THE SET OF SOLUTIONS OF INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES

RAVI P. AGARWAL, DONAL O'REGAN and ANETA SIKORSKA-NOWAK

(Received 17 March 2008)

Abstract

In this paper, we first prove an existence theorem for the integrodifferential equation

$$\begin{cases} x'(t) = f\left(t, x(t), \int_0^t k(t, s, x(s)) \, ds\right), & t \in I_a = [0, a], \ a \in R_+, \end{cases}$$
(*)
$$x(0) = x_0$$

where f, k, x are functions with values in a Banach space E and the integral is taken in the sense of Henstock–Kurzweil–Pettis. In the second part of the paper we show that the set S of all solutions of the problem (*) is compact and connected in $(C(I_d, E), \omega)$, where $I_d \subset I_a$.

2000 Mathematics subject classification: 34D09, 34D99.

Keywords and phrases: integral equations, existence theorem, pseudo-solution, set of solutions, measure of noncompactness, Henstock–Kurzweil–Pettis integral.

1. Introduction

In this paper, we prove an existence theorem for the problem

$$\begin{cases} x'(t) = f\left(t, x(t), \int_0^t k(t, s, x(s)) \, ds\right), & t \in I_a = [0, a], \ a \in R_+, \ x_0 \in E, \\ x(0) = x_0, & (1.1) \end{cases}$$

where f, k, x are functions with values in a Banach space E and the integral is taken in the sense of Henstock–Kurzweil–Pettis [13].

The Henstock-Kurzweil integral encompasses the Newton, Riemann and Lebesgue integrals [17, 19, 24]. A particular feature of this integral is that the integral of highly oscillating functions such as F'(t), where $F(t) = t^2 \sin t^{-2}$ on (0, 1] and F(0) = 0, can be defined. This integral was introduced by Henstock and Kurzweil independently in 1957–58 and has since proved useful in the study of ordinary

^{© 2009} Australian Mathematical Society 0004-9727/09 \$A2.00 + 0.00

The existence theorem presented in this paper is an extension of previous results, for example [1-3, 14, 20, 21, 25, 27, 28].

Let $(E, \|\cdot\|)$ be a Banach space and let E^* be the dual space. Moreover, let $(C(I_a, E), \omega)$ denote the space of all continuous functions from I_a to E endowed with the topology $\sigma(C(I_a, E), C(I_a, E)^*)$.

In this paper we prove that the set *S* of all solutions of the integrodifferential equation (1.1) on $I_d = [0, d], 0 < d \le a$, is connected and compact in $(C(I_d, E), \omega)$. This problem was investigated by Cichoń and Kubiaczyk [11, 22], Szufla [30] and others.

Let us recall, that a function $f: I_a \to E$ is said to be *weakly continuous* if it is continuous from I_a to E endowed with its weak topology. A function $g: E \to E_1$, where E and E_1 are Banach spaces, is said to be *weakly-weakly sequentially continuous* if for each weakly convergent sequence $(x_n) \subset E$, the sequence $(g(x_n))$ is weakly convergent in E_1 . If a sequence x_n tends weakly to x_0 in E we denote it by $x_n \to {}^{\omega} x_0$.

The fundamental tool in this paper is the measure of weak noncompactness developed by DeBlasi [6] and Banaś and Rivero [5].

Let A be a bounded nonempty subset of E.

The measure of weak noncompactness $\beta(A)$ is defined by

 $\beta(A) = \inf\{t > 0 \mid \text{there exists } C \in K^{\omega} \text{such that } A \subset C + t B_0\},\$

where K^{ω} is a set of weakly compact subsets of *E* and *B*₀ is a norm unit ball in *E*. Some properties of the measure of weak noncompactness $\beta(A)$ are:

- (i) if $A \subset B$, then $\beta(A) \leq \beta(B)$;
- (ii) $\beta(A) = \beta(\overline{A^w})$, where $\overline{A^w}$ denotes the weak closure of A;
- (iii) $\beta(A) = 0$ if and only if A is relatively weakly compact;
- (iv) $\beta(A \cup B) = \max\{\beta(A), \beta(B)\};\$
- (v) $\beta(\lambda A) = |\lambda|\beta(A) \ (\lambda \in R);$
- (vi) $\beta(A+B) \leq \beta(A) + \beta(B);$
- (vii) $\beta(\overline{\text{conv}}(A)) = \beta(\text{conv}(A)) = \beta(A)$, where conv(A) denotes the convex hull of *A*.

LEMMA 1.1 [26]. Let $H \subset C(I_a, E)$ be a family of strongly equicontinuous functions. Let for $t \in I_a$, $H(t) = \{h(t) \in E, h \in H\}$. Then $\beta(H(I_a)) = \sup_{t \in I_a} \beta(H(t))$ and the function $t \to \beta(H(t))$ is continuous.

LEMMA 1.2 [11]. Let (X, d) be a metric space and let $f: X \to (E, \omega)$ be sequentially continuous. If $A \subset X$ is a connected subset in X, then f(A) is the connected subset in (E, ω) .

Fix $x^* \in E^*$ and consider the problem

$$\begin{cases} (x^*x)' = x^* \left(f(t, x(t), \int_0^t k(t, s, x(s)) \, ds \right) \right), & t \in I_a, \ x_0 \in E. \end{cases}$$
(1.2)
$$x(0) = x_0,$$

Let us introduce the following definitions.

DEFINITION 1.3 [29]. Let $F : [a, b] \to E$ and let $A \subset [a, b]$. The function $f : A \to E$ is a *pseudoderivative of* F on A if for each $x^* \in E^*$ the real-valued function x^*F is differentiable almost everywhere on A.

It is clear that the left-hand side of (1.2) can be rewritten in the form $x^*(x'(t))$ where x' denotes the pseudoderivative.

DEFINITION 1.4 [17, 24]. A family **F** of functions *F* is said to be *uniformly absolutely continuous* in the restricted sense on *A* (or uniformly $AC^*(A)$ for short), if for every $\varepsilon > 0$ there is $\eta > 0$ such that for every *F* in **F** and for every finite or infinite sequence of nonoverlapping intervals $\{[a_i, b_i]\}$ with $a_i, b_i \in A$ and satisfying $\sum_i |b_i - a_i| < \eta$, we have $\sum_i \omega(F, [a_i, b_i]) < \varepsilon$ where $\omega(F, [a_i, b_i])$ denotes the oscillation of *F* over $[a_i, b_i]$ (that is, $\omega(F, [a_i, b_i] = \sup\{|F(r) - F(s)| : r, s \in [a_i, b_i]\}$). A family **F** of functions *F* is said to be *uniformly generalized absolutely continuous* in the restricted sense on [a, b] or uniformly ACG^* on [a, b] if [a, b] is the union of a sequence of closed sets A_i such that on each A_i , the family **F** is uniformly $AC^*(A_i)$.

