inserted where field color is accessed. Another

noticeable change includes extends clauses in nested classes to make all inheritance

relations explicit.

The rest of this section proceeds as follows: we first briefly review Featherweight

Java, the target language of the translation; then, present the formal definition of

translation; and finally prove properties of the erasure translation.

4.1 Featherweight Java

We begin with briefly reviewing Featherweight Java. Since most definitions of .FJ can

be reused, we show only main changes that would be required to make Featherweight

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 303

class Graph { }

class Graph$Node {

Graph$Edge[] es=new Graph$Edge[10]; int i=0;

void add(Graph$Edge e) { es[i++] = e; }

}

class Graph$Edge {

Graph$Node src, dst;

void connect(Graph$Node s, Graph$Node d) {

src = s; dst = d; s.add(this); d.add(this);

}

}

class ColorWeightGraph extends Graph { }

class ColorWeightGraph$Node extends Graph$Node { Color color; }

class ColorWeightGraph$Edge extends Graph$Edge {

int weight;

void connect(Graph$Node s, Graph$Node d) {

weight = colorToWeight(((ColorWeightGraph$Node)s).color,

((ColorWeightGraph$Node)d).color);

super.connect(s, d);

}

}

void connectAll(Graph$Edge[] es, Graph$Node n1, Graph$Node n2){

for (int i: es) es[i].connect(n1,n2);

}

Fig. 8. Erased nested classes and family-polymorphic method.

Java, instead of reintroducing all definitions from scratch. The main changes consist

of addition of type casts and restriction on the syntax. Figure 9 shows the syntax

with typing and semantics for casting.

In the restricted syntax, top-level classes do not contain nested classes; all types are

top-level class names; and methods are monomorphic. (Thus, neither polymorphic

method invocation nor instantiation of a nested class appears in a well-typed

program.) Note that, in the formal translation defined below, all nested classes are

translated to top-level classes, as nesting does not play any significant role after

erasure.

In the figure, we abuse the notation by omitting irrelevant information of bound

environment Δ and enclosing class name A from subtyping and typing judgments.

They are irrelevant in the sense that they cannot affect derivable judgments (modulo

this information) within this restricted language. So, the existing rules could be

simplified by dropping Δ and A: for example, T-Field for FJ expressions would be

Γ � e0 : C0 fields(C0) = C f

Γ � e0.fi : Ci

which is exactly the same rule as in the original formulation.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

304 C. Saito et al.

Syntax

L ::= class C�C{C f; K M} classes

K ::= C(C f){super(f);this.f=f;} constructors

M ::= C m(C x){ return e; } methods

e ::= . . . | (C)e expressions

v ::= new C(v) values

Typing

Γ � e0 : D D <: C

Γ � (C)e0 : C
(T-UCast)

Γ � e0 : D C <: D C �= D

Γ � (C)e0 : C
(T-DCast)

Γ � e0 : D C �<: D D �<: C stupid warning

Γ � (C)e0 : C
(T-SCast)

Computation

C <: D

(D)(new C(e)) −→ new C(e)
(R-Cast)

Congruence

e −→ e′

(C)e −→ (C)e′ (RC-Cast)

Fig. 9. FJ syntax, and typing and reduction rules for casting.

The rules for typecasts are the same as those in original FJ. Although all casts

introduced by translation are downcasts, they will (be proved to) turn into upcasts,

which are removed by R-Cast, during execution. Thus, in fact, stupid casts, which

necessarily fail if ever executed, could be omitted for correctness theorems below.

Here, it is included mainly for consistency (and to make subject reduction hold).

In what follows, we write Γ �FJ e : C for FJ typing judgments and C <:FJ D for FJ

subtyping.

4.2 Erasure of types and expressions

Relative path types and type variables are translated to ordinary types by resolving

with the enclosing class in which they appear, and promoting to their upper bounds,

respectively. Since all classes are translated to top-level classes, absolute class names

like C.D will become atomic names. The erasure |T|Δ,A of .FJ type T with respect to

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 305

bound environment Δ and class A (in which T appears) is defined as follows:

|P|Δ,A = Δ̂(P)

|P.C|Δ,A = Δ̂(P)$C

|.E|Δ,C.D = C$E

Note that, as mentioned above, C$E is a simple name. We sometimes omit Δ when

Δ is empty and A when T is not a relative path type.

For the erasure of expressions, we define auxiliary functions fieldsmax(A) and

mtypemax(m, A) to look up types of fields and methods after erasure. These functions

will be used to determine where to insert downcasts, as we will see later.

fieldsmax(A) takes an absolute class name A as an input, and returns a sequence

of pairs of an erased type and a field name for all the fields of A. Since inherited

fields are declared in different classes, types are erased at the very class in which the

corresponding fields are declared. fieldsmax(A) is defined as follows:

fields(C) = T f

fieldsmax(C) = |T| f

fieldsmax(Object.C) = •

class C � D { .. class E {T f; .. } .. } fieldsmax(D.E) = C g

fieldsmax(C.E) = C g, |T|C.E f

class C � D { .. N } E �∈ N fieldsmax(D.E) = C g

fieldsmax(C.E) = C g

The basic structure of fieldsmax is the same as fields. Notice that types are erased

in the class where they are found. Since field types can never be type variables or

relative path types in top-level classes, we can use the result of fields and erase it at

once. We write fieldsmax(A)(fi) = Di, where fieldsmax(A) = D f.

mtypemax(m, A) takes a method name m and an absolute class name A as inputs,

and returns the erased signature of m of A. To deal with possible method overriding,

method signatures will be erased with respect to the superclass of A in which m is

first defined so that the signatures of all overriding m will be the same after erasure;

if signatures were erased with respect to the class where the definition is found, the

same relative path type would result in different types, depending on where they

appear, and method overriding will not be preserved in the erased program.1 The

definition of mtypemax is as follows:

mtype(m, C) = <X�C>T→T0 Δ = X<:C

mtypemax(m, C) = |T|Δ→|T0|Δ

1 Another solution to this problem is to introduce bridge methods (Bracha et al. 1998), which exploit
method overloading, not modeled here.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

306 C. Saito et al.

class C � D { .. class E { .. M} .. } mtype(m, D.E) undefined

<X�C>T0 m(T x){ return e; } ∈ M Δ = X<:C

mtypemax(m, C.E) = |T|Δ,C.E→|T0|Δ,C.E

class C � D { .. } mtype(m, D.E) = <X�C>T→T0

mtypemax(m, C.E) = mtypemax(m, D.E)

Now, we define the erasure |e|Δ,Γ,A of an expression e with respect to type

environment Γ, bound environment Δ, and enclosing class A, by the following rules

(here, e is assumed to be well typed under Δ,Γ, and A):

|x|Δ,Γ,A = x (E-Var)

Δ; Γ; A � e0.f : T Δ; Γ; A � e0 : T0

fieldsmax(Δ̂(T0@A))(f) = |T|Δ,A
|e0.f|Δ,Γ,A = |e0|Δ,Γ,A.f

(E-Field)

Δ; Γ; A � e0.f : T Δ; Γ; A � e0 : T0

fieldsmax(Δ̂(T0@A))(f) �= |T|Δ,A
|e0.f|Δ,Γ,A = (|T|Δ,A)|e0|Δ,Γ,A.f

(E-Field-Cast)

Δ; Γ; A � e0.<P>m(e) : T Δ; Γ; A � e0 : T0

mtypemax(m, Δ̂(T0@A)) = C→C C = |T|Δ,A
|e0.<P>m(e)|Δ,Γ,A = |e0|Δ,Γ,A.m(|e|Δ,Γ,A)

(E-Invk)

Δ; Γ; A � e0.<P>m(e) : T Δ; Γ; A � e0 : T0

mtypemax(m, Δ̂(T0@A)) = C→C C �= |T|Δ,A
|e0.<P>m(e)|Δ,Γ,A = (|T|Δ,A)|e0|Δ,Γ,A.m(|e|Δ,Γ,A)

(E-Invk-Cast)

|new A0(e)|Γ,Δ,A = new |A0|(|e|Δ,Γ,A) (E-New)

There are two rules for field access; the main difference is in whether or not

typecasts are inserted. The rule E-Field-Cast is applied when a field type in the

source program is a relative path type and the field is declared in a (proper) superclass

of A. For example, consider e.src in a method defined in ColorWeightGraph.Edge,

where e is of type .Edge. Then, the type of e.src (in the source program) is

.Node, which becomes ColorWeightGraph$Node after erasure, whereas the field src

declared in Graph.Edge is given type Graph$Node in the erased program. So, the

typecast (ColorWeightGraph$Node) will be required to access new members, say

field color, declared in the subclass. Similarly for method invocations.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 307

4.3 Erasure of methods, constructors, and classes

As mentioned above, family-polymorphic methods are translated to monomorphic

methods by discarding type parameterization and erasing types and the method

body. Although erased methods no longer maintain type variables, they can be

applied to different families, thanks to subtyping between erased nested classes. The

erasure of a method M with respect to class A, written |M|A, is defined as follows:

Γ = x:T, this:thistype(A) Δ = X<:C

mtypemax(m, A) = D→D ei =

{
xi′ if Di = |Ti|Δ,A
(|Ti|Δ,A)xi′ otherwise

|<X�C>T m(T x){ return e0; }|A = D m(D x′){ return [e/x]|e0|Δ,Γ,A; }
(E-Method)

The method body is erased with respect to bound environment Δ taken from the

parameterization, type environment Γ taken from the formal parameter declarations,

and enclosing class A. Note that the signature of the erased method is obtained by

mtypemax(m, A). Downcasts are inserted before each occurrence of the references to

the parameters when the erasure |Ti|Δ,A of the parameter type is different from the

corresponding argument type from mtypemax. It is required for the same reason as

erasure of field access or method invocation.