2. Henstock-Kurzweil-Pettis integrals in Banach spaces

In this section we present a definition of the Henstock–Kurzweil–Pettis integral, which is a generalization of both Pettis and Henstock–Kurzweil integrals. For basic definitions we refer the reader to [17] or [24].

DEFINITION 2.1 [17, 24]. Let δ be a positive function defined on the interval [a, b]. A tagged interval (x, [c, d]) consists of an interval $[c, d] \subseteq [a, b]$ and a point $x \in [c, d]$. The tagged interval (x, [c, d]) is subordinate to δ if $[c, d] \subseteq (x - \delta(x), x + \delta(x))$.

Let $P = \{(s_i, [c_i, d_i]) \mid 1 \le i \le n, n \in N\}$ be such a collection in [a, b]. Then:

- (i) the points $\{s_i \mid 1 \le i \le n\}$ are called the *tags* of *P*;
- (ii) the intervals $\{[c_i, d_i] \mid 1 \le i \le n\}$ are called the *intervals* of *P*;
- (iii) if $\{(s_i, [c_i, d_i]) \mid 1 \le i \le n\}$ is subordinate to δ for each *i*, then we write *P* is *sub*- δ ;
- (iv) if $[a, b] = \bigcup_{i=1}^{n} [c_i, d_i]$, then P is called a *tagged partition* of [a, b];
- (v) if P is a tagged partition of [a, b] and if P is sub- δ , then we write P is sub- δ on [a, b];
- (vi) if $f:[a, b] \to E$, then $f(P) = \sum_{i=1}^{n} f(s_i)(d_i c_i)$;
- (vii) if F is defined on the subintervals of [a, b], then

$$F(P) = \sum_{i=1}^{n} F([c_i, d_i]) = \sum_{i=1}^{n} [F(d_i) - F(c_i)].$$

If $F : [a, b] \to E$, then *F* can be treated as a function of intervals by defining F([c, d]) = F(d) - F(c). For such a function, F(P) = F(b) - F(a) if *P* is a tagged partition of [a, b].

DEFINITION 2.2 [17, 24]. A function $f : [a, b] \to R$ is Henstock–Kurzweil integrable on [a, b] if there exists a real number L with the following property: for each $\varepsilon > 0$ there exists a positive function δ on [a, b] such that $|f(P) - L| < \varepsilon$ whenever P is a tagged partition of [a, b] that is subordinate to δ .

The function f is Henstock–Kurzweil integrable on a measurable set $A \subset [a, b]$ if $f \chi_A$ is Henstock–Kurzweil integrable on [a, b]. The number L is called the *Henstock–Kurzweil integral* of f. We denote this integral by $(HK) \int_a^b f(t) dt$.

DEFINITION 2.3 [7]. A function $f : [a, b] \to E$ is *Henstock–Kurzweil integrable* on [a, b] ($f \in HK([a, b], E)$) if there exists a vector $z \in E$ with the following property: for every $\varepsilon > 0$ there exists a positive function δ on [a, b] such that $||f(P) - z|| < \varepsilon$ whenever P is a tagged partition of [a, b] sub- δ . The function f is Henstock–Kurzweil integrable on a measurable set $A \subset [a, b]$ if $f \chi_A$ is Henstock–Kurzweil integrable on [a, b]. The vector z is the *Henstock–Kurzweil integral of* f.

Note that this definition includes the generalized Riemann integral defined by Gordon [18].

DEFINITION 2.4 [7]. A function $f : [a, b] \to E$ is *HL integrable* on [a, b] $(f \in HL([a, b], E))$ if there exists a function $F : [a, b] \to E$, defined on the subintervals of [a, b], satisfying the following property: given $\varepsilon > 0$ there exists a positive function δ on [a, b] such that if $P = \{(s_i, [c_i, d_i] | 1 \le i \le n\}$ is a tagged partition of [a, b] sub- δ , then

$$\sum_{i=1}^{n} \|f(s_i)(d_i - c_i) - F([c_i, d_i])\| < \varepsilon.$$

REMARK 2.5. We note that by the triangle inequality:

 $f \in HL([a, b], E)$ implies $f \in HK([a, b], E)$.

In general, the converse is not true. For real-valued functions, the two integrals are equivalent.

DEFINITION 2.6 [29]. The function $f : I_a \to E$ is *Pettis integrable* (P integrable for short) if:

- (i) for all $x^* \in E^*$, $x^* f$ is Lebesgue integrable on I_{α} ; and
- (ii) for all $A \subset I_a$, A-measurable, there exists $g \in E$ for all $x^* \in E^*$ such that $x^*g = (L) \int_A x^*f(s) ds$.

Now we present a definition of the integral which is a generalization both Pettis and Henstock–Kurzweil integrals.

DEFINITION 2.7 [13]. The function $f: I_a \to E$ is Henstock-Kurzweil-Pettis integrable (HKP integrable for short) if there exists a function $g: I_a \to E$ with the following properties:

- (i) for all $x^* \in E^*$, $x^* f$ is Henstock–Kurzweil integrable on I_a ; and
- (ii) for all $t \in I_a$ and all $x^* \in E^*$, $x^*g(t) = (HK) \int_0^t x^*f(s) ds$.

This function g is called a *primitive of* f and by $g(a) = \int_0^a f(t) dt$ we denote the *Henstock–Kurzweil–Pettis integral of* f on the interval I_a .

REMARK 2.8. Each function which is HL integrable is integrable in the sense of Henstock–Kurzweil–Pettis. This notion of an integral is essentially more general than previous notions (in Banach spaces).

- (i) Pettis integral: by the definition of the Pettis integral and since each Lebesgue integrable function is HK integrable, a P integrable function is clearly HKP integrable;
- (ii) Bochner, Riemann, and Riemann–Pettis integrals [18];
- (iii) MsShane integral [16];
- (iv) Henstock–Kurzweil (HL) integral [7].

We present below an example of function which is HKP integrable but neither HL integrable nor P integrable.

EXAMPLE. Let $f : [0, 1] \to (L^{\infty}[0, 1], \|\cdot\|_{\infty})$ and let $f(t) = \chi_{[0,t]} + A(t) \cdot F'(t)$, where

$$F(t) = t^{2} \sin t^{-2}, \quad t \in (0, 1], \quad F(0) = 0, \quad \chi_{[0,t]}(\tau) = \begin{cases} 1, \ \tau \in [0, t], \\ 0, \ \tau \notin [0, t], \end{cases}, \quad t, \ \tau \in [0, 1], \end{cases}$$

and $A(t)(\tau) = 1$ for $\tau, t \in [0, 1]$.

Put $f_1(t) = \chi_{[0,t]}, f_2(t) = A(t) \cdot F'(t)$.

We show that a function $f(t) = f_1(t) + f_2(t)$ is integrable in the sense of Henstock-Kurzweil-Pettis.

Observe that

$$x^{*}(f(t)) = x^{*}(f_{1}(t) + f_{2}(t)) = x^{*}(f_{1}(t)) + x^{*}(f_{2}(t)).$$

Moreover, the function $x^*(f_1(t))$ is Lebesgue integrable (in fact f_1 is P integrable [15], so is Henstock–Kurzweil integrable, and the function $x^*(f_2(t))$ is Henstock–Kurzweil integrable by Definition 2.2.

For each $x^* \in E^*$ the function $x^* f$ is not Lebesgue integrable because $x^* f_2$ is not Lebesgue integrable. Thus, f is not P integrable. Moreover, the function f_1 is not strongly measurable [15] and the function f_2 is strongly measurable. Thus, their sum f is not strongly measurable. Then, by [7, Theorem 9], f is not HL integrable.

Now we list some properties of the HKP integral which are important in the next sections of our paper.

THEOREM 2.9. Let $f : [a, b] \rightarrow E$ be HKP integrable on [a, b] and let

$$F(x) = \int_a^x f(s) \, ds, \quad x \in [a, b].$$

Then:

(i) for each x^* in E^* the function $x^* f$ is HK integrable on [a, b] and

$$(HK) \int_{a}^{x} x^{*}(f(s)) \, ds = x^{*}(F(x));$$

(ii) the function F is weakly continuous on [a, b] and f is a pseudoderivative of F on [a, b].

THEOREM 2.10 [13]. Let $f : [a, b] \to E$. If f = 0 almost everywhere on [a, b], then f is HKP integrable on [a, b] and $\int_a^b f(t) dt = 0$.

THEOREM 2.11 ([13] Mean value theorem for the HKP integral). If the function $f: I_a \rightarrow E$ is HKP integrable, then

$$\int_{I} f(t) \, dt \in |I| \cdot \overline{\operatorname{conv}} \, f(I),$$

where I is an arbitrary subinterval of I_a and |I| is the length of I.

THEOREM 2.12 [10]. Let $f : I_a \to E$ and assume that $f_n : I_a \to E$, $n \in N$ are HKP integrable on I_a . Let F_n be a primitive of f_n . If we assume that:

- (i) for all $x^* \in E^*$, $x^*(f_n(t)) \to x^*(f(t))$ almost everywhere on I_a ;
- (ii) for each $x^* \in E^*$ the family $G = \{x^*F_n \mid n = 1, 2, ...\}$ is uniformly ACG^{*} on I_a (that is, weakly uniformly ACG^{*} on I_a);
- (iii) for each $x^* \in E^*$ the set G is equicontinuous on I_a ;

then f is HKP integrable on I_a and $\int_0^t f_n(s) ds$ tends weakly in E to $\int_0^t f(s) ds$ for each $t \in I_a$.

3. An existence result for integrodifferential equations in the weak sense

In this section, we prove an existence theorem for problem (1.1). Let

$$B = \{x \in E : ||x|| \le ||x_0|| + b, \ b > 0\},\$$

$$\widetilde{B} = \{x \in (C(I_a, E), \omega) : x(0) = x_0, \ ||x|| \le ||x_0|| + b, \ b > 0\}.$$

Moreover, let

$$F(x)(t) = x_0 + \int_0^t f\left(z, x(z), \int_0^z k(z, s, x(s)) \, ds\right) \, dz, \, t \in I_a,$$

$$K = \{F(x) \mid x \in \widetilde{B}\},$$

$$K_1 = \left\{ \int_0^z k(z, s, x(s)) \, ds \mid z \in [0, t], \, t \in [0, a], \, x \in \widetilde{B} \right\}.$$

We consider the problem

$$x(t) = x_0 + \int_0^t f\left(z, x(z), \int_0^z k(z, s, x(s)) \, ds\right) dz, \quad t \in I_a, \tag{3.1}$$

where the integrals are taken in the sense of HKP.

To obtain the existence result and to investigate the structure of a solution set for our problem it is necessary to define the notion of a solution.

DEFINITION 3.1 [29]. A function $x : I_a \to E$ is said to be *a pseudo-solution* of the problem (1) if it satisfies the following conditions:

- (i) $x(\cdot)$ is ACG_* function;
- (ii) $x(0) = x_0;$
- (iii) for each $x^* \in E^*$ there exists a set $A(x^*)$ with Lebesgue measure zero, such that for each $t \notin A(x^*)$,

$$(x^*x)'(t) = x^* \bigg(f\bigg(t, x(t), \int_0^t k(t, s, x(s)) \, ds \bigg) \bigg).$$

Here / denotes the pseudoderivative.

In the proof of the main theorem we shall apply the following result.

THEOREM 3.2 [22]. Let *E* be a metrizable locally convex topological vector space. Let *D* be a closed convex subset of *E*, and let *F* be a weakly–weakly sequentially continuous map of *D* into itself. If, for some $x \in D$, the implication

$$V = \overline{\text{conv}}(\{x\} \cup F(V)) \text{ implies } V \text{ is relatively weakly compact}, \qquad (3.2)$$

holds for every subset V of D, then F has a fixed point.