The erasure |K|A of a constructor K of class A is fairly straightforward:

|C(U g, T f){ super(g); this.f=f; }|A
= |A|(fieldsmax(A)){ super(g); this.f=f; }

(E-Constructor)

Argument types are replaced with erased field types and the name of the constructor

becomes the erasure of A (rather than C, in case K is a constructor of a nested class).

The erasure |N|C of a nested class N in C is also straightforward:

class C � D { .. } ∅; C � D.E ok

|class E {T f; K M}|C = class C$E � D$E { |T|C.E f; |K|C.E |M|C.E}
(E-NestedClass1)

class C � D { .. } ∅; C �� D.E ok

|class E {T f; K M}|C = class C$E � Object { |T|C.E f; |K|C.E |M|C.E}
(E-NestedClass2)

The erasure of a nested class declaration consists of the erasures of its fields,

constructor and method declarations. Since superclasses are not explicit in the

source program, translation has to recover it. The rule E-NestedClass1 is applied if

its superclass exists (i.e., D.E is a well-formed type); the clause “� D$E” is inserted;

otherwise, “� Object” is inserted (E-NestedClass2).

Erasing top-level classes is slightly more involved than one might have expected,

because they may contain inherited nested classes, which do not explicitly appear

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

308 C. Saito et al.

in the source program. To collect all nested classes—whether they are explicit or

implicit—we define another auxiliary function nestedclasses(C), defined as follows:

nestedclasses(Object) = •

class C � D { .. N} nestedclasses(D) = N′

N′′ = {class E { E(T f){super(f);}} | E ∈ N′, E �∈ N, fields(D.E) = T f}
nestedclasses(C) = N, N′′

Here, E represents the name of a class that is inherited from D but not redefined in

C. For such names, the empty class definition (consisting of only its constructor) is

generated.

With the help of nestedclasses, the erasure |L| of a top-level class L is defined as

follows:

N′ = nestedclasses(C)

|class C � D {T f; K M N}| = class C � D { |T|C f; |K|C |M|C} |N′|C
(E-TopClass)

Note that it returns a set of FJ classes since nested classes are pulled out to the top

level.

Another possible way to erase nested classes without generating empty classes

for implicitly inherited classes is to erase the name of a nested class, not declared

explicitly, to the name of the first superclass that explicitly appears in the source

program. For example, new ColorWeightGraph.Node(..) would be erased to

new Graph$Node(..) if ColorWeightGraph did not have Node. Although this

somewhat optimized compilation scheme would work in this setting, too, we do

not, however, take this approach since it would not always be sensible to change

class names, for example, in the presence of reflection.

We write |CT| for the (FJ) class table consisting of classes obtained by erasing all

top-level classes in CT.

4.4 Properties of the translation

Now, we investigate correctness of the erasure translation in terms of typing and

reduction. Proofs of the theorems are found in Appendix B. We will distinguish

reduction steps involving R-Cast and other steps (i.e., field access and method

invocation) by writing the former as e −→c e′, the latter as e −→n e′. Their union

is written e −→FJ e′.

The following theorem says that a well-typed .FJ program is erased to a well-typed

FJ program, as expected.

Theorem 4.1 (Erasure Preserves Typing)

If a .FJ class table CT is ok and Δ; Γ; A � e:T, then |CT| is ok using the FJ typing

rules and |Γ|Δ,A �FJ |e|Δ,Γ,A : |T|Δ,A.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 309

e
reduction (.FJ) ��

erasure

��

e′

erasure

��
|e′|

expansion

��
|e|

reduction (FJ)
�� d′

Fig. 10. Commuting diagram of Theorem 4.2.

Then, we will show that the evaluation of a .FJ program agrees with that of

its erasure, in the sense that, if a .FJ expression e is reduced to a value, then

the erasure of e will also be reduced to the erasure of that value and vice versa.

Unfortunately, however, one step reduction does not really commute with erasure

translation. One obvious reason is that erased execution takes more steps to remove

inserted typecasts. Actually, there is a more subtle reason: one step reduction on .FJ

does not preserve typecasts inserted by erasure. The same kind of problem is also

observed in erasure translation from FGJ to FJ (Igarashi et al. 2001)—to which

interested readers are referred for more detailed analysis of the problem. To solve

the problem, we follow the same approach of using expansions, which relate two

expressions with similar structures but different typecasts.

Suppose Γ �FJ e:C. We call an expression d an expansion of e under Γ, written

Γ � e
exp

=⇒d, if Γ �FJ d:D for some D and d is obtained from e by some combination

of (1) addition of zero or more upcasts, (2) replacement of some casts (D) with (C),

where C is a supertype of D, or (3) removal of some casts.

Example 4.1

Suppose that Γ = x:ColorWeightGraph$Node, y:ColorWeightGraph$Edge. Then,

Γ � x
exp

=⇒ (Graph$Node)x

and

Γ � x
exp

=⇒ (Graph$Node)(Object)x

and

Γ � y.connect((ColorWeightGraph$Node)x,(ColorWeightGraph$Node)x)
exp

=⇒ y.connect(x, x) .

Note that inserted upcasts may become downcasts due to other inserted casts, as in

the second example, where (Object) is inserted after (Graph$Node) is inserted.

Then, first, one step reduction commutes with erasure modulo expansion, as

illustrated in Figure 10 (we assume that CT ok in the following three theorems).

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

310 C. Saito et al.

e
reduction (.FJ) ��

erasure

��

e′

erasure

��
|e|

expansion

��

|e′|

expansion

��
d

R-Cast

∗�� d′
reduction (except R-cast)

�� d′′

Fig. 11. Commuting diagram of Theorem 4.3.

Theorem 4.2 (Erasure Preserves Reduction Modulo Expansion)

If Δ; Γ; A � e:T and e−→e′, then there exists some FJ expression d′ such that

|Γ|Δ,A � |e′|Δ,Γ,A
exp

=⇒ d′ and |e|Δ,Γ,A −→FJ d′.

Conversely, for the execution of an erased expression, there is a corresponding

execution in the .FJ semantics, as illustrated in Figure 11.

Theorem 4.3 (Erased Program Reflects .FJ Execution)

Suppose that Δ; Γ; A � e:T and |Γ|Δ,A � |e|Δ,Γ,A
exp

=⇒ d. If d−→∗
cd

′ and d′−→nd′′, then

e−→e′ for some e′ and |Γ|Δ,A � |e′|Δ,Γ,A
exp

=⇒ d′′.

Notice that a “real” execution step may be preceded by removal of casts to expose

a redex.

Finally, the following theorem states that the evaluation result of a .FJ expression

matches that of its erasure.

Theorem 4.4 (Erasure Preserves Execution Results)

If Δ; Γ; A � e:T and e−→∗v, then |e|Δ,Γ,A −→FJ
∗ |v|Δ,Γ,A. Similarly, if Δ; Γ; A � e:T and

|e|Δ,Γ,A −→FJ
∗ v, then there exists a .FJ value v′ such that e−→∗v′ and |v′|Δ,Γ,A = v.

5 Related work

As we have already mentioned, in the original formulation of family polymor-

phism (Ernst 2001) nested classes are members (or attributes) of an object of their

enclosing class. Thus, to create node or edge objects, one first has to instantiate

Graph and then to invoke new on a class attribute of that object. It would be written

as

final Graph g = new Graph();

g.Node n = new g.Node(..); g.Edge e = new g.Edge(..);

Notice that the types of nodes and edges would include a reference g to the

Graph object. Relative path types .Node and .Edge would become this.Node and

this.Edge, respectively, where the meaning of types changes as the meaning of

this changes because of usual late-binding. Finally, connectAll() would take four

value arguments instead of one type and three value arguments as follows:

void connectAll(final Graph g, g.Edge[] es, g.Node n1, g.Node n2){ .. }

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 311

Notice that the first argument appears as part of types of the following arguments;

it is required for a type system to guarantee that es, n1, and n2 belong to the same

graph. As a result, a type system is equipped with dependent types, such as g.Edge,

which can be quite tricky (especially in the presence of side effects). For example,

as the final modifier indicates, the family object g is required to be immutable.

We deliberately avoid such dependent types by identifying families with classes. As

a by-product, as shown in Section 3.6, we have discovered that it is easy to extend

to this setting the GJ-style type inference, which lessens the burden of programmers

to specify the argument that only represents a family (like g or g.class above).

Although complex, the original approach has one apparent advantage: one can

instantiate an arbitrary number of Graph objects and distinguish nodes and edges

of different graphs by static typing. Formal accounts of such type systems can be

found in the literature (Ernst et al. 2006; Clarke et al. 2007). Scala (Odersky et al.

2003) also supports family polymorphism, based on dependent types. JX (Nystrom

et al. 2004) also uses final and dependent types, even though it is also based on

the “classes-as-families” principle—in JX, connectAll() would be written

void connectAll(final Graph g,

g.class.Edge[] es, g.class.Node n1, g.class.Node n2){ .. }

where g.class is used for g to denote the run-time class of g.