THEOREM 3.3. Assume that for each uniformly ACG^* function $x : I_a \to E$, the functions $k(\cdot, s, x(s))$, $f(\cdot, x(\cdot), \int_0^{(\cdot)} k(\cdot, s, x(s)) ds)$ are HKP integrable and $k(t, s, \cdot)$, $f(t, \cdot, \cdot)$ are weakly-weakly sequentially continuous functions. Suppose that there exists constants $c_1, c_2, c_3 > 0$ such that

$$\beta(f(I, A, C)) \le c_1 \cdot \beta(A) + c_2 \cdot \beta(C) \quad \text{for each } A, C \subset B, I \subset I_a, \quad (3.3)$$

$$\beta(k(I, I, X)) \le c_3 \cdot \beta(X) \quad \text{for each } X \subset B, \ I \subset I_a, \tag{3.4}$$

where

$$f(I, A, C) = \{ f(t, x_1, x_2) \mid (t, x_1, x_2) \in I \times A \times C \},\$$

$$k(I, I, X) = \{ k(t, s, x) \mid (t, s, x) \in I \times I \times X \}$$

and β denotes the measure of weak noncompactness of DeBlasi.

Moreover, let K and K_1 be equicontinuous and uniformly ACG^* on I_a . Then there exists a pseudo-solution of the problem (1.1) on I_d , for some $0 < d \le a$, $0 < d \cdot c_1 + d^2 \cdot c_2 \cdot c_3 < 1$.

PROOF. Fix an arbitrary $b \ge 0$. Put

$$B = \{x \in E : ||x|| \le ||x_0|| + b, b > 0\},\$$

$$\widetilde{B} = \{x \in (C(I_d, E), \omega) : x(0) = x_0, ||x|| \le ||x_0|| + b, b > 0\},\$$

where d is given below.

Recall that a continuous function $F(x) \in K$ defined on [0, a] is equicontinuous on [0, a], if for each $\varepsilon > 0$ there exists $\delta > 0$ such that $||F(x)(t) - F(x)(\tau)|| < \varepsilon$, for all $x \in \tilde{B}$, whenever $|t - \tau| < \delta$ and $t, \tau \in [0, a]$. Thus, for each $\varepsilon > 0$ there exists $\delta > 0$, such that

$$\left\|\int_{\tau}^{t} f\left(z, x(z), \int_{0}^{z} k(z, s, x(s)) \, ds\right) dz\right\| < \varepsilon,$$

for all $x \in \widetilde{B}$, whenever $|t - \tau| < \delta$ and $t, \tau \in [0, a]$. As a result, there exists a number $d, 0 < d \le a$, such that

$$\left\|\int_0^t f\left(z, x(z), \int_0^z k(z, s, x(s)) \, ds\right) dz\right\| \le b, \quad t \in I_d \text{ and } x \in \widetilde{B}.$$

We now show that the operator F is well defined and maps \widetilde{B} into \widetilde{B} . To see this note that, for any $x^* \in E^*$, such that $||x^*|| \le 1$, for any $x \in \widetilde{B}$ and $t \in I_d$

$$\begin{aligned} |x^*F(x)(t)| &\leq |x^*x_0| + \left|x^*\int_0^t f\left(z, x(z), \int_0^z k(z, s, x(s)) \, ds\right) dz\right| \\ &\leq ||x^*|| \, ||x_0|| + ||x^*|| \left\| \int_0^t f\left(z, x(z), \int_0^z k(z, s, x(s)) \, ds\right) dz\right\| \\ &\leq ||x_0|| + b, \end{aligned}$$

so

$$\sup\{|x^*F(x)(t)|: x^* \in E^*, \|x^*\| \le 1\} \le \|x_0\| + b$$

and as a result

$$||F(x)(t)|| \le ||x_0|| + b$$

so $F(x)(t) \in \widetilde{B}$.

We shall show that the operator F is weakly-weakly sequentially continuous. By [26, Lemma 9] a sequence $x_n(\cdot)$ is weakly convergent in $C(I_d, E)$ to $x(\cdot)$ if and only if $x_n(t)$ tends weakly to x(t), for each $t \in I_d$, so if $x_n \xrightarrow{\omega} x$ in $C(I_d, E)$, then $k(t, s, x_n(s)) \xrightarrow{\omega} k(t, s, x(s))$ in E for $t \in I_d$ and by Theorem 2.12 (see our assumptions on K_1) we have

$$\lim_{n \to \infty} \int_0^t k(z, s, x_n(s)) \, ds = \int_0^t k(z, s, x(s)) \, ds$$

weakly in E, for each $t \in I_d$. Moreover, because f is weakly-weakly sequentially continuous,

$$f\left(t, x_n(t), \int_0^t k(t, s, x_n(s)) \, ds\right) \xrightarrow{\omega} f\left(t, x(t), \int_0^t k(t, s, x(s)) \, ds\right)$$

in *E*, for each $t \in I_d$. Thus, Theorem 2.12 (see our assumptions on *K*) implies $F(x_n)(t) \to F(x)(t)$ weakly in *E*, for each $t \in I_d$, so [26, Lemma 9] guarantees that $F(x_n) \to F(x)$ in $(C(I_d, E), \omega)$.

Suppose that $V \subset \widetilde{B}$ satisfies the condition $\overline{V} = \overline{\text{conv}}(\{x\} \cup F(V))$. We shall prove that V is relatively weakly compact and so (3.2) is satisfied. Since $V \subset \widetilde{B}$, $F(V) \subset K$. Then $V \subset \overline{V} = \overline{\text{conv}}(\{x\} \cup F(V))$ is equicontinuous. By Lemma 1.1, $t \mapsto v(t) = \beta(V(t))$ is continuous on I_d .

For fixed $t \in I_d$ we divide the interval [0, t] into *m* parts: $0 = t_0 < t_1 < \cdots < t_m = t$, where $t_i = it/m$, $i = 0, 1, \ldots, m$ and for fixed $z \in [0, t]$ we divide the interval [0, z] into *m* parts: $0 = z_0 < z_1 < \cdots < z_m = z$, where $z_j = jz/m$, $j = 0, 1, \ldots, m$.

Let $V([z_j, z_{j+1}]) = \{u(s) \mid u \in V, z_j \le s \le z_{j+1}\}, j = 0, 1, ..., m-1$. By Lemma 1.1 and the continuity of v there exists $s_j \in I_j = [z_j, z_{j+1}]$ such that

$$\beta(V([z_j, z_{j+1}])) = \sup\{\beta(V(s)) \mid z_j \le s \le z_{j+1}\} =: v(s_j).$$

By Theorem 2.11 and the properties of the HKP integral we have, for $x \in V$, that

$$F(x)(t) = x_0 + \sum_{i=0}^{m-1} \int_{t_i}^{t_{i+1}} f\left(z, x(z), \sum_{j=0}^{m-1} \int_{z_j}^{z_{j+1}} k(z, s, x(s)) \, ds\right) dz$$

$$\in x_0 + \sum_{i=0}^{m-1} (t_{i+1} - t_i) \overline{\operatorname{conv}} \, f\left(J_i, \, V(J_i), \sum_{j=0}^{m-1} (z_{j+1} - z_j) \overline{\operatorname{conv}} \, k(I_j, \, I_j, \, V(I_j))\right),$$

where $J_i = [t_i, t_{i+1}], i = 0, 1, ..., m - 1$.

Using (3.3), (3.4) and properties of the measure of weak noncompactness we obtain

$$\begin{split} \beta(F(V)(t)) &\leq \sum_{i=0}^{m-1} (t_{i+1} - t_i) \beta \left(f\left(J_i, V(J_i), \sum_{j=0}^{m-1} (z_{j+1} - z_j) \overline{\operatorname{conv}} k(I_j, I_j, V(I_j)) \right) \right) \\ &\leq \sum_{i=0}^{m-1} (t_{i+1} - t_i) \cdot c_1 \cdot \beta(V(J_i)) \\ &\quad + \sum_{i=0}^{m-1} (t_{i+1} - t_i) \cdot c_2 \cdot \beta \left(\sum_{j=0}^{m-1} (z_{j+1} - z_j) \overline{\operatorname{conv}} k(I_j, I_j, V(I_j)) \right) \\ &\leq \sum_{i=0}^{m-1} (t_{i+1} - t_i) \cdot c_1 \cdot \beta(V(I_d)) \\ &\quad + \sum_{i=0}^{m-1} (t_{i+1} - t_i) \cdot c_2 \cdot \sum_{j=0}^{m-1} (z_{j+1} - z_j) \beta(k(I_j, I_j, V(I_j))) \\ &\leq \beta(V(I_d)) \cdot c_1 \cdot d + \sum_{i=0}^{m-1} (t_{i+1} - t_i) \cdot c_2 \cdot \sum_{j=0}^{m-1} (z_{j+1} - z_j) \cdot c_3 \cdot \beta(V(I_j)) \\ &\leq \beta(V(I_d)) \cdot c_1 \cdot d + \beta(V(I_d)) \cdot c_2 \cdot c_3 \cdot d^2 = \beta(V(I_d))(c_1 \cdot d + c_2 \cdot c_3 \cdot d^2). \end{split}$$

Because $\overline{V} = \overline{\text{conv}}(\{x\} \cup F(V))$, then $\beta(V(t)) = \beta(\overline{\text{conv}}(\{x\} \cup F(V(t))))$, so $\beta(V(t)) \le \beta(V(I_d))(c_1 \cdot d + c_2 \cdot c_3 \cdot d^2)$, for $t \in I_d$.

Using Lemma 1.1 we obtain

$$\beta(V(I_d)) \le \beta(V(I_d))(c_1 \cdot d + c_2 \cdot c_3 \cdot d^2)\beta(V(I_d)) \le \beta(V(I_d))(c_1 \cdot d + c_2 \cdot c_3 \cdot d^2).$$

Since $0 < d \cdot c_1 + d^2 \cdot c_2 \cdot c_3 < 1$ we obtain $v(t) = \beta(V(t)) = 0$, for $t \in I_d$.

Using Arzela–Ascoli's theorem, we have that V is relatively weakly compact.

By Theorem 3.2 the operator F has a fixed point. This means that there exists a pseudo-solution of the problem (1.1).

THEOREM 3.4. Assume that for each uniformly ACG^* function $x : I_a \to E$, the functions $k(\cdot, s, x(s))$, $f(\cdot, x(\cdot), \int_0^{(\cdot)} k(\cdot, s, x(s)) ds)$ are HKP integrable and $k(t, s, \cdot)$, $f(t, \cdot, \cdot)$ are weakly-weakly sequentially continuous functions. Suppose that there exists a constant c > 0 and a continuous function $c_1 : I_a \to R_+$ such that

$$\beta(f(I, A, C)) \le c \cdot \beta(C) \quad \text{for each } A, C \subset B, I \subset I_a, \tag{3.5}$$

$$\beta(k(I, I, X)) \le \sup_{s \in I} c_1(s)\beta(X) \quad \text{for each } X \subset B, \ I \subset I_a, \tag{3.6}$$

where

$$f(I, A, C) = \{ f(t, x_1, x_2) \mid (t, x_1, x_2) \in I \times A \times C \},\$$

$$k(I, I, X) = \{ k(t, s, x) \mid (t, s, x) \in I \times I \times X \}$$

and β denotes the measure of weak noncompactness of DeBlasi.

516

Moreover, let K and K_1 be equicontinuous and uniformly ACG^* on I_a . Then there exists a pseudo-solution of the problem (1.1) on I_d , for some $0 < d \le a$.

PROOF. The first part of the proof is the same as in the proof of the previous theorem. It remains to show the relative weak compactness of V, where V is defined in Theorem 3.3. In this case note that for $t \in I_d$ and z_j as in Theorem 3.3

$$\begin{split} \beta(V(t)) &\leq \sum_{i=0}^{m-1} (t_{i+1} - t_i) \cdot c \cdot \beta \left(\sum_{j=0}^{m-1} (z_{j+1} - z_j) \overline{\operatorname{conv}} \, k(I_j, \, I_j, \, V(I_j)) \right) \\ &\leq \sum_{i=0}^{m-1} (t_{i+1} - t_i) \cdot c \cdot \sum_{j=0}^{m-1} (z_{j+1} - z_j) \beta(k(I_j, \, I_j, \, V(I_j))) \\ &\leq \sum_{i=0}^{m-1} (t_{i+1} - t_i) \cdot c \cdot \sum_{j=0}^{m-1} (z_{j+1} - z_j) \sup_{s \in I_j} c_1(s) \beta(V(I_j)) \\ &\leq c \cdot d \cdot \sum_{j=0}^{m-1} (z_{j+1} - z_j) \cdot c_1(p_j) v(s_j) \\ &= c \cdot d \left(\sum_{j=0}^{m-1} (z_{j+1} - z_j) \cdot c_1(p_j) v(p_j) \right) \\ &+ \sum_{j=0}^{m-1} (z_{j+1} - z_j) (c_1(p_j)(v(s_j) - v(p_j))) \right), \end{split}$$