Historically, the mismatching problem of recursive class definitions has been

studied in the context of binary methods (Bruce et al. 1996), which take an object of

the same class as the receiver; hence, the interface is (self-)recursive. In particular,

Bruce’s series of work (1997, 2004) introduced the notion of MyType (or sometimes

called ThisType), which is the type of this and changes its meaning along the

inheritance chain, just as our relative path types. Later, he extended the idea to

mutually recursive type/class definitions (Bruce et al. 1998; Bruce & Vanderwaart

1999; Bruce 2003) by introducing constructs to group mutually recursive definitions,

and the notion of MyGroup, which is a straightforward extension of MyType to

mutually recursion. While Bruce and his colleagues mainly focus on structural type

systems (except for Bruce et al. 1998), Jolly et al. (2004) have designed the language

called Concord by applying the notion of groups to a Java-like language with a

name-based type system and have proved that the core type system is sound. Our

approach is similar to them in the sense that dependent types are not used.2

One of our contributions in this work (over the work mentioned above) is

(formal) modeling of family-polymorphic methods, which are absent from Concord,

as a special form of parametric methods. Note that they can be considered a

generalization of match-bound polymorphic methods in the language LOOM (Bruce

et al. 1997) to mutually recursion—in fact, a similar idea has already been mentioned

in Bruce et al. (1998) but never formalized.

Another contribution would be in how types are classified into exact types, which

denote instances of one particular class and play a crucial role to achieve type safety

2 By dependent types, we mean types that are dependent on values; in this sense, Concord does not use
dependent types, contrary to the title of the paper.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

312 C. Saito et al.

of extensible (mutually) recursive classes, and inexact types, which denote instances

of one class and its subclasses as usual. In Bruce et al. (1998, 1997), one class name is

used for both exact and inexact types, which are distinguished by a special marker.

This approach brings a problem of which kind of types to use as a default—in fact,

in Bruce et al. (1998), a class name without a marker is used as an inexact types

(for compatibility with Java, on which their work is based) and a class name with

@ is used for the exact type for that class, but, in LOOM, the default is exact and

is used for inexact. Instead of introducing special markers, we have designed our

language such that top-level class names are always inexact and nested class names

are always exact, resulting in a language much easier to understand.

In addition to simultaneous extension of nested classes, Concord, gbeta, and

JX allow inheritance relations between nested classes. For example, C.F can be a

subclass of C.E and, in a subclass D of C, the relationship is preserved while members

can be added to both E and F. Although allowing virtual superclasses is useful to

solve the “expression problem,” we have carefully avoided this feature, too, which

is not strongly required by family polymorphism—there is a semantic complication

as in languages with multiple inheritance: D.F may inherit conflicting members of

the same name from C.F and D.E.

Finally, we should note that programming described in Section 2 could be carried

out in Java 5.0 proper, which is equipped with generics (Bracha et al. 1998) and

F-bounded polymorphism (Canning et al. 1989), by using the technique (Torgersen

2004) used to solve the “expression problem.” It requires, however, a lot of boilerplate

code for type parameterization, which makes programs less easy to grasp.

6 Concluding remarks

We have identified a minimal set of language features to solve the problem of

mismatching between mutually recursive classes and inheritance. Our proposal is

lightweight in the sense that the type system, which avoids dependent types, is much

simpler than the original formulation of family polymorphism and easy to apply

to mainstream languages such as Java and C#. We have shown type safety of the

language mechanism by proving a type soundness theorem for the formalized core

language .FJ. We have also developed an algorithm for type argument inference

for family polymorphic methods with its correctness theorem. Although .FJ is not

equipped with generics, we believe they can be easily integrated.

As a possible implementation scheme for lightweight family polymorphism,

we have described erasure translation, formalized it as translation from .FJ to

Featherweight Java and proved its correctness. A prototype compiler for the language

features presented is being implemented on top of javac.

Our main aim in this article was to identify a minimal set of language features for

lightweight family polymorphism, based on the the principle of classes-as-families.

We think, however, that it is also an interesting research question to what extent

this principle can be extended to integrate advanced ideas, such as higher-order

hierarchies (Ernst 2003) and generalized path types (Clarke et al. 2007), found in the

work on object-based families. In fact, the second and third authors have developed

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 313

a new type system by lifting .FJ’s restrictions on nesting levels and inheritance

between members of the same family and have proposed for class-based families

the new notions of exact and inexact qualifications to give programmers expressive

subtyping relations over path types (Igarashi & Viroli 2007).

Acknowledgments

Part of the development of the prototype compiler was done by Stefano Olivieri

and the third author during their visit to Kyoto University in the summer of 2005.

Comments from anonymous referees helped us improve the final presentation. The

second author would like to thank members of the Kumiki project for fruitful

discussions on this subject. This work was supported in part by Grant-in-Aid for

Scientific Research on Priority Areas Research No. 13224013 from MEXT of Japan

(Igarashi), and from the Italian PRIN 2004 Project “Extensible Object Systems”

(Viroli).

Appendix A

Proof of Subject Reduction Theorem

In this appendix, we detail our proof of Subject Reduction Theorem (Theorem 3.1).

The structure of the proof is similar to those for typed λ-calculi with subtyping and

parametric polymorphism and also Featherweight Java (Igarashi et al. 2001). So, we

first prove various substitution lemmas (Lemmas A.6, A.7, A.8, and A.10). We also

prove that resolution preserves typing as Lemma A.9, which amounts to say that

relative path types are polymorphic over types in the inheritance relation.

We begin with developing a number of required lemmas. In what follows, the

metavariables V and W range over types as well as S, T, and U.

Lemma A.1 (Weakening)

1. If Δ � S <: T, then Δ, X<:C � S <: T.

2. If Δ; Γ; A � e : T, then Δ; Γ, x:T; A � e : T.

3. If Δ; Γ; A � e : T, then Δ, X<:C; Γ; A � e : T.

Proof

Straightforward induction on derivations. �

Lemma A.2 (Properties of resolution)

1. If Δ � S <: T and U@S = V, then U@T = V.

2. If Δ � S <: T, then Δ � S@A <: T@A.

3. (T@S)@A = T@(S@A).

4. [P/X](T@S) = ([P/X]T)@([P/X]S).

Proof

(1) is immediate since, if S �= T, then U must be of the form P or P.C, so U@S =

U@T = U. (2) uses the fact that, if S is a relative path type, then either S = T or T =

Object. (3) and (4) are easily shown by case analysis on S and T. �

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

314 C. Saito et al.

The next two lemmas state that if one class inherits from another, then the

field/method types from both classes indeed agree. We write A <# B if either (1)

A = C, B = D, and � C <: D, or (2) A = C.E, B = D.E, and � C <: D.

Lemma A.3

If A <# B and fields(B) = T f, then fields(A) = T f, S g for some S g.

Proof

By induction on Δ � C <: D, where C and D are the top-level class name (prefix) of A

and B, respectively. �

Lemma A.4

If A <# B and mtype(m, B) = <X � C>U→U0, then mtype(m, A) = <X � C>U→U0.

Proof

Similar to Lemma A.3 �

Lemma A.5

If Δ; x:A; B � e0 : T0, then T0 is an absolute class name and Δ; x:A; B′ � e0 : T0 for

any B′.

Proof

By induction on Δ; x:A; B � e0 : T0. Note that A@T = A@S for any S and T. �

The following lemmas show that type substitution preserves subtyping, type well-

formedness, and typing, and that resolution preserves typing. Then, we prove that

substitution of expressions preserves typing.

Lemma A.6 (Type Substitution Preserves Subtyping)

If Δ, X<:C � S <: T and Δ; A � P ok and Δ � P<:C, then Δ � [P/X]S <: [P/X]T.

Proof

By induction on Δ, X<:C � S <: T. �

Lemma A.7 (Type Substitution Preserves Type Well-Formedness)

If Δ, X<:C; A � T ok and Δ; A � P ok and Δ � P<:C, then Δ; A � [P/X]T ok.

Proof

By induction on Δ, X<:C; A � T ok. �

Lemma A.8 (Type Substitution Preserves Typing)

If Δ, X<:C; Γ; A � e : T, and Δ; A � P ok and Δ � P <: C, then there exists S such that

Δ; [P/X]Γ; A � [P/X]e : S and Δ � S <: [P/X]T.

Proof

By induction on Δ′; Γ; A � e : T, where we let Δ′ = Δ, X<:C, with case analysis on the

last rule used.

Case T-Var:

Immediate.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 315

Case T-Field: e = e0.fi Δ′; Γ; A � e0 : T0

fields(Δ̂′(T0@A)) = T f T = Ti@T0

By the induction hypothesis, there exists T0
′ such that Δ; [P/X]Γ; A � [P/X]e0 : T0

′ and

Δ � T0
′ <: [P/X]T0. By Lemma A.3 and the fact that Δ̂(([P/X]T0)@A) <# Δ̂′(T0@A),

we have fields(Δ̂(T0
′@A)) = T f, U g for some U g. By Lemma A.2(1), Δ � Ti@T0

′ <:

Ti@[P/X]T0. Finally, Lemma A.2(4) gives Ti@([P/X]T0) = [P/X](Ti@T0) (note that Ti
does not contain X).

Case T-Invk: e = e0.<Q>m(e) Δ′; Γ; A � e0 : T0

mtype(m, Δ̂′(T0@A)) = <Y � D>U→U0 Δ′; A � Q ok

Δ′ � Q <: D Δ′; Γ; A � e : T

Δ′ � T <: ([Q/Y]U)@T0 T = ([Q/Y]U0)@T0

By the induction hypothesis, there exists T0
′ such that Δ; [P/X]Γ; A � [P/X]e0 : T0

′

and Δ � T0
′ <: [P/X]T0 and there exist T′ such that Δ; [P/X]Γ; A � [P/X]e:T′ and Δ �

T′<:[P/X]T. Then, by Lemma A.4, mtype(m, Δ̂(T0
′@A)) = <Y�D>U→U0. By Lemmas A.6

and A.7 and S-Trans, Δ; A � [P/X]Q ok and Δ � [P/X]Q<:D and

Δ � T′ <: [P/X](([Q/Y]U)@T0)

= (([[P/X]Q/Y]U)@[P/X]T0) (by Lemma A.2(4))

= (([[P/X]Q/Y]U)@T′
0) (by Lemma A.2(1)).

The rule T-Invk finishes the case.

Case T-New: e = new A0(e) fields(A0) = T f Δ′; Γ; A � e : U

Δ′ � U <: T@A0

By the induction hypothesis, there exist U′ such that Δ; [P/X]Γ; A � [P/X]e : U′ and

Δ � U′<:[P/X]U. By Lemmas A.6 and A.2(4), Δ � [P/X]U <: [P/X](T@A0) = T@A0.

Finally, S-Trans and T-New finish the case. �

Lemma A.9 (Resolution Preserves Typing)

If Δ; x:T; B � e : T and A <# B, then Δ; x : T@A; B � e : T@A.

Proof

By induction on Δ; x:T; B � e : T with case analysis on the last rule used.

Case T-Var:

Trivial.

Case T-Field: e = e0.fi Δ; x:T; B � e0 : T0

fields(Δ̂(T0@B)) = S f T = Si@T0

By the induction hypothesis, we have Δ; x : T@A; B � e0 : T0@A. By Lemma A.3,

fields(Δ̂((T0@A)@B)) = fields(Δ̂(T0@A)) = S f, U g for some U g. Then, by T-Field,

Δ; x:T@A; B � e0.fi:Si@(T0@A). Finally, Lemma A.2(3) gives Si@(T0@A) =

(Si@T0)@A.

Case T-Invk: e = e0.<P>m(e) Δ; x:T; B � e0 : T0

mtype(m, Δ̂(T0@B)) = <X � C>U→U0 Δ; B � P ok

Δ � P <: C Δ; x:T; B � e : S

Δ � S <: ([P/X]U)@T0 T = ([P/X]U0)@T0

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

316 C. Saito et al.

By the induction hypothesis, Δ; x : T@A; B � e0 : T0@A and Δ; x : T@A; B �
e : S@A. By Lemma A.4, mtype(m, Δ̂((T0@A)@B)) = mtype(m, Δ̂(T0@A)) = <X �

C>U→U0. By Lemmas A.2(2) and A.2(3), Δ � S@A <: ([P/X]U)@(T0@A). By T-Invk,

Δ; x : T@A; B � e0.<P>m(e) : ([P/X]U0)@(T0@A). Finally, Lemma A.2(3) gives

([P/X]U0)@(T0@A) = (([P/X]U0)@T0)@A.

Case T-New: e = new A0(e) fields(A0) = T f Δ; x:T; B � e:U

Δ � U <: T@A0 T = A0

By the induction hypothesis, Δ; x:T@A; B � e:U@A. By Lemma A.2(2) and the fact

that (T@A0)@A = T@A0, we have Δ � U@A <: T@A0. Finally, since A0@A = A0, by

T-New, Δ; x:T@A; B � new A0(e):A0. �

Lemma A.10 (Expression Substitution Preserves Typing)

If Δ; Γ, x:T; A � e : T and Δ; Γ; A � d : S and Δ � S <: T, then there exists S such

that Δ; Γ; A � [d/x]e : S and Δ � S <: T.

Proof

By induction on Δ; Γ, x:T; A � e:T with case analysis on the last rule used.

Case T-Var:

If e = xi, then [d/x]xi = di. By assumption, we have Δ; Γ; A � di : Si and Δ � Si <: Ti.

If e = y ∈ dom(Γ), then [d/x]y = y and we have Δ; Γ; A � y : Γ(y) by T-Var.

Case T-Field: e = e0.fi Δ; Γ, x:T; A � e0 : T0

fields(Δ̂(T0@A0)) = U f T = Ui@T0

By the induction hypothesis, there exists U0 such that Δ; Γ; A � [d/x]e0 : U0 and

Δ � U0 <: T0. By Lemma A.3, we have fields(Δ̂(U0@A)) = U f, U′ f′ for some U′ f′.

Then, T-Field and Lemma A.2(1), Δ; Γ; A � [d/x]e0.fi : Ui@T0(= Ui@U0).

Case T-Invk: e = e0.<P>m(e) Δ; Γ, x:T; A � e0 : T0

mtype(Δ̂(T0@A)) = <X � C>U→U Δ; A � P ok

Δ � P <: C Δ; Γ, x:T; A � e : V

Δ � V <: ([P/X]U)@T0 T = ([P/X]U)@T0

By the induction hypothesis, there exist U0 and W such that

Δ; Γ; A � [d/x]e0 : U0 Δ � U0 <: T0

Δ; Γ; A � [d/x]e : W Δ � W <: V

By Lemma A.4, mtype(m, Δ̂(U0@A)) = <X � C>U→U. By Lemma A.2(1), Δ � V <:

([P/X]U)@U0. By S-Trans, Δ � W<:([P/X]U)@U0. By T-Invk and Lemma A.2(1), we

have Δ; Γ; A � [d/x]e0.<P>m([d/x]e) : ([P/X]U)@U0(= ([P/X]U)@T0).

Case T-New: e = new A0(e) fields(A0) = U f Δ; Γ, x:T; A � e:V

Δ � V <: (U@A0)

By the induction hypothesis, there exist W such that Δ; Γ; A � [d/x]e : W and Δ �
W <: V. By transitivity, Δ � W <: (U@A0). By T-New, Δ; Γ; A � new A0([d/x]e) : A0.

�

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 317

Lemma A.11

If mtype(m, A) = <X � C>S→S0 and mbody(m<P>, A) = x.e and Δ � P <: C, then there

exist B and T0 such that A <# B and Δ � T0 <: [P/X]S0 and Δ; x : [P/X]S, this :

thistype(B); B � e : T0.

Proof

By induction on the derivation of mbody(m<P>, A) = x.e with case analysis on the

last rule used.

Case MB-TClass: A = C class C � D {.. M.. }

<X � C>S0 m(S x){ return e0; } ∈ M

By T-Class and T-Method, there exists T′ such that X<:C; x:S, this:C; C � e : T′

and X<:C � T′ <: S0. By Lemmas A.1 and A.8, there exists T′′ such that Δ; x :

[P/X]S, this:C; C � [P/X]e0 : T′′ and Δ � T′′ <: [P/X]T′. By Lemma A.6 and S-Trans,

Δ � T′′ <: [P/X]S0.

Case MB-TSuper: A = C class C � D {.. M.. } m �∈ M

mbody(m<P>, D) = x.e

By the induction hypothesis, there exist E and T′ such that Δ � D <: E and Δ � T′ <:

[P/X]S and Δ; x:[P/X]S, this:E; E � e : T′. By S-Trans, Δ � C <: E.

Case MB-NClass: A = C.E class C � D {.. class E {.. M}.. }

<X � C>S0 m(S x){ return e0; } ∈ M

By T-TClass and T-Method, there exists T′ such that X<:C; x:S, this:.E; C.E �
e : T′ and X<:C � T′ <: S0. By Lemmas A.1 and A.8, there exists T′′ such that

Δ; x:[P/X]S, this:.E; C.E � [P/X]e0 : T′′ and Δ � T′′ <: [P/X]T′. By Lemma A.6 and

S-Trans, Δ � T′′ <: [P/X]S0.

Case MB-NSuper1, MB-NSuper2:

Similar to the case for MB-TSuper above. �

Proof of Theorem 3.1

By induction on the derivation of e−→e′ with case analysis on the last rule used.

Case R-Field: e = new A0(e).fi fields(A0) = S f e′ = ei

By the typing rules T-Field and T-New, we also have

T = Si@A0 fields(A0) = S f Δ; Γ; A � e : U Δ � U <: (S@A0)

In particular, we have Δ; Γ; A � ei : Ui and Δ � Ui <: Si@A0.

Case R-Invk: e = new A0(e).<P>m(d) mbody(m<P>, A0) = x.e0

e′ = [d/x, new A0(e)/this]e0

We also have by T-Invk

Δ; Γ; A � new A0(e) : A0 mtype(m, A0) = <X � C>S→S Δ; A � P ok

Δ � P <: C Δ; Γ; A � d : U

Δ � U <: ([P/X]S)@A0 T = ([P/X]S)@A0

By Lemma A.11, there exist U and B0 such that

A0 <# B0 Δ; x:[P/X]S, this:thistype(B0); B0 � e0 : U Δ � U <: [P/X]S .