for some $p_j \in I_j$. Fix $\varepsilon > 0$. From the continuity of v we may choose m large enough so that $v(s_j) - v(p_j) < \varepsilon$ and so

$$\begin{split} \beta(V(t)) &\leq c \cdot d \bigg(\sum_{j=0}^{m-1} (z_{j+1} - z_j) c_1(p_j) v(p_j) + \sum_{j=0}^{m-1} \frac{z}{m} c_1(p_j) \cdot \varepsilon \bigg) \\ &\leq c \cdot d \bigg(\sum_{j=0}^{m-1} (z_{j+1} - z_j) c_1(p_j) v(p_j) + z \cdot \varepsilon \cdot \max_{0 \leq k \leq m-1} c_1(p_k) \bigg). \end{split}$$

Since $\varepsilon \to 0$ and $z \cdot \max_{0 \le k \le m-1} c_1(p_k)$ is bounded,

$$z \cdot \varepsilon \cdot \max_{0 \le k \le m-1} c_1(p_k) \to 0.$$

Therefore

$$v(t) = \beta(V(t)) \le c \cdot d \cdot \int_0^t c_1(s)v(s) \, ds, \quad t \in [0, d].$$

Using the Gronwall's inequality we have that

$$v(t) = \beta(V(t)) = 0$$
 for $t \in [0, d]$.

Using Arzela–Ascoli's theorem we deduce that V is relatively weakly compact.

By Theorem 3.2 the operator F has a fixed point. This means that there exists a pseudo-solution of the problem (1.1).

4. Compactness and connectedness

In this section we show that the set S of all solutions of the problem (1.1) on I_d is compact and connected in $(C(I_d, E), \omega)$.

THEOREM 4.1. Under the assumptions of Theorem 3.3 a set S of all pseudo-solutions of the problem (1.1) on I_d is weakly compact and connected in $(C(I_d, E), \omega)$.

PROOF. Let *S* be a set of all solutions of the problem (1.1) on I_d . As S = F(S), by repeating the above argument, with V = S one can show that *S* is relatively weakly compact in $(C(I_d, E), \omega)$. Since *F* is weakly continuous on $\overline{S(I_d)^{\omega}}$, *S* is weakly closed and consequently weakly compact.

Now we prove that *S* is connected. For any $\eta > 0$, denote by S_{η} , the set of all functions $u : I_d \to E$ satisfying the following conditions:

(i) $u(0) = x_0, u \in \widetilde{B}$,

(ii) $\sup_{t \in I_d} \|u(t) - x_0 - \int_0^t f(z, x(z), \int_0^z k(z, s, x(s)) \, ds) \, dz\| < \eta.$

The set S_{η} is nonempty as $S \subset S_{\eta}$.

Let $\eta^* < \eta$. By the equicontinuity of *K* we can choose ρ such that

$$\left\|\int_{J} f\left(z, x(z), \int_{0}^{z} k(z, s, x(s)) \, ds\right) dz\right\| \leq \eta^{*} < \eta,$$

for any $x \in (C(I_d, E), \omega), J \subset I_d$ and $|J| < \rho$.

For any $\varepsilon \in (0, d)$, let $v(\cdot, \varepsilon) : I_d \to E$ be defined by the formula:

$$v(t,\varepsilon) = \begin{cases} x_0 & \text{for } 0 \le t \le \varepsilon \\ x_0 + \int_0^{t-\varepsilon} f\left(z, x(z), \int_0^z k(z, s, v(s, \varepsilon)) \, ds\right) dz & \text{for } \varepsilon < t \le d \end{cases}$$

Clearly $v(\cdot, \varepsilon)$ satisfies (i) above. Furthermore, for $0 < \varepsilon \le \min(\rho, d) = l$

$$\left\| v(t,\varepsilon) - x_0 - \int_0^t f\left(z, x(z), \int_0^z k(z, s, v(s,\varepsilon)) \, ds\right) dz \right\|$$

$$= \left\{ \left\| \int_0^t f\left(z, x(z), \int_0^z k(z, s, v(s,\varepsilon)) \, ds\right) dz \right\| \quad \text{for } 0 \le t \le \varepsilon$$

$$\left\| \int_{t-\varepsilon}^t f(z, x(z), \int_0^z k(z, s, v(s,\varepsilon)) \, ds\right) dz \right\| \quad \text{for } \varepsilon < t \le d.$$

thus $v(\cdot, \varepsilon)$ satisfies (ii) above.

Now, we prove that S_{η} is connected. Let us define

$$v_{\varepsilon}(t) = \begin{cases} x_0, & 0 \le t \le \varepsilon \\ F(v_{\varepsilon})(t-\varepsilon), & \varepsilon < t \le d, \end{cases}$$

where $v_{\varepsilon} = v(\cdot, \varepsilon)$. We show that the mapping $\varepsilon \to v_{\varepsilon}(\cdot)$ is sequentially continuous from (0, d) into $(C(I_d, E), \omega)$.

Let $0 < \varepsilon < \delta \le d$ (when $\delta \le \varepsilon$ the argument is similar). Let $x^* \in E^*$ be such that $||x^*|| \le 1$. Now by the definition of $v_{\varepsilon}(t)$, for $t \in [0, \varepsilon]$

$$|x^*(v_{\varepsilon}(t) - v_{\delta}(t))| = 0.$$
(4.1)

Next, if $t \in (\varepsilon, \delta]$,

$$\begin{aligned} |x^*(v_{\varepsilon}(t) - v_{\delta}(t))| &= \left| x^* \left[\int_0^{t-\varepsilon} f\left(z, x(z), \int_0^z k(z, s, v_{\varepsilon}(s)) \, ds \right) dz \right. \\ &- \int_0^{t-\delta} f\left(z, x(z), \int_0^z k(z, s, v_{\delta}(s)) \, ds \right) dz \right] \\ &= \left| x^* \int_{t-\delta}^{t-\varepsilon} f\left(z, x(z), \int_0^z k(z, s, v_{\varepsilon}(s)) \, ds \right) dz \right| \\ &= \left\| x^* \right\| \left\| \int_{t-\delta}^{t-\varepsilon} f\left(z, x(z), \int_0^z k(z, s, v_{\varepsilon}(s)) \, ds \right) dz \right\| \\ &\leq \left\| \int_{t-\delta}^{t-\varepsilon} f\left(z, x(z), \int_0^z k(z, s, v_{\varepsilon}(s)) \, ds \right) dz \right\|. \end{aligned}$$
(4.2)