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

318 C. Saito et al.

Then, by Lemma A.9, Δ; x:([P/X]S)@A0, this:A0; B0 � e0 : U@A0. By Lemma A.5,

Δ; x:([P/X]S)@A0, this:A0; A � e0 : U@A0. By Lemmas A.1 and A.10, there exists

U′ such that Δ; Γ; A � [d/x, new A0(e)/this]e0:U′ and Δ � U′ <: U@A0. Finally, by

the fact that Δ � U <: [P/X]S and Lemma A.2(2), Δ � U@A0 <: ([P/X]S)@A0 and, by

S-Trans, Δ � U′ <: ([P/X]S)@A0.

Case RC-Field,RC-Inv-Recv,RC-Inv-Arg,RC-New-Arg:

Easy. �

Appendix B

Proof of Theorem 4.1

Throughout the proofs here, we assume that the underlying class table is ok. Then,

the erasure of the class table will be well defined; therefore, subtyping <:FJ and the

lookup functions fieldsFJ, mtypeFJ and mbodyFJ will be, too. We write C �FJ M and �FJ L

for FJ typing judgments for methods and classes, respectively.

We begin with proving a number of properties about erasure.

Lemma B.1 (Properties of type erasure)

1. If Δ � S <: T and Δ; A � S, T ok, then |S|Δ,A <:FJ |T|Δ,A.
2. |S@T|Δ,A = |S|Δ,Δ̂(T@A).

3. If class C � D {.. } and Δ; D.E � T ok, then |T|Δ,C.E <:FJ |T|Δ,D.E.
4. If Δ; A � T ok, then |Δ̂(T@A)| = |T|Δ,A.
5. If Δ; A � P ok and Δ, X<:C; A � T ok and Δ � P<:C, then |[P/X]T|Δ,A <: |T|(Δ,X<:C),A.
6. If A <# B, then |A| <:FJ |B|.

Proof

(1) is by induction on the derivation of Δ � S<:T. (2) is by case analysis on S and T.

(3) is easy. (4) and (5) are by case analysis on T. (6) is easy. �

Lemma B.2

If fields(A) = T f, then fieldsmax(A) = C f and |T|A <:FJ C.

Proof

By induction on the derivation of fields(A). �

Lemma B.3

If mtype(m, A) = <X�C>T→T0, then mtypemax(m, A) = D→D0, |T|Δ,A <:FJ D and |T0|Δ,A <:FJ

D0, where Δ = X<:C.

Proof

By induction on the derivation of mtype(m, A) = <X�C>T→T0. �

Lemma B.4

fieldsFJ(|A|) = fieldsmax(A). Similarly, mtypeFJ(m, |A|) = mtypemax(m, A).

Proof

By induction on the derivation of fieldsmax(A) and mtypemax(m, A). �

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 319

Lemma B.5

If Δ; Γ; A � e : T, then Δ; A � T ok.

Proof

By induction on the derivation of Δ; Γ; A � e:T. �

Lemma B.6

If N = nestedclasses(C), then C � N ok

Proof

By induction of the derivation of nestedclasses(C). �

Proof of Theorem 4.1

We prove the theorem in two steps: first it is shown that if Δ; Γ; A � e:T then

|Γ|Δ,A �FJ |e|Δ,Γ,A:|T|Δ,A; and second, we show |CT| is ok.

The first part is proved by induction on the derivation of Δ; Γ; A � e:T with a

case analysis on the last rule used.

Case T-Field: e = e0.fi Δ; Γ; A � e0 : T0 fields(Δ̂(T0@A)) = T f

T = Ti@T0

By the induction hypothesis, we have |Γ|Δ,A �FJ |e0|Δ,Γ,A:|T0|Δ,A. By Lemma B.5,

Δ; A � T0 ok. By Lemmas B.1(4), B.2, and B.4,

fieldsFJ(|T0|Δ,A) = fieldsmax(Δ̂(T0@A)) = C f

|T|Δ̂(T0@A) <:FJ C .

By the rule T-Field, we have |Γ|Δ,A �FJ |e0|Δ,Γ,A.fi : Ci.

Since T do not contain any type variables, by Lemma B.1(2),

|T|Δ̂(T0@A) = |T|Δ,Δ̂(T0@A) = |T@T0|Δ,A <:FJ C.

If |Ti@T0|Δ,A = Ci, then |e0.fi|Δ,Γ,A = |e0|Δ,Γ,A.fi by E-Field, finishing the case. On

the other hand, if |Ti@T0|Δ,A �= Ci, then

|e0.fi|Δ,Γ,A = (|Ti@T0|Δ,A)|e0|Δ,Γ,A.fi

by the rule E-Field-Cast and |Γ|Δ,A �FJ (|Ti@T0|Δ,A)|e0|Δ,Γ,A.fi:|Ti@T0|Δ,A by the

rule T-DCast, finishing the case.

Case T-Invk:

Similar to the case above.

Case T-Var, T-New:

Easy.

The second part (|CT| is ok) follows from the first part with examination of

the rules T-Method, T-NClass, and T-TClass. We show that if A � M ok then

|A| �FJ |M|A ok. Let M = <X�C>T0 m(T x){ return e0; }. Then, by E-Method, we

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

320 C. Saito et al.

have

mtypemax(m, A) = D→D0

|M|A = D0 m(D x′){ return e0
′; }

Γ = x:T, this:thistype(A) Δ = X<:C

ei =

{
xi′ if Di = |Ti|Δ,A
(|Ti|Δ,A)xi′ otherwise

e0
′ = [e/x](|e0|Δ,Γ,A) .

By the rule T-Method, we have

Δ; A � T, T0, C ok Δ; Γ; A � e0 : S Δ � S <: T0

if mtype(m, superclass(A)) = <Y�E>U→U0, then (Y, E, U, U0) = (X, C, T, T0) .

We must show that

x′ : D, this : |A| �FJ e0
′ : E0 E0 <:FJ D0

if mtypeFJ(m, |superclass(A)|) = D′→D0
′, then D′ = D and D0

′ = D0

for some E0. By the result of the first part, x : |T|Δ,A, this:|thistype(A)|Δ,A �FJ |e0|Δ,Γ,A :

|S|Δ,A. Since, by Lemma B.3, |Ti|Δ,A <:FJ Di, we have xi′:Di �FJ ei:|Ti|Δ,A for any

0 � i � #(x′). By Lemma A.10 and the fact that |thistype(A)|Δ,A = |A|, we have

x′:D, this : |A| �FJ e0
′ : C0

for some C0 where C0 <:FJ |S|Δ,A. On the other hand, by Lemma B.3, |T0|Δ,A <:FJ D0.

Since |S|Δ,A<:|T0|Δ,A by Lemma B.1(1), we have C0 <:FJ D0 by S-Trans. Let E0 be C0.

Finally, if mtypemax(m, superclass(A)) is well defined, then it is easy to show that

mtypeFJ(m, |superclass(A)|) is also well defined. By Lemma B.4,

mtypemax(m, superclass(A)) = mtypeFJ(m, |superclass(A)|) = D→D0 .

It is also straightforward to show that if C � N ok then �FJ |N|C ok, and if � L ok

then �FJ |L| ok. �

Appendix C

Proof of Theorems 4.2, 4.3, and 4.4

A first important lemma is Lemma C.5, which gives the correspondence between

the method body in the erased class table and the method body erased under the

context in which the program is running.

Lemma C.1

If Γ, x:C � e
exp

=⇒ e′ and Γ �FJ d:D where D <:FJ C, then Γ � [d/x]e
exp

=⇒ [d/x]e′.

Proof

By induction on the derivation of Γ, x:C �FJ e:C. �

Lemma C.2

If Δ′, X<:C; Γ; A � e:T and Δ′ � P <: C and Δ′; A � P ok and Γ′ is a type environment

such that dom(Γ′) = dom(Γ) and Δ′ � Γ′(x) <: ([P/X]Γ(x))@A for all x ∈ dom(Γ), then

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 321

|e|(Δ′ ,X<:C),Γ,A is obtained from |[P/X]e|Δ′ ,Γ′ ,A by some combination of replacements of

some synthetic casts (D) with (C) where D <: C, or removals of some casts.

Proof

By induction on the derivation of Δ; Γ; A � e:T, in which we let Δ = Δ′, X<:C, with

case analysis on the last rule used.

Case T-Var:

Trivial.

Case T-Field: e = e0.f Δ; Γ; A � e0 : T0 fields(Δ̂(T0@A)) = T f

T = Ti@T0

By the induction hypothesis, |e0|Δ,Γ,A is obtained from |[P/X]e0|Δ′ ,Γ′ ,A by some

combination of replacements of some casts (D) with (C) where D <:FJ C, or removals

of some casts. By Theorem 4.1, |Γ|Δ,A �FJ |e0|Δ,Γ,A : |T0|Δ,A. By Lemmas B.2 and B.1(2),

fieldsmax(Δ̂(T0@A)) = D f and |Ti@T0|Δ,A = |Ti|Δ,Δ̂(T0@A) <:FJ Di.

We have two subcases.

Subcase: |Ti@T0|Δ,A �= Di

By the rule E-Field-Cast,

|e|Δ,Γ,A = (|Ti@T0|Δ,A)|e0|Δ,Γ,A.fi.

Then, we must show that |[P/X]e|Δ′ ,Γ′ ,A = (D)|[P/X]e0|Δ′ ,Γ′ ,A.fi for some D <:FJ

|Ti@T0|Δ,A. By Lemmas A.9, A.8, and A.10,

Δ′; Γ′; A � [P/X]e0 : S0 Δ′ � S0 <: [P/X]T0@A

for some S0. Then, by Lemmas A.3 and A.2(2),

fields(Δ̂′(S0@A)) = T f, T′ g

for some T′ g. By Lemmas A.2(1), A.2(3), and A.2(4), and the fact that Ti does not

contain X,

Ti@S0 = Ti@([P/X]T0@A)

= (Ti@([P/X]T0))@A

= ([P/X](Ti@T0))@A

and, by Lemmas B.1(2) and B.1(5),

|Ti@S0|Δ′ ,A = |([P/X](Ti@T0))@A|Δ′ ,A = |[P/X](Ti@T0)|Δ′ ,A <:FJ |Ti@T0|Δ,A.

On the other hand,

fieldsmax(Δ′(S0@A)) = D f, D′ g

for some D′ g. Therefore, by the rule E-Field-Cast,

|[P/X]e|Δ′ ,Γ′ ,A = (|Ti@S0|Δ′ ,A)|[P/X]e0|Δ′ ,Γ′ ,A.fi

and taking |Ti@S0|Δ′ ,A as D finishes the case.

Subcase: |Ti@T0|Δ,A = Di

Similar to the subcase above.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

322 C. Saito et al.

Case T-Invk: e = e0.<Q>m(e) Δ; Γ; A � e0 : T0

mtype(m, Δ̂(T0@A)) = <Y�D>U→U0 Δ; A � Q ok

Δ � Q <: D Δ; Γ; A � e : T Δ � T <: ([Q/Y]U)@T0

T = ([Q/Y]U0)@T0

By the induction hypothesis, |e|Δ,Γ,A are obtained from |[P/X]e|Δ′ ,Γ′ ,A by some

combination of replacements of some casts (D) with (C) where D <:FJ C, or removals

of some casts. By Theorem 4.1, |Γ|Δ,A �FJ |e0|Δ,Γ,A : |T0|Δ,A. Since, by Lemmas B.1(2),

B.1(5), and B.3, mtypemax(m, Δ̂(T0@A)) = E→E0 and |T|Δ,A = |[Q/Y]U0|Δ,Δ̂(T0@A) <:FJ

|U0|(Δ,Y<:D),Δ̂(T0@A) <:FJ E0.

Now we have two subcases.

Subcase: |T|Δ,A �= E0

By the rule E-Invk-Cast,

|e|Δ,Γ,A = (|T|Δ,A)|e0|Δ,Γ,A.m(|e|Δ,Γ,A)

Now, we must show that

|[P/X]e|Δ′ ,Γ′ ,A = (D)|[P/X]e0|Δ′ ,Γ′ ,A.m(|[P/X]e|Δ′ ,Γ′ ,A)

for some D <:FJ |T|Δ,A. By Lemmas A.9, A.8, and A.10,

Δ′; Γ′; A � [P/X]e0:S0 Δ′ � S0<:[P/X]T0@A .

By Lemma A.4,

mtype(m, Δ̂′(S0@A)) = <Y�D>U→U0

By Lemmas A.2(1), A.2(3), and A.2(4), and the fact that U0 does not contain any

type variables in X,

([[P/X]Q/Y]U0)@S0 = ([[P/X]Q/Y]U0)@([P/X]T0@A)

= (([[P/X]Q/Y]U0)@([P/X]T0))@A

= ([P/X](([Q/Y]U0)@T0))@A.

Then, by Lemmas B.1(2) and B.1(5),

|([[P/X]Q/Y]U0)@S0|Δ′ ,A = |([P/X](([Q/Y]U0)@T0))@A|Δ′ ,A

= |[P/X](([Q/Y]U0)@T0)|Δ′ ,A <:FJ |([Q/Y]U0)@T0|Δ,A .

On the other hand, it is easy to show that

mtypemax(Δ̂′(S0@A)) = mtypemax(Δ̂(T0@A)) = E→E0 .

Then, by the rule E-Invk-Cast,

|[P/X]e|Δ′ ,Γ′ ,A = (|([[P/X]Q/Y]U0)@S0|Δ′ ,A)|[P/X]e0|Δ′ ,Γ′ ,A.m(|[P/X]e|Δ′ ,Γ′ ,A)

and taking |([[P/X]Q/Y]U0)@S0|Δ,A as D finishes the subcase.

Subcase: |T|Δ,A = E0

Similar to the subcase above.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 323

Case T-New:

Immediate from the induction hypothesis. �

Lemma C.3

If Δ; Γ; D.E � e : T and Δ � C <: D, then Δ; Γ; C.E � e : T.

Proof

By straightforward induction on Δ; Γ; D.E � e : T, with Lemmas A.3 and A.4. �

Lemma C.4

If Δ; Γ; D.E � e : T and Δ � C <: D, then |Γ|Δ,C.E � |e|Δ,Γ,C.E
exp

=⇒ |e|Δ,Γ,D.E.

Proof

By induction on Δ; Γ; D.E � e : T. We show only the case for T-Field since the

other cases are either easy or similar to this main case.

Case T-Field: e = e0.fi Δ; Γ; D.E � e0 : T0 fields(Δ̂(T0@D.E)) = T f

T = Ti@T0

By Lemma B.5, Δ; D.E � T ok. By the induction hypothesis, we have |Γ|Δ,C.E �
|e0|Δ,Γ,C.E

exp

=⇒ |e0|Δ,Γ,D.E. By Lemma C.3,

Δ; Γ; C.E � e0 : T0 Δ; Γ; C.E � e : T .

Let C = fieldsmax(Δ̂(T0@C.E))(fi). It is easy to check that Δ̂(T0@C.E) <# Δ̂(T0@D.E)

and fieldsmax(Δ̂(T0@D.E))(fi) = C. By Lemmas B.1(3) and B.2, |T|Δ,C.E <:FJ |T|Δ,D.E <:FJ

C. We have four subcases depending on whether these three types are equal or not.

If |T|Δ,C.E �= |T|Δ,D.E �= C, then

|e|Δ,Γ,C.E = (|T|Δ,C.E)|e0|Δ,Γ,C.E.fi
|e|Δ,Γ,D.E = (|T|Δ,D.E)|e0|Δ,Γ,D.E.fi .

by E-Field-Cast. Thus, |Γ|Δ,C.E � |e|Δ,Γ,C.E
exp

=⇒ |e|Δ,Γ,D.E. The other three subcases

are similar. �

Lemma C.5

If mbody(m<P>, A) = x.e and mtype(m, A) = <X�C>T→T0 and Δ; B � P ok and

Δ � P <: C and Δ � U <: ([P/X]T)@A, then mbodyFJ(m, |A|) = x.e′ and |x : U, this :

thistype(A)|Δ,A � |e|Δ, (x:U,this:thistype(A)), A

exp

=⇒ e′.

Proof

By induction on the derivation of mbody(m<P>, A) with a case analysis on the last

rule used.

Case MB-NClass: A = C.E class C�D{ .. class E{ .. M } .. }

<X�C>T0 m(T x){ return e0; } ∈ M e = [P/X]e0

Let Δ′ = X<:C and Γ = x:T, this:.E. By T-Method, we have

Δ′; Γ; C.E � e0 : S0 Δ′ � S0 <: T0 .

Then, by Lemma C.2, |e0|Δ′ ,Γ,C.E is obtained from |e|Δ,(x:U,this:.E),C.E by some combi-

nation of replacements of some casts (C) with (D) where C <:FJ D. By Theorem 4.1

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

324 C. Saito et al.

and Lemma B.1(1),

|Γ|Δ′ ,C.E �FJ |e0|Δ′ ,Γ,C.E : |S0|Δ′ ,C.E |S0|Δ′ ,C.E <:FJ |T0|Δ′ ,C.E .

Now, by Lemma B.3, mtypemax(m, C.E) = D→D0 for some D and D0, and, by

E-Method, mtypeFJ(m, |C.E|) = x.[e/x](|e0|Δ′ ,Γ,C.E), where

ei =

{
xi if Di = |Ti|Δ′ ,C.E

(|Ti|Δ′ ,C.E)xi otherwise

for i = 1, . . . ,#(x). By Lemmas B.1(1), B.1(2), and B.1(5),

|U|Δ,C.E <:FJ |([P/X]T)@C.E|Δ,C.E <:FJ |[P/X]T|Δ,C.E <:FJ |T|(Δ,Δ′),C.E = |T|Δ′ ,C.E .

Thus, each ei is either a variable or a variable with an upcast under the environment

|x:U, this:.E|Δ,C.E. Then, by Lemma A.10, we have

|x:U, this:.E|Δ,C.E �FJ [e/x](|e0|Δ′ ,Γ,C.E) : E0

for some E0 such that E0 <:FJ |S0|Δ′ ,C.E. Therefore, we have

|x:U, this:.E|Δ,C.E � |e|Δ,(x:U,this:.E),C.E
exp

=⇒ [e/x](|e0|Δ′ ,Γ,C.E),

finishing the case.

Case MB-NSuper1: A = C.E class C � D{ .. N} E �∈ N

mbody(m<P>, D.E) = x.e

It must be the case that mtype(m, D.E) = <X�C>T→T0. By the induction hypothesis

and the definition of erasure, we have mbodyFJ(m, |C.E|) = mbodyFJ(m, |D.E|) = x.e′

and

|x:U, this:.E|Δ,A � |e|Δ,(x:U,this:.E),D.E
exp

=⇒ e′ .