Consequently

$$|x^*(v_{\varepsilon}(t)-v_{\delta}(t))| \leq \left\| \int_{t-\delta}^{t-\varepsilon} f\left(z, x(z), \int_0^z k(z, s, v_{\varepsilon}(s)) \, ds\right) dz \right\| := A_{\delta}.$$

Since *K* is equicontinuous, note that if $\delta \to \varepsilon$, then $A_{\delta} \to 0$. Now, for $t \in (\delta, 2\delta]$, we have

$$\begin{aligned} |x^*(v_{\varepsilon}(t) - v_{\delta}(t))| \\ &= \left| x^* \left[\int_0^{t-\varepsilon} f\left(z, x(z), \int_0^z k(z, s, v_{\varepsilon}(s)) \, ds \right) dz \right. \\ &- \int_0^{t-\delta} f\left(z, x(z), \int_0^z k(z, s, v_{\delta}(s)) \, ds \right) dz \right] \right| \\ &= |x^*(F(v_{\varepsilon})(t-\varepsilon) - F(v_{\delta})(t-\delta))| \\ &= |x^*[F(v_{\varepsilon})(t-\varepsilon) - F(v_{\varepsilon})(t-\delta) + F(v_{\varepsilon})(t-\delta) - F(v_{\delta})(t-\delta)]| \\ &\leq |x^*(F(v_{\varepsilon})(t-\varepsilon) - F(v_{\varepsilon})(t-\delta))| + |x^*(F(v_{\varepsilon})(t-\delta) - F(v_{\delta})(t-\delta))| \\ &\leq \|x^*\|\|F(v_{\varepsilon})(t-\varepsilon) - F(v_{\varepsilon})(t-\delta)\| + \|x^*\|\|F(v_{\varepsilon})(t-\delta) - F(v_{\delta})(t-\delta)\|. \end{aligned}$$

$$(4.3)$$

Let (δ_n) be a sequence such that $\delta_n \to \varepsilon(\varepsilon \le \delta_n)$. By (4.1) and (4.2) it follows that $v_{\delta_n}(t)$ converges to $v_{\varepsilon}(t)$ weakly uniformly for $t \in [0, \delta]$. Thus, $F(v_{\delta_n})(t) \to F(v_{\varepsilon})(t)$ weakly on $[0, \delta]$. Now, by (4.3) $v_{\delta_n}(t)$ tends to $v_{\varepsilon}(t)$ weakly for each $t \in [0, 2\delta]$.

By repeating the above argument and using induction, we obtain that the map $\varepsilon \to v_{\varepsilon}(\cdot)$ from (0, d) into $(C(I_d, E), \omega)$ is sequentially continuous [26, Lemma 1.9]. Therefore, by Lemma 1.2 the set $V = \{v_{\varepsilon}(\cdot) \mid 0 < \varepsilon < d\}$ is connected in $(C(I_d, E), \omega)$ (because the interval [0, d] is connected).

Let $x \in S_{\eta}$. Let us choose $\varepsilon > 0$ such that $0 < \varepsilon < d$ and

$$\sup_{t \in I_d} \left\| x(t) - x_0 - \int_0^t f\left(z, x(z), \int_0^z k(z, s, x(s)) \, ds\right) dzt \right\| \\ + \left\| \int_{I_\varepsilon} f\left(z, x(z), \int_0^z k(z, s, x(s)) \, ds\right) dz \right\| < \eta.$$
(4.4)

For any $p, 0 \le p \le d$, let $y(\cdot, p) : I_d \to E$ be defined by the formula:

$$[y(t, p) = \begin{cases} x(t), & \text{for } 0 \le t \le p \\ x(p) + \frac{x_0 - x(p)}{\varepsilon}(t - p), & \text{for } p < t \le \min(d, p + \varepsilon) \\ x_0 + \int_p^{t - \varepsilon} \frac{\varepsilon}{f} \left(z, x(z), \int_0^z k(z, s, y(s, p)) \, ds \right) dz, & \text{for } \min(d, p + \varepsilon) < t < d \end{cases}$$

 $y(t, 0) = v(t, \varepsilon).$

By repeating the above argument with $y(\cdot, p)$ in the place of $v(\cdot, \varepsilon)$ one can show that $y(\cdot, p) \in S_{\eta}$, for each $p \in [0, d]$ and the mapping $p \to y(\cdot, p)$ from I_d into $(C(I_d, E), \omega)$ is sequentially continuous (for more details see [22, 30]).

Consequently, by Lemma 1.2 the set $T_x = \{y(\cdot, p) \mid 0 \le p \le d\}$ is connected in $(C(I_d, E), \omega)$.

Now since $y(\cdot, 0) = v(\cdot, \varepsilon) \in V \cap T_x$, the set $V \cup T_x$ is connected and therefore the set $W = \bigcup_{x \in S_n} T_x \cup V$ is connected in $(C(I_d, E), \omega)$.

Moreover, $S_{\eta} \subset W$, because $x = y(\cdot, p) \in T_x$, for each $x \in S_{\eta}$. On the other hand $W \subset S_{\eta}$, since $T_x \subset S_{\eta}$ and $V \subset S_{\eta}$. Thus, $S_{\eta} = W$ is a connected subset of $(C(I_d, E), \omega)$.

Now, suppose that the set *S* is not connected. As *S* is weakly compact, there exists nonempty weakly compact sets W_1 and W_2 , such that $S = W_1 \cup W_2$ and $S = W_1 \cup W_2$. Consequently, there exist two disjoint weakly open sets U_1 , U_2 , such that $W_1 \cap W_2 = \emptyset$, $W_2 \subset U_2$. Suppose that, for every $n \in N$, there exists $u_n \in V_n \setminus U$, where $V_n = \overline{S}_{1/n}^{\omega}$ and $U = U_1 \cup U_2$. Note that V_n is a decreasing sequence of nonempty weakly compact connected subsets of $(C(I_d, E), \omega)$.