By Lemma C.4,

|x:U, this:.E|Δ,A � |e|Δ,(x:U,this:.E),C.E
exp

=⇒ |e|Δ,(x:U,this:.E),D.E .

Transitivity of
exp

=⇒ finishes the case.

Case MB-NSuper2:

Similarly to the case above.

Case MB-TClass, MB-TSuper:

Easy. �

Proof of Theorem 4.2

By induction on the derivation of e −→ e′ with a case analysis on the last reduction

rule used.

Case R-Field: e = new A0(e).fi fields(A0) = T f e′ = ei

We have two subcases depending on the last erasure rule used.

Subcase E-Field-Cast: |e|Δ,Γ,A = (D)new |A0|(|e|Δ,Γ,A).fi
fieldsmax(A0)(fi) �= |T|Δ,A = D

By Lemma B.4, fieldsFJ(|A0|) = . . . , C fi, . . . for some C, we have |e|Δ,Γ,A −→FJ

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 325

(D)|ei|Δ,Γ,A. On the other hand, by Theorem 3.1, Δ; Γ; A � ei : Ti such that Δ � Ti <: T.

By Theorem 4.1, |Γ|Δ,A �FJ |ei|Δ,Γ,A : |Ti|Δ,A. Since |Ti|Δ,A <:FJ |T|Δ,A by Lemma B.1(1),

(D)|ei|Δ,Γ,A is obtained by adding an upcast to |ei|Δ,Γ,A.
Subcase E-Field: |e|Δ,Γ,A = new |A0|(|e|Δ,Γ,A).fi
Similarly to the subcase above.

Case R-Invk: e = new A0(e).<P>m(d) mbody(m<P>, A0) = x.e0

e′ = [d/x, new A0(e)/this]e0

By T-Invk, we have

mtype(m, A0) = <X�C>T→T0 Δ; A � P ok Δ � P <: C

Δ; Γ; A � d : U Δ � U <: ([P/X]T)@A0 T = ([P/X]T0)@A0 .

We have two subcases depending on the last erasure rule used.

Subcase E-Invk-Cast: |e|Δ,Γ,A = (D)new |A0|(|e|Δ,Γ,A).m(|d|Δ,Γ,A)
mtypemax(m, A0) = E→E0 E0 �= |T|Δ,A = D

Let Γ′ = x:U, this : thistype(A0). Then, by Lemma C.5 and mbodyFJ(m, |A0|) = x.e0
′,

|Γ′|Δ,A0
� |e0|Δ,Γ′ ,A0

exp

=⇒ e0
′

By Lemma C.1 and the fact that |e′|Δ,Γ,A = [|d|Δ,Γ,A/x, |new A0(e)|Δ,Γ,A/this]|e0|Δ,Γ′ ,A0
,

|Γ|Δ,A � |e′|Δ,Γ,A
exp

=⇒ [|d|Δ,Γ,A/x, |new A0(e)|Δ,Γ,A/this]e0
′.

By Theorems 3.1 and 4.1, |Γ|Δ,A �FJ |e′|Δ,Γ,A : |T′|Δ,A for some T′ such that Δ � T′ <: T.

By Lemma B.1(1), |T′|Δ,A <:FJ |T|Δ,A = D. Thus,

|Γ|Δ,A � |e′|Δ,Γ,A
exp

=⇒ (D)|e′|Δ,Γ,A.

Finally,

|Γ|Δ,A � |e′|Δ,Γ,A
exp

=⇒ (D)[|d|Δ,Γ,A/x, |new A0(e)|Δ,Γ,A/this]e0
′.

Subcase E-Invk:

Similarly to the subcase above. �

Now, we prove Theorem 4.3 after the following lemmas. The first lemma shows

how one execution step in FJ is reflected in .FJ and the next shows expansion and

FJ reduction can commute. Then, Theorem 4.3 is an easy corollary of them.

Lemma C.6

Suppose Δ; Γ; A � e : T. If |e|Δ,Γ,A−→FJd, then e −→ e′ for some e′ and |Γ|Δ,A �
|e′|Δ,Γ,A

exp

=⇒ d. In other words, the diagram in Figure C.1 commutes.

Proof

By induction on the derivation of |e|Δ,Γ,A −→FJ d with a case analysis by the last rule

used. We show only a few main cases.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

326 C. Saito et al.

e
reduction (.FJ) ��

erasure

��

e′

erasure

��
|e′|

expansion

��
|e|

reduction (FJ)
�� d

Fig. C.1. Commuting diagram of Lemma C.6.

Case RC-Cast: |e|Δ,Γ,A = (C)e0 e0 −→FJ d0 d = (C)d0

Both e and e0 must be either a field access or a method invocation. We have another

case analysis with the last reduction rule for the derivation of e0 −→FJ d0. The cases

for RC-Field, RC-Invk-Recv, and RC-Invk-Arg are omitted, since the conclusion

easily follows from the induction hypothesis.

Subcase R-Field: e0 = new D(e).fi fieldsFJ(D) = C f d0 = ei

By inspecting the derivation of |e|Δ,Γ,A, it must be the case that

e = new B(e′).fi |B| = D |e′|Δ,Γ,A = e fieldsmax(B) = C f

|T|Δ,A = C �= Ci .

By Theorems 3.2 and 3.1 and Lemma B.4, we have e −→ ei′ and Δ; Γ; A � ei′:S

and Δ � S <: T. By Theorem 4.1, |Γ|Δ,A �FJ |ei′|Δ,Γ,A : |S|Δ,A. By Lemma B.1(1),

|S|Δ,A <:FJ |T|Δ,A. Then, |Γ|Δ,A � ei
exp

=⇒ (|T|Δ,A)ei, finishing the case.

Subcase R-Invk: e0 = new D(d).m(e) mbodyFJ(m, D) = x.em
d0 = [e/x, new D(d)/this]em

By inspecting the derivation of |e|Δ,Γ,A, it must be the case that

e = new B(d′).<P>m(e′) |B| = D |d′|Δ,Γ,A = d

|e′|Δ,Γ,A = e mtype(m, B) = <X�C>U→U0 [P/X]U0@B = T

mtypemax(m, B) = E→E0 |T|Δ,A = C �= E0 .

By Theorems 3.2 and 3.1, for some S,

mbody(m<P>, B) = x.em′ e −→ [e′/x, new B(d′)/this]em′

Δ; Γ; A � [e′/x, new B(d′)/this]em′:S Δ � S <: T .

By Theorem 4.1 and the fact that

|[e′/x, new B(d′)/this]em′|Δ,Γ,A = [e/x, new D(d)/this]|em′|Δ,(x:S,this:thistype(B)),B

where S are the types of e′, we have

|Γ|Δ,A �FJ [e/x, new D(d)/this]|em′|Δ,(x:S,this:thistype(B)),B : |S|Δ,A .

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 327

|e|
reduction (FJ) ��

expansion

��

e′

expansion

��
d

R-Cast

∗�� d′
reduction (except R-Cast)

�� d′′

Fig. C.2. Commuting diagram of Lemma C.7.

Since |S|Δ,A <:FJ |T|Δ,A by Lemma B.1(1),

|Γ|Δ,A � [e/x, new D(d)/this]|em′|Δ,(x:S,this:thistype(B)),B

exp

=⇒ (|T|Δ,A)[e/x, new D(d)/this]|em′|Δ,(x:S,this:thistype(B)),B .

On the other hand, since Δ � S<:[P/X]U@B, by Lemma C.5,

|x:S, this:thistype(B)|Δ,B � |em′|Δ,(x:S,this:thistype(B)),B

exp

=⇒ em .

By Lemma C.1,

|Γ|Δ,A � [e/x, new D(d)/this]|em′|Δ,(x:S,this:thistype(B)),B

exp

=⇒ [e/x, new D(d)/this]em .

Then,

|Γ|Δ,A � (|T|Δ,A)[e/x, new D(d)/this]|em′|Δ,(x:S,this:thistype(B)),B

exp

=⇒ (|T|Δ,A)[e/x, new D(d)/this]em .

Finally, by the fact that C = |T|Δ,A and transitivity of the expansion relation, we have

|Γ|Δ,A � |[e′/x, new B(d′)/this]em′|Δ,Γ,A
exp

=⇒ (C)[e/x, new D(d)/this]em .

Case R-Cast:

Cannot happen since no casts are inserted before new expressions by erasure.

Case R-Field:

Similar to the subcase for R-Field in the case for RC-Cast above.

Case R-Invk:

Similar to the subcase for R-Invk in the case for RC-Cast above. The case for

R-Cast and the other cases for induction steps are straightforward. �

Lemma C.7

Suppose Δ; Γ; A � e:T and |Γ|Δ,A � |e|Δ,Γ,A
exp

=⇒ d. If d −→∗
c d

′ and d′ −→n d′′, then

|e|Δ,Γ,A −→FJ e′ and |Γ|Δ,A � e′ exp

=⇒ d′′. In other words, the diagram in Figure C.2

commutes.

Proof

By induction on the derivation of the last reduction step with a case analysis by the

last rule used. Refer to Igarashi et al. (2001) for details. �

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

328 C. Saito et al.

e
reduction (.FJ) ��

erasure

��

e′

erasure

��
|e′|

expansion

��|e|
reduction (FJ) ��

expansion

��
expansion

��
d

R-Cast

∗�� d′
reduction (except R-Cast)

�� d′′

Fig. C.3. Commuting diagram of Theorem 4.3.

e
reduction (FJ) ��

expansion

��

e′

expansion

��
d

reduction (FJ)

∗�� d′

Fig. C.4. Commuting diagram of Lemma C.8.

Proof of Theorem 4.3

Follows from Lemmas C.6 and C.7. See Figure C.3. �

Finally, Theorem 4.4 is proved after the following lemma.

Lemma C.8

If Γ �FJ e:C and e −→FJ e′ and Γ � e
exp

=⇒ d, then there exists some FJ expression

d′ such that Γ � e′ exp

=⇒ d′ and d −→FJ
∗ d′. In other words, the diagram shown in

Figure C.4 commutes.

Proof

By induction on the derivation of e −→FJ e′ with a case analysis on the last reduction

rule used. See Igarashi et al. (2001) for details. �

Proof of Theorem 4.4

For the first part, we first show that if Δ; Γ; A � e:T and e−→∗e′, then there exists

some FJ expression d′ such that |Γ|Δ,A � |e′|Δ,Γ,A
exp

=⇒ d′ and |e|Δ,Γ,A −→FJ
∗ d′, by

induction on the length n of reduction sequence e −→∗ e′. The base case is trivial.

As for the induction step, we have the commuting diagram shown in Figure C.5, in

which commutation (1) is proved by Theorem 4.2, (2) by the induction hypothesis,

and (3) by Lemma C.8.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 329

e
reduction (.FJ) ��

erasure

��

(1)

e′ reduction (.FJ) ∗��

erasure

��

e′′

erasure

��
(2) |e′′|

expansion

��
|e′|

reduction (FJ) ∗��

expansion

��

(3)

d′

expansion

��
|e|

reduction (FJ)
�� d

reduction (FJ)

∗�� d′′

Fig. C.5. Commuting diagram in the proof of Theorem 4.4.

When e′ is a value, |e′|Δ,Γ,A is also a value and d′ is obtained only by inserting

some upcasts to |e′|Δ,Γ,A. So, |e′|Δ,Γ,A −→FJ
∗ d′.

The second part is proved as follows. First, |e|Δ,Γ,A −→FJ
∗ v can be rewritten as

|e|Δ,Γ,A−→∗
c−→n−→∗

c · · · −→ne′′−→∗
cv .

By repeatedly applying Theorem 4.3, there exists a .FJ expression e′ such that

e−→∗e′ and |Γ|Δ,A � |e′|Δ,Γ,A
exp

=⇒ e′′. By the fact that e′′ is an expansion (of |e′|Δ,Γ,A)
and is obtained from v by inserting upcasts, e′ must be a .FJ value v′ and |e′|Δ,Γ,A is

necessarily equal to v. �

References

Aspinall, D. & Hofmann, M. (2005) Dependent types. In Advanced Topics in Types and

Programming Languages, Pierce, B. C. (ed), The MIT Press, pp. 45–86.

Bracha, G., Odersky, M., Stoutamire, D. & Wadler, P. (1998, October). Making the future

safe for the past: Adding genericity to the Java programming language. In Proceedings

of ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA’98), pp. 103–200.

Bruce, K. B. (2003) Some challenging typing issues in object-oriented languages. In Proceedings

of Workshop on Object-Oriented Development (WOOD’03). Electronic Notes in Theoretical

Computer Science, vol. 82, no. 8.

Bruce, K. B. & Foster, J. N. (2004) LOOJ: Weaving LOOM into Java. In Proceedings of

European Conference on Object-Oriented Programming (ECOOP2004). Lecture Notes on

Computer Science, vol. 3086. Oslo, Norway: Springer-Verlag.

Bruce, K. B. & Vanderwaart, J. C. (1999) Semantics-driven language design: Statically

type-safe virtual types in object-oriented languages. In Proceedings of 15th Conference on

the Mathematical Foundations of Programming Semantics (MFPS XV). Electronic Notes

in Theoretical Computer Science, vol. 20. New Orleans, LA: Elsevier. Available at:

http://www.elsevier.nl/locate/entcs/volume20.html.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

330 C. Saito et al.

Bruce, K. B., Cardelli, L., Castagna, G., The Hopkins Objects Group, Leavens, G. T. &

Pierce, B. (1996) On binary method. Theory Pract. Object Systems. 1(3), 221–242.

Bruce, K. B., Petersen, L. & Fiech, A. (1997) Subtyping is not a good “match” for

object-oriented languages. In Proceedings of 11th European Conference on Object-Oriented

Programming (ECOOP’97). Lecture Notes on Computer Science, vol. 1241. Jyväskylä,

Finland: Springer-Verlag, pp. 104–127.

Bruce, K. B., Odersky, M. & Wadler, P. (1998) A statically safe alternative to virtual types.

Proceedings of 12th European Conference on Object-Oriented Programming (ECOOP’98).

Lecture Notes on Computer Science, vol. 1445. Brussels, Belgium: Springer-Verlag, pp.

Canning, P., Cook, W., Hill, W., Olthoff, W. & Mitchell, J. C. (1989) F-bounded

polymorphism for object-oriented programming. In Proceedings of ACM Conference on

Functional Programming and Computer Architecture (FPCA’89). London, England: ACM

Press, pp. 273–280.

Clarke, D., Drossopoulou, S., Noble, J. & Wrigstad, T. (2007, March). Tribe: A simple

virtual class calculus. In Proceedings of International Conference on Aspect-Oriented Software

Design (AOSD’07), pp. 121–134.

Ernst, E. (1999 June) gbeta—A Language with Virtual Attributes, Block Structure, and

Propagating, Dynamic Inheritance. Ph.D. thesis, Department of Computer Science,

University of Aarhus, Aarhus, Denmark.

Ernst, E. (2001) Family polymorphism. In Proceedings of European Conference on Object-

Oriented Programming (ECOOP2001). Lecture Notes on Computer Science, vol. 2072.

Budapest, Hungary: Springer-Verlag, pp. 303–326.

Ernst, E. (2003). Higher-order hierarchies. In Proceedings of European Conference on Object-

Oriented Programming (ECOOP2003). Lecture Notes on Computer Science, vol. 2743.

Darmstadt, Germany: Springer-Verlag, pp. 303–328.

Ernst, E., Ostermann, K. & Cook, W. R. (2006, January). A virtual class calculus.

In Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL2006), pp. 270–282.

Flatt, M., Krishnamurthi, S. & Felleisen, M. (1998, January). Classes and mixins.

In Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’98), pp. 171–183.

Igarashi, A. & Viroli, M. (2007, January). Variant path types for scalable extensibility.

In Proceedings of the International Workshop on Foundations and Developments of

Object-Oriented Languages (FOOL/WOOD 2007). Available at: http://foolwood07.cs.

uchicago.edu/.

Igarashi, A., Pierce, B. C. & Wadler, P. (2001). Featherweight Java: A minimal core

calculus for Java and GJ. ACM transactions on programming languages and systems, 23(3),

396–450. A preliminary summary appeared in Proceedings of the ACM Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’99), ACM

SIGPLAN Notices, vol. 34, no. 10, pp. 132–146, October 1999.

Igarashi, A., Saito, C. & Viroli, M. (2005). Lightweight family polymorphism. In Proceedings of

the 3rd Asian Symposium on Programming Languages and Systems (APLAS2005). Lecture

Notes in Computer Science, vol. 3780. Tsukuba, Japan: Springer-Verlag, pp. 101–177.

Jolly, P., Drossopoulou, S., Anderson, C. & Ostermann, K. (2004, June). Simple dependent

types: Concord. In Proceedings of 6th ECOOP Workshop on Formal Techniques for Java-like

Programs (FTfJP2004).

Madsen, O. L. & Møller-Pedersen, B. (1989, October). Virtual classes: A powerful mechanism

in object-oriented programming. In Proceedings of ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA’89), pp. 397–406.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

Lightweight family polymorphism 331

Nystrom, N., Chong, S. & Myers, A. C. (2004, October) Scalable extensibility via nested

inheritance. In Proceedings of ACM Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA’04).

Odersky, M. (2002, January) Inferred type instantiation for GJ. Available at: http://lampwww.

epfl.ch/~odersky/papers/localti02.html.

Odersky, M., Cremet, V., Röckl, C. & Zenger, M. (2003). A nominal theory of objects with

dependent types. In Proceedings of European Conference on Object-Oriented Programming

(ECOOP’03). Lecture Notes on Computer Science, vol. 2743. Darmstadt, Germany:

Springer-Verlag, pp. 201–224.

Thorup, K. K. & Torgersen, M. (1999) Unifying genericity: Combining the benefits of

virtual types and parameterized classes. In Proceedings of 13th European Conference on

Object-Oriented Programming (ECOOP’99). Lecture Notes on Computer Science, vol. 1628.

Lisbon, Portugal: Springer-Verlag, pp. 186–204.

Torgersen, M. (2004, June) The expression problem revisited: Four new solutions

using generics. Proceedings of European Conference on Object-Oriented Programming

(ECOOP2004). Lecture Notes on Computer Science, vol. 3086, pp. 123–146.

Wright, A. K. & Felleisen, M. (1994). A syntactic approach to type soundness. Inform. and

Comput. 115(1), 38–94.

https://doi.org/10.1017/S0956796807006405 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006405