Let $H = \overline{\{u_n \mid n \in N\}^{\omega}}$. Note that $u_n - F(u_n) \to 0$ in $(C(I_d, E), \omega)$ as $n \to \infty$ and $H(t) \subset \{u_n(t) - F(u_n)(t) \mid u_n \in H\} + F(H)(t)$. By repeating the argument from the proof of Theorem 3.3, one can show that there exists $u_0 \in H$ such that $u_0 = F(u_0)$, that is, $u_0 \in S$.

Now since $u_n \in V_n \setminus U$ and U is weakly open we have $u_0 \notin U$. This contradicts $u_0 \in S \subset U$.

520

Therefore, there exists $m \in N$ such that $V_m \subset U = U_1 \cup U_2$, $U_1 \cap U_2 = \emptyset$. Now since $S \subset V_m$, we have that $U_1 \cap V_m \neq \emptyset \neq U_2 \cap V_m$. Thus, V_m is not connected, a contradiction with the connectedness of each V_n . Consequently, S is connected in $(C(I_d, E), \omega)$.

References

- R. P. Agarwal, M. Meehan and D. O'Regan, 'Positive solutions of singular integral equations—a survey', *Dynam. Systems Appl.* 14(1) (2005), 1–37.
- [2] _____, *Nonlinear Integral Equations and Inclusions* (Nova Science Publishers, Hauppauge, NY, 2001).
- [3] R. P. Agarwal and D. O'Regan, 'Existence results for singular integral equations of Fredholm type', *Appl. Math. Lett.* **13**(2) (2000), 27–34.
- Z. Artstein, 'Topological dynamics of ordinary differential equations and Kurzweil equations', J. Differential Equations 23 (1977), 224–243.
- [5] J. Banaś and J. Rivero, 'On measures of weak noncompactness', Ann. Mat. Pura Appl. 125 (1987), 213–224.
- [6] F. S. DeBlasi, 'On a property of the unit sphere in a Banach space', Bull. Math. Soc. Sci. Math. R. S. Roumanie 21 (1977), 259–262.
- [7] S. S. Cao, 'The Henstock integral for Banach valued functions', SEA Bull. Math. 16 (1992), 36–40.
- [8] T. S. Chew, 'On Kurzweil generalized ordinary differential equations', J. Differential Equations 76 (1988), 286–293.
- [9] T. S. Chew and F. Flordeliza, 'On x' = f(t, x) and Henstock–Kurzweil integrals', *Differential Integral Equations* 4 (1991), 861–868.
- [10] M. Cichoń, 'Convergence theorems for the Henstock-Kurzweil-Pettis integral', Acta Math. Hungarica 92 (2001), 75–82.
- [11] M. Cichoń and I. Kubiaczyk, 'On the set of solutions of the Cauchy problem in Banach spaces', Arch. Math. 63 (1994), 251–257.
- [12] M. Cichoń, I. Kubiaczyk and A. Sikorska, 'Henstock-Kurzweil and Henstock-Kurzweil-Pettis integrals and some existence theorems', in: *Proc. ISCM Herlany 1999.* 2000, pp. 53–56.
- [13] _____, 'The Henstock–Kurzweil–Pettis integrals and existence theorems for the Cauchy problem', *Czechoslovak Math. J.* 54 (2004), 279–289.
- [14] F. Cramer, V. Lakshmikantham and A. R. Mitchell, 'On the existence of weak solution of differential equations in nonreflexive Banach spaces', *Nonlinear. Anal., TMA* 2 (1978), 169–177.
- [15] R. F. Geitz, 'Pettis integration', Proc. Amer. Math. Soc. 82 (1991), 81-86.
- [16] R. A. Gordon, 'The McShane integral of Banach-valued functions', *Illinois J. Math.* 34 (1990), 557–567.
- [17] —, *The Integrals of Lebesgue, Denjoy, Perron and Henstock* (American Mathematical Society, Providence, RI, 1994).
- [18] _____, 'Riemann integration in Banach spaces', Rocky Mountain J. Math. 21 (1991), 923–949.
- [19] R. Henstock, *The General Theory of Integration*, Oxford Math. Monographs (Clarendon, Oxford, 1991).
- [20] J. Januszewski, 'On the existence of continuous solutions of nonlinear integral equations in Banach spaces', Comment. Math. 30 (1990), 85–92.
- [21] S. Krzyśka, 'On the existence of continuous solutions of Urysohn and Volterra integral equations in Banach spaces', *Demonstratio Math.* 2 (1995), 353–359.
- [22] I. Kubiaczyk, 'Kneser type theorems for ordinary differential equations in Banach spaces', J. Differential Equations 45 (1982), 139–146.
- [23] I. Kubiaczyk and A. Sikorska, 'Differential equations in Banach spaces and Henstock–Kurzweil integrals', *Discuss. Math. Differ. Incl.* 19 (1999), 35–43.

- [24] P. Y. Lee, Lanzhou Lectures on Henstock Integration, Ser. Real. Anal., 2 (World Scientific, Singapore, 1989).
- [25] M. Meehan and D. O'Regan, 'Existence theory for nonlinear Volterra integrodifferential and integral equations', *Nonlinear Anal. TMA* 31(3/4) (1998), 317–341.
- [26] A. R. Mitchell and Ch. Smith, 'An existence theorem for weak solutions of differential equations in Banach spaces', in: *Nonlinear Equations in Abstract Spaces* (Academic Press, New York, 1978), pp. 387–404.
- [27] D. O'Regan, 'Existence results for nonlinear integral equations', J. Math. Anal. Appl. 192(3) (1995), 705–726.
- [28] D. O'Regan and M. Meehan, *Existence Theory for Integral and Integrodifferential Equations*, Mathematics and Its Applications, 445 (Kluwer Academic, Dordrecht, 1998).
- [29] B. J. Pettis, 'On integration in vector spaces', Trans. Amer. Math. Soc. 44 (1938), 277-304.
- [30] S. Szufla, 'Kneser's theorem for weak solutions for ordinary differential equations in reflexive Banach spaces', *Bull. Polish Acad. Sci. Math.* **26** (1978), 407–413.

RAVI P. AGARWAL, Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA e-mail: agarwal@fit.edu

DONAL O'REGAN, Department of Mathematics, National University of Ireland, Galway, Ireland e-mail: donal.oregan@nuigalway.ie

ANETA SIKORSKA-NOWAK, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland e-mail: anetas@amu.edu.pl

522